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Using gauge/gravity duality, we study the creation and evolution of boost-invariant anisotropic,

strongly-coupled N ¼ 4 supersymmetric Yang-Mills plasma. In the dual gravitational description, this

corresponds to horizon formation in a geometry driven to be anisotropic by a time-dependent change in

boundary conditions.
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I. INTRODUCTION

The study of nonequilibrium phenomena in QCD and
other non-Abelian quantum field theories is a topic of
much interest, with applications to heavy-ion collisions,
early universe cosmology, and other areas. Much has been
learned about near-equilibrium dynamics at weak coupling
where a quasiparticle picture is valid [1–5], and there has
also been considerable progress understanding certain
theories at very strong coupling [6–9], thanks to the devel-
opment of gauge/gravity duality [10–12]. But very little
progress has been made in regimes where a theory is both
strongly coupled and far from equilibrium.

Heavy-ion collisions at the Relativistic Heavy Ion
Collider (RHIC) are believed to produce a deconfined,
strongly-coupled quark-gluon plasma (QGP) [13,14]. In
the initial stages of the collision, during which the QGP
is produced, the system is surely far from equilibrium and
cannot be described by hydrodynamics. However, model-
ing based on near-ideal hydrodynamics strongly suggests
that a hydrodynamic treatment becomes applicable rather
quickly, perhaps on times & 1 fm=c after the collision
event [15]. Understanding the dynamics responsible for
such a rapid approach to local equilibrium from a far-
from-equilibrium initial state is a challenge.

Colliding nuclei at sufficiently high energy is the only
experimentally accessible approach for creating quark-
gluon plasma. However, analyzing the dynamics—from
the creation of the initial highly nonequilibrium state,
through partial equilibration, hydrodynamic evolution, ha-
dronization, and eventual freeze out—via a first principles
calculation in QCD is not currently possible. Nevertheless,
aspects of this process involving strongly-coupled dynam-
ics can be studied in a controlled setting in a class of
theories which describe non-Abelian plasmas similar to
the QGP, and which possess dual gravitational descrip-
tions. The best known example isN ¼ 4 supersymmetric
Yang-Mills (SYM) theory [10]. In this theory, one can
study the collision of shock waves using gauge/gravity

duality [16–19]. The shock waves have a very small thick-
ness along the collision axis and can be localized in the
transverse directions [20]. Therefore, qualitatively at least,
they resemble the Lorentz-contracted relativistic nuclei in
a heavy-ion collision.
In the dual gravitational description, collisions of shock

waves in SYM turn into a problem of colliding gravita-
tional shock waves in five dimensions. The resulting 5D
numerical relativity problem is still quite challenging, but
may be feasible using techniques which are adapted from
current work in 4D numerical relativity. One purpose of
this paper is to begin exploring some of the needed adap-
tations, albeit in a setting which is simpler than colliding
shock waves.
The immediate goal of this paper is to study how quickly

a far-from-equilibrium strongly-coupled non-Abelian
plasma relaxes to a regime in which a hydrodynamic
description is accurate. The answer to this question will
necessarily have some sensitivity to how the initial state is
created. A conceptually simple way to prepare nonequilib-
rium states is to start in the ground state, and then to turn on
time-dependent background fields coupled to operators of
interest. After the background fields are turned off, one can
then watch the subsequent evolution of the system. Since a
hydrodynamic description requires that the stress tensor (in
the local fluid rest frame) be nearly isotropic [3], particu-
larly interesting initial states are those in which the initial
stress tensor is driven to be highly anisotropic. A natural
way to do this is to make the spatial geometry in which the
field theory lives be time dependent and anisotropic
[21,22].
At weak coupling, the addition of energy to the ground

state by a time-dependent gravitational field can be under-
stood in terms of particle production. A time-dependent
spacetime geometry will create quanta [23], and if the time
dependence of the deformation in the geometry is aniso-
tropic, then the momentum distribution of created quanta
will be anisotropic as well. After the geometry ceases to
evolve, quanta will continue to collide and interact and
eventually (on a time scale which at weak coupling di-
verges like 1=�2, with � the ‘t Hooft coupling) the system

*pchesler@u.washington.edu
†yaffe@phys.washington.edu

PHYSICAL REVIEW D 82, 026006 (2010)

1550-7998=2010=82(2)=026006(12) 026006-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.026006


may approach a state in approximate local thermal
equilibrium.

This quasiparticle picture breaks down as the strength of
the coupling increases, and one must understand the pro-
cess of plasma production and relaxation using a different
physical description. For large Nc SYM, gauge/gravity
duality provides an alternative picture involving black
hole formation in five dimensions. As we discuss in
Sec. II, the gravitational dual will involve a 5D curved
spacetime with a 4D boundary which has a time-dependent
geometry. The boundary geometry corresponds to the
spacetime geometry of the SYM field theory. A time-
dependent deformation in the 4D boundary geometry will
produce gravitational radiation which propagates into the
fifth dimension. This radiation will necessarily produce a
black hole [21]. It is natural that the gravitational descrip-
tion of plasma formation and relaxation involves horizon
formation, since at late times the system will be in a near-
equilibrium state with nonzero entropy.

The presence of a black hole acts as an absorber of
gravitational radiation and therefore, after the production
of gravitational radiation on the boundary ceases, the 5D
geometry will relax onto a smooth and slowly varying
form. This relaxation is dual to the relaxation of nonhy-
drodynamic degrees of freedom in the quantum field theory
[9]. Therefore, by studying the evolution of the 5D black
hole geometry, one can gain insight into the creation and
relaxation SYM plasma.

For simplicity, in this paper we limit attention to 4D
geometries which have two-dimensional spatial homoge-
neity and Oð2Þ rotation invariance in the x? � fx1; x2g
directions, and which are invariant under boosts in the
xk � x3 direction. As we discuss in Sec. II, this reduces

the gravitational dynamics to a system of two-dimensional
partial differential equations, which we solve numerically.
Besides making the gravitational calculation simpler, these
assumptions serve an additional purpose. With these sym-
metries, the late-time asymptotics of the 5D geometry (and
the corresponding asymptotics of the stress tensor) are
known analytically [24–26]. We will therefore be able to
compare directly our numerical results, valid at all times, to
the known late-time asymptotics.

Boost invariance implies that the natural coordinates to
use are proper time � and rapidity y (with x0 � � coshy and
xk � � sinhy). In these coordinates, the metric of 4D

Minkowski space (in the interior of the � ¼ 0 cone) is
ds2 ¼ �d�2 þ dx2? þ �2dy2. A deformation of the ge-

ometry, respecting the above symmetry constraints, in-
duced by a time-dependent shear may be written in the
form

ds2 ¼ �d�2 þ e�ð�Þdx2? þ �2e�2�ð�Þdy2: (1)

The function �ð�Þ characterizes the time-dependent shear;
neglecting 4D gravity, �ð�Þ is a function one is free to
choose arbitrarily. For this study, we chose

�ð�Þ ¼ c�ð1� ð�� �0Þ2=�2Þ½1� ð�� �0Þ2=�2�6
� e�1=½1�ð���0Þ2=�2�; (2)

with � the unit step function. [Inclusion of the ½1� ð��
�0Þ2=�2�6 factor makes the first few derivatives of �ð�Þ
better behaved as �� �0 ! ��.] The function �ð�Þ has
compact support and is infinitely differentiable; �ð�Þ and
all its derivatives vanish at the endpoints of the interval
ð�i; �fÞ, with �i � �0 �� and �f � �0 þ �. We choose

�0 � 5
4 � so the geometry is flat at � ¼ 0.1 We choose to

measure all dimensionful quantities in units where � ¼ 1
(so �i ¼ 1=4 and �f ¼ 9=4).

Figure 1 shows a spacetime diagram schematically de-
picting several stages in the evolution of the SYM state.
Hyperbola inside the forward light cone are constant �
surfaces. Prior to � ¼ �i, the system is in the ground state.
The region of spacetime where the geometry is deformed
from flat space is shown as the red region labeled I in
Fig. 1. At coordinate time t ¼ �i the geometry of space-
time begins to deform in the vicinity of xk ¼ 0. As time

progresses, the deformation splits into two localized re-
gions centered about xk � �t, which subsequently sepa-

rate and move in the �xk directions at the speeds

asymptotically approaching the speed of light. After the
‘‘pulse’’ of spacetime deformation passes, the system will
be left in an excited, anisotropic, nonequilibrium state.
That is, the deformation in the geometry will have done
work on the field theory state. This region, labeled II, is
shown in yellow in Fig. 1. It is in this region that we can
study the relaxation of a far-from-equilibrium nonequilib-
rium state. After some amount of proper time ��, the
system will have relaxed to a point where a hydrodynamic
description of the continuing evolution is accurate. This
final hydrodynamic regime is shown schematically in
green, and labeled III, in Fig. 1. As the late-time hydro-
dynamic solution to boost-invariant flow is known analyti-
cally, we choose to define �� precisely as the time beyond
which the stress tensor coincides with the hydrodynamic
approximation to within 10%.
Our task then is to find �� and, in particular, see how it

correlates with quantities such as the effective temperature
T� at time ��. In the c ! 1 limit, which corresponds to a
diverging size of the deformation in the 4D geometry, it is
inevitable that �� approaches �f. This is natural in confor-

mal theories, since relaxation times of nonhydrodynamic
degrees of freedom are set by the local energy density, and
this diverges when c ! 1. In other words, in the limit

1Choosing �0 � � is convenient for numerics as our coordi-
nate system becomes singular on the � ¼ 0 light cone. The
particular choice �0 ¼ 5

4 � was made so that our numerical
results (which begin at � ¼ 0) contain a small interval of
unmodified geometry before the deformation turns on. For an
interesting discussion of nonequilibrium boost-invariant states
near � ¼ 0 see Ref. [27].
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where 1=T� 	 �, the system responds adiabatically to the
deformation in the geometry and nonhydrodynamic de-
grees of freedom can remain in equilibrium. A hydrody-
namic description (without driving terms) will be accurate
the moment the geometry stops changing. Hence, in this
limit one learns nothing about the dynamics associated
with the relaxation of nonhydrodynamic modes.

More interesting is the case where the effective tempera-
ture satisfies 1=T� * �. This is the regime we will study.
Within this regime, the system can be significantly out-of-
equilibrium after the 4D geometry becomes flat. When this
is the case, we find that the entire process of plasma
creation and relaxation to approximate local equilibrium
(i.e., to a point where subsequent evolution is accurately
described by viscous hydrodynamics) occurs over a time
which varies between 1 and 2 times 1=T�.

This result is consistent with the findings in our earlier
work [21] where we studied isotropization in a homoge-
neous strongly-coupled N ¼ 4 SYM plasma. In that
work, all spatial gradients vanished. There was no excita-
tion whatsoever of hydrodynamic degrees of freedom, and
the system relaxed exponentially toward equilibrium. In
contrast, the dynamics of the boost-invariant plasma in the
present work involves both hydrodynamic and nonhydro-
dynamic degrees of freedom. The results we present dis-
play a rather clear separation between far-from-
equilibrium response, which cannot be described by hydro-
dynamics, followed by later ‘‘near-local-equilibrium’’ dy-
namics which is accurately described by viscous
hydrodynamics. A noteworthy finding is that the domain
of utility of hydrodynamics is not limited by when higher
order terms in the hydrodynamic expansion become com-

parable to the lowest order viscous terms, rather it is
determined by the relative importance of nonhydrody-
namic degrees of freedom.

II. GRAVITATIONAL DESCRIPTION

Gauge/gravity duality [10] provides a gravitational de-
scription of large Nc SYM in which the 5D dual geometry
is governed by Einstein’s equations with a cosmological
constant. Einstein’s equations imply that the boundary
metric gB��ðxÞ, which characterizes the geometry of the

spacetime boundary, is dynamically unconstrained. The
specification of gB��ðxÞ serves as a boundary condition for

the 5D Einstein equations. This reflects the fact that 4D
gravitational dynamics is neglected; the dual field theory
residing on the boundary responds to the boundary geome-
try but does not backreact on the 4D boundary geometry.
Diffeomorphism and spatial 3D translation invariance,

together with our assumedOð2Þ rotation invariance, allows
one to chose a 5D bulk metric of the form

ds2 ¼ �Ad�2 þ �2½eBdx2? þ e�2Bdy2� þ 2drd�; (3)

where A, B, and � are all functions of the bulk radial
coordinate r and time � only. The coordinates � and r are
generalized infalling Eddington-Finkelstein coordinates.
Infalling radial null geodesics have constant values of �
(as well as x? and y). Outgoing radial null geodesics
satisfy dr=d� ¼ 1

2A. The geometry in the bulk at � > 0

corresponds to the causal future of � ¼ 0 on the boundary.
The form of the metric (3) is invariant under the residual
diffeomorphism r ! rþ fð�Þ, where fð�Þ is an arbitrary
function.
With a metric of the form (3), Einstein’s equations may

be written very compactly as

0 ¼ �ð _�Þ0 þ 2�0 _�� 2�2; (4a)

0 ¼ �ð _BÞ0 þ 3
2ð�0 _Bþ B0 _�Þ; (4b)

0 ¼ A00 þ 3B0 _B� 12�0 _�=�2 þ 4; (4c)

0 ¼ €�þ 1
2ð _B2�� A0 _�Þ; (4d)

0 ¼ �00 þ 1
2B

02�; (4e)

where, for any function hðr; �Þ,
h0 � @rh; _h � @�hþ 1

2A@rh: (5)

The derivative h0 is a directional derivative of h along

infalling radial null geodesics, while the derivative _h is
the directional derivative of h along outgoing null radial
geodesics. Equations (4d) and (4e) are constraint equa-
tions; the radial derivative of Eq. (4d) and the time deriva-
tive of Eq. (4e) are implied by Eqs. (4a)–(4c).
The above set of differential equations must be solved

subject to boundary conditions imposed at r ¼ 1. The
requisite condition is simply that the boundary metric
gB��ðxÞ coincide with our choice (1) of the 4D geometry.

FIG. 1 (color online). A spacetime diagram depicting several
stages of the evolution of the field theory state in response to the
changing spatial geometry. At proper time � ¼ �i, the 4D space-
time geometry starts to deform. The region of spacetime where
the geometry undergoes time-dependent deformation is shown as
the red region, labeled I. After proper time � ¼ �f, the defor-

mation in 4D spacetime geometry turns off and the field theory
state is out of equilibrium. From proper time �f to ��, shown as

the yellow region, labeled II, the system is significantly aniso-
tropic and not yet close to local equilibrium. After time ��,
shown in green and labeled III, the system is close to local
equilibrium and the evolution of the stress tensor is well de-
scribed by hydrodynamics.
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In particular, we must have

lim
r!1�ðr; �Þ=r � �1=3; (6a)

lim
r!1Bðr; �Þ � �2

3 ln�þ �ð�Þ: (6b)

One may fix the residual diffeomorphism invariance by
also demanding that

lim
r!1½Aðr; �Þ � r2�=r ¼ 0: (7)

These boundary conditions, plus initial data satisfying the
constraint (4e) on some � ¼ �i slice, uniquely specify the
subsequent evolution of the geometry.

Near the boundary one may solve Einstein’s equations
with a power series expansion in r. Specifically, A, B, and
� have asymptotic expansions of the form

Aðr; �Þ ¼ X
n¼0

½anð�Þ þ �nð�Þ logr�r2�n; (8a)

Bðr; �Þ ¼ X
n¼0

½bnð�Þ þ �nð�Þ logr�r�n; (8b)

�ðr; �Þ ¼ X
n¼0

½snð�Þ þ �nð�Þ logr�r1�n: (8c)

The boundary conditions (6) and (7) imply that b0ð�Þ �
� 2

3 ln�þ �ð�Þ, s0ð�Þ � �1=3, a0ð�Þ � 1, a1ð�Þ � 0, and

that the coefficients of the corresponding logarithmic terms
vanish. Substituting the above expansions into Einstein’s

equations and solving the resulting equations order by
order in r, one finds that there is one undetermined coef-
ficient, b4ð�Þ. All other coefficients are determined by the
boundary geometry, Einstein’s equations, and b4ð�Þ.2
Given a solution to Einstein’s equations, the SYM stress

tensor is determined by the near-boundary behavior of the
5D metric [28]. If SG denotes the gravitational action, then
the SYM stress tensor is given by

T��ðxÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gBðxÞp 	SG
	gB��ðxÞ : (9)

By substituting the above series expansions into the varia-
tion of the on-shell gravitational action, one may compute
the expectation value of the stress tensor in terms of the
expansion coefficients. This procedure has been carried out
in Ref. [28], so we simply quote the results. In terms of the
expansion coefficients, the SYM stress tensor reads

T�
� ¼ N2

c

2
2
diagð�E;P?;P?;P jjÞ; (10)

where

E ¼ �3
4a4 þ ~E; (11a)

P? ¼ �1
4a4 þ b4 þ ~P?; (11b)

P jj ¼ �1
4a4 � 2b4 þ ~P jj; (11c)

and

~E � � 5
288�1�

�3 þ 5
1152ð21�2

1 þ 4�2Þ��2 � 1
96ð3�3

1 � 8�1�2 � �3Þ��1 þ 1
256ð3�4

1 þ 14�2
2 � 4�1�3Þ; (12a)

~P? � �1
6�

�4 þ 227
288�1�

�3 � 1
3456ð2397�2

1 þ 1444�2Þ��2 þ 1
576ð57�3

1 þ 488�1�2 þ 70�3Þ��1

þ 1
768ð21�4

1 � 468�2
1�2 þ 10�2

2 þ 4�1�3 þ 64�4Þ; (12b)

~P jj � 1
3�

�4 � 449
288�1�

�3 þ 1
3456ð5379�2

1 þ 2828�2Þ��2 � 1
288ð120�3

1 þ 458�1�2 þ 73�3Þ��1

þ 1
768ð21�4

1 þ 936�2
1�2 þ 10�2

2 þ 4�1�3 � 128�4Þ; (12c)

with �n � dn�=d�n.

III. NUMERICS

One may solve the Einstein equations (4a)–(4c) for the

time derivatives _�, _B, and A00. Define

�ðr; �Þ �
Z 1

r
dw½�ðw; �Þ3 � h1ðw; �Þ� �H1ðr; �Þ; (13a)

�ðr; �Þ �
Z 1

r
dw½2�ðw; �ÞB0ðw; �Þ�ðw; �Þ�3=2

� h2ðw; �Þ� �H2ðr; �Þ; (13b)

where Hn is an indefinite radial integral of hn,

hn ¼ H0
n: (14)

Then Eqs. (4a)–(4c) are solved by

_� ¼ �2���2; (15a)

_B ¼ �3
2���3=2; (15b)

A00 ¼ �4� 24��0��4 þ 9
2�B0��3=2: (15c)

The functions hnðr; �Þ are not constrained by Einstein’s
equations—their presence inside the integrands of Eq. (13)
are compensated by the subtraction of their integrals
Hnðr; �Þ. However, since we have chosen the upper limit
of integration in Eq. (13) to be r ¼ 1, the functions
hnðr; �Þ must be suitably chosen so that the integrals (13)
are convergent. The simplest choice to accomplish this is to
set h1ðr; �Þ equal to the asymptotic expansion of �ðr; �Þ3

2The coefficient a4 is determined by a first order ordinary
differential equation, which can be obtained from the condition
that the SYM stress tensor be covariantly conserved. All other
coefficients are determined algebraically from b0ð�Þ, b4ð�Þ,
a4ð�Þ, and their derivatives.
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up to order 1=rk, for some k > 1, and to set h2ðr; �Þ equal to
the asymptotic expansion of 2�ðr; �ÞB0ðr; �Þ=�ðr; �Þ3=2 up
to order 1=rk. In our numerical solutions reported below,
we use k � 4. This choice makes the large r contribution to
the integrals in Eq. (13) quite small and consequently
reduces cutoff dependence. As the coefficients of the series
expansions (8) only depend on b0ð�Þ and b4ð�Þ and their �
derivatives, this choice determines hnðr; �Þ in terms of one
unknown function b4ð�Þ.

With the subtraction functions hn specified by the afore-
mentioned asymptotic expansions, integrating Eq. (14)
fixes the compensating integrals Hn up to an integration
constant which is an arbitrary function of �. Integrating
Eq. (15c) for Aðr; �Þ introduces two further (� dependent)
constants of integration. The most direct route for fixing
these constants of integration is to match the large r
behavior of the expressions (15a) and (15b) and the inte-
grated version of Eq. (15c) to the corresponding expres-
sions obtained from the series expansions (8). This fixes all
integration constants in terms of b0 and b4.

Our algorithm for solving the initial value problem with
time-dependent boundary conditions is as follows. At time
�i the geometry is AdS5 with the metric

ds2 ¼ r2
�
�d�2 þ dx2? þ

�
�þ 1

r

�
2
dy2

�
þ 2drd�: (16)

Therefore, at the initial time �i we have

Bðr; �iÞ ¼ � 2

3
ln

�
�i þ 1

r

�
; (17a)

�ðr; �iÞ ¼ r

�
�i þ 1

r

�
1=3

; (17b)

Aðr; �iÞ ¼ r2: (17c)

With Aðr; �iÞ, Bðr; �iÞ, and �ðr; �iÞ known, one can then
compute the time derivatives @�Bðr; �iÞ and @��ðr; �iÞ
from Eqs. (15b) and (15a), and step forward in time,

Bðr; �i þ ��Þ 
 Bðr; �iÞ þ @�Bðr; �iÞ��; (18)

�ðr; �i þ ��Þ 
 �ðr; �iÞ þ @��ðr; �iÞ��: (19)

With Bðr; �i þ ��Þ and�ðr; �i þ ��Þ known, one can then
integrate Eq. (15c) to determine Aðr; �i þ��Þ. With the
complete geometry on the time slice � ¼ �i þ �� deter-
mined, one may then repeat the entire process and take
another step forward in time.3

An important practical matter is fixing the computation
domain in r—how far into the bulk does one want to

compute the geometry? If a horizon forms, then one may
excise the geometry inside the horizon as this region is
causally disconnected from the geometry outside the hori-
zon. Furthermore, one must excise the geometry to avoid
singularities behind horizons [29]. To perform the excision,
one first identifies the location of an apparent horizon (an
outermost marginally trapped surface) which, if it exists,
must lie inside an event horizon [30]. We have chosen to
make the incision slightly inside the location of the appar-
ent horizon. For the metric (3), the location rhð�Þ of the
apparent horizon is given by the outermost point where
_�ðrhð�Þ; �Þ ¼ 0 or, from Eq. (15a), �ðrhð�Þ; �Þ ¼ 0.

IV. RESULTS AND DISCUSSION

We first discuss our results from the 5D gravitational
perspective and present data for c ¼ 1. Results for other
values of c are presented below, but the qualitative features
of the results are independent of the value of c. Figure 2
shows a congruence of outgoing radial null geodesics for
c ¼ 1. The geodesics are obtained by integrating dr=d� ¼
1
2Aðr; �Þ. The colored surface in the plot displays the value

of A=r2. Excised from the plot is a region of the geometry
behind the apparent horizon, whose location is shown by
the magenta dotted line.
At times � < �i ¼ 1=4, the boundary geometry is static

and A=r2 ¼ 1. The outgoing geodesic congruence at early
times therefore satisfies

�þ 2=r ¼ const; (20)

and hence appears as parallel straight lines on the left side

FIG. 2 (color online). The congruence of outgoing radial null
geodesics. The surface coloring displays A=r2. Before time �i ¼
1=4 this quantity equals one. The excised region lies inside the
apparent horizon, which is shown by the dashed magenta line.
The geodesic shown as a solid blue line is the event horizon; it
separates geodesics which escape to the boundary from those
which cannot escape.

3Because we are working with a discretized version of
Einstein’s equations, the discretized version of the constraint
equation (4a) is not automatically implied by the discretized
version of the other Einstein equations. To minimize the amount
of accumulated error, we also monitor the accuracy of the
constraint equation (4a), and make tiny adjustments to � to
prevent growing violation of the constraint.
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of Fig. 2. These are just radial geodesics in AdS5, which is
the geometry dual to the initial zero temperature ground
state. After time �i the boundary geometry starts to change,
A=r2 deviates from unity, and the congruence departs from
the zero temperature form (20).

Perhaps the most dramatic feature in Fig. 2 is the for-
mation of a bifurcation in the congruence of geodesics. As
is evident from Fig. 2, at late times some geodesics escape
up to the boundary and some plunge deep into the bulk.
Separating escaping from plunging geodesics is precisely
one geodesic that does neither. This geodesic, shown as the
solid blue curve in the figure, defines the location of a null
surface beyond which all events are causally disconnected
from observers on the boundary. This surface is the event
horizon of the geometry.

After the time �f ¼ 2:25, the boundary geometry be-

comes flat and unchanging, no additional gravitational
radiation is produced, and the bulk geometry approaches
a slowly evolving form. The rapid relaxation of high
frequency modes can clearly be seen in the behavior of
A=r2 shown in Fig. 2—all of the high frequency structure
in the plot appears only during the time interval where the
boundary geometry is changing and creating gravitational
radiation. Physically, the rapid relaxation of high fre-
quency modes occurs because the horizon acts as an ab-
sorber of gravitational radiation and low frequency modes
simply take more time to fall into the horizon than high
frequency modes. Therefore, as time progresses the ge-
ometry relaxes onto a smooth universal form whose tem-
poral variations become slower and slower as � ! 1.

One can systematically construct late-time asymptotic
expansions of boost-invariant solutions to Einstein’s equa-
tions [7]. The expansion, which is a power series expansion
in gradients, is dual to the hydrodynamic expansion in the
field theory. This is natural, as the late-time evolution of the
field theory state in conformal N ¼ 4 SYM must be
described by hydrodynamics. In the gravitational setting,
the metric is expanded in terms of 4D spacetime gradients
of slowly varying fields. For the case of boost-invariant
flow, each spacetime derivative introduces a factor of

1=ð��Þ2=3 into the solution, where � is an energy scale
which characterizes the initial energy density [24]. The
numerical coefficients of the expansion are related to
transport coefficients in the dual gauge theory, and are
independent of the initial conditions used to create the
black hole geometry. Therefore, at asymptotically late
times all sensitivity to the details of the initial conditions
used to created the black hole geometry is isolated within
the energy scale �, up to exponentially decreasing correc-
tions to the late-time behavior.

At asymptotically late times, the boost-invariant gra-
dient expansion of Ref. [24] yields a metric

ds2 ¼ r2
�
�
�
1� r4h

r4

�
d�2þdx2?þ�2dy2

�
þ 2drd�; (21)

where rhð�Þ 
 
�=ð��Þ1=3 is the approximate location of
the event and apparent horizons, whose positions asymp-
totically coincide at late times. The asymptotic metric (21)
has a Hawking temperature

THawking ¼ �=ð��Þ1=3; (22)

which is proportional to the horizon radius rhð�Þ. As time
progresses, the horizon slowly falls deeper into the bulk,

and the temperature of the black hole decreases as ��1=3.
The falling of the horizon into the bulk, as an inverse power
of �, is clearly visible in the numerical data presented in
Fig. 2.
Figure 3 shows a plot of the area (per unit rapidity) of the

event and apparent horizons, again for c ¼ 1, as a function
of �. The area (per unit rapidity) of the apparent horizon is
given by �ðrhð�Þ; �Þ3 where rhð�Þ is the apparent horizon

location (given by a zero of _�). The area (per unit rapidity)
of the event horizon is also given by �3, but instead
evaluated on the null geodesic defining the event horizon.
The area of the apparent horizon starts off at zero, and
grows rapidly for � in the interval ð�i; �fÞ. This is to be

expected, as it is during this interval of time that the rapid
variation of the boundary geometry produces infalling
gravitational radiation which is subsequently absorbed by
the horizon. As radiation is absorbed, the horizon area must
grow. After the production of radiation ceases, the geome-
try relaxes onto the asymptotic form (21) and the area (per
unit rapidity) of the apparent and event horizons slowly
approach a constant. From the figure, one sees that the
growth of the apparent horizon area changes rather

0 2 4
0
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Apparent horizon

FIG. 3 (color online). Area of the event horizon and apparent
horizon, per unit rapidity, as a function of proper time �. The
growth of the apparent horizon area, shown by the magenta
dotted line, is causally connected to the changing boundary
geometry. In contrast, the growth of the event horizon area,
shown as a solid blue line, is nonzero at arbitrarily early times,
long before the boundary geometry has started to change.
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abruptly near time �f. This reflects of the fact that the

boundary geometry ceases to produce infalling radiation
after time �f. The flux of radiation through the horizon

decreases dramatically after �f and correspondingly, so

does the growth of the apparent horizon area.
In contrast to the apparent horizon area, which is non-

zero only in the causal future of the boundary time �i, the
event horizon area is nonzero arbitrarily far in the past,
long before the boundary geometry starts to change. This
reflects the teleological nature of event horizons. The event
horizon separates events which are causally disconnected
from boundary observers. As Fig. 2 clearly shows, even
before the boundary geometry has started to change there
are events which are causally disconnected from the
boundary. These events are, by definition, behind the event
horizon. Simply put, the black hole exists before the
boundary deformation has begun.

Because the radial geodesic defining the event horizon is
moving outwards at the speed of light, before the boundary
geometry starts to change the area of the event horizon
grows like 4ðkþ �Þ=ðk� �Þ3, where k is the value of �þ
2=r on the geodesic defining the event horizon. The appro-
priate value of the constant k can only be determined when
the entire future of the geometry is known.4 Because of its
acausal nature, the area of the event horizon cannot corre-
spond to the entropy of the system in a nonequilibrium
setting. In contrast, it does appear sensible to regard the
apparent horizon area as a measure of thermodynamic
entropy in a nonequilibrium setting.

To facilitate a quantitative comparison between our
numerical solutions to Einstein’s equations and the late-
time gradient expansion of Ref. [24], Fig. 4 shows a close-
up view of the areas (per unit rapidity) of the event and
apparent horizons (EH and AH, respectively), together
with the corresponding late-time asymptotic expansions,
computed through second order in gradients. These asymp-
totic results are [25,31–33]

AEH ¼ 
3�2

�
1� 1

2
ð��Þ2=3 þ
6þ 
þ 6 ln2

24
2ð��Þ4=3
�
; (23a)

AAH ¼ 
3�2

�
1� 1

2
ð��Þ2=3 þ
2þ 
þ ln2

24
2ð��Þ4=3
�
; (23b)

for the event and apparent horizon areas, respectively, up to
Oðð��Þ�2Þ corrections. From the figure one sees that the
asymptotic expansions, shown in the figure as the dashed
black lines, agree very well with the complete numerical
results. In fact, at time �f when the boundary geometry

becomes flat, the asymptotic forms agree with the full
numerical results for both horizon areas to within 0.11%.
For c ¼ 1, our numerically measured value of � is 0.8.

Consequently, the first order corrections appearing in Eqs.
(23) generate 10% corrections at time �f, while the second-

order terms yield 0.20% and 0.56% corrections to the event
and apparent horizon areas, respectively.
This comparison shows that the geometry in the bulk (as

probed by the horizon areas) is already very well approxi-
mated by the gradient expansion of Ref. [24] at time �f.

However, it must be stressed that this very early agreement
with hydrodynamics is specific to the horizon areas, and is
not so true of other observables which are sensitive to the
anisotropy in the geometry, such as the SYM stress tensor,
which we discuss next.
We now turn to a discussion of our results for boundary

field theory observables. Figure 5 shows plots of the energy
density and transverse and longitudinal pressures produced
by the changing boundary geometry (1), when c ¼ �1.
These quantities begin at zero before time �i, when the
system is in the vacuum state, and deviate from zero once
the 4D geometry starts to vary. During the interval of time
where the 4D geometry is changing, the energy density
generally grows and the pressures rapidly oscillate: work is
being done on the field theory state. After time �f the

boundary geometry becomes flat and no longer does any
work on the system. As time progresses, nonhydrodynamic
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2nd order gradient expansion

FIG. 4 (color online). Close-up view of the event horizon and
apparent horizon areas, per unit rapidity, as a function of proper
time �, together with their corresponding asymptotic expressions
(23). Both horizon areas are very well approximated by their
asymptotic expansions, at second order in gradients, after time
�f ¼ 2:25 when the boundary geometry becomes flat. Note the

rather abrupt change in the growth of the apparent horizon area
at �f.

4This manifests itself as follows. At asymptotically late times,
the location of the event horizon coincides with the zero of
Aðr; �Þ, so the unique outgoing radial geodesic that approaches
the zero of Aðr; �Þ as � ! 1 defines the event horizon. To locate
the position of this geodesic at early times, and hence determine
the horizon area, one must know the entire future of the
geometry.
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degrees of freedom relax and at late times the evolution of
the system is governed by hydrodynamics. The late-time
hydrodynamic behavior manifests itself as the smooth tails
appearing in Fig. 5.

The two sets of plots in Fig. 5, contrasting c ¼ þ1 and
�1, are qualitatively similar, with the main difference
being the phase of the oscillations in the pressures. For
example, for c ¼ �1 the transverse pressure is negative at
�f whereas for c ¼ þ1 the transverse pressure is positive

and larger than the longitudinal pressure, which is nearly
zero at �f. As local equilibrium requires that the transverse

and longitudinal pressure be nearly equal [3], one sees that
in either case the system is far from equilibrium at �f.

Furthermore, from the figure one sees that for either sign of
c, the transverse pressure approaches the longitudinal pres-
sure from above. As we discuss next, this is always the case
in the hydrodynamic limit of boost-invariant flow.

From the gravitational asymptotic expansion of
Ref. [24], one can compute the SYM stress tensor via
Eq. (11). The results read [24]

E ¼ 3
4�4

4ð��Þ4=3
�
1� 2C1

ð��Þ2=3 þ
C2

ð��Þ4=3
�
; (24a)

P? ¼ 
4�4

4ð��Þ4=3
�
1� C2

3ð��Þ4=3
�
; (24b)

P jj ¼ 
4�4

4ð��Þ4=3
�
1� 2C1

ð��Þ2=3 þ
5C2

3ð��Þ4=3
�
; (24c)

up to Oðð��Þ�2Þ corrections. The constant C1 is related to

the viscosity to entropy density ratio of the plasma, while
the constant C2 is related to second-order hydrodynamic
relaxation times. For strongly-coupled SYM [25],

C1 ¼ 1

3

; C2 ¼ 2þ ln2

18
2
: (25)

The form (24) for the stress energy can also be obtained
from hydrodynamic considerations alone, together with
knowledge of first- and second-order transport coefficients,
and the assumption of boost invariance [34,35].
It is evident from the leading terms of the result (24) that

at late times the stress-energy tensor approaches the ideal
hydrodynamic form

T�
� ¼ 
2N2

cTð�Þ4
8

diagð�3; 1; 1; 1Þ; (26)

with a time-dependent temperature

Tð�Þ ¼ �=ð��Þ1=3; (27)

which matches the Hawking temperature (22) of the black
brane in the gravitational description. The ideal stress
tensor (26) is completely isotropic. Subleading terms in
the result (24) show that the transverse pressure differs
from the longitudinal pressure when viscous effects are
taken into account. In particular, as mentioned above, first
order viscous corrections make the transverse pressure
larger than the longitudinal pressure.
To facilitate a quantitative comparison between our

numerical results for the stress tensor and the late-time

FIG. 5 (color online). Energy density, longitudinal and transverse pressure, all divided by N2
c=2


2, as a function of time for c ¼ �1
(left) and c ¼ þ1 (right). The energy density and pressures start off at zero at time �i ¼ 1=4 when the system is in the vacuum state.
During the interval of time � 2 ð�i; �fÞ ¼ ð0:25; 2:25Þ, the 4D geometry is changing and doing work on the field theory state. After

time �f, the deformation in the geometry turns off and the field theory state subsequently relaxes onto a hydrodynamic description. The

smooth tails in both plots occur during this regime. At late times, from top to bottom, the three curves (in both plots) correspond to the
energy density E, transverse pressure P?, and longitudinal pressure P k.
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hydrodynamic expansions, Fig. 6 shows the energy density
and pressures for c ¼ 1=4, 1, and 3=2, with the corre-
sponding hydrodynamic forms (24) plotted on top of the
numerical data. The plots start at time � ¼ �f. In all three

plots, one clearly sees the stress-energy components ap-
proach their hydrodynamic approximations. Moreover, in
all plots one sees a substantial anisotropy even at late times
where a hydrodynamic treatment is applicable. In other
words, the effect of viscosity is very evident in these
results.

Looking at Fig. 6, for time � ¼ �f and c ¼ 1=4, one sees

that the transverse and longitudinal pressures are almost
equal and opposite in magnitude at this time. So the system
is initially very far from equilibrium. However, for c ¼
3=2 the pressures are both positive, and the system is much
closer to equilibrium at �f. At first sight this might seem

peculiar: how can it be that for larger values of c, where the
size of the perturbation in the 4D geometry is huge, the
system takes less time to reach local equilibrium.
Qualitatively, this apparent puzzle is easy to understand.
For large c, the changing geometry does more work on the
system and consequently the system reaches a higher
effective temperature. Because SYM is a conformal theory,
relaxation times for nonhydrodynamic degrees of freedom
must scale inversely with the temperature, and hence must
vanish as the local energy density diverges. Therefore, in
the c ! 1 limit the system will always be very close to
local equilibrium—even while the 4D geometry is chang-
ing—and the anisotropy in the pressures will vanish im-

mediately at �f. As a consequence, one learns little about

the physics of the relaxation of nonhydrodynamic degrees
of freedom in the c ! 1 limit.
Table I shows how various quantities characterizing the

relaxation of the plasma depend on the boundary perturba-
tion amplitude c, within the range ½�2; 2�. Included in the
table is the time ��, beyond which the stress tensor agrees
with the hydrodynamic approximation (24) to within 10%.
Also shown is the temperatures T� at time ��, the scale �
measured in units of ��, and the time intervals �� � �i and
�� � �f measured in units of T�.
From the table, one sees that as the magnitude of c

increases, so does the temperature T�. Moreover, as the
magnitude of c increases, one sees that the time scale ��
approaches �f ¼ 2:25. In particular, for jcj ¼ 2 the stress

tensor is already within 10% of its hydrodynamic limit at
�f. As discussed above, both of these features are to be

expected. Increasing jcjmeans that the changing geometry
does more work on the system, producing a larger energy
density, and consequently the relaxation times of nonhy-
drodynamic degrees of freedom decrease. In all cases
presented in Table I, the relevant dynamics—from the
production of the plasma to its relaxation to near local
equilibrium (where hydrodynamics applies)—occur over a
time �� � �i & 2=T�.
From Table I, one also sees that for jcj & 1=2 the time

scale �� at which a hydrodynamic treatment becomes
accurate occurs when ��� 
 1. For larger values of jcj,
��� is bigger. Examining the size of the coefficients in

FIG. 6 (color online). Energy density, longitudinal and transverse pressure, all divided by N2
c=2


2, as a function of time for c ¼ 1=4
(left), c ¼ 1 (middle), and c ¼ 3=2 (right). From top to bottom, the curves are energy density (blue), transverse pressure (green), and
longitudinal pressure (red). The dashed black lines in each plot show the second-order viscous hydrodynamic approximation (24) to
the different stress tensor components. Note the significantly different ordinate ranges in the three plots; the size of the difference
between the transverse and longitudinal pressure grows with increasing c.
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Eq. (24) shows that the hydrodynamic expansion is quite
well behaved for �� * 1. From the time-temperature re-
lation (27), one can convert ��� * 1 to the estimate
��T� * 1 which, from Table I, is indeed the case.

Examining the size of the cofficients in the series (24)

shows that the second-order ð��Þ�4=3 terms are quite small

compared to the leading ð��Þ�2=3 viscous terms when
�� � 1; they only become comparable when �� is below
0.1. Hence, the fact that hydrodynamics is not accurate
until �� is larger than 1–2 (depending on the value of c)
indicates that the physics which determines the onset of
hydrodynamic behavior is not responsible for higher order
terms in the hydrodynamic expansion becoming compa-
rable to lower order terms. Rather, the change in behavior
from nonhydrodynamic far-from-equilibrium behavior to
near-local-equilibrium hydrodynamic response must be
reflecting the relative importance of exponentially relaxing
nonhydrodynamic degrees of freedom in comparison to the
slowly relaxing hydrodynamic modes. This means that one
cannot accurately identify the domain of utility of the
hydrodynamic description by asking when the late-time
gradient expansion breaks down. A similar conclusion was
also reached in Ref. [36] by analyzing small perturbations
on top of an infinite static plasma.

It is instructive to discuss the qualitative origin of the
relaxation time �� from the perspective of the 5D gravita-
tional problem. First consider the limit jcj ! 1. In this
limit, large amounts of gravitational radiation are produced
by the changing boundary geometry and the amount of
energy which falls deep into the bulk diverges. As a con-
sequence, the horizon radius must approach the boundary
as jcj ! 1. The infall time for radiation to travel from the
boundary to the horizon is roughly equal to the inverse
horizon radius (in our coordinate system), so in the jcj !
1 limit, the geometry outside the horizon effectively re-
sponds instantaneously to the changing boundary geome-
try. Therefore, as jcj ! 1, the system needs no to time to
return to local equilibrium after the geometry stops chang-
ing at time �f.

Now consider the jcj ! 0 limit. For small jcj, distinct
dynamics occurs on the time scales � and �=

ffiffiffiffiffiffijcjp
[with

� � 1
2 ð�f � �iÞ]. First of all, irrespective of how small c is,

the positions of the apparent and event horizons are rapidly
varying only over the time scale �. This is because it is
during the time interval �i � � � �f that gravitational

radiation is being produced and absorbed by the horizon,
creating most growth in horizon area. The parametric size

of the horizon radii at �f is � ffiffiffiffiffiffijcjp
=�. Qualitatively, this

makes sense since little radiation is produced and very little
radiation falls into the bulk of the geometry when jcj is
small. Hence, the black hole size will vanish as jcj ! 0. An

easy way to understand the
ffiffiffiffiffiffijcjp

scaling is to note that the
total energy added to the field theory state cannot depend
on the sign of c, and therefore must be quadratic in c in the
small jcj limit. The final state energy density in the field
theory will scale as r4h, so the horizon radii must be

proportional to
ffiffiffiffiffiffijcjp

. Consequently, after time �f it takes

a time ��=
ffiffiffiffiffiffijcjp

for any remaining short wavelength per-
turbations to fall into the horizon. It is during this interval
of time that the geometry undergoes its relaxation onto the
slowly evolving hydrodynamic form. We therefore see that
��T� should have a nonzero Oð1Þ limit when jcj ! 0.5

Last, we discuss the relevance of our work to more
complicated numerical relativity problems in gauge/grav-
ity duality. As discussed in the Introduction, an interesting
future direction is the study of collisions of gravitational

TABLE I. Quantities characterizing the relaxation to equilibrium, for various values of the boundary perturbation amplitude c. The
relaxation time �� (in units of �) is the time at which the transverse and longitudinal pressures deviate from their hydrodynamic values
(24) by less than 10%. T� is the temperature at time ��, and � is the scale appearing in the hydrodynamic expansion (24) (both
measured in units of ��1). The quantity ð�� � �iÞT� measures the total time in units of T� required to produce the plasma and relax to
near local equilibrium. The quantity ð�� � �fÞT� measures the time in units of T� required for the plasma to relax after the deformation

in the geometry ceases. The quantity ½P?ð�fÞ � Pjjð�fÞ�=Eð�fÞ is the pressure anisotropy, relative to the energy density, at time �f.

c �2 �3=2 �1 �1=2 �1=4 1=4 1=2 1 3=2 2

�� 2.2 2.3 2.4 2.7 3.1 3.1 2.7 2.4 2.3 2.2

T� 0.93 0.77 0.60 0.40 0.27 0.27 0.41 0.62 0.80 0.97

��� 3.1 2.5 1.9 1.2 0.87 0.89 1.3 1.9 2.6 3.3

ð�� � �iÞT� 2.0 1.7 1.4 1.1 0.84 0.85 1.1 1.5 1.8 2.1

ð�� � �fÞT� 0.00 0.05 0.11 0.19 0.24 0.24 0.20 0.11 0.04 0.00
P?ð�fÞ�Pjjð�fÞ

Eð�fÞ 0.06 �0:03 �0:22 �0:56 �1:1 1.6 0.91 0.47 0.24 0.13

5A brief comment on the relation between our work and the
recent paper of Bhattacharyya and Minwalla [22] may be in
order. These authors examined black hole formation and ther-
malization in response to an arbitrarily weak boundary pertur-
bation coupling to the dilaton. A noteworthy finding in this work
was ‘‘instant thermalization’’ (as probed by measurements of
local operators) after the boundary perturbation turned off.
However, this is the case for asymptotically AdS4 spacetime
and, as clearly stated in Ref. [22], is not expected to hold in
asymptotically AdS5 spacetime or for noninfinitesimal boundary
perturbations.
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shock waves in AdS5, as this is dual to the collision of
sheets of matter in SYM and mimics the collision of large,
highly boosted nuclei in heavy-ion collisions. In the sim-
plest setting, one can study shock waves which are trans-
lationally invariant in two transverse directions [16]. The
corresponding gravitational problem is therefore 2þ 1
dimensional. While we have studied a simpler 1þ 1 di-
mensional gravitational problem in this paper, there are
several lessons which may provide insight relevant for
more difficult problems. First, we found it necessary to
solve Einstein’s equations analytically near the boundary
with a power series expansion in the radial coordinate. This
was required as the presence of the negative cosmological
constant makes the near-boundary geometry singular.
More specifically, careful asymptotic near-boundary analy-
sis was required to determine the appropriate subtraction
terms needed to make the integrals (13) finite and produce
a numerical scheme which remains accurate near the
boundary. The same issue will arise in gravitational prob-
lems with less symmetry.

Another important lesson concerns the choice of coor-
dinates. Because of the presence of the negative cosmo-
logical constant, all matter and radiation tends to fall
inward into the bulk. This universality of gravitational
infall motivates the use of coordinates specifically
adapted for infalling motion. The generalized infalling
Eddington-Finkelstein coordinates we used, which assign
a constant ‘‘time’’ coordinate to all events on infalling null
radial geodesics, are especially appropriate for numerics.
Had we used a time coordinate which defined a spacelike
slicing of the geometry, then we would have wasted com-
putational time solving for the geometry deep in the bulk
before any signals from the boundary had arrived. With
a null time coordinate, a signal propagating in from
the boundary at r ¼ 1 arrives ‘‘instantaneously’’ at r ¼
0. Moreover, the generalized infalling Eddington-
Finkelstein coordinates yield a metric (3) which is non-
singular on the horizon. Coordinates which do not yield a
metric regular at the horizon, such as Fefferman-Graham
coordinates, are not well suited to numerical initial value
problems.

V. CONCLUSIONS

Using gauge/gravity duality, we have studied the pro-
duction and relaxation of a boost-invariant plasma in
strongly-coupledN ¼ 4 supersymmetric Yang-Mills the-
ory. The production mechanism is a time-dependent defor-
mation of the four-dimensional geometry in which the field
theory lives. The deformation, which was confined to a
compact interval of proper time, does work on the system
and thus excites the initial state, which we took to the
N ¼ 4 SYM vacuum.Within the context of gauge/gravity
duality, this problem maps into the problem of black hole
formation in five dimensions. By solving the correspond-
ing gravitational problem numerically, and using the
gauge/gravity dictionary, we were able to compute the field
theory stress tensor at all times, from the first excitation of
the initial vacuum state to the late-time onset of hydro-
dynamics. We found that the entire process of plasma
creation—from the initial vacuum state to the relaxation
onto a hydrodynamic description—can occur in times as
short as 1 to 2 times 1=T�, where T� is the local temperature
at the onset of the hydrodynamic regime. We also demon-
strated that the time at which a hydrodynamic treatment
first becomes valid does not coincide with the point where
the hydrodynamic gradient expansion breaks down. This
reflects the fact that in a far-from-equilibrium state there
are nonhydrodynamic degrees of freedom. These modes
relax exponentially, and their relative importance deter-
mines the onset of the hydrodynamic regime.
This work, together with our earlier paper [21], provide

novel additions to the very sparse set of examples of
genuinely far-from-equilibrium processes in quantum field
theory which can be studied with complete theoretical
control. Using techniques similar to those presented in
this paper, it should be possible to study more demanding
problems which have less symmetry.
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