PHYSICAL REVIEW D 82, 034007 (2010)

Quartet of spin-3/2 baryons in the chiral multiplet (1, 1/2) & (1/2, 1) with mirror assignment
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We study the possible existence of chiral partners in the spin—% sector of the baryon spectrum. We

consider a quartet scheme where four spin—% baryons, P33, D33, D3, and Pz, group into higher-
dimensional chiral multiplets (1,1) ® (,1) with a mirror assignment. With an effective SU(2)g X
SU(2); Lagrangian, we derive constraints imposed by chiral symmetry together with the mirror assign-
ment on the masses and coupling constants of the quartet. Using the effective Lagrangian, we try to find a

set of baryons suitable for the chiral quartet. It turns out that two cases reasonably agree with the mass
pattern of the quartet: (A(1600), A(1940), N(1520), N(1720)) and (A(1920), A(1940), N(2080),

N(1900)).
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L. INTRODUCTION

Chiral symmetry SU(Ny)r X SU(Nf), and its sponta-
neous breaking characterize the QCD vacuum and is a key
to understanding the strong interactions. Because of the
spontaneous breaking of chiral symmetry (SBCS), the
hadron spectrum is classified in terms of the residual
symmetry SU(Ng)y, while the role of SU(Ng)g X
SU(Ng), in the hadron spectrum is unclear. Nevertheless,
one expects that there exists a set of hadrons reflecting a
nature of the original symmetry, which is referred to as
chiral partners. Such examples are well known for mesons,
e.g. (o, ) and (p, a,) [1-3], while not well established for
baryons. As discussed in the meson’s case, finding chiral
partners provides us with the understanding of the role of
chiral symmetry in the hadron spectrum, and also a clue to
study the restoration of chiral symmetry. Recently, the
multiplet nature of the chiral group draws renewed atten-
tion from an interest in the effective chiral restoration [4—
6], which was suggested to be the cause of the observed
parity doubling in the high-energy region of the spectrum
[7].

In the present work, we address the issue of the multiplet
nature of the baryon’s chiral partners. We denote a chiral
multiplet by (Ig, I;), where Ig[I;] is an isospin for
SUQ2)x[SU(2),]. All the members of one chiral multiplet
(I, I;) have a fixed spin. The correspondence of the charge
algebra between SU(N;)g X SU(Ny), and SU(Ny)y X
SU(Ny), leads to a relation I =1Ig®I, = |Ix+ 1],
..., Iz — I.|. This implies that a chiral multiplet can con-
tain various isospin states. In the presence of the SBCS, the
mixing of different chiral representations happens, and a
hadron with an isospin / can be described as a superposi-
tion of various chiral representations containing /. We are
here concerned with the case that a set of hadrons group
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into one or a few representations even in the presence of the
SBCS, or the case where the configuration mixing is small.

In order to find chiral partners, we need to understand
the multiplet nature of the chiral group, such as the pattern
of the spectrum and coupling constants of the multiplet.
Because general relations for masses and axial charges that
can be applied to arbitrary chiral representations are not
established so far, the properties of the chiral partners are
usually studied with focusing on a particular chiral repre-
sentation. In the meson’s case, the properties of chiral
partners have been investigated by using e.g. the Nambu
Jona-Lasinio (NJL) model [8,9] and Weinberg sum rules
[10]. The NJL model was applied to the nucleon [11-15]
and A(1232) [16] by solving the Faddeev equation. We
applied the NJL model with diquarks to the nucleon [17-
19] and the Roper resonance [20], using an auxiliary field
method. However, when we apply such microscopic ap-
proaches to a baryon with a mass larger than the sum of the
masses of the internal degrees of freedom, we encounter
the difficulty of the confinement. Because of this difficulty,
effective Lagrangian approaches that contain hadrons as
degrees of freedom are often employed for the study of
baryon’s chiral partners [21-28].

In recent papers, we have developed a systematic
method to construct an effective SU(Ny)g X SU(Ng),
Lagrangian including higher-dimensional representations
[29-33], which we refer to as a projection method. This
method is inspired by an NJL model for mesons, and partly
extends it to baryons. In Ref. [29], we classified baryon
fields consisting of three quarks in terms of chiral multip-
lets. The Pauli principle implemented by the Fierz trans-
formation plays a crucial role in the classification. The
projection method is performed as follows. First we find
a chiral invariant operator involving direct products of the
quark and diquark fields. This can be achieved by using an
analogy between (o, 77) and diquarks in chiral transforma-
tion property. Then, we project the direct products of the
quark and diquark fields onto irreducible parts with the
use of the Fierz identities. After the projection, three-
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quark fields are replaced by baryon fields. Thus we can
systematically construct chiral invariant Lagrangians in-
cluding higher-dimensional chiral representations, avoid-
ing problems caused by the lack of the confinement.
Although such simple effective Lagrangians have limited
validity, they are useful for the present purpose to derive
the pattern of the masses and coupling constants of the
chiral multiplet.

In Ref. [30], we have applied the projection method to a
quartet scheme (QS). The QS was first proposed by Jido
et al. [34]. They used two kinds of (1,1) ® (3,1) and
considered the so-called mirror assignment [22,23,25],
where four types of baryons, two with / = 1 and the other
two with I = %, are included in the multiplet. They applied
the QS to J = %,%, and % and studied the masses and
intracoupling constants of the quartet. They did not con-
sider the Dirac structure of the Lagrangian explicitly.
Owing to the projection method, we took into account
the Dirac structure in the QS Lagrangian, which enables
us to include transition terms between J = % and J = %
e.g. N and A(1232). With the QS Lagrangian, we have
derived several constraints on the masses and coupling
constants, which characterize the multiplet nature of the
quartet.

In the present work, we develop the previous study to
find a set of baryons suitable for the chiral quartet of spin-3
baryons. Considering J = %, the quartet consists of Pj3,
D3, D3, and P;3. Among various candidates for this set,
we adopted a particular assignment in Ref. [30]: A(1232),
A(1700), N(1520), N(1720). It is an important question if
there is other assignment suitable for the quartet. One
interesting assignment is a set (A(1920), A(1940),
N(2080), N(1900)). Glozman mentioned the possibility
that the approximate degeneracy of these four baryons is
a consequence of the effective chiral restoration [6]. If this
is the case, there are two possibilities. The first one is that
the four baryons form the chiral quartet. The second one is
that two A’s belong to (3, 0) @ (0,3) and two N* belong to
(3,0) @ (0,4). We can study the first case using the QS
Lagrangian.

In order to take into account 77N interactions in the QS,
it is necessary to determine the nucleon’s chiral represen-
tation. In standard linear o models of Gell-Mann-Levy
type [21] the nucleon belongs to (%,O) ® (0, %) In the
mirror models [22-27], the nucleon is a mixture of two
kinds of (§,0) @ (0,). The mixing of (3,0) ® (0,3) and
(1,%) & (%, 1) was studied in an algebraic approach [35—
37] and field theoretical approaches [32,33]. In nonrelativ-
istic quark models the nucleon wave-functions also corre-
spond to the mixing of (1,7) ® (,1) and (3, 0) @ (0,3). In
the present study, we assume the nucleon to be saturated
with the fundamental representation (3, 0) ® (0,1) due to
the following reasons. The linear o models qualitatively
describe the chiral properties of the nucleon. For instance,
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the linear o models describe g4 = 1 in qualitative agree-

ment with g'©” = 1.267 + 0.004. Second, the nucleon
belongs to (5, 0) ® (0, 4), if the nucleon operator has spa-
tially symmetric property [29].

This paper is organized as follows. In Sec. II, we define
the baryon fields and derive their SU(2), transformation
properties. In Sec. III, we construct the SU(2)z X SU(2);
Lagrangian, such as mass terms and 77N R interactions with
the use of the projection technique. Here R denotes the
member of the chiral quartet. Although the QS Lagrangian
is not new, we generalize the formulation given in the
previous study in an assignment-free manner in order to
make it feasible to test various assignments. With the
Lagrangian, we derive several constraints on the properties
of the quartet. Because the projection method is compli-
cated, we show an alternative derivation of some of the
present results, using chiral algebra in Appendix B.
Numerical results are shown in Sec. IV. Considering the
masses, we find two suitable assignments (A(1600),
A(1940), N(1520), N(1720)) and (A(1920), A(1940),
N(2080), N(1900)). We discuss the properties of the quar-
tet for these cases together with the assignment (A(1232),
A(1700), N(1520), N(1720)). The final section is devoted
to a summary.

II. CHIRAL PROPERTIES OF BARYON FIELDS

In this section, we consider baryon fields consisting of
three quarks, which serve as a preparation for the projec-
tion method. Baryon fields consisting of three quarks in a
local form are generally described as

B(x) ~ €upe(qh (OT1,(0)T2g.(x), ()

where g(x) = (u(x), d(x))T is an isodoublet quark field at
location x, the superscript T represents the transpose, and
the indices a, b, and c represent the color. The antisym-
metric tensor in color space €, ensures the baryons being
color singlets. From now on, we shall omit the color
indices and space-time coordinates. I'; , describe Dirac
and isospin matrices. With a suitable choice of I'j,, a
baryon field is defined so that it forms an irreducible
representation of the Lorentz and isospin groups.

Concerning J = % there are three possible baryon fields
with [ = J:

Ny = Gy, 955759 (2a)
Ny = @y, ysT'9l%,7'q, (2b)
N7 = i(qoapT' U557 ysT'q, (2¢)

and two with [ = 3:

AL =Gy, ysT QTP g, (2d)

A = i(GoagT QT 5 vPysPY g, (2e)
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where § = ¢" C(i,)ys is a transposed quark field. Here we
employ an isospurion formalism [38,39] for an isospin—%

3/2 3/2 = 6" —
3T i7/. Similarly, Fg‘ 2 is a local sp1n—§ projection operator

defined by Fé‘/’; = ghv —
consider only on-shell spin—% states. In order to consider
off-shell spin-% baryons, we need to employ the nonlocal
projector instead of the local one [40-43].

Note that the baryon fields Egs. (2) are not independent
[44-46]. In addition, they belong to reducible chiral rep-
resentations, which leads to unphysical mixings of differ-
ent chiral representations [29]. The cause of the unphysical
chiral mixings is the fact that Eqs. (2) are not totally
antisymmetric; they are antisymmetric only for the inter-
change between the first and second quarks. Considering
the Fierz transformation as the antisymmetrization of the
second and third quarks, we obtain the totally antisymmet-
ric baryon fields

projection operator P
1

which is glven by PY

;b/“y”. In the present work, we

NG 1
N = NV 4\/_NA,

A (3b)

(3a)
Ab = %
These totally antisymmetric combinations belong to the
irreducible chiral multiplet [29]. The derivation of Eq. (3)
is shown in Appendix A.

With the baryon fields consisting of the quark fields, it is
a straightforward but tedious task to derive their SU(2)4
transformations by using that of the quark field: 55q =
21a 7ysq with d being the infinitesimal parameters for
SU(2),4. We obtain

N 1/5. 4 .
angL = 5(510 ) TYSNfL + ﬁ”’sa ) AT) (4a)
14 2
SIAY =§(\/§zy5a P3/2N{L—§17 ysa - AY
+ ia - TYSA';L), (4b)

which contain off-diagonal terms 8¢NV ~ A} and
8IA ~ Nt as well as the diagonal ones. They restrict
possible chiral invariant terms, similar to the case of (o, 77)
in the linear sigma model.

For later convenience, we define diquark fields con-
tained in the spin—% baryon fields: a Lorentz vector iso-
scalar diquark V# [I(J)? = 0(1)~], a Lorentz axial-vector
isovector diquark A#* [1(1)"],

VE = qy*q, (5a)
ART = GyrysTiq. (Sb)
It is easy to check that V# and A#! correspond to o and 7

mesons in chiral transformation properties, which is a key
of the projection method.
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We introduce the other set of (1,3) @ (3, 1): (N5, AR,
where they have the same spin and isospin as the original
ones (N!, A¥ "), but the opposite SU(2), transformation
properties in sign, i.e.,

R 1/5 4
82N§L = —§<§1a . 'T’)/SN; + \/—gl.’)/sa : Ag), (63)
o 1/4 . .
85A5" = _E(ﬁ"vsa’PéﬁzNﬁ‘ - giTlYSa -AY
+ ia - TysAg"). (6b)

This property is referred to as the mirror assignment [25],
and we refer to (N}, Al") as naive and to (N4, AY') as
mirror. There is a correspondence of the chiral transforma-
tion properties between the naive and mirror sets,

(NIR’ N{LL’ Aﬁé’ A{LLI) - (NgL’ NQLR’ Ang A%)’ (N

where the indices R and L denote the left- and right-handed
projections with the projection operator Pg; =
(1 £ y5)/2. The right-handed parts of N{* and A{" have
the same chiral transformation properties as the left-
handed parts of N5 and A%", and vice versa.

Note that we defined N, and A, by their transformation
properties Egs. (6). It is useful to define the baryon fields
for N, and A,. It is impossible to describe them in terms of
local three-quark fields. Since baryons are composite par-
ticles, there are generally various possible expressions for
N, and A,. For example, we can describe them by using
baryon operators having a derivative,

Ny = BV,T%) s, (8a)
N} = PALTY /QT'q, (8b)
/'ul ¢A1F3/2 3/261; (8c)

where D, denotes a covariant derivative. The mirror fields
N4 and A are obtained by the same equations as Egs. (3)
with substitution of the primed fields (N, N A " for
the original fields (N%, N*, A%"). Although they would not
be a unique possibility for the microscopic description of
the mirror fields, Eqgs. (8) are enough for the present
purpose to construct the chiral invariant Lagrangian.

III. LAGRANGIAN

Now, we proceed to the construction of the SU(2)g X
SU(2); Lagrangian. It is straightforward to show the chiral
invariance of the kinetic terms: Lx = N, LN +
AL GHAY " (n=1,2). In order to find interaction terms
for higher-dimensional chiral multiplets, it is useful to
employ the projection method.
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A. Mass terms and 77RR terms

The vector and axial-vector diquarks belong to the chiral
multiplet (3, 1), and V2 + A2 is a chiral scalar. The Gell-
Mann-Levy—type interaction for the quark gUsq is also a
chiral scalar, where Us = o + iys7 - 7. Obviously, the
following combination of these two terms is also a chiral
scalar:

q(V + AL)Usq. €)

This term contains the direct products of the quark and
diquark: V#g and A*'g. They are decomposed into the
irreducible parts as

Vig = ysNij + (J = lterms),

Arig = AR+ LrINE + (] = lterms), (10a)
g(vi)t = =Ny ys + (J = jterms),
gArNT = AR+ INR71 4+ (] = lterms). (10b)

Substituting Egs. (10) into the chiral invariant term (9), we
obtain

y .3
Liikr :gl( 1. UsAT _ZNl,LUstL

Ly i inTH
+EN1/'LT U57'N1

+ ?(NIMTiUSA{Li + (H.C.))) + (J = %terms),

(an

where we omit J = % terms, which contain the Gell-Mann-
Levy—type interaction with local nucleon operators Ny =
V,y*q and Ny = Al y*ys7'q. The transition terms be-
tween J = 1 and 3 fields vanish due to y, A} =y, N{* =
0. The Lagrangian (11) describes several kinds of the
interactions; the first three terms describe the diagonal
interactions for N{* and A} with o and 7, and the fourth
term describes a transition between N* and A*' with 7,
where a o N|A| coupling vanishes due to TiA';” = 0.

The diagonal interactions with o generate the masses of
N{" and A" in the presence of the SBCS o — (o) = f, =
92.4 (MeV). We obtain a mass relation [m, |:|my | = 2:1.
If we assign N{* with N(1520), which is the lowest lying
state for I(J) = 1(3), its partner A" has the mass of 2 X
1520 ~ 3000 MeV. We do not find a baryon suitable for
this mass relation in the experimental data [47].

There are several directions to solve this mass problem:
the inclusion of higher-order terms in the Lagrangian and
of higher-order diagrams, the extension of the chiral basis
such as (3,0) @ (0,3) and of the mirror assignment. It was
shown [34] that the inclusion of the mirror assignment
reasonably reproduces the masses and some properties of
observed baryons. Using Eq. (7), we find a chiral invariant
interaction term

PHYSICAL REVIEW D 82, 034007 (2010)
-, .3
L = o B, ULAL — 2, UL
| NP .
+ 5N Ulring + & (No, 7 Ufas + H.c.)),
(12)

which is almost the same as Eq. (11). The difference
appears in the signs of the terms accompanying 7 (Us —
U;r ), which is a feature of the mirror assignment [25].

Considering Eqgs. (4), (6), and (7), ANy + NigNy is
chiral invariant, which leads to the following term:

L = —my(Aj ,AY + Ny, N¥ + H.e), (13)

which describes off-diagonal mass terms between N{* and
N% and between A*' and A", The parameter m, describes
a chiral scalar, so-called mirror mass [25].

The mass terms included in L. + L2 + Lz are
rewritten in the following matrix forms:

N AM
L., =—(A! JAl glf’?T mg ) 1.
M o 2“)< mg —&f =\ Ay’

P I 8 =  mo NY
w32 5 JCE) 00

Because of the off-diagonal terms in these mass matrices,
physical states and their masses are obtained through the
diagonalization of the mass matrices. Note that the mass
eigenvalues can take both positive and negative values. A
state with a negative eigenvalue can be transformed into a
state with a positive mass, but has opposite parity to the
original state. It is carried out by multiplying a state having
negative mass by ys [25]. In the present paper, we consider
the case that two states form a pair of positive and negative
parity states both in A and N* sectors.

For the A part in Eq. (14), we obtain the mass eigenval-
ues of two A states

my- =Yy (g1 — 82212 + 4nd T (81 + 82)f -] (1)

and the eigenstates

AR = cosfy A + sinfy AL, (16a)
AR = ys(—sinfd, A + cosfy ALY),  (16b)
2m0
tan20y = ———. (16¢)
(g g)fs

Here we define A%’ and A*/ as positive and negative parity
states, respectively, where the indices * denote the parity.
Hence A%' and A#! are identified with A(Ps3) and A(Ds3),
respectively. Note that ys in Eq. (16b) appears due to the
parity redefinition. Similarly, for the N* part, we obtain the
mass eigenvalues
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i i N
My :5[\/1(g1 — @S2+ Amd = (81 gz)fwil’

2
(17)
and the eigenstates
N% = cosOyN1{* + sinfyN¥, (18a)
N# = y5(—sinfyN{* + cosOyN5),  (18b)
4m
tan26, = m. (18¢)

N'! and N* are identified with N(D,3) and N(P3), respec-
tively. Again, s in Eq. (18b) appears due to the parity
redefinition. The four masses ma+ and my= are given by
the three parameters g, g,, and m, which offer constraints
on the four masses [34],

(19a)
(19b)

(mA+ + mA—) = (mN+ + me),
Ma- — NMp+ = 2(mN+ - me).

The inequality in the first line of Eq. (19) is controlled by
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two sectors does not violate chiral invariance. Contrarily,
the two sectors are maximally mixed in the m, dominant
case: Oy, 0, = /4.

The Lagrangians (11) and (12) contain the one-pion
interaction terms between the spin—% baryons (7TRR) as
well as the mass terms. Having the four spln-— baryons,
there are ten coupling constants g_rr: four diagonal and
six off-diagonal terms. All the ten coupling constants are
functions of g, g,, and m, which are determined by the
masses. It is straightforward to derive the mRR coupling
constants, g .pr from Egs. (11) and (12). For the A part, we
obtain

Zaata+r = —(g1cos?0, — grsin*6,)
A — Aq gra-a- = (g5in?0, — grc0s?6,) (20a)
gra+a- = (g1 + g2) cosfy sindy
which are defined by L= —g,TAPAP,APW-(i*yST'

w)FSA“ Here P and P’ denote parity, i.e., P, P’ = + or
,and I's = 1 for P = P/ and ys for P # P’. For the N*

mg. Thus, the mass splittings and average masses are part, we obtain

determined by chiral symmetry and the mirror mass m.

. . S _5 20— oocin2
It is worthwhile considering the correspondence be- i} | SN T 6(§ ICOS.Hé\’ &281m 91;)
tween the basis states and the physical states. Obviously, N =N ganv-n- = _g(g 1SN0y — 82€08 On)
the mixing angles vanish in the absence of the mirror mass; ganvn- = —3(g1 1 g2)cosfy sinfy

Oy, 05 — O for my — 0. In this limit, the naive and mirror
sectors decouple, and the physical states correspond to the
basis states: (A N%) — (A™ N{) and (A#, N#) —
(A%, N#). 1t should be noted that the decoupling of the
J

(20b)

which are defined by £ =
For N*-A transition terms,

_gmva,,,NPM(iYsT ’ W)FSN;)L/[-

- \(Tg(gl cosf cosy — g, sinf, sinfy)

EaNtAT T

N — A CaNtA- = \/Tg(gz cosf, sinfy + g cosfy sinfy) (200)
GaN- A+ = — */_(gl cosfy sinfy + g, cosfy sinfy)
gaN-A- = */—3( g1 sinf, sinfy — g, cosOy coshy)

which are defined by £ = —g,n,a,, Np,(iys FS)W"A;". In order to understand the features of g.rg, it is useful to consider

the axial charges, which are obtained by the Noether theorem

gAtAt = + CoszeA’ N N gﬁl*iN*t i% COSZGN, % gﬁ/“—A*— = T OS(HN + HA)
A - A ’3+A, . N N N*TN*— 5 N - A N*SAT 4
ga = —sin26,, g — 3 sin26y, g =*5s sin(6y + 0,).

21

In the limit Oy, — 0 (mo — 0), the absolute Values of the parity-nonchanging 1nteract10ns reach the max1mum values:
|gA AT S, lg N ,and |g!" A - 3 , while the parity- changmg te?rms vanish g = gA = gﬁ’ AT =,
The mixing angles become larger, as mg becomes larger. Since the naive and mirror sectors have the opposite axial charges,

the mixing of the two sectors suppresses the parity-nonchanging interactions and enhances the parity-changing inter-
ATAT = gNTNT — oNTAT ), while the

— gV
NIAT] = 743. Of course, g,zg have the

actions. In the m, dominance, the parity-nonchanging interactions Vamsh 84

parity-changing terms reach the maximum values |gA Al=1, |g N7 =3, and g}

same features as the axial charges due to the Goldberger-Treiman relatlons
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S r8ma+a+ = CO820,my-~,
A—Aq fr8ma-a- = —CO820my-,
frmara- = —%8in20(mp+ — my-),

_5
fr8aNtNt = 3 cos260ymy+,

N* =N fa8ann = —% cos20ymy-, (22)
fn8antn- = _% sin20y (my+ — my-),
-
fﬂ.gﬂ,NJrAJr = 725 COS(@N + HA)(mN+ + mA+),
N — A fa8anta- = — % sin(fy + 0a)(my+ — my-),
fﬂ'gﬂ'N_A+ = 723 Sin(eN + 9A)(mN’ - mA*);
fﬂ'gﬂ'N_A_ == % COS(GN + GA)(mN_ + mA')'
\
B. Interaction with the nucleon = (04 Us)(m), (24e)
Next, we construct the interactions between the nucleon
(N) and the chiral quartet. As we have discussed in the u NG 1.
introduction, we assume that the nucleon belongs to 0y = _7(18“ US)(O' Ys T g”" T ) (241)

(,0) @ (0,4). With the nucleon’s chiral multiplet, we can
classify the products of the chiral properties of N ® A:

res-[ o D{E ()

_ {(1, 0)@(0,1) for (N¥ A¥),

| 2
¢.1 for (N%, ALY, 23)

where we omit four-meson terms (1, 1) and [(2, 2) & (2, 2)]
In the derivation of Eq. (23), it is important to take into
account the chirality conservation. This classification im-
plies that chiral invariant interactions between N and
(N¥, A*) accompany two-meson fields, while those be-
tween N and (N4, A%') accompany one-meson fields.

We find two chiral scalars oV, + i+ A, and NUsgq.
Multiplying them, we find two chiral invariant terms:
(—)NUs[(a# o)V, + i(a#a) - A, 1g and (—i)N(9#Us) X
(oV, +im- A,)q. Using Eqgs. (10), we obtain the chiral
invariant interaction terms between N and (N}, A b,

L= A—32[N0§MA{“' +NO,, N T+ (He),  (24a)
o = %[NogMA{“' + NO4, N'+ (He),  (24b)

where the dimensional parameter A (mass) is introduced to
keep the coupling constants gz and g, dimensionless. We

also introduce shorthand notations O, (n = 1,...,4) for
mesonic operators
O = Us(o# '), (24¢)
3 1
of = — \é_US((af‘a)ys + g(iaﬂw : 7)), (244d)

One may think it possible to construct similar interaction
terms for the mirror fields by the replacement Eq. (7).
However, such terms are forbidden by chirality conserva-
tion, as is shown in Eq. (23).! The mirror fields have one-
meson interactions with the nucleon. It can be constructed
by using the chiral invariant operators (—i)(o'V, + i -
A ) and NJBq. We obtain

Lo = %[Nog#Ag“' + NOg, N¥J, (25a)
where Os and Og are also mesonic operators,
O = (arar), (25b)
3 1
of = —{(i&”)(ajg + gia'- 77). (25¢)

. I 2 3
In the mass basis, Lyyr = LiNg + Lohg T Lok is

rewritten as
Lyng = NL(O},, + 0%,)cosby + 05, sinf, JA#
+ N[—(0}, + 0%,)sinf, + 05, cosf]ysA#
+ N[(0,, + 04,) cosby + O, sinfy N’
+ N[—(0,, + Oy4,)sinfy + O, cosy]ysN™,
(26)

Tt can be shown explicitly‘ For example, the first term in
Eq. (24a) is rewritten in terms of left- and right-handed parts of
the fields as NUs(d,7)A} l—NLUs(a a)A g + (L= ).
Replacing A — Ay, NLU5(8 m)A g — Ny Us(9,7) Ay,
which vanishes due to PP = 0 [PRL = (1 % y5)/2].
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which contains several kinds of the interaction terms,
7NR, mTNR, oNR, and coNR. Among them, we con-
sider 7NR and 777w NR interaction terms in order for the
comparison with experiments. The 7N interactions of the
chiral quartet are given by

Lovg = g”XA N (o, ) ATH + gWXA N(0, ) ysA i
87NN~ o —
]/\;N N(9 - 7)ysN~*

+ 8N (o - TINR, (27a)

where the coupling constants g yy+= and g, ya= are given
by

1 .
EaNA+T = K(gsA sinfy + g3f,cosfy), (27b)

1 .
8mNA~ = X(gsA cosfy — g3fsinfy), (27¢)

V3 .
ganNt = 6—A(gsA sinfy + (g3 + 384)fcosby), (27d)

8ann—- = —(gsAcosOy — (g3 + 3g4)f»sinfy). (27e)

=S

Four g, yp are expressed in terms of three parameters gs,
g4, and g5, which leads to one identity

(sinfp g na+ + cOSOALNA-)

= 2V/3(sinfy g pyn- + COSONZ - )- (28)

Here it must be noted that the derivation of the 7N inter-
actions is based on the assumption of the nucleon’s chiral
multiplet. If the nucleon together with the negative parity
resonance group into (3, 0) ® (0, 1) with the mirror assign-
ment, we can include three additional interactions, which
spoils the constraint Eq. (28). Another possibility is that the
nucleon contains (1, %) & (%, 1) as well as (%, 0) @ (0, %) In
this case, we can include one additional interaction that has
a similar form to Eq. (11). With the new term, Eq. (28)
becomes a loose constraint and gives the ordering of the
coupling constants. So, Eq. (28) is one of the strictest
constraints. The point is that it is possible to improve this
result without changing the masses and 7RR interactions
of the quartet.

PHYSICAL REVIEW D 82, 034007 (2010)

We obtain two-pion interaction terms

(v)

g — ¢
‘£ aaNA — %N(eabcﬂaﬂﬁf)@)Aﬁ
g(z) L .
+ 77”XVA N(7T”7Tf’M + Wfﬂwb)(iysT”)A’i
g(v)
4 2mmNA- N(e®emia® ) ARC
A
g(t)
+ vaA, N(7T”7Tf’M + W?MWb)(iTa)A’_"b,
(29)
g(S)
77'77'NN+
L ooy = A N(iysm - @, )N%
g(v)
+ 7”7;;\”\]* N(e“ e marbh, 7¢)ysNE
g(f)
NN® =
+ 7";\ N(izr - , )N
RON
+ S N(e mtal, N, (30)
with
(v) __ cosfy _
8amNA, it (g3 — g4),
(1) _ cosﬁA +
A-sector g(T)TNM _ gmgf% 84)
SomNA. = (83 — 84),
g s = S“"“ (g3 + 84),
, 3D
ggierNi =+ \/icosa,! (83 + g4),
(v) _ ﬁcos&N o
N*-sector ZZ;TNN? ﬁ 0 (85~ 84)
bln
Somnn: = —en gzt ga)
gg:q)TNN*_' = 3smeN (g3 — 84)

where they are classified into three types: the symmetric
(77 - @ ,), antisymmetric (i€"*“7“a?,), and symmetric
(mab, + 7, ") types. They correspond to an isoscalar
(77 - @ ), isovector (ie**“ 7 7",), and isotensor (77, +
77?#771’). Since the two-pion coupling constants g..ng
contain only g3 and g4, their strengths are determined by
the #N coupling constants through g3 = (A/f,) X

((ganva+ — ana-)/(cosfy + sinfy)) and 84 =

(2A/\/§f7r)((ngNj — gann:)/(cosfy + sinfy)). Fur-
thermore, g,..yr are proportional to either (g; + g4) or
(g3 — g4), which provides a selection rule; either 77 iso-
scalar or isovector interaction is suppressed each for N%,
and either the isovector or isotensor interaction is sup-
pressed each for A ..

Using the SU(2) X SU(2); Lagrangian, we have de-
rived several constraints on the properties of the chiral
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quartet. We concentrate on the construction of the lowest-
order terms and the derivation of the chiral constraints at
tree level. In general, it is possible to insert chiral invariant
operators such as (o> + 7%)" into the chiral Lagrangians
we derived. However, those terms do not change the above
constraints and can be absorbed into the parameters.
Regarding the 7RR interactions, it is possible to include
an additional interaction term with a derivative [25]. The
constraint for the 7N R interactions rely on the assumption
of the saturation of (},0)® (0,1) in the nucleon. The
inclusion of the (1,3) @ (3, 1) component in the nucleon
causes one additional chiral invariant 77N interaction term
similar to Eq. (11). In this case, four g ,yr are given by four
parameters. It must be noted that the inclusion of (I, %) &
(% 1) for the nucleon does not affect the multiplet nature of
the quartet.

IV. RESULTS

In this section, we proceed to numerical discussions and
look for a set of baryons suitable for the QS. Possible
candidates for the members of the quartet are shown in
Table I. There are six parameters in our model: m, g, g2,
g3 &4, and gs. The dimensional parameter A does not play
any role in the present study, so then we do not need to
determine it. Since the masses m,  and my: are the
functions of mg, g, and g,, we can determine them by
minimizing X = Selmg — myg "/ (8m™)? (R =
A. and N%). Here m$ and 8mS are the central values
and errors of the observed masses, which are shown in

TABLE I. Observed states listed in Particle Data Group (PDG)
[47] corresponding to the quantum numbers of the members of
the quartet. The number of the stars denotes PDG ratings of the
states.

Lony Observed states

Pss A(1232)***, A(1600)"*, A(1920)**
D A(1700)**, A(1940)*

P N(1520)"", N(1700)"**, N(2080)*
Pl3 N(1720)****’ N(l900)*
TABLE II.

are taken from PDG [47]. The values in the bracket for mngP) are central values of the observed masses, while those for I
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Tables II and III. Considering the states listed in Table I,
there are 36 possible assignments. Among them, we dis-
cuss four cases [Case (I1)] (A(1232), A(1700), N(1520),
N(1720)), [Case (2)] (A(1600), A(1940), N(1520),
N(1720)), [Case (3-1)] and [Case (3-2)] (A(1920),
A(1940), N(2080), N(1900)). Although case (1) was
studied in Refs. [30,34], we reanalyze this case with the
use of the different methods for the determination of the
parameters. As we will show, case (2) agrees with the mass
pattern of the QS with the smallest y2,.. We also discuss
(A(1920), A(1940), N(2080), N(1900)). Because of a va-
riety in the data, we consider two cases, (3-1) and (3-2), for
this assignment, using two different data sets shown in
Table III. There are three other assignments that reproduce
the masses with y2,. less than one: (A(1600), A(1700),
N(1700), N(1720)), (A(1600), A(1940), N(1700),
N(1900)), and (A(1920), A(1940), N(1700), N(1720)).
We concentrate on the above four cases in the present
work. Instead of discussing all of them, we discuss the
general behaviors of the QS later. Results for the masses
are shown in Table IV. For case (1), the present result
differs from the previous study [30], which is due to the
difference of the method to determine the mass parameters.
In Ref. [30], we adopted the minimization of a standard
deviation 02 = S(mp — m'S)2, while we employ the
x>-minimum method in the present work. These two meth-
ods differ in how A(1232) is included in the fitting proce-
dure, because the error of the observed A(1232)’s mass is
much smaller than those of the other three states. We found
Xaass amounts to 60, which is significantly large. It is
favorable for the QS that the masses of the A are larger
than those of N7%, as shown in Egs. (19). The mass of
A(1232) is much smaller compared with other spin-3
baryons. This causes the significantly large discrepancy.
We also found that y2,. becomes larger if assignments
include A(1232) as a member of the quartet, which implies
that the mass of A(1232) is too small for the QS.

Cases (2), (3-1), and (3-2) are new in this work. Case (2)
is the best assignment for the quartet with y2,, = 0.0025,
which is the smallest value among x2,. for 36 possible
assignments. For A(1940) in this case, we use the data by
Horn et al. [48]. We confirmed that the result for (2) is

Data for masses, 7N decay widths, and 7N coupling constants of the observed states used in cases (1) and (2). The data

exp)
v are the

(exp)

average values between minimum and maximum values. The definition of g,y is given in the main text. For A(1940) in case (2), we

use the data in Ref. [48].

States R m& (MeV) ' (Mev) 9P /A (GevT)
A(1232)[P53] 1231-1233 (1232) 116-120 (118) 15.7-16.0 (15.8)
A(1600)[P53] 1550-1700 (1600) 25.0-113 (68.8) 2.37-5.04 (3.70)
A(1700)[Ds;] 16701750 (1700) 20.0-80.0 (50.0) 6.34-12.7 (9.51)
A(1940)[Ds;] 19502030 (1990) 17.0-62.4 (39.7) 3.23-6.20 (4.72)

N(1520)[ D3]
N(1720)[P3]

1515-1525 (1520)
1700-1750 (1720)

55.0-81.3 (68.1)
15.0-60.0 (37.5)

7.64-9.30 (8.46)
1.72-3.44 (2.58)
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TABLE III.

also the caption of Table II.

PHYSICAL REVIEW D 82, 034007 (2010)

Data for masses, wN decay widths, and 7N coupling constants of the observed states used in cases (3-1) and (3-2). See

Case (3-1)
States R m&? (MeV) r? (Mev) gSP /A (GeV) Reference
A(1920)[ Ps3] 1900-1970 (1920) 7.50-60.0 (33.8) 0.825-2.33(1.58) PDG average [47]
A(1940)[ D3] 1950-2030 (1990) 17.0-62.4 (39.7) 3.23-6.20(4.72) Horn et al. [48]
N(2080)[D 5] 1945-1947 (1946) 85.2-121 (103) 4.63-5.23(5.08) Penner et al. [49]
N(1900)[P5] 1855-1975 (1915) 2.80-19.8 (11.3) 0.574-1.53(1.05) Nikonov et al. [50]
Case (3-2)
States R mﬁ?’(p) (MeV) FS;’:,P ) (MeV) g(;,f,p) /A (GeV™h) Reference
A(1920)[P13] 1900-1970 (1920) 7.50-60.0 (33.8) 0.825-2.33 (1.58) PDG average [47]
A(1940)[ D13 ] 1947-2167 (2057) 8.40-234 (121) 2.04-10.8 (6.40) Manley et al. [51]
N(2080)[ D3] 1749-1859 (1804) 53.0-165 (109) 4.45-7.84 (6.15) Manley et al. [51]
N(1900)[P5] 1855-1975 (1915) 2.8.0-19.8 (11.3) 0.574-1.53 (1.05) Nikonov et al. [50]
TABLE IV. Result for the masses and parameters. For the experimental data, see Tables II and III.
Masses (MeV) [Assigned states]
State Case (1) Case (2) Case (3-1) Case (3-2)
AT [Py3] 1233 [A(1232)] 1594 [A(1600)] 1935 [A(1920)] 1917 [A(1920)]
A~ [Ds3] 2190 [A(1700)] 1992 [A(1940)] 1980 [A(1940)] 2083 [A(1940)]
N~ [Dy3] 1473 [N(1520)] 1520 [N(1520)] 1946 [N(2080)] 1817 [N(2080)]
N7 [P3] 1951 [N(1720)] 1719 [N(1720)] 1969 [N(1900)] 1899 [N(1900)]
Xonass 68 0.0025 0.26 0.045
Parameters and angles
State Case (1) Case (2) Case (3-1) Case (3-2)
g1 52 12 0.25 10
2 52 =75 0.25 —8.3
my (MeV) 1712 1557 1957 1809
6y (degree) 45 37 45 38
04 (degree) 45 60 45 58

insensitive to the choice of the data for A(1940). Cases (3-
1) and (3-2) also reproduce the masses of the quartet with
Xaass = 0.26 and 0.045, respectively.

Once the masses are determined, we obtain the one-pion
coupling constants between two members of the quartet,
which are shown in Table V. First, we consider qualitative
features of the one-pion coupling constants. It was found
[34] that in case (1) the parity-nonchanging interactions
vanish, while the parity-changing interactions remain to be
finite. However, even for the parity-changing interactions,
their strengths are smaller than a typical order of one-pion
interactions, e.g. gyv ~ 13 [18]. On the other hand, g, zr
behaves in an opposite way in case (2). All of the coupling
constants survive in the case, where the parity-changing
interactions are suppressed compared to the parity-
nonchanging ones. In addition, diagonal coupling con-
stants are comparable to g.yy, €8 &ma a = 1l
Interestingly, cases (3-1) and (3-2) show different results,
although they are the same assignment. This is caused by
the difference of the ordering of the masses of the quartet,
especially that of A(1920) and N(2080). We turn back to
this point later.

Among various coupling constants, g,a(j232)A(1232) are
investigated in several approaches. Quark models [52] and
large N, [53] predict large values, especially, g74% =
(9/5)ga in large N, which gives g,a(1232)a1232) ~ 30. A

light-cone QCD sum rule reported half of the quark model

TABLE V. The one-pion coupling constants between the mem-
bers of the quartet, g ,zz. The values of the parameters are shown
in Table IV.

SRR Case (1) Case (2) Case (3-1) Case (3-2)
CaAt At 0 —-8.6 0 —8.9
SnA-A- 0 11 0 9.6
EaAt A~ 52 1.9 0.25 0.81
EaN* N+ 0 8.5 0 7.9
EaN-N- 0 =75 0 =175
CaN*N- —4.3 —-1.7 —0.21 —0.73
SaN*A* 0 —5.0 0 —5.0
CaN*A- 3.0 34 0.14 2.3
A N- —=3.0 0.92 —-0.14 1.2
SaN-A- 0 53 0 5.1
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prediction [54] but still large values compared to our result.
The g 7a(1232)a01232) Were also determined in coupled chan-
nel analysis. Krehl et al. obtained g, ,n = 31 [55], while
Schneider et al. obtained g x = 12.5 [56]. In case (1),
grA(1232)A(1232) Vanishes, which is inconsistent with these
studies. Krehl et al. and Schneider ef al. also investigated
8=A(1232)N(1520) and obtained g w(1520)a(1232) = 0.95 and
1.3, respectively. The present result |g,a (123251520 =
3.0 is qualitatively consistent with these values.

With regard to the 77N coupling constants gy, we need
to determine three parameters g3, g4, and gs. Since g,nyr
are the functions of g3, g4, and g5, we can determine them

by the y?-minimum method with x2yzx = 2r(gxvr —
g\ 9PN2 /(552 Here g'F) and 8¢ are the average
and errors of the coupling constants determined from the
experimental 77N decay widths. We obtain them by using a

relation g3 /A = \/I‘(;;p) /Ty, where T is 7N decay
widths obtained by setting the coupling constant to be
one, and [P are the experimental values of the 7N decay
widths shown in Tables II and III. The dimensional pa-
rameter A does not play any role in the determination of
the coupling constants because of the cancellation between
the numerator and denominator in y2 . We obtain [, by
calculating the simplest tree diagram. Note that we can
determine only absolute values of the coupling constants
from the 7N decay widths. Hence, the positive sign of
ggfl’i,‘}; in Tables II and III is our assumption. The result is
shown in Table VI.

Case (1) reproduces the reasonable values for the four
g-vg With small x2 .. which are almost within the ranges
of the experimental values. In case (2), the 2y value is
significantly large. The discrepancy is mostly caused by
the small values of the 7N decay width of A(1600) and
A(1940). In the QS, it is favored that the average values of
g-nr between A, is larger than that between N7, as is
shown in Eq. (28). Because of the same reason, x2yg is
large for case (3-1). We obtain reasonable results for

case (3-2) with small 2. Our result underestimates
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the value of g, yg for R = N(2080)(N*), which gives
7N decay widths half of the minimum of the experimental
values.

Mass pattern and one-pion coupling constant

The quartet scheme shows two different behaviors for
the one-pion coupling constants, as shown in Table V.
Especially, the assignment (A(1920), A(1940), N(2080),
N(1900)) shows two different behaviors, depending on the
choice of the experimental data. Equations (21) show that
the one-pion coupling constants are controlled by the
mixing angles. Cases (1) and (3-1) correspond to the
maximally mixing with the angles 0y, = 45°, while
cases (2) and (3-2) correspond to moderate mixing. Since
the mixing angles are the functions of mg and (g, — g2)f »
as shown in Egs. (16) and (18), we can understand the
behavior of the one-pion coupling constants, comparing m
with (g; — g2)f». These parameters also determine the
masses of the quartet. Therefore, we can relate the masses
to the one-pion constants.

In order to understand their relation, we approximate the
masses in two ways. In the small m case, the masses are,
up to O(m3), given by

my= =2X T2Y + Z,

where X = flg1 — g:|/4, Y = (g1 + g2)f»/4, and Z =
4m3/(f»lg1 — g21). In the m, dominant case, they are, up

to O((f/my)), given by

mpa= = my + 2a,

my- =X *Y+2Z7

my= = my * a,

where a = (g; + g,)f»/4. The mass patterns for these
cases are shown in Fig. 1. The two cases are different in
the ordering of A and N*~. In the m, — 0 limit, they have
mass ratio 2:1 and A™ is heavier than N*~. Small values of
mg do not change this ordering, which corresponds to the
left panel in Fig. 1. When m, becomes much larger, the
ordering is changed and A* becomes the lowest state.
Cases (1) and (3-1) correspond to the mass pattern shown
in the right panel in Fig. 1, while cases (2) and (3-2)

TABLE VI. Result for the 7N coupling constants and parameters. For the experimental data, see Tables II and III.
7N coupling constants Theo (Expt) (GeV ™)
Case (1) Case (2) Case (3-1) Case (3-2)
g'+“ 16 (15.7-16.0) 7.2 (2.37-5.04) 2.7 (0.825-2.33) 1.8 (0.825-2.33)

14 (6.34-12.7) 7.2 (3.23-6.20)

8.9 (3.23-6.20) 12 (2.04-10.8)

g”?(’* 7.3 (7.64-9.30) 4.2 (7.64-9.30) 3.8 (4.63-5.23) 2.2 (4.45-7.84)
g"'NTN” 1.3 (1.72-3.44) —0.89 (1.72-3.44) —0.44 (0.574-1.53) 0.81(0.574-1.53)
g 15 13 7.1 1.8
Parameters (GeV™!)
Case (1) Case (2) Case (3-1) Case (3-2)
L 11 ~2.6 —4.4 —8.8
ale -5.2 ~2.9 ~2.0 2.1
£ 21 9.8 8.2 7.7
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FIG. 1. Schematic figures for the mass pattern of the QS.
(a) Small m case. (b) my-dominant case.

correspond to the left panel. Actually, m is not small in
cases (2) and (3-2), but comparable to (g, — g2)f
However, the left panel in Fig. 1 well described the mass
pattern of these cases. Using Eqs. (16) and (18), mixing
angles in the small m, case takes moderate values and all
the one-pion coupling constants survive. On the other
hand, in the my-dominant case, mixing angles are 0y r ~
7r/4 and the parity-nonchanging interactions vanish. Thus,
the behavior of the one-pion coupling constants is related
to the mass pattern of the quartet. According to this dis-
cussion, cases (3-1) and (3-2) are different due to the
ordering of A(1920) and N(2080), although they describe
the same assignments. This is the reason why the assign-
ment (A(1920), A(1940), N(2080), N(1900)) is sensitive to
the choice of the experimental data. This discussion can be
applied to other assignments we do not take into account.
As we have mentioned, the other three assignments repro-
duce the masses of the quartet with y2,. less than one:
(A(1600), A(1700), N(1700), N(1720)), (A(1600),
A(1940), N(1700), N(1900)), and (A(1920), A(1940),
N(1700), N(1720)). According to the above discussions,
the first and second cases correspond to maximal mixing
with the vanishing of the parity-nonchanging interactions,
while all the coupling constants survive in the third case.

V. SUMMARY

We have investigated the possibility that chiral partners
exist in the spin-% baryon sector by considering the quartet
scheme, where four spin- % baryons, P33, D33, D3, and P 3,
form the chiral multiplets (1,1) ® (}, 1) with the mirror
assignment. Using the SU(2)z X SU(2); Lagrangian, we
tried to find a set of four baryons suitable for the chiral
quartet. We discussed three assignments: (1) (A(1232),
A(1700), N(1520), N(1720)), (2) (A(1600), A(1940),
N(1520), N(1720)), and (3-1) and (3-2) (A(1920),
A(1940), N(2080), N(1900)). Here we investigated
(A(1920), A(1940), N(2080), N(1900)) using two data
sets.

For case (1) we found that there is significant discrep-
ancy for the masses, which implies the mass of A(1232) is

PHYSICAL REVIEW D 82, 034007 (2010)

too small for the quartet scheme. In addition, the vanishing
of gra@232)A0232) 18 inconsistent with other theories.
Considering the discrepancy for the masses and the incon-
sistencies of g.a(1232)a(1232), it seems that this case is less
suitable for the quartet.

For case (2), the masses of the observed baryons agree
well with the mass pattern of the QS. Among all the
possible assignments, the y” value becomes the smallest
in this case. Considering the masses, this case is most
suitable for the quartet. Regarding the 7N interactions,
this case does not reproduce reasonable results.

For the assignment (A(1920), A(1940), N(2080),
N(1900)), we consider two cases (3-1) and (3-2) with the
use of different data sets because of the variety of the
experimental data. Both cases reproduce the masses of
the quartet with x? less than one. The one-pion coupling
constants for this assignment are quite sensitive to the
ordering of the masses of A(1920) and N(2080). If the
mass of A(1920) is smaller than that of N(2080), only the
parity-changing one-pion interactions survive. On the
other hand, if the mass of N(2080) is smaller, all the
coupling constants are finite and the parity-nonchanging
interactions are larger than the parity-changing ones.
Regarding the 7N interactions, we obtained reasonable
results for case (3-2).

For further confirmation, experiments or lattice calcula-
tions for the one-pion coupling constants are needed. For
instance, we can test the validity of case (2) using coupling
constants such as g yas20n(520) €ana720)N(1720)> and
gxN(1520)N(1720)- For the further study of the assignment
(A(1920), A(1940), N(2080), N(1900)), we need informa-
tion about the masses because of a variety of the data.
Especially, detailed information of the masses of A(1920)
and N(2080) are needed, because the one-pion coupling
constants are sensitive to the ordering of the masses of
them. If the mass ordering is determined, we can test this
assignment using one-pion coupling constants such as
87A(1920)A(1920)-

It is important to extend the present framework with the
inclusion of higher-dimensional chiral representations for
the nucleon. For the 7N interactions with the quartet, we
adopted the assumption that the nucleon belongs to the
fundamental chiral representation. There are other possi-
bilities for the nucleon’s chiral representation. Hence, the
disagreements for the 77N interactions may come from this
assumption and can be resolved by including higher-
dimensional chiral representations for the nucleon.
Furthermore, it may be possible to test the nucleon’s chiral
representations through the 7N interactions with the quar-
tet, if we can confirm the QS by using the one-pion
interactions for the quartet.

In the present study, we employed the effective
Lagrangian approach, where we truncated higher-order
terms in the Lagrangian and we neglected quantum effects.
With the high-lying baryons in the multiplet, we need to
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include various resonances in order to evaluate the quan-
tum effects properly, which would cause additional diffi-
culties. Rather, it is desired to reproduce and confirm the
present result using different methods. For instance, an
algebraic method proposed by Weinberg is one of the
useful methods to study chiral partners. This method is
based on the commutation relations derived from the
superconvergence property of pion-nucleon scattering am-
plitudes and can be applied to baryons [35-37]. We have
already started a study along this line in Ref. [32].
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APPENDIX A: FIERZ TRANSFORMATION

We show the derivation of Egs. (3). We define totally
antisymmetric fields as linear combinations of Egs. (2):

By = ay - ¢y, (Ala)
By = ap - Py, (Alb)
where
én = (N, Ni, NP), (Alc)
é s = (AR, A%, (Ald)
ay=(ay,d, ay), (Ale)
iy = (at, ay). (A1)

The coefficients dy and d, are determined by the totally
antisymmetric condition, which is implemented by the
antisymmetric condition under the interchange between
the second and third quark and is given by

j:[Bn] = _[Bn]r (I’l =N, A);

where F[B] denotes a baryon field obtained from the Fierz
transformation of B. The Fierz transformation formula is
given in Ref. [29]. This equation can be read as two kinds
of the eigenvalue problems: (a) for the vector space B N.AS
and (b) for the vector space dy 5. The eigenvalue problem
(a) gives identities between the baryon operators

(A2)

NE = N¥ 2N* = NE,

Mi A
AB = — A

(A3a)
(A3b)
which reduce the number of the independent fields [29,44—

46]. The eigenvalue problem (b) determines the values of
the coefficients dy and d
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ay = (3,1, 1),
ay = (=21),

(Ada)
(Adb)

with which By and B, are totally antisymmetric. This
determines the ratio between Ni and N% in N{. It is
convenient to replace N4 by N{/ and N} and A}’ by A4’
with the use of Egs. (A3), which can be done without the
change of chiral transformation properties of By and Bj,.
Finally, we obtain Egs. (3).

APPENDIX B: ALTERNATIVE DERIVATION OF
CHIRAL PROPERTIES

We show an alternative derivation of the chiral trans-
formation properties of (1, %) ® (%, 1) and the mass relation.
The starting point is a standard definition of the trans-
formation in terms of the chiral algebra between charges
and fields. In general, the SU(2), transformation is given
by ' = ¢ + ia'[Q', ] with generators Q' (i = 1,2, 3)
and infinitesimal parameters a' for the SU(2), transforma-
tion. We describe (1,3) @ (3, 1) by the product of the iso-
vector and isospinor ¢ = ('), (a = 1, 2). For simplicity,
we suppress the Lorentz indices in this section.

In the left- and right-handed representations, they cor-
respond to % = (1,3) and § = (3, 1): % = (1, 1) trans-
forms as / =1 under SUQ2)g and I =1 under SU(2),,
while ;= (%, 1) transforms I = %under SUQR)gand I =
1 under SU(2), . Note that this field ' corresponds to A%,
and Ny in Eq. (2). It is easy to check that N4, Ny, and A,
consist of (RL)R, (RL)L, (LR)R, and (LR)L, while Ny and
A7 contain (RR)L and (LL)R. Jido et al. employed (RR)L
and (LL)R for the description of (1,1) @ (3, 1) [34]. The
chiral transformations of these fields are given by

84t = e ()5, Sk, = it"yy,
8 i = € ()5, 8¢y = iy,

where we have defined 8> = —i[Q¢, ¢"]. Using Q% =
0% + 0f and Q% = Q% — Qf, we obtain SU(2)y and
SU(2), transformation properties

61‘11 lﬁ? — [(6abc + itaabc)]wc’

(BI)

(B2)

6Xlﬂb — ,ys(eubc _ it“é”")z,b;‘.

Employing an isospurion formalism, [ = % and [ = % com-

(B3)

ponents are obtained by ¢/, = 7'¢" and 5, = P;j/z .
After the irreducible decomposition, we obtain
5?1‘!/1/2 = %Ws[%’fa'ﬁl/z - 41113/2],

o4 lﬁé’/z - %’75[7& ‘pg/z - %Tb‘//g/z - %Pg72¢1/2]'

Here note that the coefficients differ from Egs. (4). This is
because i/, and ¢ /2 describe N and A’., respectively.

Using Egs. (3) and (A3), we obtain ¢/, = Ny = 2\/§N1

(B4a)
(B4b)
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and ¢35/, = Ay = —2A,. Substituting these relations into
Egs. (B4), we reproduce Egs. (4).

Considering the I, = % components, it is easy to show
that the SU(2), transformations of the / = § and 3 fields

L=(1/2) L.=(1/2)
Y bin 7 bin
Al r=ap | =172 |’
b3 b3
13 £
T=- , B5
5 %5 % (BS)

where T is the axial-transformation matrix Eq. (B4) for
I, =3 components. We introduce the mass matrix for

(¢§~";“/2), ¢g’;(1/2))T as M = diag(a, b) with a and b

PHYSICAL REVIEW D 82, 034007 (2010)

being the masses of ¢/, and ¢3/,,. We also introduce
the pion interaction matrix M, for their pseudoscalar
couplings. With chiral invariance, the matrices 7', M, and
M . must obey

M={T)M7T}) M7T={TrM}r

which leads to a double-commutation relation

M = AT AT, M}}. (B6)
This double-commutation relation gives a = —2b, which
reproduces the mass relation between N/ and Af". Note
that the double commutator Eq. (B6) is the necessity
condition of chiral invariance.
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