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We study the possible existence of chiral partners in the spin- 32 sector of the baryon spectrum. We

consider a quartet scheme where four spin- 32 baryons, P33, D33, D13, and P13, group into higher-

dimensional chiral multiplets ð1; 12Þ � ð12 ; 1Þ with a mirror assignment. With an effective SUð2ÞR �
SUð2ÞL Lagrangian, we derive constraints imposed by chiral symmetry together with the mirror assign-

ment on the masses and coupling constants of the quartet. Using the effective Lagrangian, we try to find a

set of baryons suitable for the chiral quartet. It turns out that two cases reasonably agree with the mass

pattern of the quartet: (�ð1600Þ, �ð1940Þ, Nð1520Þ, Nð1720Þ) and (�ð1920Þ, �ð1940Þ, Nð2080Þ,
Nð1900Þ).
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I. INTRODUCTION

Chiral symmetry SUðNFÞR � SUðNFÞL and its sponta-
neous breaking characterize the QCD vacuum and is a key
to understanding the strong interactions. Because of the
spontaneous breaking of chiral symmetry (SBCS), the
hadron spectrum is classified in terms of the residual
symmetry SUðNFÞV , while the role of SUðNFÞR �
SUðNFÞL in the hadron spectrum is unclear. Nevertheless,
one expects that there exists a set of hadrons reflecting a
nature of the original symmetry, which is referred to as
chiral partners. Such examples are well known for mesons,
e.g. ð�;�Þ and ð�; a1Þ [1–3], while not well established for
baryons. As discussed in the meson’s case, finding chiral
partners provides us with the understanding of the role of
chiral symmetry in the hadron spectrum, and also a clue to
study the restoration of chiral symmetry. Recently, the
multiplet nature of the chiral group draws renewed atten-
tion from an interest in the effective chiral restoration [4–
6], which was suggested to be the cause of the observed
parity doubling in the high-energy region of the spectrum
[7].

In the present work, we address the issue of the multiplet
nature of the baryon’s chiral partners. We denote a chiral
multiplet by ðIR; ILÞ, where IR½IL� is an isospin for
SUð2ÞR½SUð2ÞL�. All the members of one chiral multiplet
ðIR; ILÞ have a fixed spin. The correspondence of the charge
algebra between SUðNfÞR � SUðNfÞL and SUðNfÞV �
SUðNfÞA leads to a relation I ¼ IR � IL ¼ jIR þ ILj;
. . . ; jIR � ILj. This implies that a chiral multiplet can con-
tain various isospin states. In the presence of the SBCS, the
mixing of different chiral representations happens, and a
hadron with an isospin I can be described as a superposi-
tion of various chiral representations containing I. We are
here concerned with the case that a set of hadrons group

into one or a few representations even in the presence of the
SBCS, or the case where the configuration mixing is small.
In order to find chiral partners, we need to understand

the multiplet nature of the chiral group, such as the pattern
of the spectrum and coupling constants of the multiplet.
Because general relations for masses and axial charges that
can be applied to arbitrary chiral representations are not
established so far, the properties of the chiral partners are
usually studied with focusing on a particular chiral repre-
sentation. In the meson’s case, the properties of chiral
partners have been investigated by using e.g. the Nambu
Jona-Lasinio (NJL) model [8,9] and Weinberg sum rules
[10]. The NJL model was applied to the nucleon [11–15]
and �ð1232Þ [16] by solving the Faddeev equation. We
applied the NJL model with diquarks to the nucleon [17–
19] and the Roper resonance [20], using an auxiliary field
method. However, when we apply such microscopic ap-
proaches to a baryon with a mass larger than the sum of the
masses of the internal degrees of freedom, we encounter
the difficulty of the confinement. Because of this difficulty,
effective Lagrangian approaches that contain hadrons as
degrees of freedom are often employed for the study of
baryon’s chiral partners [21–28].
In recent papers, we have developed a systematic

method to construct an effective SUðNfÞR � SUðNFÞL
Lagrangian including higher-dimensional representations
[29–33], which we refer to as a projection method. This
method is inspired by an NJL model for mesons, and partly
extends it to baryons. In Ref. [29], we classified baryon
fields consisting of three quarks in terms of chiral multip-
lets. The Pauli principle implemented by the Fierz trans-
formation plays a crucial role in the classification. The
projection method is performed as follows. First we find
a chiral invariant operator involving direct products of the
quark and diquark fields. This can be achieved by using an
analogy between ð�; ~�Þ and diquarks in chiral transforma-
tion property. Then, we project the direct products of the
quark and diquark fields onto irreducible parts with the
use of the Fierz identities. After the projection, three-
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quark fields are replaced by baryon fields. Thus we can
systematically construct chiral invariant Lagrangians in-
cluding higher-dimensional chiral representations, avoid-
ing problems caused by the lack of the confinement.
Although such simple effective Lagrangians have limited
validity, they are useful for the present purpose to derive
the pattern of the masses and coupling constants of the
chiral multiplet.

In Ref. [30], we have applied the projection method to a
quartet scheme (QS). The QS was first proposed by Jido
et al. [34]. They used two kinds of ð1; 12Þ � ð12 ; 1Þ and

considered the so-called mirror assignment [22,23,25],
where four types of baryons, two with I ¼ 1

2 and the other

two with I ¼ 3
2 , are included in the multiplet. They applied

the QS to J ¼ 1
2 ;

3
2 , and

5
2 and studied the masses and

intracoupling constants of the quartet. They did not con-
sider the Dirac structure of the Lagrangian explicitly.
Owing to the projection method, we took into account
the Dirac structure in the QS Lagrangian, which enables
us to include transition terms between J ¼ 1

2 and J ¼ 3
2 ,

e.g. N and �ð1232Þ. With the QS Lagrangian, we have
derived several constraints on the masses and coupling
constants, which characterize the multiplet nature of the
quartet.

In the present work, we develop the previous study to
find a set of baryons suitable for the chiral quartet of spin- 32
baryons. Considering J ¼ 3

2 , the quartet consists of P33,

D33, D13, and P13. Among various candidates for this set,
we adopted a particular assignment in Ref. [30]: �ð1232Þ,
�ð1700Þ, Nð1520Þ, Nð1720Þ. It is an important question if
there is other assignment suitable for the quartet. One
interesting assignment is a set (�ð1920Þ, �ð1940Þ,
Nð2080Þ, Nð1900Þ). Glozman mentioned the possibility
that the approximate degeneracy of these four baryons is
a consequence of the effective chiral restoration [6]. If this
is the case, there are two possibilities. The first one is that
the four baryons form the chiral quartet. The second one is
that two �’s belong to ð32 ; 0Þ � ð0; 32Þ and two N� belong to

ð12 ; 0Þ � ð0; 12Þ. We can study the first case using the QS

Lagrangian.
In order to take into account �N interactions in the QS,

it is necessary to determine the nucleon’s chiral represen-
tation. In standard linear � models of Gell-Mann-Levy
type [21] the nucleon belongs to ð12 ; 0Þ � ð0; 12Þ. In the

mirror models [22–27], the nucleon is a mixture of two
kinds of ð12 ; 0Þ � ð0; 12Þ. The mixing of ð12 ; 0Þ � ð0; 12Þ and

ð1; 12Þ � ð12 ; 1Þ was studied in an algebraic approach [35–

37] and field theoretical approaches [32,33]. In nonrelativ-
istic quark models the nucleon wave-functions also corre-
spond to the mixing of ð1; 12Þ � ð12 ; 1Þ and ð12 ; 0Þ � ð0; 12Þ. In
the present study, we assume the nucleon to be saturated
with the fundamental representation ð12 ; 0Þ � ð0; 12Þ due to

the following reasons. The linear � models qualitatively
describe the chiral properties of the nucleon. For instance,

the linear � models describe gA ¼ 1 in qualitative agree-

ment with g
ðexpÞ
A ¼ 1:267� 0:004. Second, the nucleon

belongs to ð12 ; 0Þ � ð0; 12Þ, if the nucleon operator has spa-

tially symmetric property [29].
This paper is organized as follows. In Sec. II, we define

the baryon fields and derive their SUð2ÞA transformation
properties. In Sec. III, we construct the SUð2ÞR � SUð2ÞL
Lagrangian, such as mass terms and�NR interactions with
the use of the projection technique. Here R denotes the
member of the chiral quartet. Although the QS Lagrangian
is not new, we generalize the formulation given in the
previous study in an assignment-free manner in order to
make it feasible to test various assignments. With the
Lagrangian, we derive several constraints on the properties
of the quartet. Because the projection method is compli-
cated, we show an alternative derivation of some of the
present results, using chiral algebra in Appendix B.
Numerical results are shown in Sec. IV. Considering the
masses, we find two suitable assignments (�ð1600Þ,
�ð1940Þ, Nð1520Þ, Nð1720Þ) and (�ð1920Þ, �ð1940Þ,
Nð2080Þ, Nð1900Þ). We discuss the properties of the quar-
tet for these cases together with the assignment (�ð1232Þ,
�ð1700Þ, Nð1520Þ, Nð1720Þ). The final section is devoted
to a summary.

II. CHIRAL PROPERTIES OF BARYON FIELDS

In this section, we consider baryon fields consisting of
three quarks, which serve as a preparation for the projec-
tion method. Baryon fields consisting of three quarks in a
local form are generally described as

BðxÞ � �abcðqTa ðxÞ�1qbðxÞÞ�2qcðxÞ; (1)

where qðxÞ ¼ ðuðxÞ; dðxÞÞT is an isodoublet quark field at
location x, the superscript T represents the transpose, and
the indices a, b, and c represent the color. The antisym-
metric tensor in color space �abc ensures the baryons being
color singlets. From now on, we shall omit the color
indices and space-time coordinates. �1;2 describe Dirac

and isospin matrices. With a suitable choice of �1;2, a

baryon field is defined so that it forms an irreducible
representation of the Lorentz and isospin groups.
Concerning J ¼ 3

2 , there are three possible baryon fields

with I ¼ 1
2 :

N
�
V ¼ ð~q��qÞ���

3=2�5q; (2a)

N
�
A ¼ ð~q���5�

iqÞ���
3=2�

iq; (2b)

N�
T ¼ ið~q�	
�

iqÞ��	
3=2�


�5�
iq; (2c)

and two with I ¼ 3
2 :

�
�i
A ¼ ð~q���5�

jqÞ���
3=2P

ij
3=2q; (2d)

�
�i
T ¼ ið~q�	
�

jqÞ��	
3=2�


�5P
ij
3=2q; (2e)
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where ~q ¼ qTCði�2Þ�5 is a transposed quark field. Here we
employ an isospurion formalism [38,39] for an isospin- 32
projection operator Pij

3=2, which is given by Pij
3=2 ¼ �ij �

1
3 �

i�j. Similarly, ���
3=2 is a local spin-

3
2 projection operator

defined by ���
3=2 ¼ g�� � 1

4�
���. In the present work, we

consider only on-shell spin- 32 states. In order to consider

off-shell spin- 32 baryons, we need to employ the nonlocal

projector instead of the local one [40–43].
Note that the baryon fields Eqs. (2) are not independent

[44–46]. In addition, they belong to reducible chiral rep-
resentations, which leads to unphysical mixings of differ-
ent chiral representations [29]. The cause of the unphysical
chiral mixings is the fact that Eqs. (2) are not totally
antisymmetric; they are antisymmetric only for the inter-
change between the first and second quarks. Considering
the Fierz transformation as the antisymmetrization of the
second and third quarks, we obtain the totally antisymmet-
ric baryon fields

N�
1 ¼

ffiffiffi
3

p
4

N�
V þ 1

4
ffiffiffi
3

p N�
A ; (3a)

�
�i
1 ¼ 1

2�
�i
A : (3b)

These totally antisymmetric combinations belong to the
irreducible chiral multiplet [29]. The derivation of Eq. (3)
is shown in Appendix A.

With the baryon fields consisting of the quark fields, it is
a straightforward but tedious task to derive their SUð2ÞA
transformations by using that of the quark field: �~a

5q ¼
1
2 ia � ��5q with ~a being the infinitesimal parameters for

SUð2ÞA. We obtain

�~a
5N

�
1 ¼ 1

2

�
5

3
ia � ��5N

�
1 þ 4ffiffiffi

3
p i�5a � ��

1

�
; (4a)

�~a
5�

�i
1 ¼ 1

2

�
4ffiffiffi
3

p i�5a
jPij

3=2N
�
1 � 2

3
i�i�5a ���

1

þ ia � ��5�
�
1

�
; (4b)

which contain off-diagonal terms �~a
5N

�
1 � ��i

1 and

�~a
5�

�i
1 � N

�
1 as well as the diagonal ones. They restrict

possible chiral invariant terms, similar to the case of ð�;�Þ
in the linear sigma model.

For later convenience, we define diquark fields con-
tained in the spin- 32 baryon fields: a Lorentz vector iso-

scalar diquark V� [IðJÞP ¼ 0ð1Þ�], a Lorentz axial-vector
isovector diquark A�i [1ð1Þþ],

V� ¼ ~q��q; (5a)

A�i ¼ ~q���5�
iq: (5b)

It is easy to check that V� and A�i correspond to � and ~�
mesons in chiral transformation properties, which is a key
of the projection method.

We introduce the other set of ð1; 12Þ � ð12 ; 1Þ: ðN�
2 ;�

�i
2 Þ,

where they have the same spin and isospin as the original

ones ðN�
1 ;�

�i
1 Þ, but the opposite SUð2ÞA transformation

properties in sign, i.e.,

�~a
5N

�
2 ¼ � 1

2

�
5

3
ia � ��5N

�
2 þ 4ffiffiffi

3
p i�5a ���

2

�
; (6a)

�~a
5�

�i
2 ¼ � 1

2

�
4ffiffiffi
3

p i�5a
jPij

3=2N
�
2 � 2

3
i�i�5a � ��

2

þ ia � ��5�
�i
2

�
: (6b)

This property is referred to as the mirror assignment [25],

and we refer to ðN�
1 ;�

�i
1 Þ as naı̈ve and to ðN�

2 ;�
�i
2 Þ as

mirror. There is a correspondence of the chiral transforma-
tion properties between the naive and mirror sets,

ðN�
1R; N

�
1L;�

�i
1R;�

�i
1LÞ $ ðN�

2L; N
�
2R;�

�i
2L;�

�i
2RÞ; (7)

where the indices R and L denote the left- and right-handed
projections with the projection operator PR;L ¼
ð1� �5Þ=2. The right-handed parts of N

�
1 and �

�i
1 have

the same chiral transformation properties as the left-

handed parts of N�
2 and ��i

2 , and vice versa.

Note that we defined N2 and �2 by their transformation
properties Eqs. (6). It is useful to define the baryon fields
for N2 and �2. It is impossible to describe them in terms of
local three-quark fields. Since baryons are composite par-
ticles, there are generally various possible expressions for
N2 and �2. For example, we can describe them by using
baryon operators having a derivative,

N
0�
V ¼ 6DV��

��
3=2�5q; (8a)

N
0�
A ¼ 6DAi

��
��
3=2�

iq; (8b)

�
0�i
A ¼ 6DAj

��
��
3=2P

ij
3=2q; (8c)

where D� denotes a covariant derivative. The mirror fields

N�
2 and ��

2 are obtained by the same equations as Eqs. (3)

with substitution of the primed fields ðN0�
V ; N0�

A ;�0�i
A Þ for

the original fields ðN�
V ; N

�
A ;�

�i
A Þ. Although they would not

be a unique possibility for the microscopic description of
the mirror fields, Eqs. (8) are enough for the present
purpose to construct the chiral invariant Lagrangian.

III. LAGRANGIAN

Now, we proceed to the construction of the SUð2ÞR �
SUð2ÞL Lagrangian. It is straightforward to show the chiral

invariance of the kinetic terms: LK ¼ �Nn�ði@6 ÞN�
n þ

��i
n�ði@6 Þ��i

n (n ¼ 1; 2). In order to find interaction terms

for higher-dimensional chiral multiplets, it is useful to
employ the projection method.
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A. Mass terms and �RR terms

The vector and axial-vector diquarks belong to the chiral
multiplet ð12 ; 12Þ, and V2

� þ A2
� is a chiral scalar. The Gell-

Mann-Levy–type interaction for the quark �qU5q is also a
chiral scalar, where U5 ¼ �þ i�5� � �. Obviously, the
following combination of these two terms is also a chiral
scalar:

�qðV2
� þ A2

�ÞU5q: (9)

This term contains the direct products of the quark and
diquark: V�q and A�iq. They are decomposed into the
irreducible parts as

V�q ¼ �5N
�
V þ ðJ ¼ 1

2termsÞ;
A�iq ¼ ��i

A þ 1
3�

iN�
A þ ðJ ¼ 1

2termsÞ; (10a)

�qðV�Þy ¼ � �N
�
V�5 þ ðJ ¼ 1

2termsÞ;
�qðA�iÞy ¼ ��

�i
A þ 1

3
�N
�
A�

i þ ðJ ¼ 1
2termsÞ: (10b)

Substituting Eqs. (10) into the chiral invariant term (9), we
obtain

Lð1Þ
MRR ¼ g1

�
��i
1�U5�

�i
1 � 3

4
�N1�U5N

�
1

þ 1

12
�N1��

iU5�
iN�

1

þ
ffiffiffi
3

p
6

ð �N1��
iU5�

�i
1 þ ðH:c:ÞÞ

�
þ
�
J ¼ 1

2
terms

�
;

(11)

where we omit J ¼ 1
2 terms, which contain the Gell-Mann-

Levy–type interaction with local nucleon operators NV ¼
V��

�q and NA ¼ Ai
��

��5�
iq. The transition terms be-

tween J ¼ 1
2 and

3
2 fields vanish due to ���

�i
1 ¼ ��N

�
1 ¼

0. The Lagrangian (11) describes several kinds of the
interactions; the first three terms describe the diagonal

interactions for N
�
1 and �

�i
1 with � and �, and the fourth

term describes a transition between N�
1 and ��i

1 with �,

where a �N1�1 coupling vanishes due to �i��i
1 ¼ 0.

The diagonal interactions with � generate the masses of

N
�
1 and�

�i
1 in the presence of the SBCS � ! h�i ¼ f� ¼

92:4 (MeV). We obtain a mass relation jm�1
j:jmN1

j ¼ 2:1.

If we assign N
�
1 with Nð1520Þ, which is the lowest lying

state for IðJÞ ¼ 1
2 ð32Þ, its partner ��i

1 has the mass of 2�
1520� 3000 MeV. We do not find a baryon suitable for
this mass relation in the experimental data [47].

There are several directions to solve this mass problem:
the inclusion of higher-order terms in the Lagrangian and
of higher-order diagrams, the extension of the chiral basis
such as ð32 ; 0Þ � ð0; 32Þ and of the mirror assignment. It was

shown [34] that the inclusion of the mirror assignment
reasonably reproduces the masses and some properties of
observed baryons. Using Eq. (7), we find a chiral invariant
interaction term

Lð2Þ
MRR ¼ g2

�
��i
2�U

y
5�

�i
2 � 3

4
�N2�U

y
5N

�
2

þ 1

12
�N2��

iUy
5 �

iN
�
2 þ

ffiffiffi
3

p
6
ð �N2��

iUy
5�

�i
2 þH:c:Þ

�
;

(12)

which is almost the same as Eq. (11). The difference

appears in the signs of the terms accompanying � (U5 !
Uy

5 ), which is a feature of the mirror assignment [25].

Considering Eqs. (4), (6), and (7), ��1R�2L þ �N1RN2L is
chiral invariant, which leads to the following term:

L RR ¼ �m0ð ��i
1��

�i
2 þ �N1�N

�
2 þ H:c:Þ; (13)

which describes off-diagonal mass terms between N
�
1 and

N
�
2 and between �

�i
1 and �

�i
2 . The parameterm0 describes

a chiral scalar, so-called mirror mass [25].

The mass terms included in Lð1Þ
MRR þLð2Þ

MRR þLRR are
rewritten in the following matrix forms:

LM ¼ �ð ��i
1�;

��i
2�Þ �g1f� m0

m0 �g2f�

� �
��i

1

��i
2

 !

� ð �N1�; �N2�Þ
1
2g1f� m0

m0
1
2g2f�

 !
N�

1

N
�
2

� �
: (14)

Because of the off-diagonal terms in these mass matrices,
physical states and their masses are obtained through the
diagonalization of the mass matrices. Note that the mass
eigenvalues can take both positive and negative values. A
state with a negative eigenvalue can be transformed into a
state with a positive mass, but has opposite parity to the
original state. It is carried out by multiplying a state having
negative mass by �5 [25]. In the present paper, we consider
the case that two states form a pair of positive and negative
parity states both in � and N� sectors.
For the � part in Eq. (14), we obtain the mass eigenval-

ues of two � states

m�� ¼ 1
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1 � g2Þ2f2� þ 4m2

0

q
	 ðg1 þ g2Þf��; (15)

and the eigenstates

�
�i
þ ¼ cos���

�i
1 þ sin���

�i
2 ; (16a)

��i� ¼ �5ð� sin���
�i
1 þ cos���

�i
2 Þ; (16b)

tan2�� ¼ 2m0

ðg2 � g1Þf� : (16c)

Here we define��i
þ and ��i� as positive and negative parity

states, respectively, where the indices � denote the parity.

Hence �
�i
þ and ��i� are identified with �ðP33Þ and �ðD33Þ,

respectively. Note that �5 in Eq. (16b) appears due to the
parity redefinition. Similarly, for the N� part, we obtain the
mass eigenvalues
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mN� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðg1 � g2Þ2f2� þ 4m2

0

s
� ðg1 þ g2Þf�

2

�
;

(17)

and the eigenstates

N�
þ ¼ cos�NN

�
1 þ sin�NN

�
2 ; (18a)

N�� ¼ �5ð� sin�NN
�
1 þ cos�NN

�
2 Þ; (18b)

tan2�N ¼ 4m0

ðg1 � g2Þf� : (18c)

N�
þ and N�� are identified with NðD13Þ and NðP13Þ, respec-

tively. Again, �5 in Eq. (18b) appears due to the parity
redefinition. The four masses m�� and mN� are given by
the three parameters g1, g2, andm0, which offer constraints
on the four masses [34],

ðm�þ þm��Þ 
 ðmNþ þmN�Þ; (19a)

m�� �m�þ ¼ 2ðmNþ �mN�Þ: (19b)

The inequality in the first line of Eq. (19) is controlled by
m0. Thus, the mass splittings and average masses are
determined by chiral symmetry and the mirror mass m0.

It is worthwhile considering the correspondence be-
tween the basis states and the physical states. Obviously,
the mixing angles vanish in the absence of the mirror mass;
�N , �� ! 0 for m0 ! 0. In this limit, the naive and mirror
sectors decouple, and the physical states correspond to the

basis states: ð��i
þ ; N

�
þÞ ! ð��i

1 ; N
�
1 Þ and ð��i� ; N��Þ !

ð��i
2 ; N

�
2 Þ. It should be noted that the decoupling of the

two sectors does not violate chiral invariance. Contrarily,
the two sectors are maximally mixed in the m0 dominant
case: �N, �� ¼ �=4.
The Lagrangians (11) and (12) contain the one-pion

interaction terms between the spin- 32 baryons (�RR) as

well as the mass terms. Having the four spin- 32 baryons,

there are ten coupling constants g�RR: four diagonal and
six off-diagonal terms. All the ten coupling constants are
functions of g1; g2, and m0, which are determined by the
masses. It is straightforward to derive the �RR coupling
constants, g�RR from Eqs. (11) and (12). For the� part, we
obtain

���

8><
>:
g��þ�þ ¼ �ðg1cos2�� � g2sin

2��Þ
g����� ¼ ðg1sin2�� � g2cos

2��Þ
g��þ�� ¼ ðg1 þ g2Þ cos�� sin��

(20a)

which are defined by L ¼ �g��P�P0
��P�iði�5� �

�Þ�5�
�i
P0 . Here P and P0 denote parity, i.e., P, P0 ¼ þ or

�, and �5 ¼ 1 for P ¼ P0 and �5 for P � P0. For the N�
part, we obtain

N� � N�

8><
>:
g�NþNþ ¼ 5

6 ðg1cos2�N � g2sin
2�NÞ

g�N�N� ¼ � 5
6 ðg1sin2�N � g2cos

2�NÞ
g�NþN� ¼ � 5

6 ðg1 þ g2Þ cos�N sin�N

(20b)

which are defined byL ¼ �g�NPNP0
�NP�ði�5� � �Þ�5N

�i
P0 .

For N�-� transition terms,

N� � �

8>>>><
>>>>:

g�Nþ�þ ¼ �
ffiffi
3

p
3 ðg1 cos�� cos�N � g2 sin�� sin�NÞ

g�Nþ�� ¼
ffiffi
3

p
3 ðg2 cos�� sin�N þ g1 cos�N sin��Þ

g�N��þ ¼ �
ffiffi
3

p
3 ðg1 cos�� sin�N þ g2 cos�N sin��Þ

g�N��� ¼
ffiffi
3

p
3 ðg1 sin�� sin�N � g2 cos�N cos��Þ

(20c)

which are defined byL ¼ �g�NP�P0
�NP�ði�5�5Þ�i�

�i
P0 . In order to understand the features of g�RR, it is useful to consider

the axial charges, which are obtained by the Noether theorem

�� �

�
g�

���
A ¼ � cos2��;

g�
þ��

A ¼ � sin2��;
N� � N�

�
gN

��N��
A ¼ � 5

3 cos2�N;

gN
�þN��

A ¼ � 5
3 sin2�N;

N� ��

�gN����
A ¼ � 4ffiffi

3
p cosð�N þ ��Þ;

gN
���	

A ¼ � 4ffiffi
3

p sinð�N þ ��Þ:
(21)

In the limit �N;� ! 0 (m0 ! 0), the absolute values of the parity-nonchanging interactions reach the maximum values:
jg����

A j ! 1, jgN��N��
A j ! 5

3 , and jgN����
A j ! 4ffiffi

3
p , while the parity-changing terms vanish g�

þ��
A ¼ gN

þN�
A ¼ gN

��	
A ¼ 0.

The mixing angles become larger, asm0 becomes larger. Since the naive and mirror sectors have the opposite axial charges,
the mixing of the two sectors suppresses the parity-nonchanging interactions and enhances the parity-changing inter-

actions. In the m0 dominance, the parity-nonchanging interactions vanish g�
���

A ¼ gN
��N��

A ¼ gN
����

A ! 0, while the

parity-changing terms reach the maximum values jg�þ��
A j ¼ 1, jgNþN�

A j ¼ 5
3 , and jgN

��	
A j ¼ 4ffiffi

3
p . Of course, g�RR have the

same features as the axial charges due to the Goldberger-Treiman relations:
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���

8>>><
>>>:
f�g��þ�þ ¼ cos2��m�þ ;

f�g����� ¼ � cos2��m�� ;

f�g��þ�� ¼ � 1
2 sin2��ðm�þ �m��Þ;

N� � N�

8>>><
>>>:
f�g�NþNþ ¼ 5

3 cos2�NmNþ ;

f�g�N�N� ¼ � 5
3 cos2�NmN� ;

f�g�NþN� ¼ � 5
6 sin2�NðmNþ �mN�Þ;

N� ��

8>>>>>>>><
>>>>>>>>:

f�g�Nþ�þ ¼ 2ffiffi
3

p cosð�N þ ��ÞðmNþ þm�þÞ;
f�g�Nþ�� ¼ � 2ffiffi

3
p sinð�N þ ��ÞðmNþ �m��Þ;

f�g�N��þ ¼ � 2ffiffi
3

p sinð�N þ ��ÞðmN� �m�þÞ;
f�g�N��� ¼ � 2ffiffi

3
p cosð�N þ ��ÞðmN� þm��Þ:

(22)

B. Interaction with the nucleon

Next, we construct the interactions between the nucleon
(N) and the chiral quartet. As we have discussed in the
introduction, we assume that the nucleon belongs to
ð12 ; 0Þ � ð0; 12Þ. With the nucleon’s chiral multiplet, we can

classify the products of the chiral properties of N � �:

N � � ¼
��

1

2
; 1

�
�
�
1;
1

2

��
�
��

1

2
; 0

�
�
�
0;
1

2

��

¼
� ð1; 0Þ � ð0; 1Þ for ðN�

1 ;�
�i
1 Þ;

ð12 ; 12Þ for ðN�
2 ;�

�i
2 Þ; (23)

where we omit four-meson terms ð1; 1Þ and [ð32 ; 12Þ � ð12 ; 32Þ].
In the derivation of Eq. (23), it is important to take into
account the chirality conservation. This classification im-
plies that chiral invariant interactions between N and

ðN�
1 ;�

�i
1 Þ accompany two-meson fields, while those be-

tween N and ðN�
2 ;�

�i
2 Þ accompany one-meson fields.

We find two chiral scalars �V� þ i� �A� and �NU5q.

Multiplying them, we find two chiral invariant terms:
ð�iÞ �NU5½ð@��ÞV� þ ið@��Þ �A��q and ð�iÞ �Nð@�U5Þ�
ð�V� þ i� �A�Þq. Using Eqs. (10), we obtain the chiral

invariant interaction terms between N and ðN�
1 ;�

�i
1 Þ,

Lð1Þ
MNR ¼ g3

�2
½ �NOi

1��
�i
1 þ �NO2�N

�
1 � þ ðH:c:Þ; (24a)

Lð2Þ
MNR ¼ g4

�2
½ �NOi

3��
�i
1 þ �NO4�N

�
1 � þ ðH:c:Þ; (24b)

where the dimensional parameter� (mass) is introduced to
keep the coupling constants g3 and g4 dimensionless. We
also introduce shorthand notations On ðn ¼ 1; . . . ; 4Þ for
mesonic operators

O�i
1 ¼ U5ð@��iÞ; (24c)

O
�
2 ¼ �

ffiffiffi
3

p
2

U5

�
ð@��Þ�5 þ 1

3
ði@�� � �Þ

�
; (24d)

O�i
3 ¼ ð@�U5Þð�iÞ; (24e)

O�
4 ¼ �

ffiffiffi
3

p
2

ði@�U5Þ
�
��5 þ 1

3
i� � �

�
: (24f)

One may think it possible to construct similar interaction
terms for the mirror fields by the replacement Eq. (7).
However, such terms are forbidden by chirality conserva-
tion, as is shown in Eq. (23).1 The mirror fields have one-
meson interactions with the nucleon. It can be constructed
by using the chiral invariant operators ð�iÞð�V� þ i� �
A�Þ and �N 6Dq. We obtain

L ð3Þ
MNR ¼ g5

�
½ �NOi

5��
�i
2 þ �NO6�N

�
2 �; (25a)

where O5 and O6 are also mesonic operators,

O
�i
5 ¼ ð@��iÞ; (25b)

O
�
6 ¼ �

ffiffiffi
3

p
2

ði@�Þ
�
��5 þ 1

3
i� � �

�
: (25c)

In the mass basis, LMNR ¼ Lð1Þ
MNR þLð2Þ

MNR þLð3Þ
MNR is

rewritten as

LMNR ¼ �N½ðOi
1� þOi

3�Þ cos�� þOi
5� sin�����i

þ
þ �N½�ðOi

1� þOi
3�Þ sin�� þOi

5� cos����5�
�i�

þ �N½ðO2� þO4�Þ cos�N þO6� sin�N�N�i
þ

þ �N½�ðO2� þO4�Þ sin�N þO6� cos�N��5N
�i� ;

(26)

1It can be shown explicitly. For example, the first term in
Eq. (24a) is rewritten in terms of left- and right-handed parts of
the fields as �NU5ð@��iÞ��i

1 ¼ �NLU5ð@��iÞ�1R þ ðl $ rÞ.
Replacing �1R ! �2L, �NLU5ð@��iÞ�1R ! �NLU5ð@��iÞ�2L,
which vanishes due to PLPR ¼ 0 [PR;L ¼ ð1� �5Þ=2].
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which contains several kinds of the interaction terms,
�NR, ��NR, �NR, and ��NR. Among them, we con-
sider �NR and ��NR interaction terms in order for the
comparison with experiments. The �N interactions of the
chiral quartet are given by

L�NR ¼ g�N�þ

�
�Nð@��iÞ�þ�i þ g�N��

�
�Nð@��iÞ�5�

��i

þ g�NN��

�
�Nð@�� � �Þ�5N

��

þ g�NN�þ

�
�Nð@�� � �ÞNþ�; (27a)

where the coupling constants g�NN�� and g�N�� are given
by

g�N�þ ¼ 1

�
ðg5� sin�� þ g3f� cos��Þ; (27b)

g�N�� ¼ 1

�
ðg5� cos�� � g3f� sin��Þ; (27c)

g�NN�þ ¼
ffiffiffi
3

p
6�

ðg5� sin�N þ ðg3 þ 3g4Þf� cos�NÞ; (27d)

g�NN�� ¼
ffiffiffi
3

p
6�

ðg5� cos�N � ðg3 þ 3g4Þf� sin�NÞ: (27e)

Four g�NR are expressed in terms of three parameters g3,
g4, and g5, which leads to one identity

ðsin��g�N�þ þ cos��g�N��Þ
¼ 2

ffiffiffi
3

p ðsin�Ng�NN�þ þ cos�Ng�NN��Þ: (28)

Here it must be noted that the derivation of the �N inter-
actions is based on the assumption of the nucleon’s chiral
multiplet. If the nucleon together with the negative parity
resonance group into ð12 ; 0Þ � ð0; 12Þ with the mirror assign-

ment, we can include three additional interactions, which
spoils the constraint Eq. (28). Another possibility is that the
nucleon contains ð1; 12Þ � ð12 ; 1Þ as well as ð12 ; 0Þ � ð0; 12Þ. In
this case, we can include one additional interaction that has
a similar form to Eq. (11). With the new term, Eq. (28)
becomes a loose constraint and gives the ordering of the
coupling constants. So, Eq. (28) is one of the strictest
constraints. The point is that it is possible to improve this
result without changing the masses and �RR interactions
of the quartet.

We obtain two-pion interaction terms

L ��N� ¼ gðvÞ��N�þ
�

�Nð�abc�a�b
;��5Þ��c

þ

þ gðtÞ
��N�þ

�
�Nð�a�b

;� þ �a
;��

bÞði�5�
aÞ��b

þ

þ gðvÞ��N��
�

�Nð�abc�a�b
;�Þ��c�

þ gðtÞ��N��
�

�Nð�a�b
;� þ �a

;��
bÞði�aÞ��b� ;

(29)

L ��NN� ¼
gðsÞ��NN�

þ
�

�Nði�5� � �;�ÞN�
þ

þ
gðvÞ��NN�

þ
�

�Nð�abc�a�b
;��

cÞ�5N
�
þ

þ gðsÞ��NN��
�

�Nði� � �;�ÞN��

þ gðvÞ��NN��
�

�Nð�abc�a�b
;��

cÞN��; (30)

with

�-sector

8>>>>><
>>>>>:

gðvÞ��N�þ
¼ cos��

2� ðg3 � g4Þ;
gðtÞ
��N�þ ¼ cos��

2� ðg3 þ g4Þ;
gðvÞ��N��

¼ � sin��
2� ðg3 � g4Þ;

gðtÞ��N��
¼ � sin��

2� ðg3 þ g4Þ;

N�-sector

8>>>>><
>>>>>:

gðsÞ��NN�
þ

¼ þ
ffiffi
3

p
cos�N
6� ðg3 þ g4Þ;

gðvÞ��NN�
þ

¼ �
ffiffi
3

p
cos�N
6� ðg3 � g4Þ;

gðsÞ��NN��
¼ �

ffiffi
3

p
sin�N
6� ðg3 þ g4Þ;

gðvÞ��NN��
¼

ffiffi
3

p
sin�N
6� ðg3 � g4Þ;

(31)

where they are classified into three types: the symmetric
(� � �;�), antisymmetric (i�abc�a�b

;�), and symmetric

(�a�b
;� þ �a

;��
b) types. They correspond to an isoscalar

(� � �;�), isovector (i�
abc�a�b

;�), and isotensor (�
a�b

;� þ
�a

;��
b). Since the two-pion coupling constants g��NR

contain only g3 and g4, their strengths are determined by
the �N coupling constants through g3 ¼ ð�=f�Þ�
ððg�N�þ � g�N��Þ=ðcos�� þ sin��ÞÞ and g4 ¼
ð2�=

ffiffiffi
3

p
f�Þððg�NN�

þ � g�NN��Þ=ðcos�N þ sin�NÞÞ. Fur-

thermore, g��NR are proportional to either (g3 þ g4) or
(g3 � g4), which provides a selection rule; either �� iso-
scalar or isovector interaction is suppressed each for N��,
and either the isovector or isotensor interaction is sup-
pressed each for ��.
Using the SUð2ÞR � SUð2ÞL Lagrangian, we have de-

rived several constraints on the properties of the chiral
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quartet. We concentrate on the construction of the lowest-
order terms and the derivation of the chiral constraints at
tree level. In general, it is possible to insert chiral invariant
operators such as ð�2 þ �2Þn into the chiral Lagrangians
we derived. However, those terms do not change the above
constraints and can be absorbed into the parameters.
Regarding the �RR interactions, it is possible to include
an additional interaction term with a derivative [25]. The
constraint for the �NR interactions rely on the assumption
of the saturation of ð12 ; 0Þ � ð0; 12Þ in the nucleon. The

inclusion of the ð1; 12Þ � ð12 ; 1Þ component in the nucleon

causes one additional chiral invariant �N interaction term
similar to Eq. (11). In this case, four g�NR are given by four
parameters. It must be noted that the inclusion of ð1; 12Þ �ð12 ; 1Þ for the nucleon does not affect the multiplet nature of

the quartet.

IV. RESULTS

In this section, we proceed to numerical discussions and
look for a set of baryons suitable for the QS. Possible
candidates for the members of the quartet are shown in
Table I. There are six parameters in our model: m0, g1, g2,
g3, g4, and g5. The dimensional parameter� does not play
any role in the present study, so then we do not need to
determine it. Since the masses m�� and mN�

� are the

functions of m0, g1, and g2, we can determine them by

minimizing 2
mass ¼ P

RðmR �m
ðexpÞ
R Þ2=ð�mðexpÞ

R Þ2 (R ¼
�� and N��). Here m

ðexpÞ
R and �m

ðexpÞ
R are the central values

and errors of the observed masses, which are shown in

Tables II and III. Considering the states listed in Table I,
there are 36 possible assignments. Among them, we dis-
cuss four cases [Case (1)] (�ð1232Þ, �ð1700Þ, Nð1520Þ,
Nð1720Þ), [Case (2)] (�ð1600Þ, �ð1940Þ, Nð1520Þ,
Nð1720Þ), [Case (3-1)] and [Case (3-2)] (�ð1920Þ,
�ð1940Þ, Nð2080Þ, Nð1900Þ). Although case (1) was
studied in Refs. [30,34], we reanalyze this case with the
use of the different methods for the determination of the
parameters. As we will show, case (2) agrees with the mass
pattern of the QS with the smallest 2

mass. We also discuss
(�ð1920Þ, �ð1940Þ, Nð2080Þ, Nð1900Þ). Because of a va-
riety in the data, we consider two cases, (3-1) and (3-2), for
this assignment, using two different data sets shown in
Table III. There are three other assignments that reproduce
the masses with 2

mass less than one: (�ð1600Þ, �ð1700Þ,
Nð1700Þ, Nð1720Þ), (�ð1600Þ, �ð1940Þ, Nð1700Þ,
Nð1900Þ), and (�ð1920Þ, �ð1940Þ, Nð1700Þ, Nð1720Þ).
We concentrate on the above four cases in the present
work. Instead of discussing all of them, we discuss the
general behaviors of the QS later. Results for the masses
are shown in Table IV. For case (1), the present result
differs from the previous study [30], which is due to the
difference of the method to determine the mass parameters.
In Ref. [30], we adopted the minimization of a standard

deviation �2 ¼ �RðmR �mðexpÞ
R Þ2, while we employ the

2-minimummethod in the present work. These two meth-
ods differ in how �ð1232Þ is included in the fitting proce-
dure, because the error of the observed �ð1232Þ’s mass is
much smaller than those of the other three states. We found
2
mass amounts to 60, which is significantly large. It is

favorable for the QS that the masses of the �� are larger
than those of N��, as shown in Eqs. (19). The mass of
�ð1232Þ is much smaller compared with other spin- 32
baryons. This causes the significantly large discrepancy.
We also found that 2

mass becomes larger if assignments
include�ð1232Þ as a member of the quartet, which implies
that the mass of �ð1232Þ is too small for the QS.
Cases (2), (3-1), and (3-2) are new in this work. Case (2)

is the best assignment for the quartet with 2
mass ¼ 0:0025,

which is the smallest value among 2
mass for 36 possible

assignments. For �ð1940Þ in this case, we use the data by
Horn et al. [48]. We confirmed that the result for (2) is

TABLE I. Observed states listed in Particle Data Group (PDG)
[47] corresponding to the quantum numbers of the members of
the quartet. The number of the stars denotes PDG ratings of the
states.

L2I2J Observed states

P33 �ð1232Þ����, �ð1600Þ���, �ð1920Þ���
D33 �ð1700Þ���, �ð1940Þ��
D13 Nð1520Þ����, Nð1700Þ���, Nð2080Þ��
P13 Nð1720Þ����, Nð1900Þ�

TABLE II. Data for masses, �N decay widths, and �N coupling constants of the observed states used in cases (1) and (2). The data

are taken from PDG [47]. The values in the bracket for m
ðexpÞ
R are central values of the observed masses, while those for �

ðexpÞ
�N are the

average values between minimum and maximum values. The definition of g
ðexpÞ
�N is given in the main text. For �ð1940Þ in case (2), we

use the data in Ref. [48].

States R m
ðexpÞ
R (MeV) �

ðexpÞ
�N (MeV) g

ðexpÞ
�N =� (GeV�1)

�ð1232Þ½P33� 1231–1233 (1232) 116–120 (118) 15.7–16.0 (15.8)

�ð1600Þ½P33� 1550–1700 (1600) 25.0–113 (68.8) 2.37–5.04 (3.70)

�ð1700Þ½D33� 1670–1750 (1700) 20.0–80.0 (50.0) 6.34–12.7 (9.51)

�ð1940Þ½D33� 1950–2030 (1990) 17.0–62.4 (39.7) 3.23–6.20 (4.72)

Nð1520Þ½D13� 1515–1525 (1520) 55.0–81.3 (68.1) 7.64–9.30 (8.46)

Nð1720Þ½P13� 1700–1750 (1720) 15.0–60.0 (37.5) 1.72–3.44 (2.58)
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insensitive to the choice of the data for �ð1940Þ. Cases (3-
1) and (3-2) also reproduce the masses of the quartet with
2
mass ¼ 0:26 and 0.045, respectively.
Once the masses are determined, we obtain the one-pion

coupling constants between two members of the quartet,
which are shown in Table V. First, we consider qualitative
features of the one-pion coupling constants. It was found
[34] that in case (1) the parity-nonchanging interactions
vanish, while the parity-changing interactions remain to be
finite. However, even for the parity-changing interactions,
their strengths are smaller than a typical order of one-pion
interactions, e.g. g�NN � 13 [18]. On the other hand, g�RR
behaves in an opposite way in case (2). All of the coupling
constants survive in the case, where the parity-changing
interactions are suppressed compared to the parity-
nonchanging ones. In addition, diagonal coupling con-
stants are comparable to g�NN , e.g. g����� ¼ 11.

Interestingly, cases (3-1) and (3-2) show different results,
although they are the same assignment. This is caused by
the difference of the ordering of the masses of the quartet,
especially that of �ð1920Þ and Nð2080Þ. We turn back to
this point later.

Among various coupling constants, g��ð1232Þ�ð1232Þ are
investigated in several approaches. Quark models [52] and
large Nc [53] predict large values, especially, g���A ¼
ð9=5ÞgA in large Nc, which gives g��ð1232Þ�ð1232Þ � 30. A
light-cone QCD sum rule reported half of the quark model

TABLE IV. Result for the masses and parameters. For the experimental data, see Tables II and III.

Masses (MeV) [Assigned states]

State Case (1) Case (2) Case (3-1) Case (3-2)

�þ [P33] 1233 [�ð1232Þ] 1594 [�ð1600Þ] 1935 [�ð1920Þ] 1917 [�ð1920Þ]
�� [D33] 2190 [�ð1700Þ] 1992 [�ð1940Þ] 1980 [�ð1940Þ] 2083 [�ð1940Þ]
N� [D13] 1473 [Nð1520Þ] 1520 [Nð1520Þ] 1946 [Nð2080Þ] 1817 [Nð2080Þ]
Nþ [P13] 1951 [Nð1720Þ] 1719 [Nð1720Þ] 1969 [Nð1900Þ] 1899 [Nð1900Þ]
2
mass 68 0.0025 0.26 0.045

Parameters and angles

State Case (1) Case (2) Case (3-1) Case (3-2)

g1 5.2 12 0.25 10

g2 5.2 �7:5 0.25 �8:3
m0 (MeV) 1712 1557 1957 1809

�N (degree) 45 37 45 38

�� (degree) 45 60 45 58

TABLE V. The one-pion coupling constants between the mem-
bers of the quartet, g�RR. The values of the parameters are shown
in Table IV.

g�RR Case (1) Case (2) Case (3-1) Case (3-2)

g��þ�þ 0 �8:6 0 �8:9
g����� 0 11 0 9.6

g��þ�� 5.2 1.9 0.25 0.81

g�NþNþ 0 8.5 0 7.9

g�N�N� 0 �7:5 0 �7:5
g�NþN� �4:3 �1:7 �0:21 �0:73
g�Nþ�þ 0 �5:0 0 �5:0
g�Nþ�� 3.0 3.4 0.14 2.3

g��þN� �3:0 0.92 �0:14 1.2

g�N��� 0 5.3 0 5.1

TABLE III. Data for masses, �N decay widths, and �N coupling constants of the observed states used in cases (3-1) and (3-2). See
also the caption of Table II.

Case (3-1)

States R m
ðexpÞ
R (MeV) �

ðexpÞ
�N (MeV) g

ðexpÞ
�N =� (GeV�1) Reference

�ð1920Þ½P33� 1900–1970 (1920) 7.50–60.0 (33.8) 0.825–2.33(1.58) PDG average [47]

�ð1940Þ½D33� 1950–2030 (1990) 17.0–62.4 (39.7) 3.23–6.20(4.72) Horn et al. [48]

Nð2080Þ½D13� 1945–1947 (1946) 85.2–121 (103) 4.63–5.23(5.08) Penner et al. [49]

Nð1900Þ½P13� 1855–1975 (1915) 2.80–19.8 (11.3) 0.574–1.53(1.05) Nikonov et al. [50]

Case (3-2)

States R m
ðexpÞ
R (MeV) �

ðexpÞ
�N (MeV) g

ðexpÞ
�N =� (GeV�1) Reference

�ð1920Þ½P33� 1900–1970 (1920) 7.50–60.0 (33.8) 0.825–2.33 (1.58) PDG average [47]

�ð1940Þ½D33� 1947–2167 (2057) 8.40–234 (121) 2.04–10.8 (6.40) Manley et al. [51]

Nð2080Þ½D13� 1749–1859 (1804) 53.0–165 (109) 4.45–7.84 (6.15) Manley et al. [51]

Nð1900Þ½P13� 1855–1975 (1915) 2.8.0–19.8 (11.3) 0.574–1.53 (1.05) Nikonov et al. [50]
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prediction [54] but still large values compared to our result.
The g��ð1232Þ�ð1232Þ were also determined in coupled chan-

nel analysis. Krehl et al. obtained g��� ¼ 31 [55], while
Schneider et al. obtained g��� ¼ 12:5 [56]. In case (1),
g��ð1232Þ�ð1232Þ vanishes, which is inconsistent with these

studies. Krehl et al. and Schneider et al. also investigated
g��ð1232ÞNð1520Þ and obtained g�Nð1520Þ�ð1232Þ ¼ 0:95 and

1.3, respectively. The present result jg��ð1232ÞNð1520Þj ¼
3:0 is qualitatively consistent with these values.

With regard to the�N coupling constants g�NR, we need
to determine three parameters g3, g4, and g5. Since g�NR

are the functions of g3, g4, and g5, we can determine them

by the 2-minimum method with 2
�NR ¼ �Rðg�NR �

g
ðexpÞ
�NRÞ2=ð�gðexpÞ�NRÞ2. Here g

ðexpÞ
�NR and �g

ðexpÞ
�NR are the average

and errors of the coupling constants determined from the
experimental �N decay widths. We obtain them by using a

relation g
ðexpÞ
�NR=� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ðexpÞ
�N =~��N

q
, where ~� is �N decay

widths obtained by setting the coupling constant to be

one, and �
ðexpÞ
�N are the experimental values of the�N decay

widths shown in Tables II and III. The dimensional pa-
rameter � does not play any role in the determination of
the coupling constants because of the cancellation between

the numerator and denominator in 2
�NR. We obtain ~��N by

calculating the simplest tree diagram. Note that we can
determine only absolute values of the coupling constants
from the �N decay widths. Hence, the positive sign of

gðexpÞ�NR in Tables II and III is our assumption. The result is

shown in Table VI.
Case (1) reproduces the reasonable values for the four

g�NR with small 2
�NR, which are almost within the ranges

of the experimental values. In case (2), the 2
�NR value is

significantly large. The discrepancy is mostly caused by
the small values of the �N decay width of �ð1600Þ and
�ð1940Þ. In the QS, it is favored that the average values of
g�NR between �� is larger than that between N��, as is
shown in Eq. (28). Because of the same reason, 2

�NR is
large for case (3-1). We obtain reasonable results for
case (3-2) with small 2

�NR. Our result underestimates

the value of g�NR for R ¼ Nð2080ÞðN��Þ, which gives
�N decay widths half of the minimum of the experimental
values.

Mass pattern and one-pion coupling constant

The quartet scheme shows two different behaviors for
the one-pion coupling constants, as shown in Table V.
Especially, the assignment (�ð1920Þ, �ð1940Þ, Nð2080Þ,
Nð1900Þ) shows two different behaviors, depending on the
choice of the experimental data. Equations (21) show that
the one-pion coupling constants are controlled by the
mixing angles. Cases (1) and (3-1) correspond to the
maximally mixing with the angles �N;� ¼ 45�, while

cases (2) and (3-2) correspond to moderate mixing. Since
the mixing angles are the functions of m0 and ðg1 � g2Þf�
as shown in Eqs. (16) and (18), we can understand the
behavior of the one-pion coupling constants, comparingm0

with ðg1 � g2Þf�. These parameters also determine the
masses of the quartet. Therefore, we can relate the masses
to the one-pion constants.
In order to understand their relation, we approximate the

masses in two ways. In the small m0 case, the masses are,
up to Oðm2

0Þ, given by

m�� ¼ 2X 	 2Y þ Z; mN� ¼ X � Y þ 2Z;

where X ¼ f�jg1 � g2j=4, Y ¼ ðg1 þ g2Þf�=4, and Z ¼
4m2

0=ðf�jg1 � g2jÞ. In the m0 dominant case, they are, up

to Oððf�=m0ÞÞ, given by

m�� ¼ m0 	 2a; mN�� ¼ m0 � a;

where a ¼ ðg1 þ g2Þf�=4. The mass patterns for these
cases are shown in Fig. 1. The two cases are different in
the ordering of�þ andN��. In them0 ! 0 limit, they have
mass ratio 2:1 and �þ is heavier than N��. Small values of
m0 do not change this ordering, which corresponds to the
left panel in Fig. 1. When m0 becomes much larger, the
ordering is changed and �þ becomes the lowest state.
Cases (1) and (3-1) correspond to the mass pattern shown
in the right panel in Fig. 1, while cases (2) and (3-2)

TABLE VI. Result for the �N coupling constants and parameters. For the experimental data, see Tables II and III.

�N coupling constants Theo (Expt) (GeV�1)

Case (1) Case (2) Case (3-1) Case (3-2)

g�N�þ
� 16 (15.7–16.0) 7.2 (2.37–5.04) 2.7 (0.825–2.33) 1.8 (0.825–2.33)

g�N��
� 14 (6.34–12.7) 7.2 (3.23–6.20) 8.9 (3.23–6.20) 12 (2.04–10.8)

g�NN��
� 7.3 (7.64–9.30) 4.2 (7.64–9.30) 3.8 (4.63–5.23) 2.2 (4.45–7.84)

g�NN�þ
� 1.3 (1.72–3.44) �0:89 (1.72–3.44) �0:44 (0.574–1.53) 0.81(0.574–1.53)

2
�NR 1.5 13 7.1 1.8

Parameters (GeV�1)

Case (1) Case (2) Case (3-1) Case (3-2)
g3f�
�2 1.1 �2:6 �4:4 �8:8
g4f�
�2 �5:2 �2:9 �2:0 2.1
g5
� 21 9.8 8.2 7.7
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correspond to the left panel. Actually, m0 is not small in
cases (2) and (3-2), but comparable to ðg1 � g2Þf�.
However, the left panel in Fig. 1 well described the mass
pattern of these cases. Using Eqs. (16) and (18), mixing
angles in the small m0 case takes moderate values and all
the one-pion coupling constants survive. On the other
hand, in the m0-dominant case, mixing angles are �N;� �
�=4 and the parity-nonchanging interactions vanish. Thus,
the behavior of the one-pion coupling constants is related
to the mass pattern of the quartet. According to this dis-
cussion, cases (3-1) and (3-2) are different due to the
ordering of �ð1920Þ and Nð2080Þ, although they describe
the same assignments. This is the reason why the assign-
ment (�ð1920Þ,�ð1940Þ,Nð2080Þ,Nð1900Þ) is sensitive to
the choice of the experimental data. This discussion can be
applied to other assignments we do not take into account.
As we have mentioned, the other three assignments repro-
duce the masses of the quartet with 2

mass less than one:
(�ð1600Þ, �ð1700Þ, Nð1700Þ, Nð1720Þ), (�ð1600Þ,
�ð1940Þ, Nð1700Þ, Nð1900Þ), and (�ð1920Þ, �ð1940Þ,
Nð1700Þ, Nð1720Þ). According to the above discussions,
the first and second cases correspond to maximal mixing
with the vanishing of the parity-nonchanging interactions,
while all the coupling constants survive in the third case.

V. SUMMARY

We have investigated the possibility that chiral partners
exist in the spin- 32 baryon sector by considering the quartet

scheme, where four spin- 32 baryons, P33,D33,D13, and P13,

form the chiral multiplets ð1; 12Þ � ð12 ; 1Þ with the mirror

assignment. Using the SUð2ÞR � SUð2ÞL Lagrangian, we
tried to find a set of four baryons suitable for the chiral
quartet. We discussed three assignments: (1) (�ð1232Þ,
�ð1700Þ, Nð1520Þ, Nð1720Þ), (2) (�ð1600Þ, �ð1940Þ,
Nð1520Þ, Nð1720Þ), and (3-1) and (3-2) (�ð1920Þ,
�ð1940Þ, Nð2080Þ, Nð1900Þ). Here we investigated
(�ð1920Þ, �ð1940Þ, Nð2080Þ, Nð1900Þ) using two data
sets.

For case (1) we found that there is significant discrep-
ancy for the masses, which implies the mass of �ð1232Þ is

too small for the quartet scheme. In addition, the vanishing
of g��ð1232Þ�ð1232Þ is inconsistent with other theories.

Considering the discrepancy for the masses and the incon-
sistencies of g��ð1232Þ�ð1232Þ, it seems that this case is less

suitable for the quartet.
For case (2), the masses of the observed baryons agree

well with the mass pattern of the QS. Among all the
possible assignments, the 2 value becomes the smallest
in this case. Considering the masses, this case is most
suitable for the quartet. Regarding the �N interactions,
this case does not reproduce reasonable results.
For the assignment (�ð1920Þ, �ð1940Þ, Nð2080Þ,

Nð1900Þ), we consider two cases (3-1) and (3-2) with the
use of different data sets because of the variety of the
experimental data. Both cases reproduce the masses of
the quartet with 2 less than one. The one-pion coupling
constants for this assignment are quite sensitive to the
ordering of the masses of �ð1920Þ and Nð2080Þ. If the
mass of �ð1920Þ is smaller than that of Nð2080Þ, only the
parity-changing one-pion interactions survive. On the
other hand, if the mass of Nð2080Þ is smaller, all the
coupling constants are finite and the parity-nonchanging
interactions are larger than the parity-changing ones.
Regarding the �N interactions, we obtained reasonable
results for case (3-2).
For further confirmation, experiments or lattice calcula-

tions for the one-pion coupling constants are needed. For
instance, we can test the validity of case (2) using coupling
constants such as g�Nð1520ÞNð1520Þ, g�Nð1720ÞNð1720Þ, and

g�Nð1520ÞNð1720Þ. For the further study of the assignment

(�ð1920Þ, �ð1940Þ, Nð2080Þ, Nð1900Þ), we need informa-
tion about the masses because of a variety of the data.
Especially, detailed information of the masses of �ð1920Þ
and Nð2080Þ are needed, because the one-pion coupling
constants are sensitive to the ordering of the masses of
them. If the mass ordering is determined, we can test this
assignment using one-pion coupling constants such as
g��ð1920Þ�ð1920Þ.
It is important to extend the present framework with the

inclusion of higher-dimensional chiral representations for
the nucleon. For the �N interactions with the quartet, we
adopted the assumption that the nucleon belongs to the
fundamental chiral representation. There are other possi-
bilities for the nucleon’s chiral representation. Hence, the
disagreements for the �N interactions may come from this
assumption and can be resolved by including higher-
dimensional chiral representations for the nucleon.
Furthermore, it may be possible to test the nucleon’s chiral
representations through the �N interactions with the quar-
tet, if we can confirm the QS by using the one-pion
interactions for the quartet.
In the present study, we employed the effective

Lagrangian approach, where we truncated higher-order
terms in the Lagrangian and we neglected quantum effects.
With the high-lying baryons in the multiplet, we need to

FIG. 1. Schematic figures for the mass pattern of the QS.
(a) Small m0 case. (b) m0-dominant case.
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include various resonances in order to evaluate the quan-
tum effects properly, which would cause additional diffi-
culties. Rather, it is desired to reproduce and confirm the
present result using different methods. For instance, an
algebraic method proposed by Weinberg is one of the
useful methods to study chiral partners. This method is
based on the commutation relations derived from the
superconvergence property of pion-nucleon scattering am-
plitudes and can be applied to baryons [35–37]. We have
already started a study along this line in Ref. [32].
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APPENDIX A: FIERZ TRANSFORMATION

We show the derivation of Eqs. (3). We define totally
antisymmetric fields as linear combinations of Eqs. (2):

BN ¼ aN ��N; (A1a)

B� ¼ a� ���; (A1b)

where

~� N ¼ ðN�
V ; N

�
A ; N

�
T Þ; (A1c)

~� � ¼ ð��i
A ;�

�i
T Þ; (A1d)

~a N ¼ ðaN1 ; aN2 ; aN3 Þ; (A1e)

~a � ¼ ða�1 ; a�2 Þ: (A1f)

The coefficients ~aN and ~a� are determined by the totally
antisymmetric condition, which is implemented by the
antisymmetric condition under the interchange between
the second and third quark and is given by

F ½Bn� ¼ �½Bn�; ðn ¼ N;�Þ; (A2)

whereF ½B� denotes a baryon field obtained from the Fierz
transformation of B. The Fierz transformation formula is
given in Ref. [29]. This equation can be read as two kinds

of the eigenvalue problems: (a) for the vector space ~BN;�,

and (b) for the vector space ~aN;�. The eigenvalue problem

(a) gives identities between the baryon operators

N
�
V ¼ N

�
A ; 2N

�
A ¼ N

�
T ; (A3a)

�
�i
A ¼ ��

�i
T ; (A3b)

which reduce the number of the independent fields [29,44–
46]. The eigenvalue problem (b) determines the values of
the coefficients ~aN and ~a�

~aN ¼ ð3; 1; 1Þ; (A4a)

~a� ¼ ð�2; 1Þ; (A4b)

with which BN and B� are totally antisymmetric. This
determines the ratio between N

�
V and N

�
A in N

�
1 . It is

convenient to replace N�
T by N�

V and N�
A and ��i

T by ��i
A

with the use of Eqs. (A3), which can be done without the
change of chiral transformation properties of BN and B�.
Finally, we obtain Eqs. (3).

APPENDIX B: ALTERNATIVE DERIVATION OF
CHIRAL PROPERTIES

We show an alternative derivation of the chiral trans-
formation properties of ð1; 12Þ � ð12 ; 1Þ and the mass relation.

The starting point is a standard definition of the trans-
formation in terms of the chiral algebra between charges
and fields. In general, the SUð2ÞA transformation is given
by c 0 ¼ c þ iai½Qi

A; c � with generators Qi
A (i ¼ 1; 2; 3)

and infinitesimal parameters ai for the SUð2ÞA transforma-
tion. We describe ð1; 12Þ � ð12 ; 1Þ by the product of the iso-

vector and isospinor c i ¼ ðc iÞa (a ¼ 1; 2). For simplicity,
we suppress the Lorentz indices in this section.
In the left- and right-handed representations, they cor-

respond to c i
R ¼ ð1; 12Þ and c i

L ¼ ð12 ; 1Þ: c i
R ¼ ð1; 12Þ trans-

forms as I ¼ 1 under SUð2ÞR and I ¼ 1
2 under SUð2ÞL,

while c i
L ¼ ð12 ; 1Þ transforms I ¼ 1

2 under SUð2ÞR and I ¼
1 under SUð2ÞL. Note that this field c i corresponds to �i

T

and NT in Eq. (2). It is easy to check that NA, NV , and �A

consist of ðRLÞR, ðRLÞL, ðLRÞR, and ðLRÞL, while NT and
�T contain ðRRÞL and ðLLÞR. Jido et al. employed ðRRÞL
and ðLLÞR for the description of ð1; 12Þ � ð12 ; 1Þ [34]. The
chiral transformations of these fields are given by

�a
Rc

b
Ri ¼ �abcðc rÞci ; �a

Rc
b
Li ¼ itac b

l ;

�a
Lc

b
Ri ¼ �abcðc rÞci ; �a

Lc
b
Li ¼ itac b

r ;
(B1)

where we have defined �ac b ¼ �i½Qa; c b�. Using Qa
V ¼

Qa
R þQa

L and Qa
A ¼ Qa

R �Qa
L, we obtain SUð2ÞV and

SUð2ÞA transformation properties

�a
Vc

b
i ¼ ½ð�abc þ ita�bcÞ�c c; (B2)

�a
Ac

b ¼ �5ð�abc � ita�bcÞc c
i : (B3)

Employing an isospurion formalism, I ¼ 1
2 and I ¼ 3

2 com-

ponents are obtained by c 1=2 ¼ �ic i and c i
3=2 ¼ Pij

3=2c
j.

After the irreducible decomposition, we obtain

�a
Ac 1=2 ¼ 1

2i�5½53�ac 1=2 � 4c a
3=2�; (B4a)

�a
Ac

b
3=2 ¼ 1

2i�5½�ac b
3=2 � 2

3�
bc a

3=2 � 4
3P

ba
3=2c 1=2�: (B4b)

Here note that the coefficients differ from Eqs. (4). This is
because c 1=2 and c a

3=2 describe NT and �i
T , respectively.

Using Eqs. (3) and (A3), we obtain c 1=2 ¼ NT ¼ 2
ffiffiffi
3

p
N1
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and c 3=2 ¼ �T ¼ �2�1. Substituting these relations into

Eqs. (B4), we reproduce Eqs. (4).
Considering the Iz ¼ 1

2 components, it is easy to show

that the SUð2ÞA transformations of the I ¼ 1
2 and

3
2 fields

�a
A

c
Iz¼ð1=2Þ
1=2

c
Iz¼ð1=2Þ
3=2

0
B@

1
CA ¼ T

c
Iz¼ð1=2Þ
1=2

c
Iz¼ð1=2Þ
3=2

0
B@

1
CA;

T ¼ 1

2

5
3

4
ffiffi
2

p
3

4
ffiffi
2

p
3

1
3

0
@

1
A; (B5)

where T is the axial-transformation matrix Eq. (B4) for
Iz ¼ 1

2 components. We introduce the mass matrix for

ðc Iz¼ð1=2Þ
1=2 ; c

Iz¼ð1=2Þ
3=2 ÞT as M ¼ diagða; bÞ with a and b

being the masses of c 1=2 and c 3=2. We also introduce

the pion interaction matrix M� for their pseudoscalar
couplings. With chiral invariance, the matrices T, M, and
M� must obey

M ¼ fT;M�g; M� ¼ fT;Mg;

which leads to a double-commutation relation

M ¼ fT; fT;Mgg: (B6)

This double-commutation relation gives a ¼ �2b, which

reproduces the mass relation between N
�
1 and �

�i
1 . Note

that the double commutator Eq. (B6) is the necessity
condition of chiral invariance.
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