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We show that to accommodate inflation in the entropic force scenario of Verlinde, it is necessary to

introduce a negative temperature on a holographic screen. This will introduce several puzzles such as

energy nonconservation. If one tries to modify the derivation of the Einstein equations to avoid a negative

temperature, we prove that it is impossible to find a proper new definition of temperature to derive the

Einstein equations.
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Verlinde recently proposed that gravity is actually a
thermodynamic phenomenon emerging from the holo-
graphic principle [1], based on an earlier observation of
Jacobson [2] (some other speculations on emergent gravity
can be found in [3]). One of the important applications of
the entropic force scenario is to cosmology [4], and, in
particular, to the dark energy problem [5] if the new
paradigm has anything new to say about gravity. For other
studies following Verlinde, we refer to [6,7] for an incom-
plete list.

One of the authors of the present paper and Wang
observed in [5] that in order to explain the current accel-
eration of the universe, it is necessary to introduce a global
holographic screen in addition to those studied by Verlinde.
One then naturally wonders whether this is also the case for
inflation. In this paper we show that it is impossible to
accommodate inflation with a single holographic screen for
inflation.

First, we present the derivation of the Einstein equations,
following Verlinde [1]. Choosing a local timelike Killing
vector �a and defining the generalized Newtonian potential
� ¼ 1=2 lnð��a�aÞ, the temperature on a surface S is

T ¼ @

2�
e�Na@a�; (1)

where Na is a unit vector normal to S as well as to �a.
Assuming the equipartition theorem, the total mass on the
holographic screen is

M ¼ 1

2

Z
TdN ¼ 1

4�G

Z
e�r� � dS: (2)

Before proceeding we pause to note that the physics prin-
ciple requires that the temperature defined in (1) must be
positive.

Utilizing the definition of Newtonian potential and ap-
plying the Stokes theorem, we arrive at

M ¼ 1

4�G

Z
�
Rabn

a�bdV; (3)

where � is the volume enclosed by S, and na is the unit
future vector normal to�. To derive the Einstein equations,
we have to assume that the mass measured against the
Killing vector �a is the one given by the so-called
Tolman-Komar mass, thus

M ¼ 1

4�G

Z
�
Rabn

a�bdV

¼ 2
Z
�

�
Tab � 1

2
gabT

�
na�bdV: (4)

Choosing an arbitrary Killing vector as well as an arbitrary
�, we deduce the Einstein equations Rab ¼ 8�GðTab �
1
2gabTÞ or Rab � 1

2gabR ¼ 8�GTab.

Now, let us examine some details of the above derivation
when it comes to inflation. For simplicity, let us consider
the case that inflation as well as quantum fluctuations
against the background of inflation can be described by
the form of an ideal fluid; the stress tensor is

Tab ¼ ð�þ pÞuaub þ pgab: (5)

The Tolman-Komar stress tensor reads

Tab � 1

2
gabT ¼ ð�þ pÞuaub þ 1

2
ð�� pÞgab: (6)

Since � is arbitrary, one particular choice is the one
comoving with the fluid in which u � n ¼ �1, and one
particular choice of the local Killing vector also satisfies
u � � ¼ �1. We have in this case 2ðTab � 1

2 gabTÞna�b ¼
�þ 3p. We know that for the universe to be inflating this
quantity is negative; namely, the Tolman-Komar mass is
negative.
Thus, we are facing the problem that when the holo-

graphic screen is comoving with the inflation fluid, the
energy is negative; thus either the temperature is negative
or the number of bits is negative, and the latter is unattain-
able so we have to assume the temperature is negative. A
negative temperature is not unfamiliar; for instance, some
50 years ago physicists had to consider this possibility in
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nuclear physics (we thank Wang for pointing this out to
us). There, one simply takes a system of finite energy
levels, then the Boltzmann partition function is well de-
fined for a negative temperature. However, when we in-
troduce such a system into the holographic screen, we
encounter the following problems:

(i) We need to consider the holographic screen to con-
sist of two systems, one with a negative temperature
and another with a positive temperature, since when
inflation ends radiation and matter starts to
dominate.

(ii) A test particle outside of the holographic screen must
experience a repulsive force; according to the for-

mula F ¼ T �S
�x , entropy increases when the test

particle approaches the screen. Even in a system
with negative temperature, entropy increases with
an increase of the number of bits. Or, put another
way, after the test particle crosses into the screen, we
need more bits to describe the system. However,
according to the equipartition theorem, the energy
of this test particle on the screen is m ¼ 1

2Tn, where

n is the number of bits describing the test particle.
Thus, m is negative and energy is not conserved.

(iii) There is also a contradiction between the increase of
entropy when the test particle crosses into the screen
and the usual wisdom that after more matter is
dumped into a horizon of an accelerating universe,
the area of the horizon actually decreases.

All of the above puzzles can be resolved at once if, rather
than choosing an arbitrary holographic screen to describe
inflation, we instead use a global screen as in [5] to
describe acceleration of the universe. However, when it
comes to inflation we need to account for the local fluctua-
tions of the scalar fields, thus a local screen appears to be
necessary. It remains to be seen whether one can use a
global screen to describe background inflation and local
screens to describe local fluctuations.

Another way to circumvent the above problem of nega-
tive temperature is to modify the derivation of the Einstein
equations. Since a negative temperature is caused by a
negative Tolman-Komar mass, we may try to replace the
Tolman-Komar mass by another stress tensor

aðTab � bgabTÞ; (7)

so as long as ð1� bÞ�þ 3bp � 0, we will not have the
negative temperature problem. For instance, for the ex-
tremal case p ¼ ��, we need 4b � 1. One choice is b ¼
1
4 , and this choice requires the curvature part in (4) to be

replaced by Rab � 1
4gabR. Interestingly, we will not obtain

the Einstein equations, but rather new equations containing
the traceless part of the Einstein equations.

No matter how we modify the stress tensor, we shall start
with the equipartition theorem and use a modified defini-
tion of temperature as well as the proposition that the
number of bits proportional to the area of the screen. Our

aim is to derive an integral over the volume � enclosed by
screen S, and the integrand must contain a term propor-
tional to the scalar curvature (as required by the modifica-
tion of the stress tensor). In the following, we shall prove
that the scalar curvature is unattainable, thus we have a
proof of a no-go theorem.
To be more general, we use a rank-two tensor dSab to

denote the area element on the surface S, and the tempera-
ture vector in (1) is replaced by a tensor tab. We consider a
generalization of equipartition relation on the holographic
screen as

M ¼ 1

2

Z
S
TdN ¼ c

Z
S
tabdSab; (8)

where tab is antisymmetrized with respect to ab and its
contraction with dSab represents the temperature on the
screen times a modification of the number of bits and an
area element. Components tab are functions of only the
local Killing vector � and its higher-order covariant de-
rivatives up to order n. Actually, the formula in (2) can be
recast into the form (8), if one notices that

Z
S
e�r� � dS ¼

Z
S

Naffiffiffiffiffiffiffiffiffiffiffiffiffiffi��c�c

p �bra�bdS

¼ �
Z
S

Naffiffiffiffiffiffiffiffiffiffiffiffiffiffi��c�c

p �brb�adS;

¼ �
Z
S
N½a�̂b�rb�adS; (9)

where �̂b � �bffiffiffiffiffiffiffiffiffiffi
��c�c

p is a timelike vector with unit norm and

½a; b� denotes the antisymmetrization between a; b, due to
the fact that rb�a ¼ r½b�a�. With the same assumption as

in [1] that �̂b is also normal to S, thenN½a�̂b� constitutes the
binormal of the space like screen S. Combined with the

surface area ds; N½a�̂b�dS is just dual to dSab used in (8)
and tab is dual to ra�b.
In the following, we will prove that when the volume of

a region surrounded by S goes to zero, the integral (8)
cannot be expressed as a volume integral

Z
�
d�aðc1Ra

b þ c2�
a
bRÞ�b (10)

except when tab contains a term proportional to ra�b, and
c2 ¼ 0 in this case.
To begin with, we elaborate more on the property of

local Killing vector �. The local Killing vector at point p is
defined by

ðra�b þrb�aÞjp ¼ 0: (11)

It should be noted that this equation does not fix the local
Killing vector; in our proof we require further that the (nþ
1)th and lower-order covariant derivatives of the local
Killing vector possess the same property as a Killing
vector. Namely, the (nþ 1)th and lower-order covariant
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derivatives of the local Killing vector can be expressed by a
linear combination of � and r� through rarb�c ¼
Rcbad�

d. Without this requirement, the high-order cova-
riant derivatives of the local Killing vector can take arbi-
trary value, and our proof becomes easier. This
requirement can be fulfilled because one can always
choose a local initial frame at point p such that gabjp ¼
�ab and �a

bcjp ¼ 0. Then at a nearby point p0, the Killing

equation can be written as

@a�b þ @b�a � 2

3
ðRc

abd þ Rc
badÞjp�xd�c þ � � � ¼ 0;

(12)

where we have used the covariant expansion of the con-
nection in the neighborhood of p and �xd ¼ xdjp0 � xdjp.
The solution of the above equation in general exists. If we
truncate the infinite expansion up to the power ð�xÞn, then
the corresponding solution of the truncated equation is the
local Killing vector we are after.

Utilizing the Stokes theorem, the right-hand side of Eq.
(8) is transformed into

Z
S
tabdSab ¼ 2

Z
�
rbt

abd�a; (13)

where � is a three dimensional region containing point p
and enclosed by the screen. The integrand can be expressed
as

rbt
ab ¼ @tab

@�c

rb�c þ @tab

@rd�c

rbrd�c þ � � �

þ @tab

@ðrdn � � � rd1�cÞ rbrdn � � � rd1�c: (14)

As the volume of � goes to zero, the integrand approaches
its value at point p. According to our setup, the high-order
covariant derivatives of � at point p can be replaced by a
linear combination of �jp and r�jp. We notice that

rbrdn � � � rd1�cjp ¼ ðrbrdn � � � rd3Rcd1d2aÞjp�a þ � � � ;
(15)

where there is a term containing the (nþ 1)th-order metric
derivative which cannot be canceled by other terms on the
right-hand side of Eq. (14), since these terms are composed
by g; @g � � �@ng. For n> 1, this term is linearly indepen-
dent of the Ricci tensor and the Ricci scalar containing
only the second-order metric derivative. Therefore, to gen-
erate terms containing no @ng, n > 2, the generalized
temperature tab can only depend on � and r�. Now the
remaining terms are

rbt
abjp ¼ @tab

@�c

rb�c þ @tab

@rd�c

Rcdbe�
ejp; (16)

where we have used the relation rarb�c ¼ Rcbad�
d. To

understand the above expression, we choose a frame where
the local Killing vector can be written as �a@a ¼ @t with t
identified as the time coordinate in this new frame. Then
rd�c are functions of @g. We note that the first term on the
right-hand side of Eq. (16) contains only @g. For Eq. (16)
to be identified with ðc1Ra

b þ c2�
a
bRÞ�b, this term should

vanish; in other words, @tab=@� ¼ 0, since the relevant
terms should be proportional to the Riemann tensor. The
last term is proportional to the Riemann tensor with its
coefficients being functions of g and @g. By expanding
(10) to a polynomial composed of g; @g and @2g, it is clear
that each term in this expansion contains only the second
metric derivative. Thus @tab=@ðrd�cÞ should be indepen-
dent of @g or r�, since in (16) @tab=@ðrd�cÞ is multiplied
by the Riemann tensor already containing the second de-
rivatives of the metric. We find that @tab=@ðrd�cÞ can only
be a metric function. Inheriting rd�c’s antisymmetric
nature about indices d; c, @tab=@ðrd�cÞ should be antisym-
metrical with respect to a; b and d; c. Taking into account
all of these, it is a unique possibility that @tab=@ðrd�cÞ /
gadgbc � gacgbd leads to the conclusion that tab / ra�b.
This implies that only the Ricci tensor appears in (13), and
c2 always vanishes in (10); this concludes our proof of the
no-go theorem.
In conclusion, we have shown that in the original deri-

vation of the Einstein equations by Verlinde, a negative
temperature must be introduced for an accelerated expand-
ing region, thus introducing vexing physical problems. One
may try to modify Verlinde’s derivation by modifying the
definition of temperature, and we have shown that no
modification is appropriate to generate the correct
Einstein equations.
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supported by the NSFC Grant No. 10535060/A050207, a
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Note added.—This no-go theorem is valid for inflation

models utilizing a fluid with negative Tolman-Komar
mass; it is not valid for fðRÞ inflation. In the latter case,
inflation is driven by higher-order derivative terms; these
terms may be introduced by using a modified temperature.
We thank Qing Guo Huang for a discussion on this point.
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