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Restricting the functional integral to the Gribov region � leads to a deep modification of the behavior

of Euclidean Yang-Mills theories in the infrared region. For example, a gluon propagator of the Gribov

type, k2

k4þ�̂4 , can be viewed as a propagating pair of unphysical modes, called here i-particles, with

complex masses �i�̂2. From this viewpoint, gluons are unphysical and one can see them as being

confined. We introduce a simple toy model describing how a suitable set of composite operators can be

constructed out of i-particles whose correlation functions exhibit only real branch cuts, with associated

positive spectral density. These composite operators can thus be called physical and are the toy analogy of

glueballs in the Gribov-Zwanziger theory.
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I. INTRODUCTION

A very peculiar feature of the strong interaction is the
fact that quarks and gluons cannot be observed as free
particles, i.e. they are absent from the physical spectrum.
As the theory of quantum chromodynamics (QCD) de-
scribes the strong interaction, it should account for this
property. A first step towards a full picture is the inves-
tigation of the gluonic sector alone, thus ignoring contri-
butions from quarks. Even this simpler case of Yang-Mills
theory is very intricate and is widely studied from both
analytical and numerical points of view. Its spectrum is
believed to consist of so-called glueballs, color singlets
made up by gluons only.1 Yang-Mills theory then has to
explain why gluons do not exist as asymptotic states,
whereas glueballs do.

A possible and well-investigated mechanism for gluon
confinement is provided by the Gribov-Zwanziger frame-
work [2,3], which enables us to take into account the effect
of Gribov copies [2]. Although the existence of Gribov
copies is a general feature of the gauge fixing procedure
[4], we shall refer here to the case of the Landau gauge,
@�A

a
� ¼ 0, which is a renormalizable gauge in the contin-

uum, while also possessing a lattice formulation. The
problem of gauge copies is remedied by restricting the
domain of integration in the Feynman path integral to the

Gribov region �, defined as the set of field configurations
which obey the Landau condition and for which the
Faddeev-Popov operator, Mab ¼ �@�D

ab
� ¼ �ð�ab@2 þ

gfabcAc
�@�Þ, is strictly positive, namely

� ¼ fA;@�Aa
� ¼ 0;Mab > 0g: (1)

The region � is convex and bounded in all directions in
field space, and every gauge orbit passes through� [5]. Its
boundary @� is known as the first Gribov horizon, where
the lowest eigenvalue of the Faddeev-Popov operator van-
ishes. As shown in [3,6], the restriction to the region � is
achieved by adding to the Yang-Mills action the so-called
horizon term

Sh ¼ �4
Z

d4xhðxÞ

¼ �4
Z

d4x
Z

d4yDac
� ðxÞðM�1Þadðx; yÞDdc

� ðyÞ; (2)

with

Dab
� ¼ @��

ab þ gfacbAc
�; (3)

the covariant derivative. The action thus becomes

S ¼ SYM þ Sgf þ Sh; (4)

where the Yang-Mills and gauge fixing part of S are given
by

SYM ¼ 1

4

Z
d4xFa

��F
a
��; (5)

Sgf ¼
Z

d4xðiba@�Aa
� � �caMabcbÞ: (6)
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The field ba is the Lagrange multiplier enforcing the
Landau gauge condition, and ð �ca; caÞ are the Faddeev-
Popov ghosts. The massive parameter �, known as the
Gribov parameter, is not free, being determined in a self-
consistent way by a gap equation called the horizon con-
dition [3], namely

hhðxÞi ¼ dðN2 � 1Þ; (7)

where N is the number of colors and d the space-time
dimension.

Although being nonlocal, the horizon term can be cast in
local form by introducing a suitable set of auxiliary fields
ð �’ab

� ; ’ab
� ;!ab

� ; �!ab
� Þ. The fields ð �’ab

� ; ’ab
� Þ are a pair of

complex conjugate bosonic fields, whereas ð!ab
� ; �!ab

� Þ are
anticommuting. Notice that these fields carry two color
indices and one Lorentz index. This is necessary in order to
account for the required number of degrees of freedom.
Thus, the localized form of the action reads

SGZ ¼ SYM þ Sgf þ Sloc; (8)

where

Sloc ¼
Z

d4xð �’ac
� Mab’bc

� � �!ac
� Mab!bc

�

� gfabcð@� �!ad
� ÞðDbe

� ceÞ’cd
�

þ �2gfabcAabc
� ð’bc

� � �’bc
� Þ � dðN2 � 1Þ�4Þ: (9)

The last term is introduced in order to be able to rewrite the
horizon condition (7) as

��

��2
¼ 0; (10)

where � is the vacuum energy, i.e.

e�� ¼
Z
½d��e�SGZ ; (11)

and [d�] stands for the functional integration over all
fields. In terms of the auxiliary fields ð �’ab

� ; ’ab
� Þ, the hori-

zon condition (10) takes the form

hgfabcAa
�ð’bc

� � �’bc
� Þi ¼ 2dðN2 � 1Þ�2: (12)

Remarkably, the action (8) turns out to be multiplicatively
renormalizable to all orders, thanks to the existence of a
rich set of Ward identities which can be established at the
quantum level [3,7–12]. Let us mention, in particular, that,
unlike the case of the Faddeev-Popov action, the Gribov-
Zwanziger action does not enjoy exact Becchi-Rouet-
Stora-Tyutin (BRST) symmetry, which turns out to be
softly broken by terms proportional to the Gribov parame-
ter � [12–14]. Nevertheless, the breaking term can be kept
under control at the quantum level, giving rise to softly
broken Slavnov-Taylor identities which constrain very
much the form of the possible counterterm. We also refer
to [15] for a few peculiarities concerning the renormaliza-
tion analysis of the Gribov-Zwanziger theory.

The restriction to the Gribov region � entails deep
modifications in the behavior of the theory in the infrared
region. Let us give a look, for example, at the gluon
propagator stemming from the action (8)

hAa
�ðkÞAb

�ð�kÞi ¼ �ab

�
��� �

k�k�

k2

�
k2

k4 þ �̂4
;

�̂4 ¼ 2g2N�4:
(13)

Expression (13) is suppressed in the infrared region, while
displaying complex poles at k2 ¼ �i�̂2. This structure
does not allow us to attach the usual particle meaning to
the gluon propagator, invalidating the interpretation of
gluons as excitations of the physical spectrum. In other
words, gluons cannot be considered as part of the physical
spectrum. In this sense, they are confined by the Gribov
horizon, whose presence is encoded in the explicit depen-
dence of expression (13) on the Gribov parameter �.
Another way to see that gluons are not physical particles
is the observation that the propagator (13) has negative
norm contributions and thus it violates positivity [16].
Since a positive-definite norm is required for a probabilis-
tic interpretation [17,18], we conclude that the excitations
described by Eq. (13) are confined. One might argue that
further nonperturbative effects besides the Gribov horizon
might conspire to change this picture. However, qualita-
tively one can obtain the same result with functional meth-
ods [19–24].
Even if the restriction to the Gribov region, with the

consequence of an infrared soft breaking of the BRST
symmetry, provides a natural mechanism for gluon con-
finement, one is left with the nontrivial task of constructing
a set of physical composite operators made of the fields
entering the Gribov-Zwanziger action (8), whose correla-
tion functions can be given a physical meaning in
Minkowskian space. A possible strategy to work out this
kind of analysis is to look at the spectral properties of the
correlation functions. In practice, this amounts to facing
the challenging task of constructing a suitable set of com-
posite operators whose correlation functions can be cast in
the form of a Källén-Lehmann representation, i.e. a spec-
tral representation with a positive spectral function, and
whose analytic continuation in the complex Euclidean
k2-plane exhibits a cut along the negative real axis only.
Such a spectral representation would thus imply that, when
moving to Minkowskian space, the cuts are located along
the positive real axis. Moreover, positivity of the spectral
function then guarantees that a meaningful interpretation
in terms of states of a physical spectrum can be attached to
those operators. This is precisely what one would expect
from a confining theory. This is a highly nontrivial task,
given the complexity of the Gribov type propagator (13) as
well as of the Gribov-Zwanziger action (8).
The first step towards a detailed study of the analyticity

properties of the correlation functions within the Gribov-
Zwanziger framework was undertaken by one of the au-
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thors [3], who evaluated at one-loop order the correlation
function of two gauge invariant operators, namely

Gðk2Þ ¼
Z

d4xe�ikxhF2ðxÞF2ð0Þi; (14)

where F2ðxÞ ¼ Fa
��ðxÞFa

��ðxÞ. The results found in [3] can
be summarized as follows:

Gðk2Þ ¼ Gphysðk2Þ þGunphysðk2Þ: (15)

The unphysical part, Gunphysðk2Þ, displays cuts along the
imaginary axes beginning at the unphysical values k2 ¼
�4i�̂2, whereas the physical part, Gphysðk2Þ, has a cut
beginning at the physical threshold k2 ¼ �2�̂2.
Moreover, the spectral function of Gphysðk2Þ turns out to
be positive, so that it possesses a Källén-Lehmann repre-
sentation [3]. As such, Gphysðk2Þ is an acceptable correla-
tion function for physical glueball excitations. What is
interesting in expression (15) is that a physical cut has
emerged in the correlation function of a gauge invariant
quantity, even if it has been evaluated with a gluon propa-
gator exhibiting only unphysical complex poles.

Obviously, the big challenge lying ahead of us is to find
out if one can get rid of the unwanted unphysical cut. We
should like to mention an alternative possibility which at
the moment remains at the level of a scenario, in fact, a
scenario with a deus ex machina: it is possible that physi-
cally satisfactory analyticity properties emerge only when
the horizon condition, Eq. (10), is satisfied. This is difficult
to investigate because the horizon condition is nonpertur-
bative, and we can offer no evidence in support of this
happy eventuality. In the present investigation we are
limited to perturbative calculations.

The present paper aims at pursuing such an analysis. To
go further, we should figure out a plausible mechanism
which deforms local gauge invariant operatorsOi such that
their expectation values have only physical cuts.

This deformation can be done by adding to Oi local
quantities depending on the fields of the Gribov-Zwanziger
action. As it will be shown, this deforming mechanism will
allow, in particular, to get rid of the unphysical cuts in the
lowest nontrivial order for the above-mentioned two-point
function, Eq. (14). The possibility that the mechanism can
be generalized for other operators, and at any given order
of perturbation theory, could be envisaged as follows. One
first considers the usual observables of Yang-Mills theory:
basically the elements of the BRST cohomology, i.e. the
color singlet local gauge invariant operators built up of the
field strength Fa

�� and its covariant derivatives. For a given

canonical dimension, one has generally a mixing that is
induced by renormalization [25,26]. For instance, an op-
erator such as F3 ¼ fabcFa

��F
b
��F

c
�� can mix with other

BRST nontrivial operators such as Fa
��ðD2F��Þa, etc.

Moreover, the softly broken Slavnov-Taylor identities in-
dicate that, besides the expected mixing with BRST exact
operators, also mixings with operators which are not BRST

invariant will, in general, occur. One hopes, however, that
only suitable combinations of all these operators can be
defined, such that their expectation values only exhibit
physical cuts, with mutual compensation of all terms
with unphysical cuts. One is thus led to a kind of boot-
strap mechanism, where one starts with a particular mixing
at the tree level, such that the absence of unphysical cuts be
enforced order by order in perturbation theory. In other
words, at the tree level, an observable should be written in
the following form

O ¼ X
i

ð�iðg2ÞOðBRST invariantÞ
i

þ �iðg2ÞOðnon BRST invariantÞ
i Þ: (16)

The values of the coefficients �ið0Þ and �ið0Þ at their
lowest order are supposed to be determined by the require-
ment of having only physical cuts. Our point of view is thus
as follows. The BRST symmetry characterizes the action
and the observables of the theory in the perturbative short-
distance regime as elements of its cohomology. This sym-
metry is however softly broken in the long-distance re-
gime. Even if the presence of the soft breaking enables us
to determine a renormalizable local action under the form
of the Gribov-Zwanziger action, it turns out that the local
observables have to be modified by the addition of suitable
terms as in Eq. (16), where the positivity of the correspond-
ing correlation functions is required to hold. When all the
auxiliary fields are integrated out, this is tantamount to
modifying the observables and the action by nonlocal
terms, proportional to the nonperturbative Gribov parame-
ter �. The remainder of this paper will consist of providing
a certain number of examples in order to check the plau-
sibility of this framework, by using the predictive power of
local quantum field theory.
Our main purpose here is therefore that of investigating

how the use of a confining Gribov type propagator can
allow us to obtain examples of correlation functions ex-
hibiting real cuts only and positive spectral functions. Our
analysis relies on the introduction of what we shall call
i-particles: a pair of fields with complex conjugate masses
which emerge in a natural way when dealing with a Gribov
type propagator. In fact

1

k4 þ �̂4 ¼ 1

2i�̂2

�
1

k2 � i�̂2
� 1

k2 þ i�̂2

�
; (17)

from which it is apparent that a Gribov propagator can be
associated to the propagation of excitations with complex
conjugate masses �i�̂2. As it will be discussed in detail,
the use of i-particles enables us to provide examples of
operators whose correlation functions exhibit the desired
analyticity properties. More specifically, we shall be able
to show that local composite operators built up with pairs
of i-particles display cuts along the negative real axis in the
complex Euclidean k2-plane, while giving rise to positive
spectral functions.
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The paper is organized as follows. In Secs. II, III, IV, V,
and VI we discuss our ideas with a toy model, which is
introduced in Sec. II using a scalar field possessing a
confining propagator of the Gribov type. This will enable
us to illustrate in a simple way how the action of the toy
model can be cast in diagonal form through the introduc-
tion of i-particles. Section III is devoted to a detailed study
of a first example of a local operator, constructed from
i-particles, whose one-loop correlation function possesses
a Källén-Lehmann spectral representation. Section IV pro-
vides further details of the calculation of this correlation
function in the complex k2-plane. In Sec. V we face the
evaluation of correlation functions with several loops. The
evaluation of the spectral representation for two- and three-
loop integrals obtained from operators built up with
i-particles will be worked out. In particular, it will be
shown that the spectral function at higher order can be
obtained by a kind of convolution of the spectral functions
obtained at lower orders. This provides a useful iterative
procedure, allowing us to generalize the argument to the
n-loop case. In Sec. VI we discuss the meaning of the
i-fields within the toy model. We argue that those fields
might be regarded as rather useful variables in order to
construct sensible composite operators within a local quan-
tum field theory framework. In Sec. VII we return to the
Gribov-Zwanziger action. We discuss how i-particles
emerge and how they can be employed to give examples
of one-loop correlation functions which, unlike expression
(15), display cuts along the negative real axis only while
having positive spectral functions. Even if a systematic
construction of a set of meaningful operators in the pres-
ence of the Gribov horizon is far from being realized, the
introduction of the i-particles might be seen as an interest-
ing path in order to provide at least some examples of
operators displaying good analyticity properties, some-
thing which can already be regarded as a nontrivial
achievement. In the Conclusions a few points for future
investigations will be spotted. Finally, several useful de-
tails about the evaluation of the spectral densities are
reported in the Appendices.

II. A SCALAR FIELD THEORY TOY MODEL

A. Constructing the toy model

A simple way of constructing a field theory model
exhibiting a confining Gribov type propagator is through
a scalar field c whose Euclidean action is nonlocal, being
specified by

S ¼
Z

d4x
1

2
c

�
�@2 þ 2

�4

�@2

�
c : (18)

The massive parameter � is introduced by hand and is akin
to the Gribov parameter �. As it is easily seen, the resulting
propagator is in fact of the Gribov type

hc ðkÞc ð�kÞi ¼ k2

k4 þ 2�4
: (19)

Although being nonlocal, expression (18) can be cast in
local form by introducing a pair of bosonic complex con-
jugate fields ð �’;’Þ and a pair of anticommuting fields
ð �!;!Þ, so that

S ¼
Z

d4x

�
1

2
c ð�@2Þc þ �’ð�@2Þ’þ �2c ð’� �’Þ

� �!ð�@2Þ!
�
: (20)

Let us have a look at the propagators of the model. To that
purpose, we introduce new variables ðU;VÞ in order to
achieve a partial diagonalization of the action

’ ¼ Uþ iVffiffiffi
2

p ; �’ ¼ U� iVffiffiffi
2

p : (21)

In terms of the fields ðU;VÞ, the action of the toy model
reads

S ¼
Z

d4x

�
1

2
c ð�@2Þc þ 1

2
Vð�@2ÞV þ ffiffiffi

2
p

i�2cV

þ 1

2
Uð�@2ÞU� �!ð�@2Þ!

�
: (22)

From the above expression, the propagators can be worked
out:

hc c i ¼ p2

p4 þ 2�4
; hVVi ¼ p2

p4 þ 2�4
;

hVc i ¼ �i
ffiffiffi
2

p
�2

p4 þ 2�4
; hUUi ¼ 1

p2
:

(23)

Having evaluated the propagators of the fields ðc ; U; VÞ,
we can now check what the propagators in terms of the
fields ð’; �’Þ are. One finds

hc’i ¼ �2

p4 þ 2�4
; hc �’i ¼ � �2

p4 þ 2�4
;

h’ �’i ¼ p4 þ �4

p2ðp4 þ 2�4Þ ; h’’i ¼ �4

p2ðp4 þ 2�4Þ :
(24)

B. Introducing the i-particles

Expression (22) can be cast in complete diagonal form
by making a further change of variables:

c ¼ 1ffiffiffi
2

p ð	þ 
Þ; (25)

V ¼ 1ffiffiffi
2

p ð	� 
Þ; (26)

so that
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S ¼
Z

d4x

�
1

2
	ð�@2 þ i

ffiffiffi
2

p
�2Þ	þ 1

2

ð�@2 � i

ffiffiffi
2

p
�2Þ


þ 1

2
Uð�@2ÞU� �!ð�@2Þ!

�
: (27)

From this expression one immediately sees that the fields 	
and 
 correspond to the propagation of unphysical modes

with complex masses �i
ffiffiffi
2

p
�2. These are the i-particles of

the model, namely2

h	ðkÞ	ð�kÞi ¼ 1

k2 þ i
ffiffiffi
2

p
�2

(28)

h
ðkÞ
ð�kÞi ¼ 1

k2 � i
ffiffiffi
2

p
�2

: (29)

It is important to notice here that requiring

	y ¼ �
; 
y ¼ �	 (30)

will ensure that (27) corresponds to a Hermitian action.

III. CONSTRUCTION OF COMPOSITE
OPERATORS AT ONE LOOP

A. Preliminaries

Having cast the action in diagonal form, we face now the
construction of a set of composite operators made out of
i-particles, whose correlation functions exhibit real cuts
only. As the Gribov propagator (19) and the diagonal form
of the action (6) suggest, we shall look at composite
operators constructed by means of pairs of i-particles.

The simplest example which one can consider at one
loop is that of the dimension-two composite operator con-
sisting of one i-particle of the type 	 and one i-particle of
the type 
, namely

O1ðxÞ ¼ 	ðxÞ
ðxÞ; (31)

which is indeed a real (Hermitian) operator, according to
the prescription (30).

The correlation function hO1ðkÞO1ð�kÞi in d Euclidean
dimensions is given by

hO1ðkÞO1ð�kÞi ¼
Z ddp

ð2�Þd
1

ðk� pÞ2 � i
ffiffiffi
2

p
�2

� 1

p2 þ i
ffiffiffi
2

p
�2

: (32)

By direct inspection of the action (6), it follows that the
correlation function of three operators O1ðxÞ vanishes

hO1ðxÞO1ðyÞO1ðzÞi ¼ 0: (33)

Only correlation functions with an even number of opera-
tors O1 are nonvanishing.
The complex nature of the i-particle masses may raise

concerns about the consistency of the theory. A pressing
question is that of the unitarity. One has to be sure that
these correlation functions have a well-defined probabilis-
tic interpretation. In order to settle this question, in what
follows we shall provide an explicit evaluation of the
spectral function associated with the Källén-Lehmann rep-
resentation of the two-point function hO1ðkÞO1ð�kÞi.

B. Källén-Lehmann representation in d ¼ 4

We start our analysis by evaluating the integral (32). Our
way to proceed is that of casting it into the so-called
spectral representation, which has a precise and powerful
meaning, both in complex analysis and quantum field
theory. It is given by

hO1ðkÞO1ð�kÞi ¼
Z 1

�0

d��ð�Þ 1

�þ k2
; (34)

where the quantity �0 > 0 stands for the threshold. Once
expression (34) has been obtained, we take it as our very
starting point. We introduce the complex function

FðzÞ ¼
Z 1

�0

d��ð�Þ 1

�þ z
: (35)

Therefore, from complex analysis, it follows that FðzÞ is an
analytic function in the cut complex plane, where the
interval ð�1;��0Þ has been excluded. Moreover, when
moving from Euclidean to Minkowskian space, i.e. k2Eucl !�k2Mink, expression (35) gives the spectral representation of

a quantity exhibiting a discontinuity along the positive real
axis, starting at the threshold �0 and extending until þ1.
One requires also that the function �ð�Þ is positive in order
to have a probabilistic interpretation. Indeed, using
Cauchy’s theorem, it is a relatively easy exercise to show
that

�ð�Þ ¼ 1

2�i
lim
!0þ

½Fð��� iÞ � Fð��þ iÞ�;
with � � �0; (36)

i.e. �ð�Þ is directly related to the discontinuity of the
propagator FðzÞ along its branch cut. Via the optical theo-
rem, we then also know that �ð�Þ is proportional to a cross
section, which evidently needs to be positive in a mean-
ingful quantum field theory.
In order to obtain the spectral representation, we employ

Feynman parameters in the general d-dimensional situ-
ation in order to combine the denominators in (32)

2There are more propagators than the ones shown, but these
are not relevant for the calculation presented.
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hO1ðkÞO1ð�kÞi ¼
Z ddp

ð2�Þd
1

ðk� pÞ2 � i
ffiffiffi
2

p
�2

1

p2 þ i
ffiffiffi
2

p
�2

¼
Z ddp

ð2�Þd
Z 1

0
dx

1

½xðk2 � 2p � k� 2i
ffiffiffi
2

p
�2Þ þ p2 þ i

ffiffiffi
2

p
�2�2

¼
Z ddq

ð2�Þd
Z 1

0
dx

1

½q2 þ ðx� x2Þk2 � ð2x� 1Þi ffiffiffi
2

p
�2�2 ; (37)

where we have defined q � p� kx. Using now the identity

Z ddq

ð2�Þd
1

½q2 þ �2�n ¼
1

ð4�Þðd=2Þ
�ðn� d

2Þ
�ðnÞ ð�2Þðd=2Þ�n;

(38)

with n ¼ 2 and �2 ¼ ðx� x2Þk2 � ð2x� 1Þi ffiffiffi
2

p
�2, we ob-

tain

hO1ðkÞO1ð�kÞi ¼ �ð2� d
2Þ

ð4�Þðd=2Þ
Z 1

0
dx½ðx� x2Þk2

� ð2x� 1Þi ffiffiffi
2

p
�2�ðd=2Þ�2: (39)

We now consider the case of d ¼ 4. We define

Fðk2Þ ¼ hO1ðkÞO1ð�kÞi: (40)

We start from (39) and act on it with @
@k2

. This regularizes
the original integral for Fðk2Þ, which is ultraviolet diver-
gent. After setting d ¼ 4, we find

@

@k2
Fðk2Þ ¼ � 1

16�2

Z 1

0
dx

xð1� xÞ
xð1� xÞk2 þ xi� i=2

¼ � 1

16�2

Z 1

0
dx

xð1� xÞ
xð1� xÞk2 � xiþ i=2

;

(41)

where we temporarily switched to units 2
ffiffiffi
2

p
�2 ¼ 1 for

notational convenience. The substitution s ¼ 2x�1
2xð1�xÞ , or

x ¼ �1þsþ
ffiffiffiffiffiffiffiffi
1þs2

p
2s , brings us to

@

@k2
Fðk2Þ ¼ � 1

16�2

Z þ1

�1
ds

1

k2 � is

dð�1þsþ
ffiffiffiffiffiffiffiffi
1þs2

p
2s Þ
ds

¼ 1

16�2

Z þ1

�1
ids

ðk2 � isÞ2
�1þ sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

2s
;

(42)

where we employed partial integration. There is no prob-

lem at s ¼ 0 if k2 > 0, since lims!0
�1þsþ

ffiffiffiffiffiffiffiffi
1þs2

p
2s ¼ 1

2 . There

are no poles in the upper half s-plane for k2 > 0, so we can
deform the contour to be located around the cut for s 2
½i1; i�. Setting s ¼ i�, we compute (42) as

@

@k2
Fðk2Þ ¼ 1

16�2

Z 1

1
�d�

ðk2 þ �Þ2
�1þ i�� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

2i�

þ 1

16�2

Z 1

1

�d�

ðk2 þ �Þ2
�1þ i�þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

2i�

¼ � 1

16�2

Z 1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

�

d�

ðk2 þ �Þ2 : (43)

We can subsequently integrate this expression from 0 to k2,
finding

Fðk2Þ � Fð0Þ ¼ 1

16�2

Z 1

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

�

�
1

�þ k2
� 1

�

�
d�;

(44)

or, by restoring the units,

Fðk2Þ � Fð0Þ ¼ 1

16�2

Z 1

2
ffiffi
2

p
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 8�4

p

�

�
1

�þ k2
� 1

�

�
d�:

(45)

From this expression, we notice the importance of the
subtraction of Fð0Þ to find a finite result, otherwise we
would find a divergent spectral integral. The spectral den-
sity can be read off from (45),

�ð�Þ ¼ 1

16�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 8�4

p

�
: (46)

Interpreting this result as an expression of the physical
spectrum of the theory, we see that it has a threshold at
2

ffiffiffi
2

p
�2. The same calculation can be repeated in the case of

two particles with real mass �, where the spectrum is
found to begin at the threshold 4�2 ¼ ð�þ�Þ2. In the
present case we have an analogous situation for the
i-particles, even though they have complex masses:
2

ffiffiffi
2

p
�2 ¼ ðeið�=4Þ2ð1=4Þ�þ e�ið�=4Þ2ð1=4Þ�Þ2. Note also that

the spectral function is positive in the range of integration.
This is a very important feature for the theory to have a
physically meaningful probabilistic interpretation.
Finally, an explicit integration of (44) leads to

Fðk2Þ � Fð0Þ ¼ 1

16�2

�
1� �

2k2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k4

p

k2
arccosðk2Þ

�
:

(47)

In Figs. 1(a) and 1(b), we have displayed the (rescaled) real
and imaginary part of Fðk2Þ. The cut for z 2 ½�1;�1� is
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clearly visible. In Appendix A, we have determined the
spectral density �ð�Þ for the case that d ¼ 2 or d ¼ 3while
verifying the d ¼ 4 result, based on two quite different
calculational schemes. Also in the cases d ¼ 2, 3, a posi-
tive spectral density is found.

IV. A CLOSER LOOK AT THE ANALYTIC
CONTINUATION BY MEANS OF THE SPECTRAL

REPRESENTATION

A. The case of complex masses

As already explained in Sec. III, the knowledge of the
spectral density �ð�Þ allows us to obtain the analytic
continuation of the correlation function for complex k2,
whereby it not necessarily holds that k2 > 0. The main
formula is given by (35), by means of which we are able to
define the analytic continuation of the original momentum
space integral (32), which gives for the correlation func-
tion,3

Oðk2Þ ¼ 1

4�2

Z
d2p

1

~p2 � i=2

1

~p2 þ ~k2 � 2 ~p � ~kþ i=2
:

(48)

For any real external momentum vector ~k, so that k2 > 0,
the integral (48) certainly makes sense. For such vectors,
we can reexpress (48) as

1

4�2

Z
d2p

1

~p2 � i=2

1

~p2 þ ~k2 � 2 ~p � ~kþ i=2

¼ 1

4�

Z 1

0

dx

xk2 � x2k2 þ ix� i=2
; (49)

as the Feynman (or Schwinger) parametrization trick (39)

is valid for k2 > 0. We have again set 2
ffiffiffi
2

p
�2 ¼ 1.

The momentum integral (48) is however also well-

defined for a more general set of ~k. More precisely, even

for complex vectors ~k, (48) can be still well-defined,
without having that Fðk2Þ given by (49) is a valid repre-
sentation of it, since it is possible that neither the Feynman

nor Schwinger trick applies for such vectors ~k. In
Appendix A, we have calculated the equivalent of (46)
for d ¼ 2, see Eq. (A8). Just as in the previous section, the
spectral density �d¼2ð�Þ was obtained using k2 > 0. It is
therefore nontrivial to verify that Oðk2Þ ¼ F1ðk2Þ for any
choice of ~k whereby Oðk2Þ exists, with

F1ðk2Þ ¼ 1

2�

Z 1

1

d�

�þ k2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p ¼ 1

2�

arccosðk2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k4

p ;

(50)

which is obtained using the spectral representation (A8).
That this constitutes a not-so-trivial check becomes

more apparent when one realizes that once having obtained
(49) for k2 > 0, one can also use the right-hand side of (49)
to define a function for any complex value of k2. Indeed,
the integration can be done exactly, by making use of [27]

Z 1

0

dx

axþ b
¼ 1

a
ln
aþ b

b
; (51)

valid for any complex number a and b. The ill-definedness
of the integral in the left-hand side of (51) for �b

a 2 ½0; 1�
corresponds exactly to the branch cut of the ln in the right-
hand side of (51). We can rewrite the integral (49) in the
following form,

FIG. 1 (color online). Plots of GRðk2Þ � 16�2 Re½Fðk2Þ � Fð0Þ� and GIðk2Þ � 16�2 Im½Fðk2Þ � Fð0Þ�, respectively, with Fðk2Þ �
Fð0Þ given in (47).

3We shall work with d ¼ 2 here for simplicity.
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F2ðk2Þ ¼ 1

4�

Z 1

0

dx

xk2 � x2k2 þ ix� i=2

¼ 1

4�

Z 1

0
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 � 1

p
�

1

x� xþ
� 1

x� x�

�
(52)

by introducing partial fractions, with x� ¼ iþk2�
ffiffiffiffiffiffiffiffi
k4�1

p
2k2

.

Subsequently, using (51) twice, yields

F2ðk2Þ ¼ 1

4�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 � 1

p ½lnðiðk2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 � 1

p
ÞÞ

� lnðiðk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 � 1

p
ÞÞ�: (53)

For k2 > 0, one verifies that F1ðk2Þ ¼ F2ðk2Þ, but the situ-
ation changes drastically in the complex k2-plane. For
Reðk2Þ> 0, it stills holds that F1ðk2Þ ¼ F2ðk2Þ, but the
functions differ for Reðk2Þ 	 0. This difference can be
traced back to the branch cut of F2ðk2Þ, which is given
by the complete imaginary axis. This observation follows
immediately as the integral (52) is well-defined for any
k2 2 C, except for k2 ¼ is, s 2 R. In sharp contrast,
F1ðk2Þ displays a cut located on the negative real axis, as
it was already explained before.

We shall now argue that only F1ðk2Þ obtained via the
spectral representation gives a decent analytic continuation
of the original momentum integral Oðk2Þ. Let us thus

choose an external momentum vector ~k which can be
complex, or

~k ¼ Reð ~kÞ þ i Imð ~kÞ � ~kR þ i ~kI: (54)

We shall restrict ourselves to complex momenta of the type
~k ¼ ðuþ iv; 0Þ, which allow to reach any value of

k2 ¼ ~k2 ¼ u2 � v2 þ 2iuv: (55)

Although we already chose k2 to be the argument ofOðk2Þ,
this is not a priori clear when ~k is not real. However, we
notice that the integral in the right-hand side of (48), if it at
least exists,4 will define an analytic function of k � uþ
iv, which can be easily checked by means of the Cauchy-
Riemann equations. Since we still have the Oð2Þ rotational
symmetry, as we can rotate ~kR and ~kI simultaneously,
which thereby defines a real rotation of the complex vector
~k ¼ k ~ex, it appears that (48) must be a function of ~k2.
We then rewrite (48) as

Oðk2Þ ¼ 1

4�2

Z
dpxdpy

1

p2
x þ p2

y � i=2

1

p2
x þ p2

y þ u2 � v2 þ 2iuv� 2pxðuþ ivÞ þ i=2
: (56)

One could wonder whether it would be possible to obtain finer results if we extend our choice of ~k? Namely, using ~k ¼
ðuþ iv; u0 þ iv0Þ, it is not unconceivable that one could do better. To refute this possibility, we notice that we can already
choose without loss of generality ~k ¼ ðuþ iv; u0Þ, since we can always rotate our basis to bring ~k into this form. The
corresponding integral would read

O0ðk2Þ ¼ 1

4�2

Z
dpxdpy

1

p2
x þ p2

y � i=2

1

p2
x þ p2

y þ u2 � v2 þ 2iuvþ u02 � 2pxðuþ ivÞ � 2pyu
0 þ i=2

; (57)

but the simple shift py ! py þ u gives Oðk2Þ ¼ O0ðk2Þ,
from which we conclude that we can set ~k ¼ ðuþ iv; 0Þ
without loss of generality.

To proceed, the integral (56) is well-defined if the in-
tegrand is free of poles for ~p 2 R2. Let us thus check when
such poles might appear. The only possibility occurs when5

px ¼ uþ 1

4v
; (58)

which is necessary to kill the imaginary part in the second
denominator, and consequently if

1

16v2
� v2 þ p2

y ¼ 0: (59)

Hence, if we take jvj< 1=2, with u arbitrary, the integrand
of (56) is a regular function of px and py, and the integral

will exist as such. It is interesting to notice that this does
not mean that the Schwinger and/or Feynman trick is

applicable for any such vector ~k. Nevertheless, the integral
has a well-defined value. As such, it must coincide with
other ways to compute or define it.
We can now discriminate between F1ðk2Þ and F2ðk2Þ by

taking a test value in the left half plane, such that the
original integral (56) exists. Its value should then coincide
with either F1ðk2Þ or F2ðk2Þ. Actually, we can immediately
motivate that F2ðk2Þ cannot be correct in the whole com-
plex plane. Looking at (55), it is clear that k2 2 iR if u ¼
�v, in which case we have k2 ¼ �2iv2. But as we have
shown, for jvj< 1=2, the original integral is well-defined,
meaning that there cannot be a cut on the whole imaginary
axis, whereas F2ðk2Þ has a cut for any k2 2 iR. This shows
that F2ðk2Þ cannot be the analytic continuation of the
original momentum integral. In fact, F1ðzÞ also describes
the analytical continuation of F2ðzÞ with ReðzÞ> 0 to the
left half complex plane, defined by ImðzÞ 	 0. Since the
whole imaginary axis is a cut of F2ðzÞ, it is impossible to

4We shall shortly see that such ~k do exist.
5We can exclude here the v ¼ 0 case as this corresponds to the

anyhow well-defined case of real external momentum.
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find an open region of C where F2ðzÞImðzÞ>0 and

F2ðz2ÞImðzÞ<0, coincide. Said otherwise, F2ðzÞImðzÞ>0 and

F2ðz2ÞImðzÞ<0 are not analytically connected.

As a second illustration, let us look at the test value

ðu
; v
Þ ¼
�
1

4
;
1

3

�
) k2
 ¼ �7

144
þ i

6
: (60)

It can be checked that in this case, we have

F1ðk2
Þ � 0:254� 0:028i;

F2ðk2
Þ � �0:239� 0:024i:
(61)

We can also calculate (56) directly. We write

Oðk2
Þ ¼ 1

4�2

Z þ1

�1
dpy

�Z þ1

�1
dpx

1

p2
x þ p2

y � i=2

1

p2
x þ p2

y þ u2
 � v2
 þ 2iu
v
 � 2pxðu
 þ iv
Þ þ i=2

�
; (62)

and we use the residue theorem for the px-integration. We close the contour along the upper hemisphere at 1, where the
function vanishes, and we notice that 2 of the 4 poles are located within the contour, being

px1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i� 2p2

y

q
ffiffiffi
2

p ; px2 ¼ 1

12
ð3þ 4i� 6

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i� 2p2

y

q
Þ; (63)

which is independent of py. So,

Oðk2
Þ ¼ 36
ffiffiffi
2

p
�

i
Z þ1

�1
dpyfðpyÞ

fðpyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i� 2p2

y

q
ð7þ 120iþ ð36þ 48iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i� 4p2

y

q
Þ
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i� 2p2
y

q
ð7� 168iþ ð36þ 48iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i� 4p2

y

q
Þ
:

(64)

Since py 2 R, the remaining integral is well-defined6 and
can be computed using direct primitivation. After the
smoke clears, one finds7

Oðk2
Þ � 0:254� 0:028i; (65)

a value which nicely coincides with F1ðk2
Þ, while differing
from F2ðk2
Þ.

We have provided a nontrivial verification of the correct-
ness of the analytically continued function F1ðk2Þ. In fact,
much more can be learned from our analysis. Let us take
expression (55) into reconsideration,

k2 ¼ u2 � v2 þ 2iuv: (66)

As we have shown, problems can only occur for jvj � 1=2.
But even restricting ourselves to jvj< 1=2, Eq. (66) means
that we can still reach a relatively large region of the whole
complex k2-plane without encountering difficulties, since
u is arbitrary. For example, for u ¼ 0, we can end up on the
negative real axis, but there can be a cut on the negative
real axis only for k2 	 �1=4. As another example, we
repeat that by taking u ¼ �v, we conclude that a cut on
the imaginary axis is a priori possible, but only when
jImðk2Þj � 1=2.

In Fig. 2, the shaded parabolic region corresponds to the
values of k2 2 C for which the integral (56) is certainly

well-defined. We clearly observe a small region in the left
half plane where Fðk2Þ should be well-defined, even with-
out invoking analytical continuation. The results obtained
do, of course, not mean that there must be a cut for k2 2
½�1;�1=4� or that there is a ‘‘cut region’’ outside of the

FIG. 2 (color online). Parabolic region in the complex k2 plane
where the original momentum integral Oðk2Þ exists.

6We will never come into the vicinity of the cut of the
occurring roots.

7We did not write the closed expression, as it is rather
intransparent.
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displayed parabola. But we have discovered a certain
region where the analytical continuation has to be consis-
tent with the value of the integral. Certainly, the analytic
continuation of F1ðkÞ is consistent with the value of the
integral within the boundaries of Fig. 2.

To close this section, we mention that we could also
have started with the alternative definition

Ôðk2Þ ¼ 1

4�2

Z
d2p

1

~p2 þ ~k2 � 2 ~p � ~k� i=2

1

~p2 þ i=2
;

(67)

which corresponds to switching the momenta running in

the two legs. For real external momenta ~k, we obviously

have Oðk2Þ ¼ Ôðk2Þ, but for complex ~k, we can no longer
perform a translation on the real integration momentum ~p
to prove this.

However, again setting ~k ¼ ðuþ iv; 0Þ, it is easily
checked that jvj< 1=2 is sufficient to also guarantee that

Ôðk2Þ is well-defined, while from Figs. 3(a), 3(b), 4(a), and

4(b), it is clear that Oðk2Þ ¼ Ôðk2Þ for u arbitrary, jvj<
1=2. For completeness, we have also shown F1ðk2Þ in

Figs. 3(c) and 4(c), which illustrates that indeed Oðk2Þ ¼
Ôðk2Þ ¼ F1ðk2Þ over the parabolic k2-region shown in
Fig. 2. To avoid confusion, we point out that we have

plotted Oðu; vÞ � Oðk2Þ, with k2 ¼ u2 � v2 þ 2iuv, and
analogously for the other functions. We notice that this is
equivalent with having the Schwartz reflection principle,
Oðk2yÞ ¼ Oðk2Þy, a property shared with F1ðk2Þ.
Although we focused exclusively on the d ¼ 2 case in

this section, similar conclusions can be drawn for d ¼ 3 or
d ¼ 4.

B. The case of two real masses

In order to corroborate the previous nontrivial conclu-
sions about a relatively simple Feynman integral with
complex masses, we find it instructive to also include a
similar analysis of the probably more familiar case of two
real and positive masses, being m1 and m2. This has been
investigated in great detail in e.g. [28], albeit in
Minkowskian space. The analog of (48) is given by the
following correlation function,

O2ðk2Þ ¼ 1

4�2

Z
d2p

1

~p2 þm2
1

1

~p2 þ ~k2 � 2 ~p � ~kþm2
2

:

(68)

Translating the results of [28] to Euclidean space, it was
shown that this function of k2 has a positive spectral
density in combination with a branch cut on the negative
real k2-axis starting from �ðm1 þm2Þ2 until �1.

FIG. 3 (color online). ReðOÞ, ReðÔÞ and ReðF1Þ.

FIG. 4 (color online). ImðOÞ, ImðÔÞ and ImðF1Þ.
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Let us now also investigate the region where this integral actually exists. We can again restrict ourselves to complex

momenta of the type ~k ¼ ðuþ iv; 0Þ without loss of generality. Inserting this in Eq. (68), we obtain,

O2ðk2Þ ¼ 1

4�2

Z
dpxdpy

1

p2
x þ p2

y þm2
1

1

p2
x þ p2

y þ u2 � v2 þ 2iuv� 2pxðuþ ivÞ þm2
2

: (69)

Let us check when poles can emerge. The first denominator
is always positive, however, the second denominator can
have poles when the imaginary part vanishes,

2iuv� 2ipxv ¼ 0 , v ¼ 0 or u ¼ px; (70)

simultaneously with the real part being equal to zero,

p2
x þ p2

y þ u2 � v2 þ 2pxuþm2
2: (71)

Inserting the first solution of Eq. (70), i.e. v ¼ 0, in the
equation above, we find

ðpx þ uÞ2 þ p2
y ¼ �m2

2; (72)

which can never be fulfilled. The second solution, i.e. u ¼
px, results in

p2
y ¼ v2 �m2

2: (73)

Therefore, no poles shall occur for jvj<m2, while for
jvj � m2, the integral (68) becomes ill-defined. This is
important as it shows us that also in the well-studied case
of two real masses, the original integral (68) is also only
well-defined in a certain region of the complex plane, here
displayed in Fig. 5. Consequently, one also needs to per-
form an analytic continuation outside this region, just as in
the case of pure complex masses.

V. HIGHER LOOP CASE

Having discussed in detail the analyticity properties of
one-loop correlation functions made of i-particles, we face
now the extension to higher orders. As we shall see, the use
of i-particles turns out to be extremely useful here, ena-
bling us to construct a rather interesting iterative procedure
valid for an n-loop integral. Note that in the toy model only
one type of diagram appears, sometimes known as water
melon diagrams, because there are no interactions. The
case of diagrams including interactions as appearing for
the GZ theory is left for future studies. Let us begin with
the two-loop order.

A. A two-loop example

In order to obtain an example of a two-loop correlation
function, we consider the local operator

O2ðxÞ ¼ 	ðxÞ
ðxÞUðxÞ: (74)

For the correlation function hO2ðkÞO2ð�kÞi we find
hO2ðkÞO2ð�kÞi ¼ J2ðk2Þ

¼
Z d4p

ð2�Þ2
d4q

ð2�Þ2
1

q2
1

p2 þ i
ffiffiffi
2

p
�2

� 1

ðk� q� pÞ2 � i
ffiffiffi
2

p
�2

; (75)

where k2 is the Euclidean external momentum. In order to
evaluate it,8 we rewrite it as

J2ðk2Þ ¼
Z d4q

ð2�Þ4
1

q2

�Z d4p

ð2�Þ2
1

p2 þ i
ffiffiffi
2

p
�2

� 1

ðk� q� pÞ2 � i
ffiffiffi
2

p
�2

�
; (76)

so that we can use the spectral representation (45) already
found at one-loop level, namely

Z d4p

ð2�Þ2
1

p2 þ i
ffiffiffi
2

p
�2

1

ðk� q� pÞ2 � i
ffiffiffi
2

p
�2

¼
Z 1

�0

d��ð�Þ 1

�þ ðk� qÞ2 ; (77)

with �0 ¼ 2
ffiffiffi
2

p
�2. Therefore

FIG. 5 (color online). Parabolic region in the complex k2 plane
where the momentum integral O2ðk2Þ exists with m2

2 ¼ 1=2.

8From now on, we shall not bother about potential subtractions
to make it well-defined. These can always be obtained by taking
a suitable number of derivatives w.r.t. the external momentum k2.
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J2ðk2Þ ¼
Z 1

�0

d��ð�Þ
�Z d4q

ð2�Þ2
1

q2
1

�þ ðk� qÞ2
�
: (78)

The q-integral becomes now straightforward. It corre-
sponds to the one-loop integral in which one particle is
massless, and the other one has a real and positive mass �.
Such integrals also have a spectral representation with
positive spectral density, given by

Z d4q

ð2�Þ4
1

q2
1

�þ ðk� qÞ2 ¼
Z 1

�
ds�1ðsÞ 1

sþ k2
; (79)

where �1ðsÞ is the associated spectral function. Its explicit
value can be found in Appendix A, Eq. (B6). Thus,

J2ðk2Þ ¼
Z 1

�0

d��ð�Þ
Z 1

�
ds�1ðsÞ 1

sþ k2
: (80)

This is not yet in the form of a spectral representation. By
switching the order of integration, we can however reex-
press the double integral as

J2ðk2Þ ¼
Z 1

�0

ds
1

sþ k2

Z s

�0

d��1ðsÞ�ð�Þ ¼
Z 1

�0

�2ðsÞ
sþ k2

ds:

(81)

This means that the spectral density is given by

�2ðsÞ ¼
Z s

�0

d��ð�Þ�1ðsÞ; (82)

whereby we kept in mind that �1ðsÞ will depend on � as
well. This allows to make the following observations:

(i) The branch cut will be located on the negative real
axis from �1 to ��0.

(ii) For s 2 ½�0;1�, we have �ð�Þ � 0 due to the pos-
itivity of �ð�Þ over the interval ½�0;1�. We shall
thus have that �2ðsÞ � 0 itself if �1ðsÞ � 0 for s 2
½�0;1�. The latter turns out to be true, as �1ðsÞ is
defined for all � with � � �0, where it is positive.

In conclusion, the two-loop correlation function (75) can
also be reexpressed in a spectral form, with associated
positive spectral density. As we have seen, there is even
no need to explicitly evaluate the integral or spectral
density to establish these conclusions. To completely con-
vince ourselves, we can also evaluate (82) explicitly, by
making use of (46) and (B6), which leads to

�2ðsÞ ¼ 1

ð16�2Þ2
Z 1

2
ffiffi
2

p
�2
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 8�4

p

�

�
1� �

s

�

¼ 1

ð16�2Þ2
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 8�4

p

þ 2
ffiffiffi
2

p
�2
�
arctan

�
2

ffiffiffi
2

p
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 8�4
p

�
� �

2

�

þ 4�4

s

�
ln
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 8�4

p

2
ffiffiffi
2

p
�2

��
; (83)

and then one can check that �2ðsÞ is indeed positive for s �
2

ffiffiffi
2

p
�2.

B. A three-loop example

To construct another example of a higher loop correla-
tion function, one might consider the composite operator

O3ðxÞ ¼ 1

4
ð	ðxÞ
ðxÞÞ2; (84)

which gives rise to a three-loop expression

J3ðk2Þ ¼
Z ddq

ð2�Þd
dd‘

ð2�Þd
ddp

ð2�Þd
1

q2 þ i
ffiffiffi
2

p
�2

1

‘2 � i
ffiffiffi
2

p
�2

� 1

p2 þ i
ffiffiffi
2

p
�2

1

ðk� q� ‘� pÞ2 � i
ffiffiffi
2

p
�2

:

(85)

We proceed in a similar way as for the two-loop case.
Starting from

Z ddp

ð2�Þd
1

p2 þ i
ffiffiffi
2

p
�2

1

ðk� q� ‘� pÞ2 � i
ffiffiffi
2

p
�2

¼
Z 1

�0

d��ð�Þ 1

�þ ðk� p� ‘Þ2 ; (86)

and by making the change of variables

‘ ! ‘� q; (87)

we get

J3ðk2Þ ¼
Z 1

�0

d��ð�Þ
Z dd‘

ð2�Þd
1

�þ ðk� ‘Þ2

�
Z ddq

ð2�Þd
1

q2 þ i
ffiffiffi
2

p
�2

1

ð‘� qÞ2 � i
ffiffiffi
2

p
�2

: (88)

Thus,

J3ðk2Þ ¼
Z 1

�0

d��ð�Þ
Z dd‘

ð2�Þd
1

�þ ðk� ‘Þ2

�
Z 1

�0

ds�ðsÞ 1

sþ ‘2
; (89)

from which

J3ðk2Þ ¼
Z 1

�0

d��ð�Þ
Z 1

�0

ds�ðsÞ
Z 1

ð ffiffi
�

p þ ffiffi
s

p Þ2
dr�1ðrÞ 1

rþ k2

(90)

follows, keeping in mind that the branch cut for two
particles with respective positive real masses �2

1 and �2
2

starts from �ð�1 þ�2Þ2, see also Sec. IVB.
We see that we again find a kind of convolution of

already known spectral representations. As before, we still
need to show that J3ðk2Þ can be brought into a spectral
representation with positive density �3ðrÞ for r � �
 � 0,
thereby establishing a physical branch cut along
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½�1;��
�, with �
 yet unknown. It turns out that this is a
little more complicated than in the two-loop case. Let us
look at the underlined part of (90) first, which is a general-
ization of the previous case J2ðk2Þ. Hence, we wish to
examine

�J 2ðk2Þ ¼
Z 1

�0

ds�ðsÞ
Z 1

ð ffiffi
s

p þaÞ2
dr�1ðrÞ 1

rþ k2
; (91)

where a � ffiffiffiffiffi
�0

p
. We propose the substitution

ffiffiffi
�

p ¼ ffiffiffi
s

p þ
a, leading to

�J 2ðk2Þ ¼
Z 1

ð ffiffiffiffi
�0

p þaÞ2
d� ��ð�Þ

Z 1

�
dr�1ðrÞ 1

rþ k2
; (92)

where we have introduced a novel spectral density

��ð�Þ ¼
ffiffiffi
�

p � affiffiffi
�

p �½ð ffiffiffi
�

p � aÞ2�: (93)

It is clear that for � � ð ffiffiffiffiffi
�0

p þ aÞ2, we have ��ð�Þ � 0,

invoking the properties of �ðsÞ. We then observe that we
have managed to reduce �J2ðk2Þ to the J2ðk2Þ case already
studied, see Eq. (80), meaning that (91) has a spectral
density representation of the form

�J 2ðk2Þ ¼
Z 1

ð ffiffiffiffi
�0

p þaÞ2
ds ��2ðsÞ 1

sþ k2
; with ��2ðsÞ � 0:

(94)

As such, we can write

J3ðk2Þ ¼
Z 1

�0

d��ð�Þ
Z 1

ð ffiffi
�

p þ ffiffiffiffi
�0

p Þ2
ds ��2ðsÞ 1

sþ k2
: (95)

This is again of the type �J2ðk2Þ, from which we conclude
that we can write

J3ðk2Þ ¼
Z 1

ð ffiffiffiffi
�0

p þ ffiffiffiffi
�0

p Þ2
ds�3ðsÞ 1

sþ k2

¼
Z 1

4�0

ds�3ðsÞ 1

sþ k2
; (96)

with �3ðsÞ � 0, for s � �
 � 8
ffiffiffi
2

p
�2.

We may summarize by noticing that the higher loop
correlation functions can be written as a kind of convolu-
tion of the lower loop spectral representations. If the
involved lowest, i.e. two-loop, spectral densities are physi-
cal, so will the higher loop spectral densities be, by making
use of the iterative argument given in this section.

VI. A FEW REMARKS ON THE PHYSICAL
MEANING OF THE i-FIELDS ð�;�Þ

As we have seen in the previous sections, the introduc-
tion of the i-fields ð	; 
Þ enables us to construct in a
relatively simple way a set of composite operators whose
correlation functions exhibit real cuts only. It is worth thus
spending a few words on the physical meaning of these
fields.

Looking at the very starting point, Eq. (18), we see that
the action of the field c has been modified by the addition
of a nonlocal term, accounting for a deep modification of
the long-range behavior of the model. It is easy to figure
out that the field c itself acquires thus a long-range non-
local component. The construction of a suitable set of
composite operators in terms of the field c becomes a
highly nontrivial task, as nonlocal terms have to be incor-
porated in order to achieve meaningful correlation func-
tions. When the model is cast in local form, the long-range
behavior of the theory is accounted for by the auxiliary
localizing fields ’, �’. The fields c , ’, �’ have to be
considered thus on an equal footing. It is instructive now
to express the composite operator O1ðxÞ ¼ 	ðxÞ
ðxÞ in
terms of the original field c . From the equations of motion,
it follows

’ ¼ �2

ð�@2Þ c ; �’ ¼ � �2

ð�@2Þ c : (97)

Analogously, for the i-fields, one gets

	 ¼ 1ffiffiffi
2

p
�
c � i

ffiffiffi
2

p �2

ð�@2Þ c
�
;


 ¼ 1ffiffiffi
2

p
�
c þ i

ffiffiffi
2

p �2

ð�@2Þ c
�
:

(98)

Therefore, for the operator O1ðxÞ one obtains

O1ðxÞ ¼ 	ðxÞ
ðxÞ ¼ 1

2

�
c 2 þ 2

�
�2

ð�@2Þ c
�
2
�
; (99)

from which one clearly sees that nonlocal terms are needed
to achieve a sensible operator. The i-fields 	, 
 provide
thus the correct field variables which enable us to construct
in a simple way, and within a local quantum field theory
framework, the relevant composite operators of the theory
by taking into account the nonlocal long-range effects.

VII. INTRODUCING i-PARTICLES FOR THE
GRIBOV-ZWANZIGER ACTION

Let us discuss here how i-particles can arise in the
Gribov-Zwanziger action, given by expression (8). In
what follows, we shall limit ourselves to evaluate correla-
tion functions of suitable composite operators at one-loop
order only. To introduce the i-particles in the Gribov-
Zwanziger action, it suffices thus to consider the quadratic
part of expression (8) containing only the fields
ðAa

�; ’
ab
� ; �’ab

� Þ, namely

S
quad
GZ ¼

Z
d4x

�
1

2
Aa
�ð�@2ÞAa

� þ �’ab
� ð�@2Þ’ab

�

þ �2gfabcAa
�ð’bc

� � �’bc
� Þ

�
; (100)

where use has been made of the transversality of the gauge
field, @�A

a
� ¼ 0. We now proceed by decomposing the
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fields ð’ab
� ; �’ab

� Þ in symmetric and antisymmetric compo-

nents in color space, i.e.

’ab
� ¼ ’½ab�

� þ ’ðabÞ
� ; ’½ab�

� ¼ 1

2
ð’ab

� � ’ba
� Þ;

’ðabÞ
� ¼ 1

2
ð’ab

� þ ’ba
� Þ;

(101)

and

�’ ab
� ¼ �’½ab�

� þ �’ðabÞ
� ; �’½ab�

� ¼ 1

2
ð �’ab

� � �’ba
� Þ;

�’ðabÞ
� ¼ 1

2
ð �’ab

� þ �’ba
� Þ:

(102)

Thus

S
quad
GZ ¼

Z
d4x

�
1

2
Aa
�ð�@2ÞAa

� þ �’½ab�
� ð�@2Þ’½ab�

�

þ �’ðabÞ
� ð�@2Þ’ðabÞ

� þ �2gfabcAa
�ð’½bc�

� � �’½bc�
� Þ

�
:

(103)

A first step towards diagonalization of this expression is
achieved by setting

’½ab�
� ¼ 1ffiffiffi

2
p ðU½ab�

� þ iV½ab�
� Þ;

�’½ab�
� ¼ 1ffiffiffi

2
p ðU½ab�

� � iV½ab�
� Þ;

(104)

so that

S
quad
GZ ¼

Z
d4x

�
1

2
Aa
�ð�@2ÞAa

� þ 1

2
V½ab�
� ð�@2ÞV½ab�

�

þ i
ffiffiffi
2

p
g�2fabcAa

�V
½bc�
� þ 1

2
U½ab�

� ð�@2ÞU½ab�
�

þ �’ðabÞ
� ð�@2Þ’ðabÞ

�

�
: (105)

From expression (105) one sees that the gauge field Aa
�

mixes with the adjoint projection of V½ab�
� , obtained by

employing the following decomposition

V½ab�
� ¼ 1

N
fabpfpmnV½mn�

� þ
�
V½ab�
� � 1

N
fabpfpmnV½mn�

�

�
¼ fabpVp

� þ S½ab�� ; (106)

where

Vp
� ¼ 1

N
fpmnV½mn�

� ; (107)

stands for the adjoint projection of V½ab�
� in color space, and

S½ab�� ¼ V½ab�
� � 1

N
fabpfpmnV½mn�

� ; (108)

denote the remaining independent components of V½ab�
�

which are orthogonal to the tensor fabc. In fact, making
use of

fabcfdbc ¼ N�ad; (109)

it is easily checked that

fabcS½ab�� ¼ 0: (110)

Therefore, expression (105) becomes

SquadGZ ¼
Z

d4x

�
1

2
Aa
�ð�@2ÞAa

� þ N

2
Va
�ð�@2ÞVa

�

þ i
ffiffiffi
2

p
g�2NAa

�V
a
�

�
þ

Z
d4x

�
1

2
S½ab�� ð�@2ÞS½ab��

þ 1

2
U½ab�

� ð�@2ÞU½ab�
� þ �’ðabÞ

� ð�@2Þ’ðabÞ
�

�
: (111)

Finally, setting

Aa
� ¼ 1ffiffiffi

2
p ð	a

� þ 
a
�Þ; Va

� ¼ 1ffiffiffiffiffiffiffi
2N

p ð	a
� � 
a

�Þ; (112)

one obtains the diagonal action

S
quad
GZ ¼

Z
d4x

�
1

2
	a
�ð�@2 þ i

ffiffiffiffiffiffiffi
2N

p
g�2Þ	a

�

þ 1

2

a
�ð�@2 � i

ffiffiffiffiffiffiffi
2N

p
g�2Þ
a

�

�

þ
Z

d4x

�
1

2
S½ab�� ð�@2ÞS½ab�� þ 1

2
U½ab�

� ð�@2ÞU½ab�
�

þ �’ðabÞ
� ð�@2Þ’ðabÞ

�

�
: (113)

The fields 	a
�, 


a
� describe the i-particles of the Gribov-

Zwanziger action.

Evaluating correlation functions in the
Gribov-Zwanziger theory using i-particles

Let us give here two examples of one-loop correlation
functions of composite operators constructed from the
i-fields. To this order, one can introduce the i-field
strengths defined by

	a
�� ¼ @�	

a
� � @�	

a
�; 
a

�� ¼ @�

a
� � @�


a
�: (114)

The propagators are9

h	a
�ðkÞ	b

�ð�kÞi ¼ �ab

k2 þ i�̂2

�
��� �

k�k�

k2

�
;

h
a
�ðkÞ
b

�ð�kÞi ¼ �ab

k2 � i�̂2

�
��� �

k�k�

k2

�
;

(115)

with �̂4 ¼ 2Ng2�4 as introduced in Sec. I.
As the simplest examples we investigate the following

composite operators at leading order:

9There are more propagators than the ones shown, but these
are not relevant for the calculation presented.
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Oð1Þ
	
ðxÞ ¼ ð	a

��ðxÞ
a
��ðxÞÞ; Oð2Þ

	
ðxÞ ¼ "����ð	a
��ðxÞ
a

��ðxÞÞ: (116)

The integrals to be calculated for the correlations functions are

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ ðN2 � 1Þ
Z ddp

ð2�Þd
4p2ðp� kÞ2 þ 4ðd� 2Þðp2 � pkÞ2

ðp2 � i�̂2Þððp� kÞ2 þ i�̂2Þ ; (117)

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ ðN2 � 1Þ
Z ddp

ð2�Þd
32ðk2p2 � ðkpÞ2Þ

ðp2 � i�̂2Þððp� kÞ2 þ i�̂2Þ : (118)

To avoid dwelling on technical details, let us here only outline the results for d ¼ 2. We have collected the technical
details, including those for d ¼ 4, in Appendix C. We are interested in

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ 4ðN2 � 1ÞFðk2Þ; (119)

with

Fðk2Þ ¼
Z ddp

ð2�Þd
p2ðp� kÞ2 þ ðd� 2Þðp2 � pkÞ2

ðp2 þ i�̂2Þððp� kÞ2 � i�̂2Þ : (120)

After the introduction of a Feynman parameter and some manipulations, it turns out that we may write, see (C17),

Fðk2Þ � k2
�
@Fðk2Þ
@k2

�
k2¼0

� Fð0Þ ¼ 1

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

k2 þ �
þ k2

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�2

� 1

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�
: (121)

We thus find

�ð�Þ ¼ 1

8�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p : (122)

We conclude that, upon restoring units, we formally have

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼
Z þ1

2�̂2

2ðN2 � 1Þ�̂4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�̂4

p d�

�þ k2
: (123)

We clearly notice that the spectral density �ð�Þ is positive
for � � 2�̂2. The result as written in (123) is indeed only
formally correct, since the left-hand side of (123) is diver-
gent, directly seen upon inspection of its definition (120).
Nevertheless, the spectral representation (123) appearing
in the right-hand side defines a finite function. The appar-
ent contradiction is easily resolved by realizing that one
should in fact refer to (121), which gives the correctly
subtracted result.

Let us now turn to the analysis of

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ 32ðN2 � 1ÞGðk2Þ; (124)

with

Gðk2Þ ¼
Z ddp

ð2�Þd
k2p2 � ðkpÞ2

ðp2 þ i�̂2Þððp� kÞ2 � i�̂2Þ : (125)

We again refer to Appendix C. After the smoke clears, we

find in (C28)

Gðk2Þ �G2

�
@Gðk2Þ
@k2

�
k2¼0

�Gð0Þ

¼ 1

8�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

k2 þ �
þ k2

8�

�
Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�2
� 1

8�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�
:

(126)

The spectral density can be read off,

�ð�Þ ¼ 1

8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
; (127)

whereby �ð�Þ � 0 for � � 1. We reintroduce the units, and
we conclude that

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ 4ðN2 � 1Þ
�

Z þ1

2�̂2
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�̂4

p
�þ k2

;

(128)

which is again a formal result due to the divergent nature of
both the left-hand side and right-hand side..
Using a similar analysis, one can also derive the spectral

densities if d ¼ 4. The spectral densities in all cases turn
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out to be positive, and thus at least at leading order the

operators Oð1Þ
	
 and Oð2Þ

	
 appear to be physical.

We conclude by remarking that the physical meaning of
the i-fields 	a

�,

a
� is akin to that of the i-fields ð	;
Þ of the

toy model. In fact, from Eqs. (111) and (112) one easily
gets

	a
�� ¼ 1ffiffiffi

2
p

�
1� ig�2

ffiffiffiffiffiffiffi
2N

p
ð�@2Þ

�
ð@�Aa

� � @�A
a
�Þ; (129)

and a similar expression for 
a
��. As expected, the i-field

strength 	a
�� contains an explicit dependence from the

nonperturbative Gribov parameter �. This dependence
signals that, in order to construct a sensible operator dis-
playing good analyticity properties in the Gribov-
Zwanziger theory, the starting gauge invariant operator
obtained in the Faddeev-Popov theory, i.e. without imple-
menting the restriction to the Gribov region �, has to be
supplemented by the addition of terms which are
�-dependent. To some extent, one might figure out that a
would-be physical operator in the presence of the Gribov
horizon has to be constructed by deforming the starting
gauge invariant operator by appropriate terms which ex-
hibit an explicit dependence from the Gribov parameter �,
and which allow for a cancellation mechanism of the
unphysical cuts appearing in expressions like those of
Eqs. (14) and (15). Although the i-variables ð	a

��; 

a
��Þ,

introduced here in the quadratic approximation, enable us
to obtain in a relatively simple way examples of correlation
functions possessing a Källén-Lehmann spectral represen-
tation at one-loop order, it is certainly tempting to look at
those variables in the full Gribov-Zwanziger action, trying
to unravel a systematic mechanism to take advantage of the
presence of the Gribov horizon to cancel the unwanted
unphysical cuts.

VIII. CONCLUSIONS

In this work we have pursued the investigation of the
analyticity properties of correlation functions evaluated
with a confining propagator of the Gribov type. In particu-
lar, as illustrated in the toy model, we have been able to
characterize examples of composite operators whose cor-
relation functions display cuts only on the negative real
axis, while possessing a positive spectral function, a result
which has been extended to higher loop correlation func-
tions. The introduction of i-particles, which seem rather
natural objects when dealing with a Gribov type propaga-
tor, has proven to be very useful in the construction of such
composite operators.

In the case of the Gribov-Zwanziger theory, so far, we
have been able to provide examples of composite opera-
tors, made of i-particles, whose correlation functions at
one-loop order exhibit real cuts only.

The introduction of i-fields in the full Gribov-Zwanziger
action within a local and renormalizable framework is

certainly a point worth to be investigated. This could
open the possibility to obtain examples of correlation
functions displaying good analyticity properties at higher
orders, a result which can be regarded as a highly nontrivial
achievement. The systematic characterization of how a
given gauge invariant operator needs to be deformed by
the Gribov horizon in order to possess a Källén-Lehmann
representation is a big challenge, requiring many ingre-
dients as, for example, the mastering of the renormaliza-
tion procedure of gauge invariant operators within the
Gribov-Zwanziger action, a necessary step for a consistent
higher-order calculation. Let us remind here that, due to the
soft breaking of the BRST symmetry, the issue of the
renormalization of gauge invariant composite operators
requires a careful analysis, as recently done in [26], where
a renormalization group invariant, and thus a fortiori finite
operator in the Gribov-Zwanziger theory, which contains
the scalar glueball operator F2ðxÞ ¼ Fa

��ðxÞFa
��ðxÞ, was

already identified. In particular, we point out that the soft
breaking of the BRST symmetry implies that the operator
F2 mixes not only with BRST exact composite operators,
but also with BRST noninvariant local quantities, which
are determined by the softly broken Slavnov-Taylor iden-
tities [26]. Evidently, the situation generalizes to higher
dimensional local composite operators containing three or
more field strengths Fa

�� which are contracted in such a

way to give rise to a color singlet as, e.g., fabcFa
��F

b
��F

c
��.

Besides the mixing with other gauge invariant operators, a
nontrivial mixing matrix between BRST exact terms as
well as BRST noninvariant terms is to be expected here
too. This mixing should be taken into proper account, as
(1) it is indispensable to obtain finite results, (2) it can play
a major role in identifying the analyticity properties of the
complete operator, which differs from the classically gauge
invariant one. From this perspective, the lowest-order re-
sults presented for the Gribov-Zwanziger correlation func-
tions (C41)–(C44) are only a first step. It will be interesting
to find out whether one could also construct a renormal-
ization group invariant operator in terms of the i-particles,
and what the connection would be with the one already
discussed in [26].
As this paper only contains the first effort in constructing

meaningful correlation functions in the presence of a
Gribov type propagator (13), we did not yet study the
more general gluon propagator

hAa
�ðkÞAb

�ð�kÞi ¼ �ab

�
��� �

k�k�

k2

�
k2 þM2

k4 þM2k2 þ �̂4
;

�̂4 ¼ 2g2N�4; (130)

which was discussed in [12,14,29], giving rise to the so-
called refined Gribov-Zwanziger action. It arises when
additional nonperturbative quantum effects are considered.
One might wonder if it would still be possible to obtain
correlation functions with only physical cuts along the
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negative real axis when referring to the gluon propagator
(130). One can easily write down the toy model analogy of
the refined Gribov-Zwanziger action. It turns out that the
previous question can be answered positively, again by
introducing the i-particles. We refer to [30], as the explicit
evaluation of the spectral densities calls for a set of mathe-
matical tools rather different from the ones used in the
current paper.

Let us end this work by mentioning that several aspects
related to the Gribov-Zwanziger theory as well as to the
use of the Gribov type propagator and of the corresponding
i-particles interpretation are still open. This is the case, for
example, for the construction of the Minkowskian version
of the theory, which remains to be achieved. We emphasize
that, as it stands, the Gribov-Zwanziger action has to be
understood as an Euclidean field theory whose origin can
be traced back to the lattice formulation of gauge theory.

It is worth recalling here that gauge theory is well-
defined on a finite lattice. It is an Euclidean theory for
which the correlation functions of gauge noninvariant
fields such as the gluon and quark fields vanish [31]. The
Osterwalder-Schrader reflection positivity [17,18] holds
for gauge invariant operators, so that for these quantities
there exists a positive metric quantum mechanical Hilbert
space [31,32]. Moreover, there exists a positive transfer
matrix T, with 0< T 	 1, which in the continuum limit
would imply a positive Hamiltonian [31–33]. In [34], it has
been argued that the critical limit of lattice gauge theory, in
the minimal Landau gauge, is precisely the theory we are
discussing. If so, the Gribov-Zwanziger theory would in-
herit from lattice gauge theory a positive metric Hilbert
space for composite gauge invariant quantities and a posi-
tive Hamiltonian, although in four dimensions this is not
trivial because of renormalization.

We also point out that the complex singularities exhib-
ited by the Gribov propagator and by the i-particles might
jeopardize the usual implementation of the Wick rotation
in the correlation functions, so that the construction of the
Minkowskian version of the theory is still an open point. In
particular, as is apparent from the presence of complex
poles, the two-point correlation function of the elementary
Euclidean gluon field, as described by the i-particles,
cannot be interpreted as a propagator of a physical particle
in Minkowskian space, but may be appropriate for a con-
fined gluon. On physical grounds, we expect that the
rotation to Minkowskian space should be possible only
for a restricted class of composite operators, which should
be related to the physical spectrum of QCD. To some
extent, this is precisely what emerges from the present
analysis, namely: the Källén-Lehmann representation
seems to exist only for a restricted class of operators.
The lack of a Minkowskian description of the i-particles
and the presence of complex poles also indicate that the
usual assumptions (or axioms) of local quantum field
theory do not apply, in particular, the spectral condition

about the location of branch cuts for a two-point function
[35]. The Euclidean nature of the i-particles allows us to
argue that they describe a phase for which the gluons are
unphysical, i.e. they do not appear as asymptotic states in
the S-matrix elements. As such, the issue of the cancella-
tion mechanism of the singularities in the S-matrix gluon
amplitudes [36–40], which would arise due to the use of a
propagator as (13) or (130), is not addressed here.
Evidently, we are still far from a concrete description,
within a purely quantum field theory framework, of the
mechanism which would account for the conversion of the
gluon cloud into physical jets of hadronic matter.10 In
conclusion, although the results which we have obtained
so far look promising, a satisfactory characterization of the
analyticity properties of the correlation functions of the
physical composite operators which would correspond to
the spectrum of QCD remains to be achieved.
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APPENDIX A: KÄLLÉN-LEHMANN
REPRESENTATION OF THE TOY MODEL TWO-
POINT FUNCTION hO1ðkÞO1ð�kÞi FOR GENERAL d

1. Using the Schwinger parametrization

In this Appendix, we shall verify that the two-point
function hO1ðkÞO1ð�kÞi, defined in Eq. (32), has a spectral
representation with associated positive spectral density for
any value of d ¼ 2, 3, 4. We have already discussed the
case d ¼ 4 in Sec. III B, but we shall follow a different
route here, which is applicable for general d, thereby
serving as a check on the d ¼ 4 result we derived in
expression (46). Returning to expression (32), we observe
that by using the Schwinger parametrization, given in
Eqs. (C29) and (C30), it can be cast into the form

10See also the related discussion about the possible interpreta-
tion of the gluon dispersion relation implied by the use of a
Gribov type propagator presented in [41].
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hO1ðkÞO1ð�kÞi ¼
Z ddp

ð2�Þd
p2ðk� pÞ2 þ 2�4

ððk� pÞ4 þ 2�4Þðp4 þ 2�4Þ ¼
Z 1

0
d�

Z 1

0
d� cosð ffiffiffi

2
p

�2ð�� �ÞÞ
Z ddp

ð2�Þd e
��p2��ðp�kÞ2

¼
Z 1

0
d�

Z 1

0
d� cosð ffiffiffi

2
p

�2ð�� �ÞÞ e�ðð��Þ=ð�þ�ÞÞk2

ð4�ð�þ �ÞÞðd=2Þ

¼
Z 1

0
d�

Z 1

0
d�Re

�
e�ððð��Þ=ð�þ�ÞÞÞk2�i

ffiffi
2

p
�2ð���ÞÞ

ð4�ð�þ �ÞÞðd=2Þ
�
: (A1)

The cut structure is encoded in the exponential of the last line. In order to make this structure more apparent, a few
algebraic manipulations of this expression are needed. Following [3], as a first step we insert in (A1) the unity
decomposition

1 ¼
Z 1

0
d	�ð�þ �� 	Þ: (A2)

After a rescaling � ! 	�, � ! 	�, the integral over 	 can be evaluated, yielding

hO1ðkÞO1ð�kÞi ¼
Z 1

0
d�

Z 1

0
d��ð�þ �� 1Þ

Z 1

0
d		1�ðd=2Þ Re

�
e�	ððð��Þ=ð�þ�ÞÞk2�i

ffiffi
2

p
�2ð���ÞÞ

ð4�ð�þ �ÞÞðd=2Þ
�

¼ �ð2� d
2Þ

ð4�Þðd=2Þ
Z 1

0
d�

Z 1

0
d��ð�þ �� 1ÞRefð��k2 � i

ffiffiffi
2

p
�2ð�� �ÞÞðd=2Þ�2g: (A3)

The second step is to parametrize the branch cut. For that purpose, exactly as before, we introduce the variable u:

u � �� �

2��
¼ 2�� 1

2�ð1� �Þ ; (A4)

where the last equality follows from the constraint imposed by the delta function: � ¼ 1� �. In terms of u, expression
(A3) takes the form

hO1ðkÞO1ð�kÞi ¼ �ð2� d
2Þ

ð4�Þðd=2Þ Re
�Z 1

�1
du

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�
1

2

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�ðd=2Þ�1ðk2 � i2

ffiffiffi
2

p
�2uÞðd=2Þ�2

�
: (A5)

Again we note that due to the first square root in the integrand, this expression has a branch cut in the complex u-plane
which starts at u ¼ i and extends until u ¼ i1. This cut may be rotated to the real axis by exploiting the properties of the
contour integral to express the result as an integral along the cut exactly as we did before. Defining u ¼ iy we get

hO1ðkÞO1ð�kÞi ¼ 4�ð2� d
2Þ

ð8�Þðd=2Þ Re

�Z 1

1
dy

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p �
1

1þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p �ðd=2Þ�1ðk2 þ 2
ffiffiffi
2

p
�2yÞðd=2Þ�2

�
: (A6)

For the case d ¼ 2, we can infer the spectral density
directly from (A6). We find

hO1ðkÞO1ð�kÞi ¼ 1

2�

Z þ1

2
ffiffi
2

p
�2

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 8�4

p 1

k2 þ �
; (A7)

hence

�d¼2ð�Þ ¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 8�4

p ; (A8)

with indeed �d¼2ð�Þ � 0 for � � 2
ffiffiffi
2

p
�2. Explicitly, the

two-point function yields

hO1ðkÞO1ð�kÞi ¼
arccosð k2

2
ffiffi
2

p
�2
Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�4 � k4

p ; (A9)

displaying a branch cut from �1 to �2
ffiffiffi
2

p
�2.

For a general d, it is useful to employ the following
identity

ðk2 þ 2
ffiffiffi
2

p
�2yÞðd=2Þ�2 ¼ 1

�ð2� d
2Þ�ðd2 � 1Þ

Z 1

2
ffiffi
2

p
�2y

d�

� ð�� 2
ffiffiffi
2

p
�2yÞðd=2Þ�2

�þ k2
; (A10)

which already displays the familiar structure found in the
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Källén-Lehmann representation. Inserting this identity in
(A6), it is not difficult to see that the resulting overall range
of integration can be reordered as

Z 1

1
dy

Z 1

2
ffiffi
2

p
�2y

d�ð� � �Þ ¼
Z 1

2
ffiffi
2

p
�2
d�

Z ð�=ð2 ffiffi
2

p
�2ÞÞ

1
dyð� � �Þ:

(A11)

We make now a further change of variables defining

1

y
� cos�; 0 	 � 	 �

2
: (A12)

Putting all together, it is just a matter of algebraic manipu-
lation to obtain

hO1ðkÞO1ð�kÞi ¼
Z 1

2
ffiffi
2

p
�2
d�

�ð�Þ
�þ k2

; (A13)

where the spectral function �ð�Þ is given by

�ð�Þ ¼ 4�ðd=2Þ�2

ð8�Þðd=2Þ�ðd2 � 1Þ
Z �ð�Þ

0
d� cos

��
d

2
� 1

�
�

�

� ðcos�� cos�ð�ÞÞðd=2Þ�2; (A14)

with �ð�Þ defined as

cos�ð�Þ � 2
ffiffiffi
2

p
�2

�
: (A15)

For d ¼ 4, the spectral function can be immediately eval-
uated

�d¼4ð�Þ ¼ 1

ð4�Þ2 sin�ð�Þ ¼ 1

ð4�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8�4

�2

s
; (A16)

which is consistent with (46).
When d ¼ 3, we need to evaluate

�d¼3ð�Þ ¼ 1

4
ffiffiffi
2

p
�2

1ffiffiffi
�

p
Z �

0
d�

cosð�=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�� cos�

p : (A17)

We must compute an integral of the class

Z �

0

cos2nþ1ð�=2Þd�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�� cos�

p ¼ 2
Z �=2

0

cos2nþ1ð�0Þd�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2sin2�0 � cos�

p
¼ 2

Z sinð�=2Þ

0

ð1� �2Þnd�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�� 2�2

p ;

(A18)

with n 2 N, where we used the substitution sin�0 ¼ �.
This integral (A18) can be expressed in terms of the
Gaussian hypergeometric function,

2
Z sinð�=2Þ

0

ð1� �2Þnd�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�� 2�2

p
¼ �ffiffiffi

2
p 2F1ð1=2;�n; 1; sin2ð�=2ÞÞ: (A19)

Since, in particular 2F1ð1=2; 0; 1; xÞ ¼ 1, we obtain

�d¼3ð�Þ ¼ 1

8�

1ffiffiffi
�

p ; (A20)

also positive for � � 2
ffiffiffi
2

p
�2. As such,

Fðk2Þ ¼
Z 1

2
ffiffi
2

p
�2
d�

�ð�Þ
�þ k2

¼ 1

4�

1

k2
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
�2

k2

s
;

(A21)

for d ¼ 3, valid in the complex plane, exhibiting a branch

cut for k2 2 ½�1;�2
ffiffiffi
2

p
�2�.

2. Using hypergeometric functions

A very convenient method to evaluate Feynman dia-
grams is the use of hypergeometric functions, since these
are meromorphic functions in the complex plane. The
matter of analytic continuation is especially clear, when
one uses these functions as will become evident in the
following calculation. Another advantage is the possibility
of keeping more parameters general like the number of
dimensions or the exponent of the propagator, which can
even be noninteger as needed sometimes. Hypergeometric
functions have proven useful especially for higher n-point
functions or diagrams with many mass scales, because they
allow to write down the result as a closed expression. One
possibility to arrive at hypergeometric functions is the use
of the negative dimension integration method (NDIM)
[42–45], but one can, for example, also work with
Mellin-Barnes representations [46] or dispersion relations
[47]. The result for the one-loop two-point diagram with

masses11 m2 :¼ m2
1 ¼ i

ffiffiffi
2

p
�2 and m2

2 ¼ �i
ffiffiffi
2

p
�2 in d di-

mensions with exponents i1 and i2 for the propagators is
[48]

11The choice of the square root of two for the masses is in
correspondence to the main part of the paper.
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I2ði1; i2;m1; m2; dÞ ¼
Z ddq

ð2�Þd ððkþ qÞ2 þm2
1Þi1ðq2 þm2

2Þi2

¼ ð4�Þ�d=2ð�1Þi1þi2

�
ðm2

1Þd=2þi1þi2
ðd=2; i2Þ

ð�d=2� i2 � i2; d=2þ i2Þ
� F4

�
�i1 � i2 � d=2;�i2; 1� i2 � d=2; d=2;

m2
2

m2
1

;
k2

m2
1

�

þ ðm2
1Þi1ðm2

2Þd=2þi2ð�i2;�d=2ÞF4

�
�i2; d=2; 1þ d=2þ i2; d=2;

m2
2

m2
2

;
�k2

m2
1

��
; (A22)

where the Pochhammer symbol is defined as

ða; nÞ ¼ �ðaþ nÞ
�ðaÞ : (A23)

F4 is the fourth Appell function, which is a meromorphic function of two variables. At this point we will choose a specific
series representation for it:

F4ða; b; c; d; x; yÞ ¼
X1

m;n¼0

ða;mþ nÞðb;mþ nÞ
ðc;mÞðd; nÞ

xm

m!

yn

n!
: (A24)

This restricts the validity of the following manipulations to a certain region of convergence, namely
ffiffiffiffiffiffijxjp þ ffiffiffiffiffiffijyjp

< 1. The
fact that our masses are complex fits quite naturally in this framework, as the variables can be complex numbers. Later on
we will switch back to hypergeometric functions, where we do not have to worry about regions of convergence, since we
can always choose a series representation appropriate for the values of the variables x and y.

We continue by rewriting the Appell function into a Gaussian hypergeometric series,

F4ða; b; c; d; x; yÞ ¼
X1
n¼0

ða; nÞðb; nÞ
ðc; nÞ

xn

n! 2
F1ðaþ n; bþ n; d; yÞ; (A25)

and evaluating the one-dimensional series with

2F1ða; b;aþ 1� b;�1Þ ¼ 2�a�1=2 �ðaþ 1� bÞ
�ð1=2þ a=2Þ�ð1þ a=2� bÞ : (A26)

We arrive at

I2ð�1;�1;m1; e
i�=2m1; dÞ ¼ ð4�Þ�d=2�1=2

�
ðm2

1Þd=2�22�2þd=2 ðd=2;�1Þ�ð2� d=2Þ
ð�d=2þ 2; d=2� 1Þ�ð3=2� d=4Þ�ð1� d=4Þ

� X1
n¼0

ð�d=2þ 2; nÞð1; nÞ
ðd=2; nÞ

1

ð3=2� d=4; n=2Þð1� d=4;�n=2Þ
��k2

2m2

�
n 1

n!

þ ðm2
1Þ�1ðm2

2Þd=2�12�d=2 ð1;�d=2Þ�ðd=2Þ
�ð1=2þ d=4Þ�ðd=4Þ

X1
n¼0

ð1; nÞðd=2; nÞ
ðd=2; nÞ

� 1

ð1=2þ d=4; n=2Þðd=4;�n=2Þ
��k2

2m2

�
n 1

n!

�
: (A27)

To deal with the half-integer summation indices, we split the sum into even and odd indices:
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I2ð�1;�1;m1; e
i�=2m1;dÞ ¼ ð4�Þ�d=2�1=2

�
ðm2

1Þd=2�22�2þd=2 ðd=2;�1Þ�ð2�d=2Þ
ð�d=2þ 2; d=2� 1Þ�ð3=2� d=4Þ�ð1�d=4Þ

�
�X1
n¼0

ð�d=2þ 2;2nÞð1;2nÞ
ðd=2;2nÞ

1

ð3=2� d=4; nÞð1�d=4;�nÞ
��k2

2m2

�
2n 1

ð2nÞ!

þ X1
n¼0

ð�d=2þ 2;2nþ 1Þð1;2nþ 1Þ
ðd=2;2nþ 1Þ

1

ð3=2�d=4; nþ 1=2Þð1�d=4;�n� 1=2Þ

�
��k2

2m2

�
2nþ1 1

ð2nþ 1Þ!
�
þðm2

1Þ�1ðm2
2Þd=2�12�d=2 1

4

ð1;�d=2Þ�ðd=2Þ
�ð1=2þ d=4Þ�ðd=4Þ

�
�X1
n¼0

ð1;2nÞðd=2;2nÞ
ðd=2;2nÞ

1

ð1=2þd=4; nÞðd=4;�nÞ
��k2

2m2

�
2n 1

ð2nÞ!

þ X1
n¼0

ð1;2nþ 1Þðd=2;2nþ 1Þ
ðd=2;2nþ 1Þ

1

ð1=2þd=4; nþ 1=2Þðd=4;�n� 1=2Þ
��k2

2m2

�
2nþ1 1

ð2nþ 1Þ!
��

¼ ð4�Þ�d=2�1=2

�
ðm2

1Þd=2�22�2þd=2 ðd=2;�1Þ�ð2�d=2Þ
ð�d=2þ 2; d=2� 1Þ�ð3=2� d=4Þ�ð1�d=4Þ

�
�
2F1

�
1;1� d=4;1=2þd=4;� k4

4m4

�
� k2

2m2

ð�d=2þ 2;1Þ
ðd=2;1Þð3=2� d=4;1=2Þð1�d=4;�1=2Þ

� 2F1

�
1;3=2� d=4;1þd=4;� k4

4m4

��
þðm2

1Þ�1ðm2
2Þd=2�12�d=2 ð1;�d=2Þ�ðd=2Þ

�ð1=2þd=4Þ�ðd=4Þ
�
�
2F1ð1;1�d=4;1=2þd=4;� k4

4m4

�
� k2

2m2

1

ð1=2þ d=4;1=2Þðd=4;�1=2Þ
� 2F1

�
1;3=2� d=4;1þd=4;� k4

4m4

���
; (A28)

where the following identities for Pochhammer symbols were used:

ða;mþ nÞ ¼ ða;mÞðaþm; nÞ; (A29)

ða; 2nÞ ¼ 22nða=2; nÞð1=2þ a=2; nÞ; (A30)

�ðaþmÞ ¼ �ðaÞða;mÞ; (A31)

ða;�nÞ ¼ ð�1Þ�n

ð1� a; nÞ ; n integer: (A32)

For specific values of d the expression will simplify.
Here we are dealing again with a hypergeometric function. We know that 2F1ða; b; c; xÞ is analytic in the complex plane

except at þ1, from where a branch cut to þ1 starts.12 From the argument of 2F1, it looks as if the result has two branch

cuts: From �2
ffiffiffi
2

p
�2 to �1. We will see below in the expressions for specific dimensions that only one of those remains,

namely, the physical one on the negative real axis.
Now we want to obtain specific expressions in two, three and four dimensions. In two dimensions we get

12Strictly speaking this is only true for nonexceptional parameters a, b and c; these are parameters for which the series terminates or
the series is undefined.
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I2ð�1;�1;m1; e
i�=2m1; 2� 2"Þ ¼ ð4�Þ�1þ"�1=2

�
ðm2

1Þ�1þ"2�1�" ð1� ";�1Þ�ð1þ "Þ
ð1þ "; 1� "Þ�ð1þ "=2Þ�ð1=2þ "=2Þ

�
�
2F1

�
1; 1=2þ "=2; 1� "=2;� k4

4m4

�
þ k2

2m2

ð1þ "; 1Þ
ð1� "; 1Þð1þ "=2; 1=2Þð"=2;�1=2Þ

� 2F1

�
1; 1þ "=2; 3=2� "=2;� k4

4m4

��
þ ðm2

1Þ�1ðm2
2Þd=2�12�d=2

� ð1;�1þ "Þ�ð�1þ "Þ
�ð1� "=2Þ�ð1=2� "=2Þ

�
2F1

�
1; 1=2þ "=2; 1� "=2;� k4

4m4

�

þ k2

2m2

1

ð1� "=2; 1=2Þð1=2� "=2;�1=2Þ 2F1

�
1; 1þ "=2; 3=2� "=2;� k4

4m4

���
:

(A33)

Although it is not evident from above due to divergent coefficients, the integral is finite in two dimensions. Performing the
limit  ! 0 yields

I2ð�1;�1;m1; e
i�=2m1; 2Þ ¼

�=2� arcsinð k2

2
ffiffi
2

p
�2
Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�4 � k4

p ¼
arccosð k2

2
ffiffi
2

p
�2
Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�4 � k4

p : (A34)

The arccos has branch cuts from �1 to �1 and the inverse square root from 0 to �1. They combine in such a way that
only a cut on the negative real axis starting at �2

ffiffiffi
2

p
�2 remains.

For three dimensions the limit " ! 0 yields

I2ð�1;�1;m1; e
i�=2m1; 3Þ ¼

6
ffiffiffi
2

p
�22F1ð14 ; 1; 54 ; k4

8�4
Þ � k22F1ð34 ; 1; 74 ; k4

8�4
Þ

48��3
: (A35)

With the integral representation for the Gaussian hypergeometric series,

2F1ða; b; c; xÞ ¼
�ðcÞ

�ðbÞ�ðc� bÞ
Z 1

0
dttb�1ð1� tÞc�b�1ð1� txÞ�a; Rec > Reb > 0; (A36)

this can be rewritten into a spectral representation:

I2ð�1;�1;m1; e
i�=2m1; 3Þ ¼ 1

8�

Z 1

2
ffiffi
2

p
�2
d�

��1=2

�þ k2
¼

arctanð
ffiffiffiffiffiffiffiffiffiffi
k2

2
ffiffi
2

p
�2

q
Þ

4�
ffiffiffiffiffi
k2

p : (A37)

As the inverse tangent has branch cuts from�i to�i1, we again observe a branch cut on the negative real axis. The role of
the square root in the denominator is to compensate the cut stemming from the square root inside the arctan, which would
start at k2 ¼ 0. We notice the expression (A37) coincides with (A21).

Finally we evaluate Eq. (A28) in four dimensions. Here more care is necessary since the integral is divergent:

I2ð�1;�1;m1; e
i�=2m1; 4� 2Þ ¼ ð4�Þ�2þ�1=2

��
ðm2

1Þ�2� �ð1� Þ�ðÞ�ðÞ
�ð2� Þ�ð1=2þ =2Þ�ð=2Þ

� ðm2
2Þ�2

1

4

�ð� 1Þ�ð2� Þ
�ð3=2� =2Þ�ð1� =2Þ

�
2F1

�
=2;1;3=2� =2;� k4

4m4

�

� k2

2m2
ðm2

2Þ�2
1

4

�
�ð� 1Þ�ð2� Þ

�ð3=2� =2Þ�ð1� =2Þ
�ðþ 1Þ�ð2� Þ�ð1=2þ =2Þ�ð=2Þ
�ðÞ�ð3� Þ�ð1þ =2Þ�ð�1=2þ =2Þ

� �ð� 1Þ�ð2� Þ
�ð3=2� =2Þ�ð1� =2Þ

�ð1� =2Þ�ð3=2� =2Þ
�ð2� =2Þ�ð1=2� =2Þ

�

� 2F1

�
1;1=2þ =2;2� =2;� k4

4m4

��
: (A38)

The coefficient of the second hypergeometric function and the function itself are finite for " ! 0 and only the first part
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yields divergences. To extract one factor of " we can use the integral representation of the Gaussian hypergeometric
function, Eq. (A36). For the given values of the parameters (a ¼ 1, b ¼ "=2, c ¼ 3=2� "=2) there is a pole at t ¼ 0 in the
integrand. Rewriting the integral as

2F1ð1; b; c; xÞ ¼
�ðcÞ

�ðbÞ�ðc� bÞ
Z 1

0
dttb�1ð1� tÞc�b�1ð1� txÞ�1

¼ �ðcÞ
�ðbÞ�ðc� bÞ

Z 1

0
dttb�1ð1� tÞc�b�1fðtÞ ¼ J1 þ J2; (A39)

with

J1 ¼ �ðcÞ
�ðbÞ�ðc� bÞ

Z 1

0
dttb�1ð1� tÞc�b�1fð0Þ; (A40)

J2 ¼ �ðcÞ
�ðbÞ�ðc� bÞ

Z 1

0
dttb�1ð1� tÞc�b�1ðfðtÞ � fð0ÞÞ;

(A41)

it can be exposed explicitly. For the last term we calculate

fðtÞ � fð0Þ ¼ t
x

1� tx
¼ tgðtÞ: (A42)

This raises the exponent of t in J2 by one. The integral in J1
is identified as the �-function,

Bðx; yÞ ¼
Z 1

0
dttx�1ð1� tÞy�1

¼ �ðxÞ�ðyÞ
�ðxþ yÞ ; Rex > 1; Rey > 1: (A43)

Thus it yields J1 ¼ 1. Note that the conditions for this
identity coincide with those of the integral representation
of 2F1. The second integral is written back into a Gaussian
hypergeometric function:

J2 ¼ �ðcÞ
�ðbÞ�ðc� bÞ

Z 1

0
dttbð1� tÞc�b�1 x

1� tx

¼ x
�ðcÞ

�ðbÞ�ðc� bÞ
�ðbþ 1Þ�ðc� bÞ

�ðcþ 1Þ
� 2F1ð1; bþ 1; cþ 1; xÞ

¼ b

c
x2F1ð1; bþ 1; c� b; xÞ

! � k4

4m4

"=2

3=2� "=2

� 2F1

�
1; "=2þ 1; 5=2� "=2;� k4

4m4

�
: (A44)

The coefficient of this function in Eq. (A38) has a term of
order 1=". Thus we need the total expression in Eq. (A44)
up to order ". The goal in rewriting the original Gaussian
hypergeometric function like this was to extract one factor
of ", because now we need only the lowest order in " of the
Gaussian function. Combining all intermediary results we
obtain

J2ð�1;�1;m1; e
i�=2m1; 4� 2Þ

¼ 1

16�2

1

"
þ 2� �þ lnð4�Þ � ln

ffiffiffi
2

p
�2

16�2

þ��
ffiffiffi
2

p
�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�4 � k4

p
arccosðk2=ð2 ffiffiffi

2
p

�2ÞÞ
16�2k2

:

(A45)

Again the cut on the positive real axis is canceled by the
one from the square root. The subtracted result is

J2ð�1;�1;m1; e
i�=2m1; 4� 2Þ

¼ k2 � �
ffiffiffi
2

p
�2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�4 � k4

p
arccosðk2=ð2 ffiffiffi

2
p

�2ÞÞ
16�2k2

;

(A46)

in accordance with (47).
The explicit example of the one-loop case demonstrates

that hypergeometric functions are a useful method, which
can develop its full power especially for higher loop cases.
The derivation for an N-loop diagram in terms of general-
ized Lauricella functions can be found in [46]. For dia-
grams with only two massive propagators only two
hypergeometric functions remain that can be treated along
the lines above. The end result is again a cut only on the
negative real axis.

APPENDIX B: SPECTRAL DENSITY FOR ONE
REAL MASS AND ONE VANISHING MASS

We start from

Fðk2Þ ¼
Z ddp

ð2�Þd
1

ðk� pÞ2 þm2

1

p2
: (B1)

For k2 > 0, we can employ the Feynman trick and differ-
entiating w.r.t. k2 yields for d ¼ 4

@Fðk2Þ
@k2

¼ � 1

16�2

Z 1

0
dx

xð1� xÞ
xð1� xÞk2 þ xm2

¼ � 1

16�2

Z 1

0
dx

1

k2 þ m2

1�x

: (B2)

We perform a transformation of variables, by setting s ¼
m2

1�x ,
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@Fðk2Þ
@k2

¼ � m2

16�2

Z þ1

m2
ds

1

s2
1

k2 þ s

¼ þ 1

16�2

Z þ1

m2
ds

d

ds

�
m2

s

�
1

k2 þ s
: (B3)

After doing a partial integration, we obtain

@Fðk2Þ
@k2

¼ 1

16�2

�
1

k2 þ s

m2

s

��������þ1

s¼m2

�
Z þ1

m2
ds

m2

s

d

ds

�
1

k2 þ s

��

¼ �1

16�2

�
1

k2 þm2
þ

Z þ1

m2
ds

m2

s

�1

ðk2 þ sÞ2
�

¼ �1

16�2

@

@k2

�
lnðk2 þm2Þ þ

Z þ1

m2
ds

m2

s

1

k2 þ s

�
;

(B4)

so that

Fðk2Þ � Fð0Þ ¼ 1

16�2

�
� lnðk2 þm2Þ þ lnm2

�
Z þ1

m2
ds

m2

s

1

k2 þ s
þ

Z þ1

m2
ds

m2

s

1

s

�

¼ 1

16�2

�Z þ1

m2
ds

1

k2 þ s
�

Z þ1

m2
ds

1

s

�
Z þ1

m2
ds

m2

s

1

k2 þ s
þ

Z þ1

m2
ds

m2

s

1

s

�

¼ 1

16�2

Z þ1

m2
ds

�
1

k2 þ s
� 1

s

��
1�m2

s

�
:

(B5)

We conclude that the spectral density is given by

�1ðsÞ ¼ 1�m2

s
; (B6)

which is indeed positive for s � m2.

APPENDIX C: DERIVATIONS OF THE SPECTRAL
DENSITY FOR THE SIMPLEST CORRELATION
FUNCTIONS IN THE GRIBOV-ZWANZIGER

THEORY

1. Using the Feynman parametrization for d ¼ 2

We wish to bring

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ 4ðN2 � 1ÞFðk2Þ; (C1)

into a spectral form, with Fðk2Þ defined in Eq. (120). We
first derive a Feynman parametrization of (120).
Proceeding in the usual way one finds

Fðk2Þ ¼
Z 1

0
dx

Z ddq

ð2�Þd
Nðq; k; xÞ
ðq2 þ�2Þ2 ; (C2)

where we used the substitution q ¼ p� kx, and whereby

�2 ¼ xð1� xÞk2 � ð2x� 1Þi�̂2: (C3)

We shall temporarily work in units 2�̂2 ¼ 1. We still have
to identify the numerator Nðq; k; xÞ. Keeping in mind that
terms odd in q� will vanish upon integration, and that we

may replace q�q� ! q2
���

d within the q-integral, we are

brought to

Fðk2Þ ¼ ðd� 1Þ
Z 1

0
dx

Z ddq

ð2�Þd
x2ð1� xÞ2k4 þ 2

d ½1� ðdþ 2Þxð1� xÞ�k2q2 þ q4

ðq2 þ �2Þ2 (C4)

after a bit of algebra. We then recall that

Z ddq

ð2�Þd
1

ðq2 þ �Þn ¼
1

ð4�Þd=2
�ðn� d=2Þ

�ðnÞ ð�2Þd=2�n;

(C5)

from which it follows that

Z ddq

ð2�Þd
q2

ðq2 þ �Þn ¼ 1

ð4�Þd=2
d

2

�ðn� d=2� 1Þ
�ðnÞ

� ð�2Þd=2�nþ1; (C6)

and consequently also

Z ddq

ð2�Þd
q4

ðq2 þ �Þn ¼
1

ð4�Þd=2
dðdþ 2Þ

4

�ðn� d=2� 2Þ
�ðnÞ

� ð�2Þd=2�nþ2: (C7)

To obtain a finite result, we prefer to look at

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z 1

0
dx

�
ð12x4 � 24x3 þ 14x2 � 2xÞ 1

�2

þ ð8x6 � 24x5 þ 25x4 � 10x3 þ x2Þ k2

ð�2Þ2

þ 2x4ð1� xÞ4 k4

ð�2Þ3
�
; (C8)

where we set d ¼ 2, as we are mainly interested in this case
now.
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We consequently find

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z 1

0
dx

��12x2 þ 12x� 2

k2 � is

þ k2
8x2 � 8xþ 1

ðk2 � isÞ2 þ 2k4
xð1� xÞ
ðk2 � isÞ3

�
; (C9)

where we reintroduced s ¼ 2x�1
2xð1�xÞ , hence x ¼ �1þsþ

ffiffiffiffiffiffiffiffi
1þs2

p
2s ,

which gives rise to

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
�

�
� 2

s2
ð3þ s2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ 1

k2 � is

þ k2

s2
ð4þ s2 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ 1

ðk2 � isÞ2

þ k4

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p 1

ðk2 � isÞ3
�
: (C10)

We first rewrite everything in terms of k2 � is as follows

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
�
� 2

s2
ð3þ s2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ 1

k2 � is
þ 1

s2
ð4þ s2 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ k

2 � isþ is

ðk2 � isÞ2

þ ðk2 � isþ isÞ2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p 1

ðk2 � isÞ3
�

¼ 1

4�

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
�
� 1

s2
ð3þ s2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ 1

k2 � is
þ is

�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p 1

ðk2 � isÞ2

� s2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p 1

ðk2 � isÞ3
�
: (C11)

Using two consecutive partial integrations, we can show that

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
�
� 1

s2
ð3þ s2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ 1

k2 � is

�

¼ �
Z þ1

�1
ds

��1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

s2
þ lnð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ
�

1

ðk2 � isÞ3 : (C12)

Similarly, partial integration leads to

Z þ1

�1
ds

2ð1þ s2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ
�
is
�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p 1

ðk2 � isÞ2
�
¼

Z þ1

�1
ds

�
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p þ lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ
�

1

ðk2 � isÞ3 :
(C13)

Hence, we can rewrite (C11) as

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z þ1

�1
ds

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
�

1

ðk2 � isÞ3 (C14)

after simplification. We observe that there are no poles in the upper half s-plane for k2 > 0, so we can fold our contour
around the cut for s 2 ½i1; i�. With s ¼ i�, we can write

@2Fðk2Þ
ð@k2Þ2 ¼ 1

4�

Z 1

þ1
id�

�
1

�2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
�

1

ðk2 þ �Þ3 þ
1

4�

Z þ1

1
id�

�
1

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
�

1

ðk2 þ �Þ3

¼ 1

4�

Z þ1

1
d�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

ðk2 þ �Þ3 : (C15)

We can now return to the original function Fðk2Þ. A first integration from 0 to k2 gives

@Fðk2Þ
@k2

�
�
@Fðk2Þ
@k2

�
k2¼0

¼ 1

4�

Z þ1

1
d�

1

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

ðk2 þ �Þ2 �
1

4�

Z þ1

1
d�

1

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�2
; (C16)

so that we get
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Fðk2Þ � k2
�
@Fðk2Þ
@k2

�
k2¼0

�Fð0Þ ¼ 1

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

k2 þ �
þ k2

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�2
� 1

4�

Z þ1

1
d�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�
:

(C17)

Next, we shall also bring Gðk2Þ, given in Eq. (125), into a
spectral form. Invoking the Feynman trick this time yields

Gðk2Þ ¼
Z 1

0
dx

Z ddq

ð2�Þd
Mðk; qÞ

ðq2 þ �2Þ2 ; (C18)

with

Mðk; qÞ ¼ k2q2
�
1� 1

d

�
: (C19)

As usual, we shall work in units 2�̂2 ¼ 1. By using (C6),
we obtain the finite function

@2Gðk2Þ
ð@k2Þ2 ¼ 1

8�

Z 1

0
dx

�
ðx2ð1� xÞ2Þ k2

ð�2Þ2

� ð2ð1� xÞxÞ 1

�2

�
: (C20)

We substitute x ¼ �1þsþ
ffiffiffiffiffiffiffiffi
1þs2

p
2s , so we obtain

@2Gðk2Þ
ð@k2Þ2 ¼ 1

8�

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
�

�
k2

ðk2 þ isÞ2 �
2

k2 þ is

�
: (C21)

Rewriting in terms of k2 � is gives

@2Gðk2Þ
ð@k2Þ2 ¼ 1

8�

Z þ1

�1
ds

2ð1þ s2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ

�
� �is

ðk2 þ isÞ2 �
1

k2 þ is

�
: (C22)

Subsequently, using partial integration gives us the follow-
ing identity

Z þ1

�1
ds

2ð1þ s2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
Þ
� �is

ðk2 þ isÞ2
�

¼ �
Z þ1

�1
ds½lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
þ 1Þ� 1

ðk2 � isÞ3 : (C23)

Analogically,

Z þ1

�1
ds

2ð1þ s2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p Þ
� �1

ðk2 � isÞ2
�

¼
Z þ1

�1
ds½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
� lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
þ 1Þ� 1

ðk2 � isÞ3 :
(C24)

Therefore, Eq. (C22) becomes

@2Gðk2Þ
ð@k2Þ2 ¼ 1

8�

Z þ1

�1
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

ðk2 � isÞ3 : (C25)

As before, we can fold our contour around the cut for s 2
½i1; i� and by setting s ¼ i�, we find

@2Gðk2Þ
ð@k2Þ2 ¼ 1

4�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

ðk2 þ �Þ3 ; (C26)

and thus

@Gðk2Þ
@k2

�
�
@Gðk2Þ
@k2

�
k2¼0

¼ 1

4�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

�2

1

ðk2 þ �Þ2

� 1

4�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p

�2

1

�2
:

(C27)

Integrating a second time gives

Gðk2Þ �G2

�
@Gðk2Þ
@k2

�
k2¼0

�Gð0Þ

¼ 1

8�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

k2 þ �
þ k2

8�

�
Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�2
� 1

8�

Z þ1

1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p 1

�
:

(C28)

2. Using the Schwinger parametrization for d ¼ 2 and
d ¼ 4

As a check on our results (123) and (128), we shall
rederive these here using a different approach, and we shall
simultaneously also treat the d ¼ 4 case.
To use the Schwinger parametrization,

p2

p4 þ �4
¼

Z 1

0
d� cosð�̂2�Þe��p2

; (C29)

�̂2

p4 þ �4
¼

Z 1

0
d� sinð�̂2�Þe��p2

; (C30)

we make the denominators real,
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hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ N
Z ddp

ð2�Þd 4ðp
2ðp� kÞ2 þ ðd� 2Þðp2 � pkÞ2Þ p2ðp� kÞ2 þ �4

ðp2 � i�̂2Þððp� kÞ4 þ i�̂2Þ

¼ 4N
Z 1

0
d�d� cosð�̂2ð�� �ÞÞ

Z ddp

ð2�Þd ðp
2ðp� kÞ2 þ ðd� 2Þðp2 � pkÞ2Þe��p2��ðp�kÞ2 (C31)

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ N
Z ddp

ð2�Þd 32ðk
2p2 � ðkpÞ2Þ p2ðp� kÞ2 þ �4

ðp2 � i�̂2Þððp� kÞ4 þ i�̂2Þ

¼ 32N
Z 1

0
d�d� cosð�̂2ð�� �ÞÞ

Z ddp

ð2�Þd ðk
2p2 � ðkpÞ2Þe��p2��ðp�kÞ2 : (C32)

The Gaussian integrals can be evaluated by standard methods:

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ 4N
Z 1

0
d�d� cosð�̂2ð�� �ÞÞðd� 1Þ

�
d

2

�
d

2
þ 1

�
ð�þ �Þ�d=2�2

þ k2ð�2 þ �2 � d��Þð�þ �Þ�d=2�3 þ k4�2�2ð�þ �Þ�d=2�4

�
; (C33)

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ 32N
Z 1

0
d�d� cosð�̂2ð�� �ÞÞðd� 1Þ k

2

2
ð�þ �Þ�d=2�1: (C34)

For the remaining calculation it is useful to obtain a general expression for such integrals as appearing above. They can be
derived along the lines of Sec. III B, only that we consider now arbitrary powers of �, � and (�þ �). We define the
expression J as

Jða; b; c; dÞ ¼ ð4�Þ�d=2
Z 1

0
d�d� cosð
2ð�� �ÞÞ�a�bð�þ �Þce�ð��=ð�þ�ÞÞk2 (C35)

and insert unity by means of Eq. (A2). Then we rescale the variables � and � by 	,

Jða; b; c; dÞ ¼ ð4�Þ�d=2
Z 1

0
d�d��a�bð�þ �Þc

Z 1

0
d	�ð�þ �� 1Þ	1þaþbþc cosð	
2ð�� �ÞÞe�ð��=ð�þ�ÞÞ	k2 ;

(C36)

evaluate the integrals over 	 and �, and transform � to the variable u ¼ ð2�� 1Þ=ð2�ð1� �ÞÞ:

Jða; b; c; dÞ ¼ ð4�Þ�d=2
Z 1

�1
du

1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p �ð2þ aþ bþ cÞ

� Re

���1þ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u

�
a
�
1þ u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

u

�
b
22þcð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ2þaþbþc½k2 � i2u
2��2�a�b�c

�
:

(C37)

This integral is evaluated in the complex plane, where it possesses a branch cut from u ¼ i to u ¼ i1. Setting u ¼ iy the
integral J is then given by

Jða; b; c; dÞ ¼ ð4�Þ�d=2�ð2þ aþ bþ cÞi22þc
Z 1

1
dy

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
� Refð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
Þ1þaþbþcð�1þ iyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
Það1þ iy�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

q
ÞbðiyÞ�a�b½k2 þ 2y�̂2��2�a�b�cg:

(C38)

Now the physical cut from k2 ¼ �2�̂2 to infinity is manifest, but we still have to determine the spectral function. For this
we rewrite the variable y into an angular variable �, 1=y ¼ cos�, 0 	 � 	 �=2,
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Jða; b; c; dÞ ¼ ð4�Þ�d=222þc�ð2þ aþ bþ cÞi
Z �=2

0
d�

sin�

cos2�

1

i sin�
� Refi�a�bðcos�þ i sin�Þ1þaþbþc

� ð� cos�þ iþ i sin�Þaðcos�þ i� i sin�Þbðcos�Þ�a�b�c½k2 þ 2y�̂2��2�a�b�cg
¼ ð4�Þ�d=222þc�ð2þ aþ bþ cÞ �

Z �=2

0
d�Refi�a�bei�ð1þaþbþcÞð�e�i� þ iÞaðe�i� þ iÞbðcos�Þ�2�a�b�c

� ½k2 þ 2y�̂2��2�a�b�cg; (C39)

and employ Eq. (A10) to obtain

Jða; b; c; dÞ ¼ ð4�Þ�d=222þc 1

�ð�1� a� b� cÞ
Z 1

2�̂2
d�

1

�þ k2

�
Z ’

0
d�Refi�a�bei�ð1þaþbþcÞði� e�i�Þaðiþ e�i�Þbðcos�� cos’Þ�2�a�b�c��2�a�b�cg; (C40)

where the order of integration was interchanged and ’ is
defined by cos’ ¼ 2�2=�. Note that the external momen-
tum k2 in a coefficient of J will turn into ��.

Equation (C40) is valid for �2� a� b� c �
�1;�2; . . . . In our example there is indeed one case,
where �2� a� b� c ¼ �1 is realized. Here we use
instead the intermediary expression Eq. (C39) of the deri-
vation above. It leads directly to the spectral representation
after replacing cosð�Þ by 2�̂2=�. Finally plugging
Eqs. (C40) and (C39) into Eqs. (C33) and (C34) yields in
two dimensions

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ 4N
Z 1

2�̂2
d�

1

�þ k2
�̂4

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�̂4

p ;

(C41)

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ 32N
Z 1

2�̂2
d�

1

�þ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�̂4

p
8�

:

(C42)

These results are consistent with (123) and (128). In four
dimensions, we find

hOð1Þ
	
ðkÞOð1Þ

	
ð�kÞi ¼ 12N
Z 1

2�̂2
d�

1

�þ k2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�̂4

p ð2�̂4 þ �2Þ
32�2�

; (C43)

hOð2Þ
	
ðkÞOð2Þ

	
ð�kÞi ¼ 96N
Z 1

2�̂2
d�

1

�þ k2
ð�2 � 4�̂4Þ3=2

64�2�
:

(C44)
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