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We study a gauge theory model where there is an intermediate symmetry breaking to a metastable

vacuum that breaks a simple gauge group to a Uð1Þ factor. Such a model admits the existence of

metastable magnetic monopoles, which we dub false monopoles. We prove the existence of these

monopoles in the thin-wall approximation. We determine the instantons for the collective coordinate

that corresponds to the radius of the monopole wall and we calculate the semiclassical tunneling rate for

the decay of these monopoles. The monopole decay consequently triggers the decay of the false vacuum.

As the monopole mass is increased, we find an enhanced rate of decay of the false vacuum relative to the

celebrated homogeneous tunneling rate due to S. R. Coleman [Subnuclear series 13, 297 (1977).].
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I. INTRODUCTION

Semiclassical solutions with topologically nontrivial
boundary conditions in relativistic field theory [1–3] have
the interesting property that they interpolate between two
or more alternative translationally invariant vacua of the
theory. For instance the exterior of a monopole or a vortex
solution is a phase of broken symmetry, while the interior
of the object generically contains a limited region of un-
broken symmetry (for more details and lucid expositions
see [4,5]). Most of the commonly studied solutions are
topologically nontrivial; however, nontrivial boundary
conditions are not a guarantee of dynamical stability. In
[6], for example, a large number of such solutions are
constructed in gauge field theories which are generically
metastable. The Skyrmion is also a classic example of a
topologically nontrivial configuration that is unstable with-
out the addition of a fourth order Skyrme term [7,8]. All of
the classically stable solutions (allowing for quantum
metastabilty) are nontrivial time independent local minima
of the effective action of the theory.

The metastability of such solutions can be of significant
interest. The implied decay of the object would be accom-
panied by the change in phase of the system as a whole. In
the context of cosmology this may imply a change in the
cosmic history and determine the abundance of relic ob-
jects. On a more formal footing the question of metastabil-
ity of vacua has gained considerable interest in the context
of supersymmetric field theories [9] where a nonsupersym-
metric phase is required on phenomenological grounds but
such a phase is necessarily metastable on theoretical
grounds [11,12]. In string cosmology the de Sitter solution

obtained is generically metastable [13] and its phenome-
nological viability depends on the tunneling rate being
sufficiently slow.
A change in phase due to metastable topological objects

is a generalization of the following better known mecha-
nism. When the effective potential of the theory possesses
several local minima, all but the lowest minimum are
quantum mechanically unstable. The so-called false vacua
are then liable to decay, even in the absence of topological
objects, according to a rate given by a WKB-like formula
studied earlier in [14] and provided an elegant and lucid
footing by Coleman [15,16]. The cases studied there con-
cerned a transition between two translationally invariant
vacua. The generic scenario of decay consists of sponta-
neous formation of a small bubble of true vacuum, which
can then start growing by semiclassical evolution. In
Minkowski space, the formation of one such bubble is
sufficient to convert the phase of the system to the true
vacuum. In the context of an expanding Universe, conver-
sion of the entire Universe to the true vacuum would
require formation of a sufficiently large number of such
bubbles at an adequate rate.
The existence of topological objects may provide addi-

tional sources of metastability. Phase transitions seeded by
topological solutions were studied early in the works of
[17–20]. An essential aspect of these studies is precisely
the observations that there exist solutions with nontrivial
boundary conditions which interpolate between two dis-
tinct minima of the effective potential. The importance of
this alternative route to decay arises from the fact that it can
be much more rapid than the spontaneous decay of a
translationally invariant vacuum. Indeed, for some values
of the parameters the decay induced by topological objects
may require no tunneling and therefore would be very
prompt in a context where the parameters are changing
adiabatically, as for instance in the early Universe.
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Obtaining a general formula characterizing this kind of
vacuum decay has been rather elusive although the ideas
have been adequately explicated in [17–20]. More recently,
the relevance of the mechanism has been demonstrated in
specific examples, in [21] for the mediating sector of a
hidden sector scenario of supersymmetry breaking and in
[22] in a grand unified theory model with O’Raifeartaigh
type direct supersymmetry breaking. In this paper we
explore a model that is amenable to an analytical treatment
within the techniques developed in [23]. In doing so we
provide a transparent model in which the generic expecta-
tions raised in [17–20] can be realized and a specific
formula can be derived.

We construct an SUð2Þ gauge model with a triplet scalar
field with two possible translationally invariant vacua, one
with SUð2Þ broken to Uð1Þ and the other with the original
gauge symmetry intact. The former phase permits the
existence of monopoles. By appropriate choice of potential
for the triplet it can be arranged that the phase of unbroken
symmetry is lower in energy and represents the true vac-
uum of the theory. The monopoles interpolate between the
true vacuum and the false vacuum. For a wide range of the
parameters, these monopoles are in fact classically stable.
In previous work [17,18] the dissociation of such mono-
poles was considered, varying the parameters of the theory
to critical values where the monopoles were classically
unstable due to infinite dilation. This can occur, for ex-
ample, in the early Universe where the high temperature
phase prefers one vacuum in which the system starts, but
with adiabatic reduction in temperature, a different phase
becomes more favorable. The Universe is then liable to
simply roll over, by classical evolution, to the true vacuum.

It was, however, overlooked that these monopoles are in
fact unstable due to quantum tunneling well before the
parameters reach their critical values. We dub such mono-
poles false monopoles. Working in the thin-wall limit for
the monopoles [17], we show that such monopoles undergo
quantum tunneling to larger monopoles, which are then
classically unstable by expanding indefinitely, conse-
quently converting all space to the true vacuum, the phase
of unbroken SUð2Þ symmetry. Further, the formula we
derive also recovers the regime of parameter space, within
the thin-wall monopole limit, where no tunneling is re-
quired for the decay but the monopole is simply classically
unstable as previously treated [17,18].

The rest of the paper is organized as follows. In Sec. II
we specify the model under consideration and the mono-
pole ansatz along with the equations of motion. In Sec. III
we delineate the conditions in which there should exist a
metastable monopole solution with a large radius and a thin
wall. We find the thin-wall monopole solutions and also
justify their existence. In Sec. IV we use the thin-wall
approximation which permits a treatment of the solution
in terms of a single collective coordinate, the radius R of
the thin wall. We argue that the monopole is unstable to

tunneling to a new configuration of a much larger radius
and we determine the existence of the instanton for this
tunneling within the same thin-wall approximation. In
Sec. V we determine the Euclidean action for this instan-
ton, the so-called bounce Bwhich determines the tunneling
rate for the appearance of the large radius unstable mono-
pole. In Sec. VI we relate our findings to a previous study
of classical monopole instability in supersymmetric grand
unified theory models. In Sec. VII we discuss our results
and compare our tunneling rate formula with that of the
homogeneous bubble formation case without monopoles.
We show that in addition to our tunneling rate being
significantly faster, it also indicates a regime in which
the monopoles become unstable, hence showing that the
putative nontrivial vacuum indicated by the effective po-
tential is in fact unstable.

II. UNSTABLEMONOPOLES IN A FALSE VACUUM

Consider an SUð2Þ gauge theory with a triplet scalar
field � with the Lagrangian density given by

L ¼ �1
4F

a
��F

��a þ 1
2ðD��

aÞðD��aÞ � Vð�a�aÞ; (1)

where

Fa
�� ¼ @�A

a
� � @�A

a
� þ e�abcAb

�A
c
�; (2)

and

D��
a ¼ @��

a þ e�abcAb
��

c: (3)

The potential we use is a polynomial of order 6 in � and
may conveniently be written as

Vð�Þ ¼ ��2ð�2 � a2Þ2 þ �2�2 � �; (4)

where � is defined so that the potential vanishes at the
metastable vacua. The vacuum energy density difference is
then equal to �. Such a potential was numerically analyzed
in [24] as a toy model for the dissociation of monopoles.
Here we obtain explicit analytical formulas for the quan-
tum tunneling decay of the monopoles. The potential has a
minimum at �T� ¼ 0 which for � ¼ 0 is degenerate with
the manifold of vacua at �T� ¼ a2. When we set � � 0,
we get a manifold of degenerate metastable vacua at
�T� ¼ �2 (where the exact value of the vacuum expec-
tation value, �, is calculable and satisfies � � a for small
�), and the minimum at � ¼ 0 becomes the true vacuum.
A plot of the potential for small � as a function of one of
the components of � is shown in Fig. 1. A supersymmetry
breaking model [25] containing monopoles and a scalar
potential similar to the one given in Eq. (4) was studied
in [22].
The manifold of vacua at �T� ¼ �2 is topologically an

S2, and as spatial infinity is topologically also S2,
the appropriate homotopy group of the manifold of the
vacua of the symmetry breaking SUð2Þ ! Uð1Þ is
�2ðSUð2Þ=Uð1ÞÞ which is Z. This suggests the existence
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of topologically nontrivial solutions of the monopole type
which are classically stable. The presence of the global
minimum at � ¼ 0 allows for the possibility that the
monopole solution, although topologically nontrivial,
could be dynamically unstable.

A time independent spherically symmetric ansatz for the
monopole can be chosen in the usual way as

�a ¼ r̂ahðrÞ; Aa
� ¼ ��abr̂b

1� KðrÞ
er

; A0 ¼ 0;

(5)

where r̂ is a unit vector in spherical polar coordinates. The
energy of the monopole configuration in terms of the
functions h and K is

EðK; hÞ ¼ 4�
Z 1

0
dr

�ðK0Þ2
e2

þ ð1� K2Þ2
2e2r2

þ 1

2
r2ðh0Þ2

þ K2h2 þ r2VðhÞ
�
; (6)

where derivatives with respect to r are denoted by primes.
The static monopole solution is the minimum of this func-
tional and the ansatz functions satisfy the equations

h00 þ 2

r
h0 � 2h

r2
K2 � @V

@h
¼ 0; (7)

K00 � K

r2
ðK2 � 1Þ � e2h2K ¼ 0: (8)

As r ! 1 the function h asymptotically approaches � and
is zero at r ¼ 0 from continuity requirements. On the other
hand,K approaches zero at spatial infinity so that the gauge
field decreases as 1=r, and K ¼ 1 at r ¼ 0.

III. THIN-WALLED MONOPOLES

When the difference between the false and true vacuum
energy densities � is small, the monopole can be treated as
a thin shell, the so-called thin-wall approximation. Within
this approximation, the monopole can be divided into three
regions as shown in Fig. 2. There is a region of essentially
true vacuum extending from r ¼ 0 up to a radius R. At r ¼
R, there is a thin shell of thickness 	 in which the field
value changes exponentially from the true vacuum to the
false vacuum. Outside this shell the monopole is essentially
in the false vacuum, and so we have

h � 0; K � 1 r < R� 	

2
;

h � �; K � 0 r > Rþ 	

2
;

0< h< �; 0<K < 1 R� 	

2
� r � Rþ 	

2
;

(9)

where 	 is a length corresponding to the mass scale of the
symmetry breaking. As we shall see in Sec. IV, describing
the monopole in this way allows us to study the dynamics
in terms of just one collective coordinate R. The energy of
the monopole then becomes a simple polynomial in R.
Furthermore, due to the spherical symmetry,R is a function
of time alone and so the original field theoretic model in
3þ 1 dimensions reduces to a one-dimensional problem
involving RðtÞ.
We now proceed to elucidate the existence of monopole

solutions which have the thin-wall behavior described in
the previous section. Redefining the couplings appearing in
the potential (4) in terms of a mass scale � and expressing
� in terms of the profile function hðrÞ, we have

V ¼
~�

�2
h2ðh2 ��2~a2Þ2 þ ~�2�2h2 � �; (10)
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FIG. 2 (color online). The monopole profile under the thin-
wall approximation.
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FIG. 1 (color online). The potential Vð�Þ for � � 0 as a
function of one of the components of the field �, shifted by
an additive constant so that � ¼ � has vanishing V and the true
vacuum has V ¼ ��.

FATE OF THE FALSE MONOPOLES: INDUCED VACUUM DECAY PHYSICAL REVIEW D 82, 025022 (2010)

025022-3



where a tilde over a variable indicates that it is dimension-
less. The vacuum expectation value of� or h then becomes
~��, where

~� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~a2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a4 ~�2 � 3~�2 ~�

q
3~�

vuuut
: (11)

The expression for V can be rearranged as

V ¼ ðð~�~a4 þ ~�2Þ�2 � 2~�~a2h2Þh2 þOðh6Þ: (12)

The condition that V is approximately quadratic in h is
given by

h2

�2
�

~�~a4 þ ~�2

2 ~�~a2
: (13)

When the above condition is satisfied, @V=@h is linear in h.
The equation of motion for h given in Eq. (8) can then be
written as

h00 þ 2

r
h0 � 2h

r2
� k2h ¼ 0; (14)

where k2 ¼ ð~�~a4 þ ~�2Þ�2 and K has been set to unity.
Equation (14) has the form of the modified spherical Bessel
equation whose general form is

z2w00 þ 2zw0 � ½z2 þ lðlþ 1Þ�w ¼ 0 (15)

for a function wðzÞ. The primes in the above equation
denote derivatives with respect to z and Eq. (14) is obtained
from (15) with l ¼ 1.

The solution of Eq. (14) is

hðrÞ ¼ C

�
I3=2ðkrÞffiffiffiffiffi

kr
p

�
¼ Ci1ðkrÞ; (16)

where IJ is the modified Bessel function of the first kind of
order J, in is the modified spherical Bessel function of the
first kind of order n, and C is an arbitrary constant. The
function i1ðkrÞ � ekr=ðkrÞ for kr � 1 and is linear in kr
for small kr � 1. If we choose C ¼ e�k
 with arbitrarily
large k
, we see that we can keep Eq. (13) satisfied and
hence stay with the linear equation for hðrÞ for arbitrarily
large kr.

The existence of the particular solution with hðrÞ ¼ � at
r ¼ 1 can be proven using an argument similar to
Coleman’s, where he proved, in a somewhat different
context, the existence of a thin-wall instanton, [15]. We
can reinterpret the equation for the monopole profile,
Eq. (7), as describing the motion of a particle whose
position is denoted by hðrÞ where r is now interpreted as
a time coordinate. The particle moves in the presence of
friction with a time dependent Stokes coefficient given by
the second term in Eq. (7) and a time dependent force given
by the third term in Eq. (7) (setting K ¼ 1), both of which
are singular at r ¼ 0. The particle also moves in the
potential �VðhÞ, obtained by inverting the potential

Eq. (4), as shown in Fig. 3. The particle must start at h ¼
0 with a finite velocity and must reach h ¼ � as r ! 1.
We prove the existence of the solution that achieves h ¼

� at r ¼ 1 by proving that initial conditions can be chosen
so that the particle can undershoot or overshoot h ¼ � for
r ! 1, depending on the choice of the initial velocity.
Then by continuity there must exist an appropriate initial
condition for which the particle exactly achieves h ¼ � at
r ! 1.
In the following, we will assume that K ¼ 1 is always a

good approximation. Indeed, in Eq. (7) the term dependent
on K is negligible for large r no matter the value of K,
while for small r,K ¼ 1 is a reasonable approximation. On
the other hand, Eq. (8) forK critically depends on the value
of hðrÞ � 0, especially for large kr. In that sense, the
function hðrÞ does not depend strongly on KðrÞ, whereas
hðrÞ drives the behavior of KðrÞ.

A. Overshoot

The existence of the overshoot can be proven by taking a
sufficiently small value ofC. As explained earlier,C can be
chosen small enough so that Eq. (13) is valid even for large
kr; hence, the equation remains linear. If kr is large
enough, the friction term ð2=rÞh0 and the term ð2=r2Þh in
the equation of motion can be neglected in any further
evolution and the evolution can be thought of as conserva-

tive. Thus with such a choice of C, h increases to ~h < h0 at
a large value of kr according to the linearized equation (h0
is the zero crossing point of the potential; see Fig. 3). The
motion from then onwards is frictionless. The particle has

an energy E> 0 at h ¼ ~h; thus its energy is still positive
when it reaches h ¼ �. As a result, it overshoots to h > �.

B. Undershoot

To prove the existence of the undershoot, we start with
the full equation for hðrÞ:

−V
(h

) 
 -

->

ε

η−η h -->h0

FIG. 3 (color online). The scalar potential �VðhÞ which is the
Euclidean space equivalent of the potential given in (4). The
potential has zeroes at h ¼ h0 and h ¼ �.
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h00 þ 2

r
h0 � 2

r2
h� @V

@h
¼ 0 (17)

which after multiplying both sides by h0 can be rewritten as

d

dr

�
1

2
ðh0Þ2 � VðhÞ

�
¼ �2h0

�
h0

r
� h

r2

�
; (18)

¼ �2h0
�
h

r

�0
: (19)

The quantity on the left-hand side of Eq. (18) can be
thought of as the time derivative of the energy E. In the
linearized regime, it is easy to show that the right-hand side
is strictly negative for all r. It starts with a value of zero at
r ¼ 0 and decreases essentially exponentially for large kr.
We can choose C, which amounts to choosing the initial
velocity so that h evolves according to the linearized
equation until kr can be taken to be large. However, in
contrast to the case of the undershoot, we now require that
E becomes negative. This means that the value of C is
taken larger than in the case of the overshoot. E is made up
of two terms, the kinetic term which is positive semidefin-
ite and the potential term which becomes negative for h >
h0. We impose conditions on the parameters so that E
becomes negative and consequently h > h0 within the
linearized regime. Now if kr is large enough, as before,
the subsequent evolution will be conservative, and since
the total energy is negative, the subsequent evolution will
never be able to overcome the hill at h ¼ � and the particle
will undershoot.

C. Technical details

To make the previous arguments more precise and rig-
orous, we note that when the condition Eq. (13) is satisfied,
the linear regime is valid and VðhÞ is approximately qua-
dratic in h; i.e., �VðhÞ � �� ð1=2Þk2h2 and the equation
of motion for h is approximately

d

dr

�
1

2
ðh0Þ2 þ �� 1

2
k2h2

�
¼ �2h0

�
h0

r
� h

r2

�
: (20)

Using the properties of i1ðkrÞ we can compute E in the
linear regime; we find for large kr

E � �� k2C2e2kr

4ðkrÞ3 (21)

which can be evidently taken to be positive or negative by
simply choosing the value of C. Then in the subsequent
evolution, where we can no longer rely on the linear
evolution, the right-hand side has two competing terms:
the friction term, which only reduces the energy, and the
time dependent force term, which tries to increase it. The
change in the energy for evolution between r0 and rf is

given by the integral of the right-hand side.

1. Overshoot

For the case of the overshoot, we use the expression
Eq. (19) which gives

�E ¼ �2
Z rf

r0

drh0
�
h

r

�0
: (22)

Assuming that h0ðrÞ is positive, we will find an estimate for
h0ðrÞ< v. Then

j�Ej< 2v

��������
Z rf

r0

dr

�
h

r

�0�������� (23)

¼ 2v

��������
�
hðrfÞ
rf

� hðr0Þ
r0

��������� (24)

< 2v

��������
�
�

rf
� hðr0Þ

r0

���������; (25)

where we replaced hðrfÞ with � since that is its largest

possible value. As long as v is well behaved, as r0 ! 1,
rf > r0, thus the first term vanishes, while the second term

can be made small by choosing the value of C to be
arbitrarily small. Thus we see that �E ! 0 and therefore
the change in the energy is arbitrarily small. Thus we
necessarily obtain an overshoot since at r ¼ r� such that

hðr�Þ ¼ �, Vð�Þ ¼ 0; hence the particle has a positive

kinetic energy giving an overshoot.
To get the value of v, we use Eq. (18):

d

dr

�
1

2
ðh0Þ2 � VðhÞ

�
¼ �2h0

�
h0

r
� h

r2

�
; (26)

< 2
hh0

r2
<

ðh2Þ0
r20

: (27)

Integrating both sides from r0 to rf yields

ðh0ðrfÞÞ2 < 2

�
1

r20
ðh2ðrfÞ � h2ðr0ÞÞ (28)

þ VðhðrfÞÞ � Vðhðr0ÞÞ þ 1

2
ðh0ðr0ÞÞ2

�
: (29)

Thus v2 is given by

v2 ¼ 2

�
1

r20
ð�2 � h2ðr0ÞÞ (30)

þ supjVðhðrfÞÞ � Vðhðr0ÞÞj þ 1

2
ðh0ðr0ÞÞ2

�
(31)

which is a bounded function of r0.

2. Undershoot

To prove the undershoot we use the expression Eq. (18)
which gives
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�E ¼ �2
Z rf

r0

dr
h02

r
þ 2

Z rf

r0

dr
h0h
r2

: (32)

Integrating the second term by parts we obtain

2
Z rf

r0

dr
h0h
r2

¼
Z rf

r0

dr

�
h2

r2

�0 þ Z rf

r0

dr

�
2h2

r3

�
(33)

<

�
h2

r2

���������rf

r0

��2

�
1

r2

���������rf

r0

; (34)

where we obtain the inequality using the fact that we are
only interested in the region h � �.

We now prove that this contribution to the energy cannot
be sufficient to push h to h > �. We take r0 to be the value
of r as described after Eq. (19), where the energy becomes
negative within the linearized regime with kr0 � 1. We
now assume there exists a value rf � r� for which hðr�Þ ¼
�. Then

�E<�2
Z r�

r0

dr
h02

r
þ

�
h2

r2

���������r�

r0

��2

�
1

r2

���������r�

r0

(35)

<
�2

r2�
� h2ðr0Þ

r20
� �2

�
1

r2�
� 1

r20

�
(36)

¼ �2 � h2ðr0Þ
r20

(37)

which is an upper bound to the energy that can be added to
the particle. But now it is easy to see that this additional
energy is insufficient to push h to h > �, for kr0 large
enough. Indeed the energy of the particle at r ¼ r0 is
obtained, via the linear regime, by Eq. (21):

E � �� k2C2e2kr

4ðkrÞ3 ! �� k
h2ðr0Þ
r0

: (38)

This expression is negative. Furthermore, if kr0 is large
enough, we will see that�E cannot provide enough energy
to increase E to zero, giving a contradiction to the exis-
tence of r�. To see this, we would require jEj> �E, i.e.,

k
h2ðr0Þ
r0

� � >
�2 � h2ðr0Þ

r20
: (39)

The linear approximation assumes hðr0Þ � �; hence we
get

kh2ðr0Þ
r0

� �2

r20
> � (40)

reorganizing the terms, which for small enough � simply
implies

h2ðr0Þkr0 >�2: (41)

Thus we get the inequality sandwich

�2

kr0
< h2ðr0Þ<�2: (42)

Using hðr0Þ � Cekr0=2kr0 we can choose

C ¼ �2kr0

ekr0r1=40

(43)

which gives

�2

kr0
<

�2ffiffiffiffiffiffiffi
kr0

p <�2: (44)

It is obvious that for large enough kr0 this is easily sat-
isfied. Thus we have established the existence of a choice
of C or initial velocity which contradicts the existence of
r�.

IV. COLLECTIVE COORDINATE AND THE
INSTANTONS

The potential Vð�Þ given in (4) can be normalized so
that the energy density of the metastable vacuum is vanish-
ing whereas the energy density of the true vacuum is ��.
By making use of the thin-wall approximation, the expres-
sion for the total energy in the static case given in (6) can
be expressed as

E ¼ 4�

�Z R�ð	=2Þ

0
drr2VðhÞ þ

Z 1

Rþð	=2Þ
dr

1

2e2r2

þ
Z Rþð	=2Þ

R�ð	=2Þ
dr

�ðK0Þ2
e2

þ ð1� K2Þ2
2e2r2

þ 1

2
r2ðh0Þ2

þ K2h2 þ r2VðhÞ
��

: (45)

In the above expression, we have made use of the fact that
VðhÞ is zero for r > Rþ 	

2 , K ¼ 1 for r < R� 	
2 , K ¼ 0

for r > Rþ 	
2 , and both the derivative terms and the term

K2h2 are nonzero only when R� 	
2 < r < Rþ 	

2 . Since 	

is small, the first integral on the right-hand side of (45)
gives��R3 where � ¼ 4��=3 because VðhÞ ¼ �� in the
domain of integration. The second integral gives C=R
where C ¼ 2�=e2. The third integral is due to the energy
of the wall and can be written as 4��R2 where � is the
surface energy density of the wall given by

� ¼ 1

R2

Z Rþð	=2Þ

R�ð	=2Þ
dr

�ðK0Þ2
e2

þ ð1� K2Þ2
2e2r2

þ 1

2
r2ðh0Þ2

þ K2h2 þ r2VðhÞ
�
: (46)

We can thus write the total energy of the monopole as

EðRÞ ¼ ��R3 þ 4��R2 þ C

R
: (47)

This function is plotted in Fig. 4. There is a minimum at
R ¼ R1 and this corresponds to the classically stable
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monopole solution. This solution has a bubble of true
vacuum in its core and the radius R1 of this bubble is
obtained by solving dE=dR ¼ 0. However, this monopole
configuration can tunnel quantum mechanically through
the finite barrier into a configuration with R ¼ R2 where
EðR1Þ ¼ EðR2Þ. Once this occurs, the monopole can con-
tinue to lose energy through an expansion of the core since
the barrier which was present at R1 is no longer able to
prevent this.

We now proceed to determine the action of the instanton
describing the tunneling from R ¼ R1 to R ¼ R2. In the
thin-wall approximation, the functions h and K can be
written as

h ¼ hðr� RÞ; K ¼ Kðr� RÞ; (48)

and the exact forms of the functions h and K will not be
required in the ensuing analysis. The only requirement is
that both h and K change exponentially when their argu-
ment (r� R) is small. An example of a function with this
type of behavior is the hyperbolic tangent function. The
time derivative of � can be written as

_�a ¼ r̂a
dh

dR
_R: (49)

From (48), since ðdh=dRÞ2 ¼ ðdh=drÞ2, we have
1

2
_�a _�a ¼ 1

2

�
dh

dR

�
2
; _R2 ¼ 1

2

�
dh

dr

�
2
_R2: (50)

Similarly,

_A a
� ¼ ��abr̂b

��1

er

�
dK

dR
_R (51)

and

1

4
_Aa
�
_Aa
� ¼ 1

2e2r2

�
dK

dr

�
2
_R2: (52)

The Lagrangian can then be expressed as

L ¼ 2�
Z 1

0

�
r2
�
dh

dr

�
2
_R2 þ 1

e2

�
dK

dr

�
2
_R2

�
dr� EðRÞ:

(53)

From (8), for large r, the equation of motion of h can be
written as

h00 � @VðhÞ
@h

¼ 0: (54)

Multiplying both sides by h0 and integrating by parts with
respect to r, one obtains

h0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðhÞp

: (55)

Furthermore, since dh=dr is nonvanishing only in the thin-
wall, the value of r in the first integral in (53) can be
replaced by R and we have

Z 1

0
drr2

�
dh

dr

�
2
_R2 ¼ R2 _R2

Z 1

0
dr

�
dh

dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðhÞ

p
¼ R2 _R2S1; (56)

where

S1 ¼
Z �

0
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðhÞ

p
: (57)

Defining

S2 ¼ 1

e2

Z 1

0
dr

�
dK

dr

�
2
; (58)

the Lagrangian (53) becomes

L ¼ 2� _R2ðS1R2 þ S2Þ � EðRÞ (59)

and the action can be written as

S ¼
Z 1

�1
dtð2� _R2ðS1R2 þ S2Þ � EðRÞÞ: (60)

In Euclidean space, the expression for the action becomes

SE ¼
Z 1

�1
d
ð2� _R2ðS1R2 þ S2Þ þ EðRÞÞ; (61)

where 
 ¼ it is the Euclidean time and _R is the derivative
with respect to 
. The instanton solution Rð
Þwhich we are
seeking obeys the boundary conditions R ¼ R1 for 
 ¼
	1, R ¼ R2 for 
 ¼ 0, and dR=d
 ¼ 0 for 
 ¼ 0. It can
be obtained by solving the equations of motion derived
from (61). However, the exact form for Rð
Þ will not be of
interest here since the decay rate of the monopole is
determined ultimately from SE [15]. The calculation of
SE will be the subject of the next section.

E
N

E
R

G
Y

 -
->

RADIUS OF BUBBLE -->

R1 R2

Instanton Tunneling

FIG. 4 (color online). The function EðRÞ plotted versus bubble
radius. The classically stable monopole solution has R ¼ R1.
This solution can tunnel quantum mechanically to a configura-
tion with R ¼ R2 and then expand classically.

FATE OF THE FALSE MONOPOLES: INDUCED VACUUM DECAY PHYSICAL REVIEW D 82, 025022 (2010)

025022-7



V. BOUNCE ACTION

In this section, we will derive an expression for bounce
action SE for the monopole tunneling and compare it with
the bounce action for the tunneling of the false vacuum to
the true vacuum as discussed in [15] with no monopoles
present. From (61), the equation of motion for R can be
written

ðR2S1 þ S2Þ €Rþ S1R _R2 � 1

4�

@E

@R
¼ 0: (62)

Multiplying both sides by _R, the equation of motion as-
sumes the form

d

dt

�
1

2
ðS2 þ R2S1Þ _R2 � EðRÞ

4�

�
¼ 0: (63)

The term in the square brackets is a constant of motion and
can be taken to be zero with loss of generality. Setting this
constant to zero gives

EðRÞ ¼ 2�ðS2 þ S1R
2Þ _R2: (64)

Substituting this in (61), we have

SE ¼
Z 1

�1
d
4�ðS2 þ S1R

2Þ _R2: (65)

Solving for _R from (64) and using this in the above
equation yields

SE ¼
Z 1

�1
d


�
dR

d


�
4�ðS2 þ S1R

2Þ _R

¼ ffiffiffiffiffiffiffiffiffi
32�

p Z R2

R1

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS2 þ S1R

2ÞEðRÞ
q

: (66)

Using the expression for EðRÞ given in (47) and neglecting
S2 in comparison to S1R

2, the Euclidean action of the
bounce solution can be written

SE ¼ A
Z R2

R1

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�R5 � 4��R4 � CRþ E0R

2Þ
q

; (67)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32�S1

p
. In deriving the above expression, the

constant E0 ¼ EðR1Þ was subtracted from the expression
for EðRÞ in (47) so that the bounce has a finite action.
Pulling out a factor of R from the square root in the
integrand, we have

SE ¼ A
Z R2

R1

dR
ffiffiffiffi
R

p ffiffiffiffiffiffiffi�J
p

; (68)

where J ¼ �R4 � 4��R3 � Cþ E0R. The function J has
a double root at R ¼ R1, a positive root at R ¼ R2, and a
negative root at R ¼ R3. Since we are working with � small
and � ¼ 4��=3, we can neglect the term containing �

while solving dE=dR ¼ 0 and obtain R1 � ð4e2�Þ�1=3. To
find R3 we also neglect the term containing �, and sub-
stituting for E0 in terms of the solution for R1, we get a
cubic equation for R3, which can be exactly factored,
giving R3 ¼ �2R1. Finally, to solve for R2, we solve J ¼

0 neglecting the constant and linear term in R since R2 is
large, obtaining R2 � 4��=� ¼ 3�=�.
Factoring J, we have

SE ¼ A
ffiffiffiffi
�

p Z R2

R1

dR
ffiffiffiffi
R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðR� R1Þ2ðR� R2ÞðR� R3Þ

q

¼ A
ffiffiffiffi
�

p Z R2

R1

dR
ffiffiffiffi
R

p ðR� R1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðR� R2ÞðR� R3Þ

q

¼ A
ffiffiffiffi
�

p
R7=2
2

2

105

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32�S1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��=3

p
R7=2
2

2

105

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
:

(69)

Here I is a dimensionless function of R1=R2 and R3=R2

which is finite everywhere in the domain ½R1; R2� and is
obtained from the integral defined in Eq. (69) removing the

factor of ð1� ðR1=R2ÞÞð5=2Þ and R7=2
2 and some numerical

factors. It is expressible in terms of elliptic integrals and its
explicit expression is not illuminating. As S1 has dimen-
sions of �3 and � has dimensions of �4, the expression is
dimensionless, as expected. Substituting the value of R2 in
SE,

SE ¼ 144�

35

ffiffiffiffiffiffiffiffi
2S1

p �7=2

�3

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
: (70)

For small �, the term containing ~� in the potential (10) can
be neglected. Using Eq. (57) and the fact that � ¼ ~a�
when ~� ¼ 0,

S1 ¼
ffiffiffiffiffiffi
2~�

p

�

Z ~a�

0
dhðhðh2 ��2~a2ÞÞ (71)

¼
ffiffiffiffi
~�

8

s
~a4�3: (72)

The value of� can be obtained from Eq. (46) by noting that
the terms multiplying r2 are large compared to the terms
independent of r and the term multiplying 1=r2. Since 	 is
small, we can write r ¼ R and Eq. (46) becomes

� ¼
Z Rþð	=2Þ

R�ð	=2Þ
dr

�
1

2
ðh0Þ2 þ VðhÞ

�
: (73)

Substituting for h0 from Eq. (55), � becomes

� ¼
Z Rþð	=2Þ

R�ð	=2Þ
drðh0Þ2 (74)

¼
Z �

0
dhðh0Þ (75)

¼
Z �

0
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðhÞp

(76)
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¼ S1: (77)

Using (77) and (72) in (70) yields

SE ¼ 144�
ffiffiffi
2

p
35

S41
�3

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
(78)

¼ 9
ffiffiffi
2

p
�

140
~�2~a16

�12

�3

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
(79)

as the final value of the bounce action. From the values of
R1 and R2, we have

R1

R2

¼ 1

e2=3
1

ð4�Þ1=3
�

3�
(80)

¼ 1

ð~�eÞ2=3
�
16

27

�
1=3 �

~a16=3�4
; (81)

where the value of � has been expressed in terms of the
couplings appearing in the potential using Eqs. (77) and
(72). From the expression given in (79), it is evident that
the bounce action SE is zero when R1 ¼ R2 as expected.
With � small, R1=R2 is small, but it is interesting to note
that variations in the couplings can reduce the bounce
action. For example, a reduction in the Uð1Þ gauge cou-
pling e has the effect of increasing the monopole mass and
of reducing the bounce action.

We now compare our answer with the well known
formula of [15] relevant to homogeneous nucleation, i.e.,
tunneling of the translation invariant false vacuum to the
true vacuum. Denoting this bounce to be B0,

B0 ¼ 27�2

2

S41
�3

(82)

¼ 27�2

128
~�2~a16

�12

�3
: (83)

Comparing this expression with our bounce B � SE for the
monopole assisted tunneling given in (79), we see that

B ¼ 32
ffiffiffi
2

p
105�

B0

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
: (84)

We see that unlike the homogeneous case, the bounce can
parametrically become indefinitely small and vanish in the
limit R1 ! R2. The interpretation of this limit is that the
very presence of a monopole in this parameter regime
implies the unviability of a state asymptotically approach-
ing the vacuum deduced by a naive use of the effective
potential. If the parameters in the effective potential ex-
plicitly depend on external variables such as temperature, it
may happen that the limit R1 ! R2 is reached at a critical
value of this external parameter. In this case, as the external
parameter gets tuned to this critical value, the monopoles
will become sites where the true vacuum is nucleated
without any delay and the indefinite growth of such bub-

bles will eventually convert the entire system to the true
vacuum without the need for quantum tunneling. Such a
phenomenon may be referred to as a rollover transition
[20] characterized by the relevant critical value.

VI. MONOPOLE DECAY IN A SUPERSYMMETRIC
SUð5Þ GRAND UNIFIED THEORY MODEL

The results of this work have direct relevance to a super-
symmetric SUð5Þ model studied in [25] in which super-
symmetry symmetry breaking is sought directly through
O’Raifeartaigh type breaking. The Higgs sector, which
contains two adjoint scalar superfields �1 and �2 and the
superpotential, including leading nonrenormalizable
terms, is of the form

W ¼ Tr

�
�2

�
��1 þ ��2

1 þ
�1

M
�3

1 þ
�2

M
Trð�2

1Þ�1

��

¼ �1�2

�
�� �ffiffiffiffiffiffi

30
p �1 þ ð7�1 þ 30�2Þ �2

1

30M

�
; (85)

where �1 and �2 are selected components of �1 and �2,
respectively, relevant to the symmetry breaking. Two mass
scales appear in the superpotential, � and M, the latter
being a larger mass scale whose inverse powers determine
the magnitudes of the coefficients of the nonrenormaliz-
able terms. The scalar potential derived from this super-
potential can be written as

V ¼
�
��1 � ��2

1ffiffiffiffiffiffi
30

p þ 7�1�
3
1

30M
þ �2�

3
1

M

�
2

þ
�
�2

�
�� 2��1ffiffiffiffiffiffi

30
p þ ð7�1 þ 30�2Þ

10M
�2

1

��
2
: (86)

In [22], monopole solutions were shown to exist in this
model and the classical instability of the vacuum structure
of this theory in the presence of such monopoles was
discussed.
Thin-walled monopoles can be obtained in this model

under the condition

�1

�
�

ffiffiffiffiffiffi
30

p
2�

(87)

which is equivalent to the condition in Eq. (13), and hence
the results of this paper could be applied directly there. In
[22] the region of parameter space studied did not coincide
with this condition, and thus the monopoles were not thin
walled. The monopoles were classically unstable when
��M4 was increased beyond a critical value. We can
recover this behavior from Eq. (79) as � is increased;
however, it is important to note that our approximation in
this paper becomes invalid for large enough �.

VII. DISCUSSIONS AND CONCLUSIONS

We have calculated the decay rate for so-called false
monopoles in a simple model with a hierarchical structure
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of symmetry breaking. The toy model that we use has a
breaking of SUð2Þ to Uð1Þ which is the false vacuum,
which in principle happens at a higher energy scale, and
then a true vacuum which has no symmetry breaking. The
symmetry broken false vacuum admits magnetic mono-
poles. The false vacuum can decay via the usual creation of
true vacuum bubbles [15]; however, we find that this decay
can be dramatically enhanced in the presence of magnetic
monopoles. Even though the false vacuum is classically
stable, the magnetic monopoles can be unstable. At the
point of instability, the monopoles are said to dissociate.
This corresponds to an evolution where the core of the
monopole, which contains the true vacuum, dilates indef-
initely [17,18,24]. However, before the monopoles become
classically unstable, they can be rendered unstable from
quantum tunneling. We have computed the corresponding
rate and find that as we approach the regime of classical
instability, the exponential suppression vanishes. The tun-
neling amplitude behaves as

�

V
�

�
�

2

�
exp

�
16

105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S1�

2�

3

s
F ðR1; R2; R3Þ

�
(88)

with

F ðR1; R2; R3Þ ¼ R7=2
2

�
1� R1

R2

�
5=2

I

�
R1

R2

;
R3

R2

�
; (89)

where � contains the determinantal and zero mode factors,
and I is defined in Eq. (69). In the limit that R1 ! R2 the
tunneling rate is unsuppressed while the homogeneous
tunneling rate for the nucleation of true vacuum bubbles
as found by Coleman [15] still remains suppressed. Hence
in this limit, the classical false vacuum is classically stable,
but subject to quantum instability through the nucleation of
true vacuum bubbles, but the rate for such a decay can be
quite small. However, the existence of magnetic monopole
defects renders the false vacuum unstable, and in the limit
of large monopole mass, the decay rate is unsuppressed.
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