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(Received 13 April 2010; published 5 August 2010)

We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The

calculation has been performed in the spherical cavity approximation to the bag using two different

fermion propagators, the cavity and the free propagators. We obtain probabilities of mixing for the � at the

level of 0.006%–2.0%, while for the �0 one at the level of 0.6%–40%, depending on the choice of bag

radius and, therefore, of the strong coupling constant. Our results differ from previous calculations. The

origin of our difference stems from the treatment of the time integrations. The comparison of our

calculation with experimental data, which is consistent with small �� �0 �G mixing, implies that the

pseudoscalar glueball is small, R� 0:5–0:6 fm and has a large mass, MG � 2000–2500 MeV.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory of the
hadronic interactions. It is an elegant theory whose full
nonperturbative solution has escaped our knowledge since
its formulation more than 30 years ago [1]. The theory is
asymptotically free [2,3] and confining [4]. A particularly
good test of our understanding of the nonperturbative
aspects of QCD is to study particles where the gauge field
plays an important dynamical role. For this reason, the
glueball spectrum has attracted much attention [5].

From the phenomenological point of view it has become
clear by now that it is difficult to single out which states of
the hadronic spectrum are glueballs because we lack the
necessary knowledge to determine their decay properties.
Moreover, the strong expected mixing between glueballs
and quark states leads to a broadening of the possible
glueball states which does not simplify their isolation. A
comprehensive review on the experimental status of glue-
balls has recently appeared [6]. For the purposes of this
paper we accept the existence of at least one pseudoscalar
glueball state, although its existence has been a matter of
debate since the Mark II experiment proposed glueball
candidates [7]. Note that the pseudoscalar sector is a com-
plex one. On the one hand, it accommodates the Goldstone
nature of the pseudoscalar multiplet, on the other, not
totally unrelated, we encounter the singlet-octet mixing,
which is traditionally associated with the resolution of
Uð1Þ anomaly. In constituent models, the ideal mixing

(�i ¼ tan�1
ffiffiffi
2

p
) is natural, however the � and �0 mixing

is nonideal due to the anomaly.
Gluon self-couplings in QCD suggest the existence of

glueballs, bound states of mainly gluons [8]. Investigating
glueball physics requires an intimate knowledge of the
confining QCD vacuum and it is well known that such
properties cannot be obtained using standard perturbative
techniques. To handle the nonperturbative regime of QCD,
one can resort to numerical methods, known as lattice
QCD. Lattice QCD needs as input the quark masses and

an overall scale, conventionally given by �QCD. Then any

Green function can be evaluated by taking averages of
suitable combinations of lattice fields in vacuum samples.
This allows masses and matrix elements, particularly those
of weak or electromagnetic currents, to be studied.
However, lattice QCD faces both computational and fun-
damental problems in the description of glueballs [5]. A
complementary way to describe glueballs, namely, the
MIT bag model, implements in a dynamical way the
phenomenological properties of the confining QCD vac-
uum and the interaction among the gluons. Historically the
investigation of the glueball properties started precisely in
this model [9]. Jaffe and Johnson found many glueball
states with different quantum numbers lying in the mass
interval 1000–2000 MeV.
The aim of the present investigation is the study of the

mixing between a possible pseudoscalar glueball state and
the � or �0-mesons. The calculation has been performed in
the MIT bag model, a description which imposes by fiat
some of the properties of QCD. In this model, a hadron is
basically a bubble of perturbative vacuum in the midst of a
nonperturbative vacuum. Inside the bubble we insert the
constituents, which are described by cavity modes, and the
surface of the bubble screens color from flowing into the
nonperturbativeworld. The calculation has been performed
in the so-called spherical cavity approximation, where
several improvements have been incorporated, like
center-of-mass corrections and the recoil correction. In
this setup, the cavity is fixed to be a sphere and its radius
is allowed to vary dynamically. Within this scheme we
have performed two calculations of the mixing
Hamiltonian. One, in which we have used the cavity
propagator for the quarks. This cavity propagator is made
up of a sum over all possible cavity states. Thus it incor-
porates, in principle, the confining property of the bag
model. Another, in which we have used the free propagator
which is described in terms of free modes. As it turns out,
the results of both calculations are almost the same, so the
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dominating property, at least for the problem investigated
here, is asymptotic freedom.

Our investigation is presented as follows. In Sec. II we
show the necessary tools to carry out the calculation.
Starting from the QCD Lagrangian we use a formalism
that allows one to calculate the mixing energies perturba-
tively by means of the appropriate Feynman diagrams. We
have to introduce for this purpose the bare glueball and
meson states. In Sec. II C, we discuss the quantization,
which is important since the problem at hands is a multi-
particle one. After discussing the role of the propagator in
Sec. II C, and addressing and resolving an important physi-
cal problem that arises in bag model calculations in
Sec. II D, we present and comment on the results in
Sec. III and give some conclusions in Sec. IV. The actual
calculations have been relegated to the appendix to ease the
reading of the main text.

II. CALCULATION OF THE �-�0-GLUEBALL
MIXING IN THE BAG MODEL

We next calculate the mixing energy, which corresponds
to off-diagonal Hamiltonian terms in Fock space. In
subsection II A, we introduce a formalism which allows
the calculation of the mixing energies in a perturbative
manner. In subsection II B we present the bare glueball and
meson states in the bag model. Thereafter we discuss
important aspects of the calculation.

A. Formalism

QCD is a non-Abelian Yang-Mills theory with a SUð3Þ
gauge symmetry regarding color charge. The Lagrangian is

L QCD ¼ �c ði 6D�mÞc � 1
4F

a
��F

��
a ; (1)

where

D� ¼ @� � igAa
�t

a (2)

Fa
�� ¼ @�A

a
� � @�A

a
� þ gfabcAb

�A
c
�: (3)

ta ¼ 1
2�

a where �a are the Gell-Mann matrices and fabc

are the structure constants of the SUð3Þ algebra. Some
rearrangement yields

L QCD ¼ �c ði6@�mÞc|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L0A

� 1
4ð@�Aa

� � @�A
a
�Þð@�A�

a � @�A�
a Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L0B

þ g �c��Aa
�t

ac|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L1

� gð@�Aa
�ÞfabcA�

b A
�
c|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L2

� 1
4g

2ðfabcAb
�A

c
�ÞðfabcA�

b A
�
c Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L3

; (4)

where we can identify the free Lagrangian of QED (L0)
with color indices, a quark-quark-gluon vertex (L1), a 3-
gluon vertex (L2) and a 4-gluon vertex (L3).
We use a perturbative approach inside the cavity follow-

ing the scheme developed by Maxwell and Vento [10]. The
glueball and meson states represent solutions of the free
Lagrangian L0A and L0B , respectively. The equations of

motion arising from the Lagrangian of QCD are

ði6@�mÞc ¼ g��Aa
�t

ac (5)

and

@�ð@�A�
a � @�A�

a Þ ¼ �gfabc@�ðA�
b A

�
c Þ � gfabcAb

�F
��
c

� g �c��tac : (6)

Equations (5) and (6) can be understood as an inhomoge-
nous Dirac equation and Maxwell equation, respectively.
Thus, they can be solved exactly using the Feynman
propagator for the Dirac and the Maxwell fields in the
following way

c ðxÞ ¼ g
Z

d4x0SFðx; x0Þ��Aa
�ðx0Þtac ðx0Þ (7)

and

A�
a ðxÞ ¼ g

Z
d4x0DFðx; x0Þ½�fabc@�ðA�

b ðx0ÞA�
c ðx0ÞÞ

� fabcAb
�ðx0ÞF��

c ðx0Þ � �c��tac �: (8)

One can now expand c ðxÞ and A�ðxÞ in a power series of g
and obtains for the first order term

c ð1ÞðxÞ ¼ c ð0Þ þ g
Z

d4x0SFðx; x0Þ��Að0Þa
� ðx0Þtac ð0Þðx0Þ

(9)

Að1Þ�
a ðxÞ ¼ Að0Þ þ g

Z
d4x0DFðx; x0Þ

� ½�fabc@�ðAð0Þ�
b ðx0ÞAð0Þ�

c ðx0ÞÞ
þ fabcAð0Þb

� ðx0ÞFð0Þ��
c ðx0Þ�: (10)

One can now use the expressions c ð1Þ and Að1Þ or higher
orders of c and A to calculate the expectation value h�̂i of
some observable �̂ to various perturbative orders of g. In
here we are interested in the expectation value of the quark-

gluon interaction Hamiltonian ĤI ¼ g �c��Aa
�t

ac .

Inserting c ð1Þ yields

h �HIi ¼ g
Z

d3x �c ð1ÞðxÞ��Að0ÞðxÞa�tac ð0ÞðxÞ

þ g
Z

d3x �c ð0ÞðxÞ��Að0ÞðxÞa�tac ð1ÞðxÞ (11)
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¼ 2g2
Z

d3x �c ðxÞ��AðxÞa�ta

�
Z

d4x0SFðx; x0Þ��Aðx0Þb�tbc ðx0Þ (12)

with zero order wave functions in Eq. (12). This expression
corresponds to an exchange of a virtual fermion as shown
in Fig. 1. Inserting different orders of c and A, one obtains
expressions corresponding to different Feynman diagrams.
Every order in c brings a fermion propagator, while every
order in A brings a gluon propagator. For our calculation,
we will restrict ourselves to the one-fermion exchange,
since this is the leading-order diagram of the meson-gluon
interactions. The lowest-order gluon exchange diagram,
shown in Fig. 1, does not contribute, because the gluon is
a spin-1 particle and therefore does not couple to the spin-0
pseudoscalar meson or glueball. Another argument to show
the vanishing of this contribution has to do with color. The
color structure tells us that a color singlet gluon state does
not exist and since the quark and antiquark states are in a
color singlet state, the diagram has to vanish.1

B. Glueball and meson states

In order to construct the glueball states, we have to
describe the gluon cavity modes. The 4-vector potential
is given by

A� ¼ ð�A0 � �; ~AÞ: (13)

Since we are working in the static cavity approximation,
we will be using the Coulomb gauge

~r � ~A ¼ 0: (14)

In this gauge, the scalar potential is given by Poisson’s
equation

��� ¼ �

	0
(15)

and thus vanishes since there are no free charges in the
model considered here.

The solutions can be classified into two different classes,
which are called transverse electric (TE) and transverse
magnetic (TM).

Furthermore, for a spherical bag of radius R, the solu-
tions are classified by the quantum numbers

l ¼ 1; 2; . . . orbital excitation (16)

m ¼ �1;þ1magnetic quantum number: (17)

The boundary conditions generate the constraints

d

dr
ðrjlð!rÞÞjr¼R ¼ 0 (18)

for the TE solution and

jlð!RÞ ¼ 0 (19)

for the TM solutions with jl being a spherical bessel
function of order l and ! is the mode energy. The tran-
scendental equations (18) and (19) have an infinite number
of solutions !R ¼ xn, labeled by the radial quantum num-
ber n ¼ 0; 1; . . . . The lowest modes of interest here are l ¼
1, n ¼ 0, xTE ¼ 2:74, and xTM ¼ 4:49 [10].
The parities of the modes are 
 ¼ ð�1Þlþ1 for the TE

modes and 
 ¼ ð�1Þl for the TM modes. The nonlinear
boundary condition requires l ¼ 0. This, however, is in-
compatible with the helicity of the gluon. Thus, we must
assume that the best value for l is the lowest possible, that
is l ¼ 1. The lowest-lying pseudoscalar glueball with par-
ity J
C ¼ 0�þ, which is the objective of our investigation,
contains the lowest-lying TE mode and TM mode gluon.

Let ayl�mn denote the particle creation operator associ-

ated with the gluon cavity state denoted by the quantum
numbers l, �, m, n, where � 2 fTE;TMg denotes the
polarization. The lowest-lying state with � ¼ TE is given
by l ¼ 1, n ¼ 0 and the lowest-lying state with � ¼ TM is
given by l ¼ 1, n ¼ 0. Thus, the glueball state can be
constructed by

jGi ¼ 1ffiffiffi
2

p ðâyTE"âyTM# � âyTE#â
y
TM"Þj0i; (20)

where l ¼ 1, n ¼ 0 everywhere. We impose the restriction
that the state be a color singlet.
The meson states are constructed from the cavity fer-

mion modes. To find them, we have to study the radial
solutions of the free Dirac equation. They are characterized
by their total angular momentum j ¼ 1=2; 3=2; . . . , a mag-
netic quantum number m ¼ �1=2, 1=2 and another quan-
tum number � ¼ �1,þ1, called Dirac’s quantum number.

FIG. 1. Fermion exchange contribution to the meson-glueball
mixing (top). Gluon exchange to lowest order gives no contri-
bution (bottom) for the reasons discussed in the text.

1This argument was provided to us by a referee.

�� �0-GLUEBALL MIXING PHYSICAL REVIEW D 82, 034003 (2010)

034003-3



The wave functions are [11]

uðxÞ ¼ �N
i�jlðprÞ

�jl0 ðprÞð ~� � ~̂xÞ
� �

Ym
ljðx̂Þe�i!t (21)

vðxÞ ¼ N
i�jl0 ðprÞð ~� � ~̂xÞ

�jlðprÞ
 !

Ym
ljðx̂Þei!t; (22)

where l � jþ 1
2� and l0 � j� 1

2�, � � p
!þm . In the case

of a massive field, p and ! are related by ! ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

otherwise p � !. Here u denotes the particle solution and
v the antiparticle solution. The object Ym

lj is a 2-spinor of

total angular momentum j, projection m and orbital angu-
lar momentum l, called spinor spherical harmonics, de-
fined by

Y M
lJ ðx̂Þ �

X
m�

�
lm

1

2
�jJM

�
Ylmðx̂Þ�; (23)

where � is the spin wave function Inserting Eq. (21) and

(22) into the boundary condition yields the constraint

jl0 ðpRÞ ¼ � �

�
jlðpRÞ: (24)

This transcendental equation has an infinite set of solutions
for each combination of j, �. The nonlinear boundary
condition requires j ¼ 1

2 for the quark states. The quark

states are normalized by the requirementZ
V
d3xuyðxÞuðxÞ ¼

Z
V
d3xvyðxÞvðxÞ ¼ 1: (25)

This yields for the lowest-lying state (j ¼ 1
2 , n ¼ 0, � ¼

�1) a normalization constant of

N2 ¼ 1

R3j0ð~xÞ2
~xð~��mRÞ

2~xð~�� 1Þ þmR

1

4

; (26)

where ~x � !R and ~� � pR. We have checked numerically
that this is the correct formula. The normalization constant
Eq. (26) in the case of massive quarks for the quark mode
wave function was written incorrectly, most probably a
typo, in the original paper [12], but the error has been
carried on thereafter by all papers that we have used.
Luckily the error does not imply large effects in the cal-
culations involving light quarks, as can be seen in Fig. 2.

The �-mesons are pseudoscalar mesons, thus have par-

ity JPC ¼ 0�þ. Let b̂yj�mn and d̂yj�mn denote the particle

creation operator and antiparticle creation operator, respec-
tively, associated with the fermion cavity-state denoted by
the quantum numbers j, �, m, n. We are interested in the
lowest-lying meson state. The lowest energy modes are
associated to the quantum numbers j ¼ 1

2 , n ¼ 0, � ¼ �1.

Because of intrinsic parity between particle and antipar-
ticle states, P ¼ �1 can be obtained using the lowest-lying
particle state and the lowest-lying antiparticle state. Thus, a
low lying meson state,�, can be constructed by acting with

the creation operators as in

j�i ¼ 1ffiffiffi
2

p ðb̂y" d̂y" � b̂y# d̂
y
# Þj0i; (27)

where j ¼ 1
2 , n ¼ 0, � ¼ �1 everywhere. We have used

the notation " , # for m ¼ 1
2 , � 1

2 Furthermore, we impose

that it be a color singlet and the appropriate flavor compo-
sition defined by

�8 ¼ 1ffiffiffi
6

p ðu �uþ d �d� 2s�sÞ; (28)

�1 ¼ 1ffiffiffi
3

p ðu �uþ d �dþ s�sÞ: (29)

The physical particles are defined in flavor space from
the above by means of a mixing angle � ¼ 9:9� 4:4

�
[13–

15],

� ¼ �8 cos�� �1 sin�; (30)

�0 ¼ �8 sin�þ �1 cos�: (31)

C. Propagators

The off-diagonal term in the energy expectation value is
given by

E ¼ hGjN
�
2g2

Z
d3x �c ðxÞ��AðxÞa�ta

Z
d4x0SFðx; x0Þ��

� Aðx0Þb�tbc ðx0Þ
�
j�ð�0Þi (32)

where N denotes the normal ordering operator. This ex-
pression can be evaluated using Eq. (27) and (20) when one
quantizes Eq. (12) in the manner

FIG. 2. Inverse square of the normalization constant of the
massive bag model wavefunctions as a function of mR as
appeared in [12] (lower graph) and the correct value (upper
graph).
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c ðxÞ ! ĉ ðxÞ ¼ X
�

½u�ðxÞb̂� þ v�ðxÞd̂y�� (33)

�c ðxÞ ! �̂c ðxÞ ¼ X
�

½ �v�ðxÞd̂� þ �u�ðxÞb̂y�� (34)

AðxÞ ! ÂðxÞ ¼X
�

½A�ðxÞâ� þ A	
�ðxÞây�� (35)

with the commutation relations

Fermion : fb̂�; b̂y�g ¼ ��� (36)

Fermion : fd̂�; d̂y�g ¼ ��� (37)

Gluon : ½â�; ây�� ¼ ���: (38)

Evaluating Eq. (32) with a normal-ordered operator and

shifting b̂y, d̂y, and ây to the left and b̂, d̂, and â to the right
yields

Fermion : ��"��" � ��#��# (39)

Gluon : ��TE"��TM# � ��TE#��TM" þ ��TM#��TE"

� ��TM"��TE#; (40)

where� refers to the sum index in �c with particle states,�
to the sum index in c with antiparticle states, � to the sum
index in the first gluon wave function A and � to the sum
index in the second gluon wave function A.

There are two possible choices for the propagator
SFðx; x0Þ in Eq. (12), namely, the cavity (confined) propa-
gator and the free propagator. The cavity propagator is
built of a complete set of cavity states in the bag model.
The free propagator is the well-known Feynman propaga-

tor SFðx; x0Þ ¼
R d4p

ð2
Þ4 e
�ip�ðx�x0Þ 1

6p�mþi	
with the Feynman

prescription of closing the contour. Both propagators act as
Green’s functions with respect to the Dirac operator, thus
formally both propagators can be used. However, since
they are of a very different shape, one should expect
them to generate different results. Physically, it is not clear
which propagator is preferable. The cavity propagator
emphasizes confinement, associated in this picture by the
bag boundary conditions, while the free propagator em-
phasizes asymptotic freedom in the model, namely, the fact
that the theory is almost free inside. We will carry out the
calculation using both propagators.

(i) Cavity propagator: Since the radial solutions of the
Dirac equation Eqs. (21) and (22) form a complete
set, we will follow an approach by Maxwell and
Vento [10] and use them to construct the cavity
propagator

� iSFðx; x0Þ ¼
X
�

½u�ðxÞ �u�ðx0Þe�i!�ðt�t0Þ�ðt� t0Þ

� v�ðxÞ �v�ðx0Þei!�ðt�t0Þ�ðt0 � tÞ�
(41)

with � ¼ ðn; �; j; mÞ denoting a multiindex. Note
that since the solutions represent virtual particles
rather than real quark states, they are not subject to
the nonlinear boundary condition and thus, values
other than j ¼ 1

2 are possible.

(ii) Free propagator: The solutions generating the free
propagator are not subject to the boundary condi-
tions. Dropping the boundary conditions yieldsX

n;�;J;M

!
Z
k
dk

X
�;J;M

: (42)

Imposing the normalization conditionZ
d3xuyk ðxÞuk0 ðxÞ ¼

Z
d3xvy

k ðxÞvk0 ðxÞ ¼ �ðk� k0Þ
(43)

yields

ukðxÞ ¼
ffiffiffiffi
2




s
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2
p

� i�jlðkrÞ
�jl0 ðkrÞð ~� � ~̂xÞ

� �
YM

lJ ðx̂Þe�i!t (44)

vkðxÞ ¼
ffiffiffiffi
2




s
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2
p

� i�jl0 ðprÞð ~� � ~̂xÞ
�jlðprÞ

 !
YM

lJ ðx̂Þei!t; (45)

where we have usedZ
drr2jlðkrÞjlðk0rÞ ¼ 


2k2
�ðk� k0Þ: (46)

This way, the calculation for the free propagator is
analogous to the one shown in the appendix, withP

n ! R
k dk and a different normalization of c �.

This corresponds directly to Rayleigh’s expansion of
plane waves.

D. Time integration and recoil correction

As mentioned above, energy conservation on the verti-
ces is not possible in the process described here since!0 �
!TE and !0 � !TM. Thus, the integrations of Eq. (12)
might be formally carried out (although for specific quark
masses, there arise unphysical divergences), but the physi-
cal interpretation remains unclear. It is also unclear, why
the dt0-integration (corresponding to the lower vertex) has
to be carried out but the dt-intergration does not, so that
there will be an energy denominator only related to the
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energies at the lower vertex. Apparently, there must be a
(physical) inconsistency somewhere. In fact, the inconsis-
tency is a consequence of the bag description itself. When
virtual particles, that violate energy conservation, are being
created, a center-of-mass motion must be expected that
ultimately alters the energies of the states. This process
will be taken into account here, and we will call this the
recoil correction. Through the emission and absorption of
the virtual fermion the states will obtain an additional
center-of-mass motion energy � and �0, respectively, as
seen in Fig. 3, so that we are in the center-of-energy frame.

!0 þ � ¼ !TM (47)

!0 þ �0 ¼ !TE: (48)

Only in the center-of-energy frame can the virtual fermion
exchange be understood in a physically plausible way.
Making this approximation, our work differs from other
works in the bag model, where this issue has not been
addressed.

Writing down the time dependence, which we have left
out before and applying the recoil correction yields

�u0ðxÞeið!0þ�Þt 6ATMðxÞe�i!TMt
Z

dt0½u�ðxÞ �u�ðx0Þe�i!�ðt�t0Þ

� �ðt� t0Þ � v�ðxÞ �v�ðx0Þei!�ðt�t0Þ�ðt0 � tÞ�
� 6ATEðx0Þe�i!TEt

0
v0ðx0Þeið!0þ�0Þt0 ; (49)

where we have left out the spatial integrations for conve-
nience. u0ðv0Þ represents the lowest possible quark(anti-
quark) cavity state. Performing the dt0 integration yieldsZ

dt0ei!�t
0
�ðt� t0Þ ¼

Z t

�1
dt0ei!�t

0 ¼ 1

i!�

½ei!�t
0 �t�1

¼ ei!�t

i!�

(50)

Z
dt0e�i!�t

0
�ðt0 � tÞ ¼

Z 1

t
dt0e�i!�t

0

¼ � 1

i!�

½e�i!�t
0 �1t ¼ e�i!�t

i!�

;

(51)

where we have shifted !� ! !� � i	 implicitly. This
gives an overall denominator of 1

i!�
for each mode which

is being propagated

III. RESULTS

After carrying out a detailed calculation, which can be
found in the appendix, one obtains the mixing energy
shown in Fig. 4 as a function of the quark mass times the
bag radius. The mixing energy is the result of Eq. (32)
using the cavity (or the free) propagator and is presented
here as a function of mR and rescaled by Rg�2. Here m is
the quark mass, R the bag radius and g is related to the
strong coupling constant in the usual way �S ¼ g2=4
.
The mixing energy shown is per quark-pair, i.e. q �q.
As mentioned before we have introduced the recoil

correction to make sense of the formalism and eliminate
spurious contributions. In Fig. 5 we show the mixing
energy obtained without the recoil correction and compare
with our result. The plot of the former is dominated by an
unphysical spurious singularity at mR 
 0:4. Note that for
physical values of the strange quark mass ms � 200–300
and bag radii R� 0:5–1 fm one can be close to the singu-
larity and obtain a strong mass-dependent result. On the
contrary, our result is quite stable and almost constant over
the interesting range. Clearly, the recoil correction is an
indisposable ingredient to obtain physically meaningful
results in the bag model.
The values of the pseudoscalar glueball mass change

dramatically in the literature from one calculation to an-
other. Lattice QCD in the quenched approximation leads to
values around MG ¼ 2500 MeV [16–18]. Unquenched
calculations should produce a lower value as happens for
the scalar glueball [6,19–22]. This has been shown to be
the case in an effective theory calculation of glueball

FIG. 3. Recoil correction; Energy � and �0 has to be added to
account for center-of-mass motion that necessarily arises
through emission and absorption of the virtual particle.

FIG. 4. Glueball-meson mixing energy per quark-antiquark
pair as a function of mR for the cavity and free propagators in
the �8, �1, G basis.
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mixing which reproduces a large amount of data [23],
where the lower pseudoscalar mass value is set at
2000 MeV. The flux-tube model [24,25] suggests a pseu-
doscalar glueball mass of 2570 MeV [26]. The Coulomb
gauge model suggests a mass of 2220 MeV [27]. Other
effective theory calculations, which fit parameters to data,
lead to values down to 1400 MeV [28].

Kuti [29] suggested that a reliable glueball spectrum,
which is in reasonable agreement with lattice calculations,

can be obtained for B1=4 ¼ 280 MeV and R 
 0:5 fm ¼
2:5 GeV�1. He gives a coupling constant �S ¼ 0:5 to
obtain a 0�þ glueball mass of about 2500 MeV in sharp
contrast with the old calculation of Jaffe and Johnson [9],
who chose parameters closely related to the baryon
spectrum.

To calculate the mixing energy we use the results shown
in Fig. 4. Note that the Y-axis of this figure is in adimen-
sional units and also independent of the strong coupling
constant. The X-axis dependence should be understood for
fixed radius and varying mass. To obtain physical quanti-
ties from this figure, we have to introduce values for the
radius and the strong coupling constant. This radius is not a
variable but the fixed value obtained by minimizing the
energy, i.e. it is determined by the value of B. To calculate
the mixing energy one has to take into account the wave
function of the meson states. The calculation is performed
for �8 and �1. We do not calculate their mixing in the bag
model but incorporate it phenomenologically to find the
true contribution to the mixing energy of the physical
mesons � and �0. To perform our mixing calculation we
shall take for the mesons mass values which lead after
diagonalization to the experimental ones, �ð550Þ and
�0ð960Þ. The mixing probability strongly depends on the
glueball mass. If we choose the Kuti parameters we have in
the �, �0, G basis

551 0 �41
0 970 122

�41 122 2500

0
@

1
A �� �0 �G system: (52)

The diagonalization of this matrix produces three eigen-
values, m� ¼ 550 MeV, m�0 ¼ 960 MeV, which coincide

with the experimental determinations, MG ¼ 2513 MeV,
and three eigenvectors. From the latter we obtain the mix-
ing of ��G to be 0.006%, and that for �0 �G to be 0.6%.
To confront the experimental situation, let us vary the

mass of the glueball following the bag model prescription,
i.e.

E ¼ 4ð!E þ!M � ZÞ
3R

; (53)

where we have eliminated B, the bag constant, through the
pressure balance equation, and we have used the lowest TE
and TM modes to calculate the glueball energy. Each
different radius corresponds to a different B. The term Z
represents the zero point energy, which we fit to have a
glueball mass of 2500 MeV at a radius of 0.5 fm [29]. We
omit here the perturbative contributions to the mass, which
lead, for example, to the nucleon-delta mass splittings.
This energy has been corrected for center-of-mass spurious
motion to obtain the particle mass which we show in Fig. 6.
Note that the calculation connects the Kuti and Jaffe and
Johnson masses for different values of the bag radius. We
show in the figure the mass of a light baryon calculated
with the same zero point energy as a function of radius and
see that it reaches 1100 MeV at R ¼ 1:0 fm, which is the
right mass value for the nucleon-delta states, if perturbative
OGE corrections are not taken into account. Thus we have
found a consistent approximate formula to zeroth order
which ascribes the value of the glueball mass to its size and
which contains all the results obtained by the different

FIG. 6. Variation of glueball and baryon masses with bag
radius.

FIG. 5. Glueball-meson mixing energy per quark-antiquark
pair as a function of mR for the cavity propagator with recoil
correction (solid line) (as in Fig. 4) and without recoil correction
(dashed line).
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calculations mentioned above. The bag radius here is a
variational parameter fixed to minimize the energy.
Therefore, all quantities entering the description of the
systems will depend on this parameter, for example �S,
since the perturbative splittings also change with R unless
we modify the coupling constant adequately. We take the R
dependence of the coupling constant as �SðRÞ ¼
2½RðfmÞ�2. This equation extrapolates between the two
values in the literature, Kuti’s (0.5) for R ¼ 0:5 fm [29]
and Jaffe and Johson’s (2) for R ¼ 1 fm [9]. Introducing all
these R-dependences in Fig. 4, we calculate the mixing
energies as a function of R which are shown in Fig. 7.

From the mixing energies we obtain the mixing proba-
bility by diagonalizing the mixing Hamiltonian. The
Hamiltonian results, as before, in a 3� 3 matrix, in the
�, �0, G space, whose diagonal terms are an � mass term,
an �0 mass term and a glueball mass term given by
Eq. (53). The diagonal � and �0 mass terms are chosen
in a self-consistent procedure so that their values lead to
the experimental determinations, M� ¼ 550 MeV and

M0
� ¼ 960 MeV, after diagonalization. The nondiagonal

terms are the mixing terms shown in Fig. 7 (left). Thus we
repeat the procedure discussed around Eq. (52) for each
radius. The results are shown in Fig. 7 (right).

We note by looking at the right figure, that the proposed
dynamical mechanism does not mix the � with G for
reasonable values of the radius, while it can lead to large
mixings of the �0 withG for large bag radii. The reason for
the large mixing between �0 and G is that the diagonal �0
andG terms become almost degenerate and that the mixing
terms become large. For large bags (R� 1 fm) the self
consistent procedure increases the value of the diagonal �0
term to almost 1200 MeV; the R dependence drops the
diagonal glueball term to slightly below 1300 MeV; and

the �S dependence increases the mixing term to 250 MeV.
For the �, the situation is completely different, for large
radii the diagonal term remains close to the experimental
mass (570 MeV), and the mixing terms stay above
�100 MeV.
It is worth mentioning, that our results deviate signifi-

cantly from a prior analysis by Carlson and Hansson [30].
The difference between our work and theirs arises from our
use of the recoil correction as described in Sec. II D. An
additional difference is due to the use of different parame-
ters. We show the comparison between the two curves for
the mixing energy in Fig. 5. We note the spurious singu-
larity close to the physically relevant region, which makes
the results strongly dependent on the radius, if the recoil-
correction is not included, while the results are very slowly
dependent on the radius, if the recoil-correction is
included.
The results of Fig. 7 are quite illuminating. In no case

does the � mix with the glueball, even for large couplings
and small glueball masses. On the contrary, the �0 can mix
up to 0.6% for small couplings and large glueball masses
and up to 40% for small glueball masses and strong �S. We
obtain therefore a scenario strongly dependent on the
glueball mass. If the glueball mass is close to the lattice
value, the pseudoscalar glueball appears as an almost pure
state with very distinctive features, if on the contrary the
mass is small it might mix with the �0 considerably but
always very little with the �.

IV. CONCLUSIONS

We have performed a calculation of the mixing of the
pseudoscalar glueball with the pseudoscalar mesons � and
�0. Our work suggests that the mixing is small if the mass
is around 2500 MeV. In the framework of the bag model,

FIG. 7. �-glueball and �0-glueball mixing energies as a function of bag radius (left) and �-glueball and �0-glueball probabilities as a
function of bag radius (right).
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this is a new result. A previous study by Carlson and
Hansson [30] suggests a much larger mixing. However, a
small glueball mixing, in this glueball mass range, is as
well favored by recent studies [15,28]. Accordingly, glue-
ball mixing should not play an important role in the �-�0
mass splitting. This also implies that a rather undiluted,
well-defined, narrow and, therefore, long-living pseudo-
scalar glueball state should exist. If the mass of the glueball
is closer to that of the �0, around 1400 MeV, then the
mixing is large and the consequences of phenomenological
analyses should be reanalyzed, since the amount of mixing
would determine if the glueball behaves more like mesons
and baryons, i.e. large objects.

The conceptual difference between our work and other
bag model calculations, like the one carried out by Carlson
and Hansson [30], is the recoil correction. The recoil
correction is in our opinion a necessary ingredient to carry
out the calculations in a physically meaningful way by
avoiding spurious singularities. The bag model in the static
spherical cavity approximation fails in describing the cre-
ation and absorption of virtual particles, because in the
spherical cavity, the mode energies are discrete and fixed.
Thus energy conservation at the vertices is generally not
possible. This subtle problem has been neglected in all
previous bag model calculations so far. In our calculation it
manifests as an (unphysical) singularity dominating the
results for certain values of the parameters. Our way to
resolve this problem is to take into account the recoil that
arises in particle emission and absorption, manifesting
itself necessarily in center-of-mass motion of the constit-
uents. We add this energy to the energy of the constituents.
This not only eliminates the singularity and makes way for
meaningful results, but it is necessary to cancel out the
time-dependence of the mixing energy. Without the recoil
correction, the mixing energy is oscillating, which is also a
sign of center-of-mass motion problems. All of these hints
suggest that the recoil correction is correct, physical mean-
ingful and must be applied to all bag model calculations.

At this point it is worth mentioning a technical error,
which, despite its simplicity, has been in the field for many
years. The normalization constant Eq. (26) in the case of
massive quarks for the quark mode wave function has been
used incorrectly by many authors in the past. We have
shown however, that the error does not imply large effects
in the calculations involving light quarks.

This work has set the standards for future calculations
within the MIT bag model scheme. Any calculation deal-
ing with the spectrum or mixings will have to follow the
same procedure and approximations. In particular an inter-
esting phenomena which we are now revisiting is the
mixing of �8 and �1 to build the true physical �-mesons.
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APPENDIX: DETAILS OF THE CALCULATION

Substituting Eq. (41) into Eq. (12) yields a color struc-
ture of the form

�c iA
a �

a

2
c j

�c jA
b �

b

2
c C

k ; (A1)

where c C means the charge-conjugated c . The gluon

color singlet gives a factor of �ab=
ffiffiffi
8

p
and the meson color

singlet a factor of �ii0=
ffiffiffi
3

p
. This leads to the expression

Trð�a�aÞ
4 � ffiffiffi

3
p � ffiffiffi

8
p : (A2)

Summation over a yields an additional factor of 8, which

finally gives a factor of
ffiffi
2
3

q
.

Disregarding the time dependence, we show how to
calculate the spatial integralsX

�

Z
d3x �c ðxÞ6Au�ðxÞ

Z
d3x0 �u�ðx0Þ6Aðx0Þc ðx0Þ (A3)

X
�

Z
d3x �c ðxÞ6Av�ðxÞ

Z
d3x0 �v�ðx0Þ6Aðx0Þc ðx0Þ (A4)

with the combinations

�c ¼ �u"; c ¼ v"
�ð �c ¼ �u#; c ¼ v#Þ �

A1 ¼ ATE"; A2 ¼ ATM#
�ðA1 ¼ ATE#; A2 ¼ ATM"Þ
A1 ¼ ATM#; A2 ¼ ATE"

�ðA1 ¼ ATM"; A2 ¼ ATE#Þ
(A5)

We start with the combination �c ¼ �u", c ¼ v", A ¼ ATE",
A ¼ ATM#:X

�

Z
d3x �u"ðxÞ6ATE"ðxÞu�ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð1Þ

Z
d3x0 �u�ðx0Þ6ATM#ðx0Þv"ðx0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ
(A6)

ð1Þ ¼
Z

d3xN0

	 �ij0ðp0rÞ
�0j1ðp0rÞð ~� � ~̂xÞ

� �
Y1=2

01=2
ðx̂Þ

y

�0 ~�

� NTE

i!TE

j1ð!TErÞ ~Y1
11ðx̂ÞN�

i�jlðp�rÞ
��jl0 ðp�rÞð ~� � ~̂xÞ

� �
YM

lJ ðx̂Þ
(A7)

Note that

�� �0-GLUEBALL MIXING PHYSICAL REVIEW D 82, 034003 (2010)

034003-9



~� � ~̂xYM
lJ ðx̂Þ ¼ �YM

l0J (A8)

with l0 ¼ l� � ¼ J � 1
2� and, furthermore,

�0 ~� ¼ 1 0
0 �1

� �
0 ~�

� ~� 0

� �
¼ 0 ~�

~� 0

� �
(A9)

which yields

ð1Þ ¼ N0N�

NTE

i!TE

�
Z

d3xðij0ðp0rÞY1=2y
01=2

;��0j1ðp0rÞY1=2y
11=2

Þ

� 0 ~� � ~Y1
11

~� � ~Y1
11 0

 !

� i�jlðp�rÞYM
lJ

���jl0 ðp�rÞYM
l0J

 !
j1ð!TErÞ��jl0 ðp�rÞ

(A10)

¼ N0N�

NTE

i!TE

Z
d3x½�ij0ðp0rÞ��jl0 ðp�rÞY1=2y

01=2
~�

� ~Y1
11YM

l0J ��0j1ðp0rÞi�jlðp�rÞY1=2y
11=2

~� � ~Y1
11YM

lJ �
� j1ð!TErÞ: (A11)

Consider the relation [31]

YM1y
L1J1

~�YM2

L2J2
¼ð�1ÞJ2þL1þM1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2J1þ1Þð2J2þ1Þð2L1þ1Þð2L2þ1Þ

2


s

�X
JL

ð�1ÞJhL10L20jL0i
8><
>:
L1 J1

1
2

L2 J2
1
2

L J 1

9>=
>;

�hJ1�M1J2M2jJMi ~YL
JM (A12)

and, furthermore, the orthogonalityZ
~YM0	
L0J0 ðx̂Þ � ~YM

LJðx̂Þd� ¼ �J0J�L0L�M0M (A13)

and also

~Y M	
LJ ðx̂Þ ¼ ð�1ÞJþLþMþ1 ~Y�M

LJ ðx̂Þ: (A14)

These relations allow us to expressZ
Y1=2y

01=2
~� � ~Y1

11YM
l0Jd� ¼

Z
½Y1=2y

01=2
~�YM

l0J� � ~Y�1	
11 d�:

(A15)

It is now obvious that only the term J ¼ 1, L ¼ 1 of the
sum in Eq. (A12) survives. Furthermore, hL10L20jL0i ¼
h00l00j10i tells us that l0 ¼ 1, which allows only the modes
J ¼ 1

2 , � ¼ �1 and J ¼ 3
2 , � ¼ 1. The factor hJ1 �

M1J2M2jJMi ¼ h12 � 1
2 JMj1� 1i requires M ¼ � 1

2 . The

expression

Z
½Y1=2y

11=2
~�YM

lJ � � Y�1	
11 d� (A16)

requires l ¼ 0, 2, which allows the modes J ¼ 1
2 , � ¼ �1,

J ¼ 3
2 , � ¼ 1, and J ¼ 5

2 , � ¼ �1. The last mode, how-

ever, is prohibited by the second Clebsch-Gordan coeffi-
cient in Eq. (A12). Thus, the d�x-integral constraints the
values for J, �,M in Eq. (A6), while the sum goes over all
possible n.
(1) of Eq. (A6) takes the form

J ¼ 1=2;

� ¼ �1: j1ð!TErÞ½�ij0ð!0rÞ��j1ð!�rÞ
� �ð0; 1=2; 1=2 k 1; 1=2;�1=2 k 1; 1Þ
þ�0j1ð!0rÞj0ð!�rÞ
� �ð1; 1=2; 1=2 k 0; 1=2;�1=2 k 1; 1Þ� (A17)

J ¼ 3=2;

� ¼ 1: j1ð!TErÞ½�ij0ð!0rÞj1ð!�rÞ
����ð0; 1=2; 1=2 k 1; 3=2;�1=2 k 1; 1Þ
� i�0j1ð!0rÞj2ð!�rÞ
� �ð1; 1=2; 1=2 k 2; 3=2;�1=2 k 1; 1Þ� (A18)

where we left out the expression N0N�
NTE

i!TE

R
drr2 for

convenience. We introduce

�ðL1; J1;M1 k L2; J2;M2 k L; JÞ
� ð�1ÞJþJ2þL1þM1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2J1 þ 1Þð2J2 þ 1Þð2L1 þ 1Þð2L2 þ 1Þ

2


s

� hL10L20jL0i
8><
>:
L1 J1

1
2

L2 J2
1
2

L J 1

9>=
>;hJ1 �M1J2M2jJMi

(A19)

A list of expressions for � can be found in Table I
(2) of Eq. (A6) becomes:

J ¼ 1=2;

� ¼ �1:
ffiffi
2
3

q
j0ð!TMr

0Þ½ij0ð!�r
0Þj0ð!0r

0Þ�ð0; 1=2;�1=2

k 0; 1=2; 1=2 k 0; 1Þ ���j1ð!�r
0Þi�0j1ð!r0Þ

� �ð1; 1=2;�1=2 k 1; 1=2; 1=2 k 0; 1Þ�
�

ffiffi
1
3

q
j2ð!TMr

0Þ½���j1ð!�r
0Þi�0j1ð!0r

0Þ
� �ð1; 1=2;�1=2 k 1; 1=2; 1=2 k 2; 1Þ� (A20)
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J ¼ 3=2;

� ¼ 1
ffiffi
2
3

q
j0ð!TMr

0Þ½���j1ð!�r
0Þi�0j1ð!0r

0Þ
� �ð1; 3=2;�1=2 k 1; 1=2; 1=2 k 0; 1Þ�
�

ffiffi
1
3

q
j2ð!TMr

0Þ½�ij2ð!�r
0Þj0ð!0r

0Þ�ð2; 3=2;
� 1=2 k 0; 1=2; 1=2 k 2; 1Þ ���j1ð!�r

0Þi�0j1ð!0r
0Þ

� �ð1; 3=2;�1=2 k 1; 1=2; 1=2 k 2; 1Þ� (A21)

where we left out the expression �N0N�
NTM

!TM

R
dr0r02. The

additional minus sign comes from the fact that ~YM	
01 ¼

� ~Y�M
01 and ~YM	

21 ¼ � ~Y�M
21 , while ~YM	

11 ¼ ~Y�M
11 .

In order for the combinations in (A5) to give a nonzero
contribution, the spins have to be aligned as �u"A"A#v" or
�u#A#A"v#. This corresponds toM1 ! �M1,M2 ! �M2 in

� (A19). Because of

�ðL1; J1;M1 k L2; J2;M2 k L; JÞ
�ðL1; J1;�M1 k L2; J2;�M2 k L; JÞ ¼ ð�1ÞJ1þJ2�Jþ1

where M1;M2 2 f�1=2; 1=2g
(A22)

the signs from the two integrals cancel. Thus, the combi-
nations with inverse magnetic quantum number give the
same contribution.

Next, we consider the expression

�u 0 ~� � ~ATEu� �u� ~� � ~ATMv0 (A23)

¼ uy0�
0 ~� � ~ATEu�u

y
��0 ~� � ~ATMi�

2u	0 (A24)

where we inserted the definition for the charge-conjugated
particle state. Since this expression has the form of a c-
number, we transpose it by Hermitian conjugation and
complex conjugation. Hermitian conjugation gives

u	y0 ð��2Þð�iÞð� ~� � ~A	
TMÞ�0u�u

y
�ð� ~� � ~A	

TEÞ�0u0:

(A25)

Complex conjugation gives

uy0�
2ið ~� � ~ATM � 2½ ~ATM�y�2Þ

� �0u	�u
	y
� ð ~� � ~ATE � 2½ ~ATE�y�2Þ�0u	0 (A26)

¼ �uy0 ið ~� � ~ATMÞ�2�0u	�u
	y
� �2�2ð ~� � ~ATE � 2½ ~ATE�y�2Þ

� �0u	0 (A27)

¼ �uy0�
0ð ~� � ~ATMÞi�2u	�u

	y
� �2ð ~� � ~ATEÞ�2�0u	0 (A28)

¼ � �u0ð ~� � ~ATMÞv�u
	y
� �2�0ð ~� � ~ATEÞ�2u	0 (A29)

¼ �u0ð ~� � ~ATMÞv�u
	y
� �2�0ið ~� � ~ATEÞ�2u	0 (A30)

¼ �u0ð ~� � ~ATMÞv� �v�ð ~� � ~ATEÞv0: (A31)

For the last step, we have used �v ¼ ði�2u	Þy�0 ¼
iu	y�2�0.
Taking into account the definition of the cavity propa-

gator (41) as well as the time integration with the recoil
correction, one finds that the combinations with TE $ TM
give the same contribution. Thus, there is an overall sym-
metry factor of 4 for the different combinations of wave
functions.

�u0 6ATESF 6ATMv0, particle propagation:

J ¼ 1=2;

� ¼ �1:

�
�i��

ffiffiffiffiffiffiffi
1

3


s
j0ð!0rÞj1ð!�rÞj1ð!TErÞ � i�0

ffiffiffiffiffiffiffi
1

3


s
j1ð!0rÞj0ð!�rÞj1ð!TErÞ

�

�
	 ffiffiffi

2

3

s �
�i

ffiffiffiffiffiffiffi
1

2


s
j0ð!0r

0Þj0ð!�r
0Þj0ð!TMr

0Þ � i

ffiffiffi
2

p
6

ffiffiffiffi



p ���0j1ð!0r
0Þj1ð!�r

0Þj0ð!TMr
0Þ
�

�
ffiffiffi
1

3

s �
�i

2

3
ffiffiffiffi



p ���0j1ð!0r
0Þj1ð!�r

0Þj2ð!TMr
0Þ
�


(A32)

TABLE I. � coefficients.
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J ¼ 3=2;

� ¼ 1:
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�u0 6ATESF 6ATMv0, antiparticle propagation:

J ¼ 1=2;

� ¼ 1:
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J ¼ 3=2;

� ¼ �1:
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For convenience, we have left out the expression �i
P

nN
2
0N

2
�

NTENTM

i!TE!TM

R
drr2

R
dr0r02. Also, one has a factor of 2g2 � 4 �

1
2 �

ffiffi
2
3

q
, which arises from Eq. (12), the symmetry in the combinations, the wave function symmetrization and the color

matrix trace, respectively. For the cavity propagator, it is important to note the J, � quantum numbers, because the modes
!� depend on these quantum numbers as well as on the n quantum number, which is summed over.
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