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We emphasize that the vanishing of the CP asymmetry in leptogenesis, previously observed for models

with tribimaximal mixing and family symmetry, may be traced to a property of the type I seesaw

mechanism satisfied by such models known as form dominance, corresponding to the case of a diagonal

Casas-Ibarra R-matrix. Form dominance leads to vanishing flavor-dependent CP asymmetries irrespective

of whether one has tribimaximal mixing or a family symmetry. Successful leptogenesis requires violation

of form dominance, but not necessarily violation of tribimaximal mixing. This may be achieved in models

where the family symmetry responsible for tribimaximal mixing is implemented indirectly and a strong

neutrino mass hierarchy is present with the form dominance broken only softly by the right-handed

neutrino responsible for the lightest neutrino mass, as in constrained sequential dominance.
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I. INTRODUCTION

The observation of very small neutrino masses, at least a
dozen orders of magnitude lower than the top quark mass,
poses a challenge for building a model which accounts for
the masses of elementary particles. Since the standard
model (SM) of particle physics fails to provide any expla-
nation for the neutrino masses, one is forced to look
beyond. A natural explanation for such tiny neutrino
masses is provided by postulating an effective five-
dimensional operator [1], the only one consistent with
the SM, leading to Majorana neutrino masses suppressed
by a high mass scale. In the seesaw mechanism [2], such an
operator is generated when a heavy particle gets integrated
out from the theory, where, under the SM gauge group
SUð2ÞL �Uð1ÞY , the heavy particle can either be a singlet
fermion with Y ¼ 0, a triplet scalar with Y ¼ 2, or a triplet
fermion with Y ¼ 0. The three cases are known as the
type I, type II [3], or type III [4] seesaw mechanisms,
respectively.

The seesaw mechanism for generating Majorana masses
for the neutrinos opens up another appealing possibility. It
allows creation of a lepton asymmetry in the early Universe
as a result of CP violating out-of-equilibrium decay of the
heavy seesaw mediating particle—a phenomenon called
leptogenesis [5]. This lepton asymmetry can be subse-
quently converted to a baryon asymmetry through the B�
L conserving and Bþ L violating sphaleron processes,
which are important at temperatures following the epoch
of leptogenesis. The seesaw mechanism therefore offers a
very natural explanation for baryogenesis through lepto-
genesis. In this paper, we will discuss only the type I see-

saw mechanism, where leptogenesis results from the decay
of heavy singlet neutrinos.1

Existence of CP asymmetry in the heavy right-handed
neutrino decays is a prerequisite for leptogenesis within the
type I seesaw mechanism. CP violation might also be
discovered in the upcoming and planned neutrino oscilla-
tion experiments. The seesaw mechanism that gives the
low energy neutrino mass matrix is also responsible for
leptogenesis. Therefore, people have attempted to connect
the low energy CP violation with the CP asymmetry in
leptogenesis. It is well known that in the most general
framework, there is in general no connection between
low and high energy CP violation, as there are additional
complex parameters involved in the decays of the heavy
right-handed neutrinos that are completely independent of
the low energy neutrino parameters, as we now discuss.
Neutrino mixing data [6] are well described by the

unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix U parametrized by three real mixing angles, with CP
violation due to one Dirac phase (observable in neutrino
oscillations) and two Majorana phases (observable in neu-
trinoless double beta decay). It is clearly of interest to try to
understand the connection between these ‘‘low energy’’
CP violating phases in the PMNS matrix and the ‘‘high
energy’’ CP violation required by leptogenesis. However,
in the most general type I seesaw scheme, even zero low
energy CP violation, corresponding to a real PMNS ma-
trix, does not necessarily preclude the presence of high
energy CP asymmetry in the heavy right-handed neutrino
decays required for leptogenesis. This is because of the
presence of additional complex phases at the high scale
which are independent of the neutrino parameters acces-
sible to low energy experiments, as a simple parameter
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1Our conclusions for the vanishing of leptogenesis are also
valid for the type III seesaw scenario.
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counting argument shows. This is worth repeating for those
unfamiliar with it.

It is well known that, in the flavor basis, the Yukawa
coupling matrix of the 3 right-handed neutrinos with the 3
left-handed doublets has 15 physical parameters while the
diagonal right-handed neutrino mass matrix has 3 indepen-
dent real mass parameters. This results in a total of 18 free
parameters at the seesaw scale. On the other hand the low
energy neutrino mass matrix has only 9 physical parame-
ters (3 neutrino masses, 1 Dirac phase, and 2 Majorana
phases). There are therefore 6 additional parameters, plus 3
right-handed neutrino masses, entering physics at the see-
saw scale. The most popular way to parametrize these 6
additional parameters at the high scale that is completely
independent of the low scale physics is to put them in a
complex orthogonal matrix, called the R-matrix [7] involv-
ing 3 complex angles. In particular, the R-matrix contains 3
phases which in general are unrelated to low energy CP
violation.

It is clear from the above parameter counting that the
type I seesaw mechanism introduces three additional
phases. These three additional phases could in principle
play a role in heavy neutrino decays, perhaps making
leptogenesis possible even when there is no low energy
CP violation. However, in some models, for example those
with texture zeroes or two right-handed neutrinos, the
number of extra phases may be reduced. Since the number
of parameters or degrees of freedom is reduced at the high
scale, in such models it then becomes possible to predict
the extent of CP asymmetry at the seesaw scale from the
low energy data. In this way one may obtain a one-to-one
correspondence between the CP violation at the low and
high scales, leading to a link between the PMNS phases
and leptogenesis, as many authors have discussed [8].

It is a remarkable observation that global fits to neutrino
oscillation data [6] are compatible with the so-called tribi-
maximal (TB) mixing pattern [9], where the low energy
neutrino mixing matrix is given by
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where P is an unspecified diagonal matrix containing two
Majorana phases. TB neutrino mixing implies that the
neutrino mass matrix has a Klein symmetry which may
result either directly or indirectly from certain classes of
discrete family symmetry groups [10]. Many models have
been proposed based on various discrete family symme-
tries to account for the TB mixing [11]. Although TB
mixing predicts no CP violation from the Dirac phase,
there is no reason why the two Majorana phases or the
three extra seesaw phases should not allow the necessary
CP violation required for leptogenesis. Nevertheless, it is a
curious fact that many models which predict TB mixing

also lead to zero leptogenesis as has recently been observed
[12–17]. In particular it has been observed that the same
family symmetry which predicts TB mixing seems also to
predict a vanishing CP asymmetry for leptogenesis.
In this paper we emphasize that the vanishing of the CP

asymmetry in leptogenesis, previously observed for mod-
els with TB mixing arising from a family symmetry, may
be traced to a property of the type I seesaw mechanism
known as form dominance (FD) [18]. FD is the require-
ment that the columns of the Dirac mass matrix in the
flavor basis are proportional to the columns of the PMNS
matrix, corresponding to the simplest situation when the
R-matrix is diagonal. Since the R-matrix is orthogonal,
imposing the diagonal condition necessarily makes it also
real with its elements being R ¼ diagð�1;�1;�1Þ, one
example of which is the unit matrix R ¼ I. It has been
pointed out that FD is satisfied by models such as the A4

seesaw models [18], where tribimaximal mixing is en-
forced directly [10] by a family symmetry. However FD
is more general, and leads to vanishing flavor-dependent
CP asymmetries independently of the neutrino mass ma-
trix and irrespective of whether one has tribimaximal
mixing or a family symmetry.
We remark that it was already known [13] that R ¼ I

implies that all the flavor-dependent CP asymmetries van-
ish exactly. It has also been stated that FD corresponds to
R ¼ I and furthermore that A4 seesaw models leading to
TB mixing satisfy FD [18]. However here we shall be more
precise and show that a diagonal R-matrix implies and is
implied by FD and this is sufficient to lead to vanishing
leptogenesis. Moreover the fact that this is the reason why
CP asymmetries vanish in such models has apparently not
been appreciated in the literature [14–17].
Another purpose of this paper is to discuss a way out of

the impasse between family symmetry models of TB mix-
ing and leptogenesis, by emphasizing that successful lepto-
genesis requires violation of FD, but not necessarily
violation of tribimaximal mixing. This may be achieved
in models where the family symmetry responsible for
tribimaximal mixing is implemented indirectly [10] and a
strong neutrino mass hierarchy is present with the FD
broken only softly by the right-handed neutrino respon-
sible for the lightest neutrino mass, as in constrained
sequential dominance (CSD) [19,20]. This was already
previously pointed out in [12] but, as before, this observa-
tion has been neglected.
The paper is organized as follows. We begin by briefly

reviewing the type I seesaw and the R-matrix in Sec. II. We
show that the R-matrix is a basis invariant quantity and
hence statements made in terms of the R-matrix are true
universal. In Sec. III we present the expression for the
flavor-dependent and independent CP asymmetries in lep-
togenesis in terms of the R-matrix and show that these
vanish for the case of a unit R-matrix. In Sec. IV we show
that the condition that the R-matrix is a diagonal matrix
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implies and is implied by a Dirac mass matrix of the FD
type showing in turn that all models which conform to FD
necessarily predict a diagonal R-matrix and hence vanish-
ing leptogenesis. In Sec. V we show that the condition
where the Yukawa matrix is unitary (or trivial) is a subclass
of models which have FD. We compare this to the situation
in models with flavor symmetries and relate our results
with some of the previous results in the literature. In
Sec. VI we show how violations of FD can lead to suc-
cessful leptogenesis in models where the family symmetry
responsible for tribimaximal mixing is implemented indi-
rectly and a strong neutrino mass hierarchy is present with
the form dominance broken only softly by the right-handed
neutrino responsible for the lightest neutrino mass, as in
CSD. We finally conclude in Sec. VII.

II. THE R-MATRIX AND ITS BASIS INVARIANCE

The Yukawa part of the Lagrangian in a SM extension to
include three heavy right-handed neutrinos is given by

�LY ¼ Ye
�LHlR þ Y�

�L ~HNR þ 1

2
�Nc
RMNR þ H:c:; (2)

where L and H are the left-handed lepton doublet and
Higgs doublet, respectively, lR the right-handed charged
singlet, and NR the right-handed neutral singlet. Ye and Y�

are the Yukawa couplings and M the right-handed
Majorana neutrino mass matrix. In the above equation ~H ¼
�i�2H

�. After electroweak symmetry breaking we get the
Dirac mass matrix mD ¼ Y�v, where v is the vacuum
expectation value of the Higgs doublet. If we consider n
generations of heavy right-handed neutrinos NR, then the
Dirac mass matrix mD is a 3� n matrix and the Majorana
mass matrix M is a n� n matrix. The ð3þ nÞ � ð3þ nÞ
neutrino mass matrix turns out to be

�Lm ¼ ��L
�Nc
R

� � 0 mD

mT
D M

� �
�c
L

NR

� �
þ H:c: (3)

Once the n heavy right-handed neutrino fields get inte-
grated out from the theory, one obtains the 3� 3 light
neutrino mass matrix, up to an irrelevant overall sign, as

m� ’ mDM
�1mT

D; (4)

where we have neglected terms higher than OðM�2Þ. The
heavy neutrino mass matrix is approximately given by M.
This is the celebrated type I seesaw mechanism.

The light and heavy neutrino mass matrices can be
diagonalized by unitary matrices U and UM, respectively.
Hence we have the relations Uym�U

� ¼ Dk and

Uy
MMU�

M ¼ DM, where Dk and DM are diagonal matrices
containing the light and heavy neutrino mass eigenvalues.
In the basis where Ye is diagonal we identify U as the
PMNS matrix. From above, one obtains

UymDM
�1mT

DU
� ¼ Dk: (5)

Substituting Uy
MMU�

M ¼ DM in the above equation we get

UymDU
�
MD

�1
M Uy

Mm
T
DU

� ¼ Dk: (6)

The R-matrix is defined as [7]

R ¼ D�1ffiffiffiffi
M

p Uy
Mm

T
DU

�D�1ffiffi
k

p ; (7)

where R is clearly a complex orthogonal matrix RTR ¼ I.
Equation (7) parametrizes the freedom in the Dirac matrix
mD, for fixed values of U, Dk, and DM, in terms of a
complex orthogonal matrix R.
Following the discussion in [13], we show that the

R-matrix is invariant under any kind of basis transforma-
tion of the heavy Majorana neutrinos as well as the well-
known invariance under charged lepton basis transforma-

tions [7,13]. This is realized by the fact that Uy
Mm

T
D and U

are invariant under the heavy Majorana basis transforma-
tion. To show this explicitly, let us consider two bases

ðmD;MÞ and ðm̂D; M̂Þ which are related by a unitary basis
transformation of the heavy Majorana neutrinos as

M̂ ¼ STMS; (8)

and

m̂ D ¼ mDS: (9)

The matrix S is unitary and hence satisfies the relation
SyS ¼ I. In the old nonhatted basis, the diagonalizing
relation for the heavy Majorana mass matrix is

Uy
MMU�

M ¼ DM: (10)

Plugging M̂ ¼ STMS back into the above equation one
will get

Uy
MðSTÞ�1M̂S�1U�

M ¼ DM: (11)

For S to be a unitary matrix this above equation represents
the diagonalizing relation in the new hatted basis. Hence

one can define the new eigenvectors as Û�
M ¼ SyU�

M. So

the Uy
Mm

T
D transforms as

Uy
Mm

T
D ¼ Ûy

MS
TS�m̂T

D ¼ Ûy
Mm̂

T
D: (12)

Using Eqs. (8) and (9) one can very easily prove that the
low energy neutrino mass matrix is also invariant under
this unitary basis transformation,

M� ¼ mDM
�1mT

D ¼ m̂DM̂
�1m̂T

D: (13)

Hence the low energy neutrino mixing matrix U will
remain unaffected under this heavy Majorana neutrino
basis transformation. We have already defined the
R-matrix in Eq. (7). Because the heavy Majorana masses
DM and the low energy neutrino masses Dk are physical
observables and are basis independent and also the neu-
trino mixing matrix U is basis independent, hence the

statement ‘‘Uy
Mm

T
D is invariant under heavy Majorana basis

transformation’’ is sufficient to prove that the R-matrix is
invariant under the heavy Majorana basis transformation.
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Similarly one can also prove that the quantity mT
DU

� is
invariant under the leptonic basis transformation. In this
case for �L ! �LW, we get m̂D ¼ WmD and the neutrino

mixing matrix would change to Û� ¼ W�U�. Hence

mT
DU

� ¼ m̂T
DÛ

�. Therefore, here also the R-matrix would
be invariant. Hence the R-matrix is invariant under any
kind of basis transformation 2 as well as nonunitary trans-
formation of the heavy Majorana fields [13].

III. CP ASYMMETRY IN LEPTOGENESIS AND
R-MATRIX

As discussed before, CP asymmetric out-of-equilibrium
heavy singlet Majorana neutrino decay could lead to lepto-
genesis. The CP asymmetry generated by Ni decays into a
lepton doublet L (written as l� with a flavor index � ¼ e,
�, �) and a Higgs doublet H (written as �) is given by
[5,22]

"�i ¼ �ðNi ! ��l�Þ � �ðNi ! �yl�ÞP
�

½�ðNi ! ��l�Þ þ �ðNi ! �yl�Þ�

¼ 1

8�v2

1

ðmy
DmDÞii

X
j�i

�
I�
ijfðM2

j =M
2
i Þ

þ J �
ij

1

1�M2
j =M

2
i

�
; (14)

where we have written

I �
ij ¼ Im½ðmy

DÞi�ðmDÞ�jðmy
DmDÞij�;

J �
ij ¼ Im½ðmy

DÞi�ðmDÞ�jðmy
DmDÞji�:

(15)

It is evident that I�
ij ¼ �I�

ji and J �
ij ¼ �J �

ji. In the

minimal supersymmetric standard model, the function
fðxÞ has the form [23]

fðxÞ ¼ ffiffiffi
x

p �
2

1� x
� ln

�
1þ x

x

��
: (16)

In the above equations we have considered the CP asym-
metry generated in each flavor and thus have taken into
account the so-called flavor effects in leptogenesis [24–
26]. We have also considered the decay asymmetry created
from the decay of all the three right-handed neutrinos,
including the case of N2 dominated leptogenesis [27].

In many cases only the term proportional to I�
ij in

Eq. (14) is relevant, since the second term proportional to
J �

ij is often suppressed by ratios of right-handed neutrino

masses Mi=Mj. Furthermore, the second term in Eq. (14)

vanishes when one sums over flavors to obtain the flavor-
independent decay asymmetry:

"i ¼
X
�

"�i �
P
�
½�ðNi ! ��l�Þ � �ðNi ! �yl�Þ�

P
�

½�ðNi ! ��l�Þ þ �ðNi ! �yl�Þ�
;

¼ 1

8�v2

1

ðmy
DmDÞii

X
j�i

Im½ðmy
DmDÞ2ij�fðM2

j =M
2
i Þ: (17)

Note that the flavor-independent CP asymmetry given by
Eq. (17) depends on the imaginary part of the combination

ðmy
DmDÞij, where i � j.

Since "�i depend on the Dirac mass matrix, we can
express them also in terms of the R-matrix as

"�i ¼ � 3Mi

16�v2

Im½P
j;k

m1=2
j m3=2

k U�
�jU�kR

�
ijR

�
ik�

P
j
mjjRijj2

: (18)

For the case where flavor effects are inconsequential, the
corresponding CP asymmetry is given by summing over
the flavors as

"i ¼ � 3Mi

16�v2

Im½P
j
m2

j ðR�
ijÞ2�

P
j
mjjRijj2

; (19)

where mj are the eigenvalues of the light neutrino mass

matrix and we have assumed hierarchical masses for the
right-handed neutrinos. It is interesting to compare the
flavor-dependent asymmetry in Eq. (18) to the flavor-
independent case in Eq. (19). Equation (19) shows that
the flavor-independent CP asymmetry is directly propor-
tional to the imaginary components of the R-matrix.
Therefore, for models where the R-matrix is real, the
flavor-independent CP asymmetry becomes identically
zero and one has no leptogenesis. By contrast, from
Eq. (18) it is clear that a real R-matrix allows the flavor-
dependent asymmetries to be nonzero [25,26] due to the
PMNS phases, allowing a link between low energy CP
violation and leptogenesis for the case of a real R-matrix
[28]. Such a link was first observed for flavor-dependent
leptogenesis, independently of the R-matrix parametriza-
tion, in [12].
In [13] it was pointed out that a real R-matrix is an

automatic consequence of CSD since in this case R is equal
to the unit matrix. It was also pointed out [13] that R ¼ I
implies the stronger result that flavor-dependent CP asym-
metries in Eq. (18) vanish identically due to the unitarity of
U. We point out that, since the R-matrix enters Eq. (18)
quadratically, a diagonal R-matrix with diagonal elements
being�1 is sufficient to lead to vanishing flavor-dependent
CP asymmetries. The same conclusion applies to both I�

ij

and J �
ij even though for simplicity we have only consid-

ered the terms arising from I�
ij above. (In Sec. VI we

2A simple physical reason why the R-matrix has to be basis
invariant can be understood from the fact that the R-matrix
encodes the three right-handed neutrino decay rates as well as
the three leptogenesis CP asymmetry observables. Therefore
since the R-matrix is fixed by six physical observables it must
be basis invariant .
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consider both terms.) In the next section we shall show that
a diagonal R-matrix with diagonal elements being �1
corresponds to FD [18]. Since models of TB mixing en-
forced directly by a family symmetry satisfy FD, this is the
reason why the leptonic flavor-dependent CP asymmetries
vanish for these models.

IV. DIAGONAL R-MATRIX AND FORM
DOMINANCE

In this section we first review the argument that R ¼ I
implies and is implied by FD [18] and then extend it to the
case of a diagonal R-matrix with diagonal elements being
�1.

Let us first consider the case that the R-matrix is the unit
matrix, i.e.,

R ¼ I: (20)

From Eq. (7) this implies that

D�1ffiffiffiffi
M

p mT
DU

�D�1ffiffi
k

p ¼ I; (21)

where for simplicity we choose to work in the basis where
the heavy Majorana mass matrix is real and diagonal.
However, since the R-matrix is basis invariant, the physical
results are basis invariant. Equation (21) yields the condi-
tion on the Dirac mass matrix as

mD ¼ U:ðD ffiffi
k

p D ffiffiffiffi
M

p Þ ¼ U:D; (22)

where D is a diagonal matrix of the form D ¼
diagða1; a2; a3Þ. They are given as a1 ¼ ffiffiffiffiffiffi

m1
p ffiffiffiffiffiffiffi

M1

p
, a2 ¼ffiffiffiffiffiffi

m2
p ffiffiffiffiffiffiffi

M2

p
, and a3 ¼ ffiffiffiffiffiffi

m3
p ffiffiffiffiffiffiffi

M3

p
, where mi and Mi (i ¼

1; 2; 3) are the eigenvalues of the light and heavy
Majorana neutrinos, respectively. We work in the conven-
tion where all mass eigenvalues are taken as real and
positive. Therefore, the parameters a1, a2, a3 are real.
Since we are working in a basis where the right-handed
Majorana mass isM ¼ diagðM1;M2;M3Þ, inserting the FD
mD ¼ U:D in the seesaw formula yields

m� ¼ mDM
�1mT

D ¼ U:Dk:U
T; (23)

which serves as a consistency check. Also, it is trivial to see
that the diagonal matrix containing the light neutrino mass
eigenvalues is given by

Dk ¼ diag

�
a21
M1

;
a22
M2

;
a23
M3

�
; (24)

which is obviously consistent with D ¼ diagða1; a2; a3Þ ¼
D ffiffi

k
p D ffiffiffiffi

M
p .

The above discussion shows that any model which pro-
duces a Dirac mass matrix that is of the form given by
Eq. (22) will give R ¼ I and hence zero leptogenesis. In
fact, this form for the Dirac mass matrix has been discussed
in detail before in the literature and has been called FD
[18]. Hence we confirm that R ¼ I implies FD [18].

Let us now assume that R is diagonal, i.e., R ¼ Rd with
diagonal elements being �1,

R ¼ Rd: (25)

Assuming R ¼ Rd gives

mD ¼ U:D ffiffi
k

p :Rd:D ffiffiffiffi
M

p ¼ U:D0; (26)

where D0 is a real and diagonal matrix D0 ¼
diagð� ffiffiffiffiffiffi

m1
p ffiffiffiffiffiffiffi

M1

p
;� ffiffiffiffiffiffi

m2
p ffiffiffiffiffiffiffi

M2

p
;� ffiffiffiffiffiffi

m3
p ffiffiffiffiffiffiffi

M3

p Þ. Since FD

[18] is a criterion whereby the columns of the Dirac matrix
mD are proportional to the respective columns of the
neutrino mixing matrix while working in a basis where
the charged lepton and heavy Majorana mass matrix are
diagonal, it is clear that Eq. (26) implies FD. Therefore the
condition that R is a diagonal matrix R ¼ Rd with diagonal
elements being �1 leads to FD, wherein mD ¼ U:D0,
where D0 is a real diagonal matrix. We can turn the argu-
ment around to state that, for any real diagonal matrix D0,
FD leads to R that is real and diagonal. Hence, FD neces-
sarily predicts zero CP asymmetry for leptogenesis.
Finally, we stress that the condition that the R-matrix is

diagonal is independent of the low energy neutrino pa-
rameters. This is because it only demands that the Dirac
mass matrix should obey FD. In particular it does not
restrict the PMNS mixing matrix U, which could have
any form.

V. FORM DOMINANCE AND UNITARITY OF mD

It was shown in [15] that if the right-handed neutrinos
belong to the irreducible representation of a family sym-
metry group GF, then one gets

my
DmD / I (27)

from the invariance of the Lagrangian underGF. Hence the
Dirac mass matrix in these flavor models is predicted to be
unitary. UnitarymD occurs in several of the models with A4

and S4 flavor symmetry in [11]. In this section we show
that the case of unitary Dirac matrices corresponds to an
interesting subclass of FD cases. Since a unitarymD is only
a subclass of the class of models which conform to FD, one
concludes that the set of flavor models which give unitary
mD, and hence vanishing leptogenesis, is only a subclass of
a more general class of models with vanishing leptogenesis
characterized by R ¼ diagð�1;�1;�1Þ.
In the approach here, the unitary Dirac matrices emerge

from the condition for FD in Eq. (26), generalized to any
arbitrary right-handed neutrino mass basis, for any real
diagonal matrix D,

mD ¼ U:D:UT
M; (28)

which leads to the FD condition

mDm
y
D ¼ U:D2:Uy: (29)

From this equation it is clear that if D2 ¼ I then mD is
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unitary,

mDm
y
D ¼ I; (30)

which is satisfied trivially by the special case mD ¼ I.3

Conversely, ifmD is unitary then this implies FD, since one
can always go to a basis where a general unitarymD can be
expressed as mD ¼ U:D:UT

M.
Note that, for the special case mD ¼ I, the generalized

FD condition mD ¼ U:D:UT
M, implies that

U ¼ U�
MD

�1: (31)

However, for mD ¼ I the seesaw formula gives

m� ¼ M�1; (32)

and hence one gets

U ¼ U�
M: (33)

Therefore for the case where mD ¼ I, one has D ¼ I.
The main results in this paper so far can then be sum-

marized as follows:
(1) FD implies and is implied by a diagonal R-matrix

R ¼ Rd with diagonal elements being �1.
(2) FDmay be expressed as the generalized condition in

Eq. (28) where D is a real and diagonal matrix, and
U and UM are the matrices which diagonalize the
low and heavy neutrino mass matrices, respectively,
which can be arbitrary.

(3) Models which have unitary Dirac mass matrix are a
subclass of FD, corresponding to the real diagonal
matrix D having elements �1.

(4) A special case of unitary mD is the case where the
Dirac Yukawa matrix is proportional to I, where
mD ¼ I implies D ¼ I.

(5) Models which respect FD with R ¼ Rd have vanish-
ing flavor-dependent CP asymmetries for leptogen-
esis. A subclass of such models has a unitary or unit
Dirac mass matrix.

VI. VIOLATIONS OF FORM DOMINANCE

In order to explore violations of FD, we shall introduce a
more explicit notation for the Dirac neutrino mass matrix
mD, the right-handed neutrino mass matrix M, the type I
seesaw effective light Majorana mass matrixm� in Eq. (4),
and the PMNS matrix U, as well as the R-matrix. We shall
write the (not necessarily TB) PMNS matrix U in terms of
three column vectors �i:

U ¼ ð�1;�2;�3Þ; (34)

where the complex �i include the respective Majorana
phase associated with that particular column of U as well
as the Dirac phase in U. The columns of U obey the

unitarity relations

�y
i �j ¼ 	ij: (35)

According to FD, in the diagonal right-handed neutrino
mass matrix basis M,

M ¼
M1 0 0
0 M2 0
0 0 M3

0
@

1
A; (36)

the columns of the Dirac neutrino mass matrix mD (in the
left-right convention for mD) are proportional to columns
of the PMNS matrix,

mD ¼ ða1�1; a2�2; a3�3Þ; (37)

where ai are the real parameters introduced previously.
Then the type I seesaw mechanism implies

m� ’ mDM
�1mT

D ¼ m1�1�
T
1 þm2�2�

T
2 þm3�3�

T
3 ;

(38)

where mi ¼ a2i =Mi. Using this notation, it is clear that the
effective light Majorana neutrino mass matrix m� is diago-
nalized by the PMNS matrix,

Uym�U
� ¼

m1 0 0
0 m2 0
0 0 m3

0
@

1
A; (39)

using U ¼ ð�1;�2;�3Þ with Eq. (38) and the unitarity
relations in Eq. (35). This notation makes the essential
feature of FD, that the PMNS matrix U is unrelated to
the seesaw parameters which determine the neutrino
masses mi, completely manifest, since U is given by �i

and the neutrino masses are given by the combinations
mi ¼ a2i =Mi, with �i independent of ai, Mi.
From Eq. (7), the R-matrix may be defined as the matrix

which parametrizes mD in the basis where M and Ye are
diagonal as

mDD
�1ffiffiffiffi
M

p ¼ UD ffiffi
k

p RT: (40)

It is instructive to expand this equation in terms of the
columns of mD and U,

ððmDÞi1M�1=2
1 ; ðmDÞi2M�1=2

2 ; ðmDÞi3M�1=2
3 Þ

¼ ðUi1m
1=2
1 ; Ui2m

1=2
2 ; Ui3m

1=2
3 ÞRT: (41)

SincemD ¼ ða1�1; a2�2; a3�3Þ andU ¼ ð�1;�2;�3Þ, it
is apparent that R is equal to the unit matrix in the case of

FD with m1=2
i ¼ aiM

�1=2
i . Note that, in our convention,

assuming FD, we have assumed that mi ¼ a2i =Mi. In other
words we have defined M1 to be the mass of the right-
handed neutrino which is responsible for the physical
neutrino mass m1, M2 to be the mass of the right-handed
neutrino which is responsible for the physical neutrino
mass m2, and M3 to be the mass of the right-handed
neutrino which is responsible for the light neutrino mass

3Similarly if D / I then mDm
y
D / I, which is satisfied trivially

by the special case mD / I.
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m3. This differs from the usual convention where M1 <
M2 <M3 and the right-handed neutrinos are ordered such
that the lightest one with mass M1 appears in the first
column, the second lightest with mass M2 appears in the
second column, and the heaviest with mass M3 appears in
the third column of the matrices mD and M. While, in the
usual convention, there is an ambiguity in the R-matrix due
to the reordering of the right-handed neutrino masses, in
our convention there is no such ambiguity, and the
R-matrix for FD is thus equal to the unit matrix, with no
reordering ambiguity. In our convention the mass ordering
of the right-handed neutrino masses Mi remains general
and for us it is not generally true that M1 <M2 <M3

(although this possibility is not excluded) and other mass
orderings such as M3 <M2 <M1 are permitted. Similarly
the mass orderings of the physical neutrino masses is also
left general with m1 <m2 <m3 being the normal mass
ordering and m3 <m1 <m2 being the inverted one (all
mass eigenvalues taken to be positive).

Adopting the above FD conventions, summarized by
mi ¼ a2i =Mi, where the i-th right-handed neutrino mass
is associated with i-th physical neutrino mass, we now
consider the CP asymmetry parameters associated with
the decay of such an i-th right-handed neutrino. We em-
phasize that the i-th right-handed neutrino could be the
lightest, second lightest, or heaviest right-handed neutrino
(e.g., i ¼ 3 could be the lightest right-handed neutrino in
our convention). We shall write Eq. (15) as follows:

I �
ij ¼ Im½ðmy

DÞi�ðmT
DÞj�ðmy

DmDÞij�;
J �

ij ¼ Im½ðmy
DÞi�ðmT

DÞj�ðmy
DmDÞji�:

(42)

In the case of FD we may use Eq. (37) to we express
Eq. (15) as

I �
ij ¼ Im½a2i a2j��

i��j�ð�y
i �jÞ�;

J �
ij ¼ Im½a2i a2j��

i��j�ð�y
j�iÞ�:

(43)

From Eq. (43), which assumes FD, it is clear that both
flavor-dependent leptonic CP asymmetry parameters I�

ij

and J �
ij vanish exactly due to the unitarity condition in

Eq. (35). The vanishing of I�
ij and J

�
ij for all values of i, j,

� means that all types of leptogenesis vanish, including
flavor (�) dependent leptogenesis and so-called N1 and N2

leptogenesis arising from the lightest and second lightest
right-handed neutrino, including thermal and nonthermal
leptogenesis—all these types of leptogenesis vanish iden-
tically as a result of FD. It is clear that this vanishing of CP
asymmetry in leptogenesis arises from FD in a very simple
way, independently of the PMNS matrix, and hence the
vanishing is not directly related to TB mixing or family
symmetry. However, as discussed in [18], many models
that describe TB mixing via family symmetry do satisfy
FD, and that is the reason for vanishing CP asymmetry in
these cases.

We have seen that exact FD leads to exactly zero lepto-
genesis. Therefore in order to achieve successful lepto-
genesis we must consider violations of FD. In the
remainder of this section we show how FDmay be violated
softly, without perturbing the PMNS matrix U, in the case
of a hierarchical neutrino mass spectrum in the limit that
the lightest physical neutrino mass m1 ! 0. In this limit,
assuming FD, the neutrino masses and mixing parameters
are insensitive to the coefficient a1 of the first column of
the Dirac mass matrix a1�1 and the first right-handed
neutrino mass eigenvalue M1 since they are responsible
for m1 ¼ a21=M1 and by assumption m1 is negligible.
Moreover, in this limit, we can replace the first column
of the Dirac mass matrix a1�1 by any other column vector

a1�1 ! a1 ~�1; (44)

so that the Dirac neutrino mass matrix becomes

~mD ¼ ða1 ~�1; a2�2; a3�3Þ; (45)

leaving the PMNS matrix approximately unchanged,

U � ð�1;�2;�3Þ: (46)

We call this a soft violation of FD since Eq. (46) becomes
exact in the limit thatm1 ! 0. We emphasize again that, in
our convention, M1 need not be the lightest right-handed
neutrino mass eigenvalue, even though in this example m1

is the lightest physical neutrino mass eigenvalue. Making
the replacement in Eq. (44) it is clear that we will now
obtain nonzero CP asymmetries for I�

ij and J
�
ij with either

i ¼ 1 or j ¼ 1.
If i ¼ 1, then

I �
1j ¼ Im½a21a2j ~��

1��j�ð ~�y
1�jÞ�;

J �
1j ¼ Im½a21a2j ~��

1��j�ð�y
j�1Þ�:

(47)

If j ¼ 1, then

I �
i1 ¼ Im½a2i a21��

i�
~�1�ð�y

i
~�1Þ�;

J �
i1 ¼ Im½a2i a21��

i�
~�1�ð ~�y

1�iÞ�:
(48)

It is clear that I�
ij and J

�
ij with either i ¼ 1 or j ¼ 1 are

nonzero since in general both �y
i
~�1 � 0 and ~�y

1�i � 0.
An example of such a soft violation of FD is provided by
constrained sequential dominance [19] which just corre-
sponds to FD for the case of a strong neutrino mass
hierarchy m1 ! 0 together with the assumption of TB
mixing UTB. CSD is in turn a special case of sequential
dominance which corresponds to the case of a general
PMNS matrix U [20]. In [12] it was first pointed out that
(flavor-dependent) CP asymmetries vanish in the limit
m1 ! 0 for the case of CSD and TB mixing where lepto-
genesis is dominated by the CP asymmetry of the lightest
right-handed neutrino which is associated with either the

m2 or m3 due to �y
2�3 ¼ �y

3�2 ¼ 0. Furthermore it was

realized [12] that, under the similar assumptions, but with
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the lightest right-handed neutrino being associated with

m1, then, since �y
i
~�1 � 0 and ~�y

1�i � 0, the CP asym-

metries would no longer be zero for small m1 � 10�3 eV
but could in fact be rather large or optimal.

A full numerical estimate of leptogenesis for this case
with M1 being the lightest right-handed neutrino was per-
formed [12] where it was shown that realistic values of
baryon asymmetry could result form1 � 10�3 eV and with
approximate TB mixing arising from the dominant and
subdominant right-handed neutrinos of mass M3 and M2.
In that analysis a zero initial abundance of right-handed
neutrinos was assumed with m1 � 10�3 eV leading to
optimal washout. If instead a thermal initial abundance
of right-handed neutrinos were assumed then m1 could
become arbitrarily small with zero washout in the soft
FD limit m1 ! 0 where TB mixing becomes exact, which
is the limit considered here. This example shows that the
vanishing of theCP asymmetry in leptogenesis has nothing
to do with TB mixing but instead is a consequence of FD.

We remark that the conditions required for TB mixing
suggest the presence of a family symmetry. However, as
previously observed, the family symmetry may lead to TB
mixing in twoways, either directly or indirectly [10]. In the
direct implementation of the family symmetry, where some
of the generators of the family symmetry are preserved as
symmetries of the TB neutrino mass matrix, it is rather
unnatural to achieve a strong neutrino mass hierarchy. On
the other hand, if the family symmetry is achieved in an
indirect way, with the family symmetry being responsible
for the alignments along the directions of the TB mixing
matrix columns �2 and �3, then a strong hierarchy with
m1 ! 0 is completely natural [10]. In [18] this was called
natural FD, but really it is just an example of CSD. The
presence of a strong neutrino mass hierarchy, together with
TBmixing resulting from a family symmetry, can therefore
lead to successful leptogenesis if the family symmetry is
implemented in the indirect way as in CSD.

VII. CONCLUSIONS

In this paper we have emphasized that the vanishing of
the CP asymmetry in leptogenesis, previously observed for
models with tribimaximal mixing and family symmetries

such as A4 or S4 may be traced to a property of the type I
seesaw mechanism satisfied by such models known as FD,
corresponding to the case of an R-matrix characterized by
R ¼ diagð�1;�1;�1Þ. FD with such a diagonal R-matrix
leads to vanishing flavor-dependent CP asymmetries irre-
spective of whether one has tribimaximal mixing or a
family symmetry. In particular, one could have a non-TB
mixing matrix at the low scale and yet have vanishing
leptogenesis, if the Dirac mass matrix conforms to FD.
On the other hand one may have exact TB mixing and
nonvanishing leptogenesis if FD is violated. The only
significance of the family symmetry seems to be that it
can give rise to models with FD.
The other main results of the paper are summarized in

Sec. V. Many models where the right-handed neutrinos are
in an irreducible representation of the flavor group have
been observed to give a Dirac mass matrix which is unitary.
We have shown that such cases are a subclass of FDmodels
having both a diagonal R-matrix and a diagonal D-matrix
with elements�1, where theD-matrix is the one appearing
in Eq. (28). A special case is where the Dirac matrix is
proportional to the unit matrix. Clearly FD is again respon-
sible for the vanishing leptogenesis in all these cases.
Finally we showed that successful leptogenesis requires

violation of FD, but not necessarily violation of TB mix-
ing. Violation of FD but not TB mixing can be achieved in
models based on constrained sequential dominance where
a strong neutrino mass hierarchy is present. In this case the
FD is violated only softly by the right-handed neutrino
responsible for the lightest neutrino mass. This seems to be
possible in models where the neutrino flavor symmetry
responsible for TB mixing emerges from the family sym-
metry indirectly rather than directly.
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