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We propose a specific ansatz for the structure of Yukawa matrices in SOð10Þ models that lead to

quasidegenerate neutrinos through the type-I seesaw mechanism. Consistency of this ansatz is demon-

strated through detailed fits to fermion masses and mixing angles, all of which can be explained with

reasonable accuracy in a model that uses the Higgs fields transforming as 10, 120, and 126 representations

of SOð10Þ. The proposed ansatz is shown to follow from an extended model based on the three generations

of the vectorlike fermions and an Oð3Þ flavor symmetry. Successful numerical fits are also discussed in

earlier proposed models, which used a combination of the type-I and type-II seesaw mechanisms for

obtaining quasidegenerate neutrinos. Large neutrino mixing angles emerge as a consequence of neutrino

mass degeneracy in both these cases.
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I. INTRODUCTION

Experiments over the years have revealed the following:
(1) Two of the neutrino mixing angles are large as

opposed to the small quark mixing angles.
(2) Neutrino mass hierarchy is milder compared to

quarks, and the extreme case of all neutrinos being
quasidegenerate is still an allowed possibility.

Several independent reasons have been advanced [1–3] to
understand feature (1) of the fermion spectrum but it may
be that its answer lies in (2). Large mixing angles become
quite natural if neutrinos are almost degenerate. They
remain undefined in the exact degenerate limit. A small
perturbation that leads to differences in neutrino masses
can also stabilize all or some of the mixing angles to large
values. Such theory, which predicts quasidegeneracy, has a
built-in mechanism to explain large mixing angles. We
present an SOð10Þ-based unified description of fermion
masses and mixing leading to hierarchical charged fermi-
ons and quasidegenerate neutrino masses.

SOð10Þ models provide a natural framework for under-
standing neutrino masses because of the seesaw mecha-
nisms [1] inherent in them. Neutrino masses arise in these
models from two separate sources either from the vacuum
expectation value of the left-handed triplet (type-II) or
from the right-handed triplet (type-I) Higgs. It was pointed
out [4,5] long ago that the combination of these two
sources provides an interesting framework for understand-
ing quasidegeneracy of neutrinos. In this approach, some
flavor symmetry leads to a degenerate type-II contribution,
and its breaking in the Dirac neutrino masses then leads to
departure from degeneracy through the type-I contribution.
This is realizable if the type-II contribution dominates over

the type-I, which is not always the case [6,7]. An alter-
native possibility is that both degeneracy and its breaking
arise from a single source, namely, the type-I seesaw
mechanism. This, however, requires a peculiar structure
for the right-handed (RH) neutrino mass matrix MR. It has
been pointed out that the required structure can arise from
the ‘‘Dirac screening’’ [8] or more generally from the
application of the minimal flavor violation [9] hypothesis
to the leptonic sector [10].
While these possibilities are known, there does not exist

a detailed study of all fermion masses and mixing in the
context of realistic SOð10Þ models with quasidegenerate
neutrinos, and we address this question using (A) a type-I
mechanism alone and (B) a combination of type-I and
type-II mechanisms.
We use supersymmetric SOð10Þ as our basic framework.

Fermion masses arise in renormalizable SOð10Þ models
through their couplings to Higgs fields transforming as 10,

126, and 120 representations. One needs at least two of
these fields to get fermion mixing, and the minimal model

with 10 and 126 has attracted a lot of attention [2,6,7,11].
There have been studies of models with an additional 120
also [12–14]. In our context, we find that all three Higgs
representations are needed to obtain satisfactory fits to
fermion masses and mixing. Starting with a supersymmet-
ric SOð10Þ, an effective minimal supersymmetric standard
model (MSSM) is obtained by assuming fine-tuning, which
keeps only two Higgs doublets lights. The final fermion
mass matrices obtained after SOð10Þ and SUð2ÞL �Uð1Þ
breaking can be parametrized as [13,14]

Md ¼ H þ FþG; Mu ¼ rðH þ sFþ tuGÞ;
Ml ¼ H � 3Fþ tlG; MD ¼ rðH � 3sFþ tDGÞ;
ML ¼ rLF; MR ¼ r�1

R F; (1)

where the matrices H and F are complex symmetric and G
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is an antisymmetric matrix in generation space. We follow
the same conventions as used in [14]. H, F, and G arise

from the fermionic Yukawa couplings to the 10, 126, and
120 Higgs fields, respectively. r, s, tu, tl, tD, rL, and rR are
complex parameters. The light neutrino mass matrix is
given by

M � ¼ rLF� rRMDF
�1MT

D � MII
� þMI

�: (2)

It is known that the above fermion mass structure allows
different mixing patterns for quarks and neutrinos if a type-
II seesaw mechanism dominates [2,11]. Consider the limit
in which the contribution of the 10-plet H dominates. In
this limit, all the charged fermions are diagonalized by the
same matrix and the Cabibbo-Kobayashi-Maskawa (CKM)
matrix becomes proportional to identity. In the same limit,
neutrino mixing with the type-II dominance is governed by
F in Eq. (2) leading to nontrivial leptonic mixing. In fact, if
only H dominates the charged fermion masses, then one
can obtain b-� unification, which in turn drives the large
atmospheric mixing [2]. The existing fits [7,14] to fermion
masses and mixing with type-II dominance are for the
hierarchical neutrino masses. A degenerate neutrino spec-
trum can be obtained in this approach with an additional
assumption:

F ¼ c0I; (3)

with I denoting a 3� 3 identity matrix. The subdominant
type-I contribution can then lead to the quark mixing and
neutrino mass differences.

The realization of the attractive type-II dominated sce-
nario was found difficult in the context of the minimal
model [6,7]. It was found that parameter space favored by
the overall fit to fermion masses suppresses the type-II
contribution compared to the type-I. This motivates us to
study degenerate neutrinos in the context of a purely type-I
seesaw mechanism. A general framework to obtain quasi-
degenerate neutrinos in a type-I seesaw was recently dis-
cussed [10] and following it we impose

F ¼ aH2: (4)

Since H is a symmetric matrix it can be diagonalized by a
unitary matrix: UTHU ¼ DH, where DH is a diagonal
matrix with real elements. Without loss of generality, we
can express the mass matrices in (1) in an SOð10Þ basis
with a diagonal H. This basis is obtained from Eq. (1) by
the replacement H ! DH and

H2 ! DHV
�DH; (5)

where DH is a diagonal matrix with real elements. G
retains its antisymmetric form, and we use the same nota-
tion for it and for various mass matrices in the new basis.
V ¼ UTU in Eq. (5) is a symmetric unitary matrix that can
be parametrized [15] in terms of two angles and three
phases.

Before we present the detailed fits, let us look at the
implications of the ansatz Eq. (4) qualitatively.
(i) Correct b-� unification and second generation

masses are obtained if a dominant contribution to
the charged fermion masses comes from H with a
subdominant contribution from F and G. Retaining
only the H contribution, the ansatz, Eq. (4) implies
that

M I
� ¼ �rRMDF

�1MT
D � � r2rR

a
V þ � � � ; (6)

where the � � � terms arise from the 126 and 120
contributions to the Dirac mass matrix MD. The
CKM matrix is unity in this limit while the neutrino
mixing is determined from V. The diagonalization of
V leads [15] to �23 ¼ �, �12 ¼ �

2 , and �13 ¼ 0

where the angles �ij are angles defined in the stan-

dard parametrization of the leptonic mixing matrix
and �; � enter into the definition of V [15]. Thus
ansatz in Eq. (4) can lead to a correct description of
the quark and leptonic mixing angles to zeroth order
without requiring the type-II dominance as is com-
monly done.

(ii) If H in the original basis was real, then V entering
Eq. (5) would be unity. In this case, all the fermion
mixing vanish in the absence of the 120 contribution.
Thus complex couplings and CP violation prove to
be important in understanding large neutrino mixing
within this approach.

The contributions from 126 and 120-plets induce nonzero
quark mixing angles and perturb Eq. (6):

M I
�ðMXÞ ¼ � rRr

2

a
ðV � 6saDH þ tDðGD�1

H V

� VD�1
H GÞ þOðs2; t2DÞÞ: (7)

MI
�ðMXÞ corresponds to an effective dimension five op-

erator induced after integration of the right-handed neu-
trino fields. Assuming that the heavy mass scale is close to
the grand unified theory (GUT) scale and neglecting the
effect of the Dirac neutrino couplings in the renormaliza-
tion group (RG) evolution, the radiatively corrected low
scale neutrino mass matrix is given by [1]

M �fðMZÞ ¼ I�M�fðMXÞIy� ; (8)

where I� � Diagð1; 1; 1þ ��Þ, �� � � 1
cos2�

m2
�

16�2�2 ln
MX

MZ
,

and M�f denotes the neutrino mass matrix in the flavor

basis.

II. NUMERICAL FITS: TYPE-I SEESAW

We now discuss detailed fits to fermion masses and
mixing based on the ansatz (4) and the fermion mass
matrices, Eq. (1). The latter are defined at the GUT scale
MX. We use as our input the quark and lepton masses
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obtained at MX in the MSSM for tan� ¼ 10, MSUSY ¼
1 TeV, and MGUT ¼ 2� 1016 GeV. The input values in
the quark sector are given in [14,16]. We include the RG
evolution in neutrino mass matrix as follows. Using the
charged lepton mass matrix at MX, we numerically deter-
mine M�fðMXÞ. The low scale neutrino mass matrix in

Eq. (8) is then numerically determined and used to obtain
the observable neutrino masses and mixing angles. For
neutrino masses and lepton mixings, we use the updated
low energy values given in [17].

We do the	2 fitting to check the viability of the model as
previously done in [7,13,14]. In this case we have a total of
25 real parameters (3 inDH, 5 in V, 6 in G, real r, complex
s, a, tu, tl, and tD), which are fitted over 16 observables (9
charged fermion masses, 4 CKM parameters, 2 leptonic
mixing angles, and �m2

sol=�m
2
atm). Lepton mixings and

�m2
sol=�m

2
atm are independent of the overall neutrino

mass (m0 ¼ j rRr2a j) appearing in Eq. (7).m0 sets the overall

neutrino mass scale and can be determined from the fit
using the observed value of �m2

atm. Our definition of 	2

allows only the solution with �m2
sol cos2� > 0 as required

by experiments. We also set r ¼ mt

mb
and minimize 	2 with

respect to the remaining 24 parameters. The results of the
minimization are displayed as solutions (1) and (2) in
Table I. We obtained the best fit value of 	2 ¼ 2:038
corresponding to the solution (1) for which all the observ-
ables are fitted within & 0:9
. Solution (2) is also accept-
able, which fits all observables within & 0:7
 with the
exception of the down quark mass md. We also include in
Table I the values of the Majorana phases obtained at the
minimum.

�13 has not been included in our definition of 	2 and its
initial value was zero. This becomes nonzero but remains
small in both the solutions displayed. However, almost the
entire allowed range in �13 is compatible with reasonable
fits to other fermion masses as shown by both the solutions.
All the solutions displayed in Table I predict large CP
violating leptonic phase.

The values ofm0 determined using the observed value of
�m2

atm are seen from Table I to be � �m2
atm showing the

consistency of our ansatz. This arises as a result of Eq. (7)
and the smallness of s, tD. The m0 in turn determine the
heaviest RH neutrino mass scale [see Eq. (1) and ansatz
(4)],

M3 � r�1
R jajm2

b � r2

m0

m2
b � 1:3� 1013 GeV;

in case of solution (1). Here we used, m0 ¼ rRr
2

jaj . Thus the
RH neutrino mass falls below the GUT scale for this
particular solution.

Let us now illustrate how the ansatz (4) can be obtained
in a model from a flavor symmetry. A simple flavor sym-
metry to be used is Oð3Þ under which three generations of
the 16-plet c transform as triplets. The Oð3Þ breaking is

introduced through a complex flavon field � transforming
as spin 2. We need to introduce three generations of vector-

like multiplets �V þ� �V transforming as ð16; 3Þ þ ð16; 3Þ
under SOð10Þ �Oð3Þ and a Uð1ÞX symmetry in order to
realize Eq. (4). The X charges of ðc ;�V;� �V; �;�10; �126Þ
are chosen, respectively, as ðx; y;�y; 1=2ðy� xÞ;�ðxþ
yÞ;�2yÞ with x � y. The general superpotential invariant
under SOð10Þ �Oð3Þ �Uð1ÞX can be written as

W ¼ M� �V�V þ ��V�V�126 þ ��Vc�10

þ 

MP

� �V�
2c þ 0

MP

Tr�2� �Vc þ � � � : (9)

The Oð3Þ and Uð1ÞX breaking originates in the above
superpotential only from the Planck scale effects through
the vacuum expectation value (vev) of the flavon field �.
The last two terms are the only terms that determine both

the 10 and 126 Yukawa couplings once the heavy vector-
like fields are integrated out. The dotted terms correspond
to terms suppressed by M2

P. Here, the mass M of the
vectorlike pair and the scale of the vev of � lie above the
GUT scale. The effective theory after integration of the
vectorlike field is represented by

Weff � �c�2c�126 þ �c�c�10; (10)

where

�ab � 

MMP

�
�2
ab þ

0


Tr�2ab

�

and a; b ¼ 1; 2; 3 refer to the Oð3Þ index. This effective
superpotential is also SOð10Þ �Oð3Þ �Uð1ÞX invariant.
The Yukawa coupling H is proportional to the h�i and is a
general complex symmetric matrix. The F is related to the
square ofH and satisfies the ansatz in Eq. (4). The coupling
to the 120 field can be generated by introducing a flavon
field 	 with the Uð1ÞX charge �2x and transforming as a
triplet ofOð3Þ. This leads to the Yukawa coupling matrixG
through the coupling

c
	

MP

c�120:

A detailed model along this line will require study of the
details of the vacuum structure of the potential involving�,
	, and possibly additional fields for generating the right
structure of the Yukawa couplings H, G.

III. NUMERICAL FITS: TYPE-II SEESAW

We now turn to the numerical discussion of the ansatz

(3) in which the contribution of 126 to fermion masses is
assumed to be Oð3Þ invariant. The Oð3Þ breaking arises
from the H and G contributions, which lead to departure
from degeneracy through the type-I seesaw. We shall not
specify how this breaking occurs [18]. Such an ansatz for
the type-II contribution was considered [5] in the specific
context of SOð10Þ. Detailed fits to fermion masses with
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recent data are, however, not presented in these works. We
assume H, G to have the most general form and choose to
work in a basis with a diagonalH. In this basis, Eq. (3) gets
changed to

F ¼ c0V; (11)

where V is a unitary symmetric matrix. In this basis, the
charged fermion mass matrices can be obtained from
Eq. (1) by replacing H with diagonal DH, and F with
c0V. The neutrino mass matrix, Eq. (2) can be written in
the same basis as

M� ¼ m0ðV � �MDV
�MT

DÞ: (12)

The parameter � controls the contribution from a type-I
seesaw, which induces splittings in neutrino masses.

We use these equations to fit all the fermion masses and
mixing using the previous procedure. Results correspond-
ing to the minimal case are displayed as solution (3) in
Table I. The best fit solution we obtained here corresponds
to 	2 ¼ 6:0, which is acceptable for 16 data points from a
statistical point of view and all the observables except mb

and ms are fitted with less than 1
 accuracy. The obtained
fit in the type-II case is, however, not as good as in the case
of a pure type-I seesaw combined with the ansatz (4). As
before, them0 sets the overall neutrino mass scale, which is
determined to be �0:36 eV, using the atmospheric scale

and fits shown in Table I. Numerical fits also lead to � �
2� 10�6 GeV�2. Since the scale of MD is set by the top
mass, the type-I contribution relative to the type-II is given
by �m2

t � 10�2, and the type-II contribution dominates as
assumed. Now the overall scale of the RH neutrino mass is
given by [see Eq. (1) and ansatz (3)]

M3 � 1

m0�
� 1:1� 1015 GeV;

which is close to the GUT scale, unlike the minimal models
with type-II dominance but hierarchical neutrinos [6,7].
The increase in M3 here is linked to the degeneracy of
neutrinos. The atmospheric neutrino mass scale in models
with type-II seesaw and hierarchical neutrinos is typically
given by

�m2
atm � v4

M2
3

;

while in the present case it arises from the combination of
type-I and type-II contributions and is scaled by

�m2
atm �m0

v2

M3

;

leading to a higher M3 compared to a purely type-II
dominated scenario.

TABLE I. Best fit solutions for fermion masses and mixing obtained assuming the type-I seesaw dominance [solutions (1) and (2)]
and type-II seesaw dominance [solution (3)]. Various observables and their pulls obtained at the minimum are shown (see text for
details). Notations and conventions used here are the same as in [14]. The boldfaced quantities are predictions of the respective
solutions.

Sol. 1 Sol. 1 Sol. 2 Sol. 2 Sol. 3 Sol. 3

No. Observables Fitted value Pull Fitted value Pull Fitted value Pull

1 md [MeV] 0.653 677 �0:917 861 0.207 819 �2:005 32 0.868 041 �0:395 023
2 ms [MeV] 17.5885 �0:386 821 21.6923 0.402 361 12.2829 �1:407 14
3 mb [GeV] 1.111 31 0.418 721 1.058 32 �0:046 348 1.256 34 1:691 41
4 mu [MeV] 0.462 718 0.084 789 6 0.450 825 0.005 499 32 0.450 489 0.003 261 1

5 mc [GeV] 0.210 603 0.013 684 9 0.211 727 0.069 565 4 0.210 393 0.003 245 03

6 mt [GeV] 63.6891 �0:832 404 67.6155 �0:658 038 102.325 0.883 371

7 me [MeV] 0.358 503 0.009 696 91 0.358 506 0.020 678 2 0.358 502 0.005 031 07

8 m� [MeV] 75.6719 0.007 345 14 75.6711 �0:008 306 4 75.6709 �0:011 180 9
9 m� [GeV] 1.292 19 �0:008 144 29 1.292 23 0.021 840 4 1.292 17 �0:024 457 6
10

�m2
sol

�m2
atm

0.030 351 4 0.050 109 0.030 323 7 0.037 787 7 0.030 253 8 0.006 594 21

11 m0 [eV] 0:31 � � � 0:17 � � � 0:36 � � �
12 sin�q12 0.224 205 �0:059 210 2 0.224 306 0.003 594 73 0.224 154 �0:091 312 5
13 sin�q23 0.035 130 8 0.023 704 0.035 042 6 �0:044 117 3 0.035 143 6 0.033 571

14 sin�q13 0.003 193 36 �0:013 286 7 0.003 158 71 �0:082 589 7 0.003 261 99 0.123 983

15 sin2�l12 0.319 801 �0:061 907 9 0.321 124 0.018 777 4 0.321 168 0.021 467 3

16 sin2�l23 0.481 942 0.313 909 0.436 492 �0:178 126 0.439 779 �0:142 55
17 sin2�l13 0:019 526 6 � � � 0:002 881 76 � � � 0:035 683 6 � � �
18 CKM [	] 67.7227 0.247 333 56.4935 �0:134 071 49.7146 �0:429 864
19 PMNS [	] 53:98 � � � �66:99 � � � �25:33 � � �
20 �1 [	] 146:55 � � � �59:31 � � � 137:71 � � �
21 �2 [	] �89:88 � � � 162:41 � � � �33:44 � � �

	2 2.038 4.684 6.0
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IV. SUMMARY

Obtaining a unified description of vastly different pat-
terns of quark and lepton spectra is a challenging task. This
becomes more so if neutrinos are quasidegenerate. We
have shown here that it is indeed possible to obtain such
a description starting from the fermionic mass structure,
Eq. (1) that can arise in a general SOð10Þ model. We
considered two distinct possibilities based on purely
type-I and the other based on the mixture of type-I and
type-II seesaw mechanisms. Both these possibilities can

lead to quasidegenerate spectra if they are supplemented,
respectively, with ansatz (4) and (3). We have shown
through the detailed numerical analysis that these ansatz
are capable of explaining the entire fermionic spectrum
and not just the quasidegenerate neutrinos. Moreover, the
origin of large leptonic mixing here is linked to the quasi-
degenerate structure determined by the matrix V, providing
yet another reason why quark and leptonic mixing angles
are so different in spite of underlying unified mass
structure.
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