
Magnetic expansion of Nekrasov theory: The SU(2) pure gauge theory

Wei He* and Yan-Gang Miao†

Department of Physics, Nankai University, Tianjin 300071, China
(Received 6 April 2010; published 29 July 2010)

It is recently claimed by Nekrasov and Shatashvili that theN ¼ 2 gauge theories in the� background

with �1 ¼ @, �2 ¼ 0 are related to the quantization of certain algebraic integrable systems. We study the

special case of SU(2) pure gauge theory; the corresponding integrable model is the A1 Toda model, which

reduces to the sine-Gordon quantum mechanics problem. The quantum effects can be expressed as the

WKB series written analytically in terms of hypergeometric functions. We obtain the magnetic and dyonic

expansions of the Nekrasov theory by studying the property of hypergeometric functions in the magnetic

and dyonic regions on the moduli space. We also discuss the relation between the electric-magnetic

duality of gauge theory and the action-action duality of the integrable system.
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I. INTRODUCTION

The nonperturbative properties of quantum field theories
have been one of the most active research subjects during
the past few decades; we have known a lot of information
through various analytical or numerical methods. The four-
dimensional Yang-Mills theory stands as one of the few
most attractive field models. One of the milestones of
studying the supersymmetric gauge theories is the
Seiberg-Witten solution of the four-dimensional N ¼ 2
gauge theory [1], which results in a fully analytic under-
standing of a large class of supersymmetric gauge theories.
Their solution is based on typical features of supersym-
metric gauge theories, i.e. the holomorphic structure of
prepotential and the electric-magnetic duality of gauge
theory. By analyzing the vacuum structure of the moduli
space and the related monodromy problem, Seiberg and
Witten discovered that the low energy physics of the gauge
theory is encoded in a geometric object, an elliptic curve,
the prepotential can be obtained through the periods of a
holomorphic differential one form along the two conjugate
homology cycles. The periods can be written as hyper-
geometric functions on the moduli space; they manifest the
electric-magnetic duality in a very explicit way: the
electric-magnetic duality group of the gauge theory is the
same as the discontinuous reparametrization group of the
elliptic curve. The solution is valid on the whole moduli
space. In some regions the theory is a weakly coupled
electric theory, in some regions the electric theory is
strongly coupled, but it can be reformulated as a weakly
coupled magnetic theory. By choosing suitable quantities
as the fundamental degrees of freedom, we can either
expand the effective action in terms of the electric fields
or in terms of the magnetic (or dyonic) fields. Subsequent
works have extended the solution to the N ¼ 2 theory

with more general gauge groups and with matters; it is also
found that these solution can be interpreted in the context
of string theory, see review [2,3].
The original work of Seiberg and Witten is reinterpreted

in [4] from a different viewpoint. The hard part of solving
the N ¼ 2 gauge theory is the sum of the instanton
contributions, but the multi-instanton measure on moduli
space grows very complicated as the number of instantons
increases, only the first few multi-instanton contributions
have been calculated directly. The problem is solved
through the localization technique; this can be achieved
only after embedding theN ¼ 2 gauge theory into the so-
called� background [4–9]. The� background is a twist of
the R4 bundle characterized by two complex parameters
�1, �2. The partition function of this theory can be ex-
pressed in a compact form as a contour integral and can be
analytically performed to arbitrary order in the instanton
expansion. The instanton part of the Seiberg-Witten theory
F instða;m; qÞ can be obtained through the Nekrasov parti-
tion function by the limit �1 ¼ ��2 ¼ @ ! 0.
The Nekrasov theory not only gives Seiberg-Witten

theory a more mathematically solid explanation, and the
theory is also important by itself, its rich structure is still
largely unknown. One of the still mysterious aspects of
Nekrasov theory is its modular property, i.e. the electric-
magnetic duality property. In the original Seiberg-Witten
formulation of the solution, the electric-magnetic duality is
manifestly realized; the hypergeometric function is well
defined on the whole moduli space coordinated by u, and
we can get asymptotic expansion near u ¼ 1 and ��2

which correspond to electric region and magnetic (dyonic)
region, respectively. But the Nekrasov theory is defined in
the electric region. Its partition function does not directly
depend on the moduli space coordinate u, and it is not clear
how the electric-magnetic duality works. It is interesting to
find a way to study the magnetic (or dyonic) expansion of
Nekrasov theory. Some earlier works concern this problem
appear in [10]; the authors study the Nekrasov theory with
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�1 ¼ ��2 ¼ �which is related to topological string theory
and matrix model [11]. The general case of �1, �2 remains
unknown.

A rather interesting discovery is recently presented in
[12,13], where the relation between the Nekrasov theory
and the quantization of algebraic integrable system is
established. The correspondence between N ¼ 2 gauge
theories and the classical integrable systems has been
extensively studied soon after Seiberg-Witten theory. It
was noted in [14,15] that the Seiberg-Witten solution of
gauge theory is related to the classical integrable system;
more precisely, the Seiberg-Witten curve of the gauge
theory is identical to the spectral curve of the classical
integrable system if we suitably identify physical quanti-
ties on the two sides, see review [16,17]. In [12], the
authors develop the correspondence to the quantum level,
they claim that the �-background twisted gauge theory
with �1 ¼ �, �2 ¼ 0 is related to the quantization of the
corresponding classical integrable system, and the
�-parameter of the gauge theory is identified with the
Plank constant @. Here the ‘‘quantization’’ refers to the
integrable system side; on the gauge theory side it corre-
sponds to higher order � twist expansion. Some evidence
supporting the correspondence is presented in [18,19]; they
consider the special case of SU(2) pure Yang-Mills theory
which is related to the A1 Toda integrable system; the A1

Toda system reduces to the sine-Gordon quantum mechan-
ics problem on the complex plane. It is shown that the
energy spectrum and wave function of the quantized me-
chanical model give the results consistent with the require-
ment of Nekrasov theory. Discussion on more general
cases is presented in [20].

In [18], the authors found that the higher order @ cor-
rections can be obtained via acting on certain higher order
differential operators on the leading order result, i.e. the
Seiberg-Witten solution. This fact indicates that the @

corrections can be also expressed compactly in hypergeo-
metric functions which are valid on the whole moduli
space. We use this observation to study the magnetic
expansion of Nekrasov theory with �1 ¼ @, �2 ¼ 0, by
expanding higher order contour integrals in the magnetic
region on the moduli space. Dyonic expansion is also
obtained; it manifests a similar pattern with the magnetic
case. In fact, the magnetic and dyonic expansions are
related by a Z2 symmetry, therefore we mainly discuss
the electric-magnetic duality of the system.

II. HIGHER ORDER CONTOUR INTEGRALS

In the Seiberg-Witten solution of N ¼ 2 SU(2) pure
gauge theory the quantum moduli space is a complex
quantity u of mass dimension two on which there are three
singularities at u ¼ 1, ��2 which correspond to the
electric region and magnetic (dyonic) region, respectively.
� denotes the dynamical generated scale of the gauge
theory. For simplicity we set the scale � ¼ 1 and it can

be restored by dimensional analysis at last. The moduli
space is the quotient of the upper half plane H by �ð2Þ,
where �ð2Þ is subgroup of SLð2;ZÞ congruent to 1 modulo
2. The low energy effective action is described by the
Seiberg-Witten curve whose moduli space is exactly
H=�ð2Þ:

y2 ¼ ðx2 � 1Þðx� uÞ (1)

and the corresponding Seiberg-Witten differential

d�ðu; xÞ ¼
ffiffiffi
2

p
2�

ffiffiffiffiffiffiffiffiffiffiffiffi
x� u

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p dx: (2)

Then að0Þ and að0ÞD are integrals of d� along the conjugate
circles � and �, respectively,

að0Þ ¼
I
�
d�; að0ÞD ¼

I
�
d�; (3)

where að0Þ is the vacuum expectation value of the scalar

field, and að0ÞD is the dual quantity. On the moduli space, the
two cycles � and � correspond to the integral contours
encircling branch point pairs ð�1;þ1Þ and ðþ1; uÞ, re-
spectively. The result can be written in terms of hyper-
geometric function,

að0ÞðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðuþ 1Þp

F

�
� 1

2
;
1

2
; 1;

2

uþ 1

�

að0ÞD ðuÞ ¼ i

2
ðu� 1ÞF

�
1

2
;
1

2
; 2;

1� u

2

�
:

(4)

They are well defined on the whole moduli space.
At each singularity electric (or magnetic/dyonic) parti-

cles become massless. If we treat the corresponding mass-
less particles as fundamental degrees of freedoms, the
theory is weakly coupled in the region near the singularity.
Near u ¼ 1, the theory is weakly coupled electric theory,

and the low energy effective prepotential F ð0Þ is obtained
from

að0ÞD ¼ @

@að0Þ
F ð0Þ: (5)

Near u ¼ 1, the electric theory is strongly coupled. The
electric-magnetic duality works in the sense that, if the
theory is reformulated in terms of the dual magnetic fields,

it is weakly coupled. The dual prepotential F ð0Þ
D can be

obtained from

að0Þ ¼ @

@að0ÞD

F ð0Þ
D : (6)

A similar mechanism works for the dyonic region near u ¼
�1.
The Nekrasov theory can be viewed as the quantized

version of the Seiberg-Witten theory. The partition func-
tion Zða;m; �1; �2;�Þ can be written in terms of the pre-
potential F ða;m; �1; �2;�Þ:
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Zða;m; �1; �2;�Þ ¼ exp
F ða;m; �1; �2;�Þ

�1�2
; (7)

where a is related to the vacuum expectation value of scalar
fields, m denotes the masses of matter fields, and
F ða;m; �1; �2;�Þ is a regular function in the limit �1 !
0, �2 ! 0. We are interested in the case of �1 ¼ @, �2 ¼ 0
and with no matter. It is shown in [18,19] that the modul a
and the prepotential can be expanded as

aðað0ÞÞ ¼ að0Þ þ @
2að1Þðað0ÞÞ þ @

4að2Þðað0ÞÞ þ � � �
F ða; @Þ ¼ F ð0ÞðaÞ þ @

2F ð1ÞðaÞ þ @
4F ð2ÞðaÞ þ � � � ;

(8)

where the superscript (0) indicates the ‘‘classical’’ quanti-
ties and the superscript ðiÞ, i � 1 indicates the ‘‘quantum’’
corrected ones. Note that the function variable of F is a

rather than að0Þ. A dual variable of a can be defined by

aD ¼ @

@a
F (9)

and expanded as

aD ¼ að0ÞD ðaÞ þ @
2að1ÞD ðaÞ þ @

4að2ÞD ðaÞ þ � � � : (10)

In the limit @ ! 0, only the leading order remains and it is
just the Seiberg-Witten theory. The higher order @ correc-
tions are explained as effects of� twist in the gauge theory
side, and as quantization on the dual integrable system

side. In [18] the authors find aðiÞðað0ÞÞ and aðiÞD ðaÞ, i � 1

can be obtained from að0ÞðuÞ and að0ÞD ðuÞ by acting on
certain higher order differential operators on them. In the
following, we will explain it and write the results in hyper-
geometric function.

The integrals of (3) can be written in another form. If we
change the variable as x ¼ cos�, then the integrals become

�ð2�Þ�1
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðu� cos�Þp
d�, which is the classical action

integral
R
pð�Þd� of the sine-Gordon action L ¼ _�2 �

cos� for a particle at the given ‘‘energy’’ u. In order to
quantize the system, we are led to the Schrödinger equation

�
� @

2

2

d2

d�2
þ cos�

�
�ð�Þ ¼ u�ð�Þ: (11)

When the system is quantized, the contour integrals (3) are
lifted to the monodromies of the phase of the wave function
along the circles � and �. Equation (11) is the Mathieu
equation, and some properties of the corresponding gauge
theory have been obtained by analyzing its periodic solu-
tion [19]. We apply WKB method and write the wave
function as

�ð�Þ ¼ exp
i

@

Z �
Pð�0Þd�0

¼ exp
i

@

Z �ðP0 þ @P1 þ @
2P2 þ � � �Þd�0; (12)

then we have

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðu� cos�Þ

q
; P1 ¼ i

2
ðlnP0Þ0;

P2 ¼ � 1

8P0

½2ðlnP0Þ00 � ððlnP0Þ0Þ2�; P3 ¼ i

2

�
P2

P0

�0
;

� � � (13)

where the prime denotes @
@� .

As P1 and P3 are total derivatives, their contour integrals
are zero. Only the contour integrals of P0; P2; P4; . . . give

nonzero results; they are related to að0Þ; að1Þ; að2Þ; . . . , re-
spectively. The nonzero part of the P2 contour integral
gives

I
�;�

P2d� ¼ 1

32
ffiffiffi
2

p
I
�;�

sin2�� 4u cos�þ 4

ðu� cos�Þ5=2 d�

¼ � 1

48
ffiffiffi
2

p
I
�;�

cos�

ðu� cos�Þ3=2 d�

¼ 1

48
ð2ud2u þ duÞ

I
�;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðu� cos�Þ

q
d�;

(14)

where du denotes d
du . Using the formula

d

dz
Fð�;�; �; zÞ ¼ ��

�
Fð�þ 1; �þ 1; �þ 1; zÞ; (15)

we get

að1Þ ¼ 1

48
ð2ud2u þ duÞað0ÞðuÞ

¼ 1

24

�
ð2ðuþ 1ÞÞ�3=2F

�
� 1

2
;
1

2
; 1;

2

uþ 1

�

� 2ðu� 1Þð2ðuþ 1ÞÞ�5=2F

�
1

2
;
3

2
; 2;

2

uþ 1

�

� 6uð2ðuþ 1ÞÞ�7=2F

�
3

2
;
5

2
; 3;

2

uþ 1

��
(16)

að1ÞD ¼ 1

48
ð2ud2u þ duÞað0ÞD ðuÞ

¼ i

96

�
F

�
1

2
;
1

2
; 2;

1� u

2

�

� 1

16
ð5u� 1ÞF

�
3

2
;
3

2
; 3;

1� u

2

�

þ 3

16
uðu� 1ÞF

�
5

2
;
5

2
; 4;

1� u

2

��
: (17)

In a similar way, the third order contour integral is

I
P4d� ¼ 1

29 � 45
ð28u2d4u þ 120ud3u þ 75d2uÞ

I
P0d�:

(18)

We will not give the full detail here because it is little long.

Both að2Þ and að2ÞD can be written in a similar form as that of
(16) and (17) in terms of hypergeometric functions. We can
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either expand them near the point u ¼ 1 and u ¼ 1, or
directly act on the forth order differential operator on the

series expansion of að0ÞðuÞ and að0ÞD ðuÞ; they will give the
same result. This strategy can be applied to higher order
contour integrals, which contains more complicated differ-
ential operators.

To obtain results (14) and (18), we have followed the
trick of [18], although our differential operators are slightly
different from theirs because we have set � ¼ 1.

III. ELECTRIC EXPANSION

In the following three sections we will derive the pre-
potential in the electric region and the magnetic (dyonic)

region. We will not list the full details of the procedure, we
only explicitly give some series expansions which are
interesting for our project. Some of them have been known
before, but appear in different literatures, or derived
through other methods. We use the newly discovered rela-
tion between the gauge theory and the integrable model to
give a complete and consistent derivation. Some of our
results, especially the magnetic (dyonic) expansion of the
prepotential for the case �1 ¼ @, �2 ¼ 0, are new.
On the moduli space, u ¼ 1 corresponds to the electric

region; near this point the massless excitations are weakly
coupled Abelian U(1) electric fields. Expanding aðuÞ and
aDðuÞ near 1, up to the @4 order we have

aðuÞ ¼ að0ÞðuÞ þ @
2að1ÞðuÞ þ @

4að2ÞðuÞ þ � � �
¼ ffiffiffiffiffiffi

2u
p �

1� 1

4

�
1

2u

�
2 � 15

64

�
1

2u

�
4 � 105

256

�
1

2u

�
6 � 15 015

16 384

�
1

2u

�
8 þ � � �

�

� @
2ffiffiffiffiffiffi
2u

p
�
1

24

�
1

2u

�
2 þ 35

27

�
1

2u

�
4 þ 1155

210

�
1

2u

�
6 þ 75 075

214

�
1

2u

�
8 þ � � �

�

� @
4

ð2uÞ3=2
�
1

26

�
1

2u

�
2 þ 273

210

�
1

2u

�
4 þ 5005

211

�
1

2u

�
6 þ 2 297 295

28

�
1

2u

�
8 þ � � �

�
: (19)

This result has been obtained in [18,19], through different methods. Our method here follows, and simplifies, the one in
[18]. From aðuÞ, the inverse series gives

2u ¼ a2 þ 1

2
a�2 þ 5

32
a�6 þ 9

64
a�10 þ 1469

8192
a�14 þ � � � þ @

2

�
1

8
a�4 þ 21

64
a�8 þ 55

64
a�12 þ 18 445

8192
a�16 þ � � �

�

þ @
4

�
1

32
a�6 þ 219

512
a�10 þ 1495

512
a�14 þ 985 949

65 536
a�18 þ � � �

�
: (20)

The series expansion of aDðuÞ ¼ að0ÞD þ @
2að1ÞD þ @

4að2ÞD is lengthy, it contains many terms of the form ðc1 þ c2 ln2þ
c3 lnuÞukþð1=2Þ, k ¼ 0; 1; 2; . . . . Substituting u ¼ uðaÞ into aDðuÞ, we get the series expansion of aDðaÞ with very simple
structure. The prepotential is obtained from aD ¼ @

@aF :

F ða; @Þ ¼ i

4�

�
4a2

�
ln2a� 3

2

�
� 1

2
a�2 � 5

64
a�6 � 3

64
a�10 þ � � �

�

þ @
2 i

4�

�
1

6
lna� 1

8
a�4 � 21

128
a�8 � 55

192
a�12 þ � � �

�

þ @
4 i

4�

�
1

1440
a�2 � 1

32
a�6 � 219

1024
a�10 � 1495

1536
a�14 þ � � �

�
: (21)

The results are consistent with other works. For ex-
ample, in [18], the @

0 and @
2 order results of F ða; @Þ

have been obtained through the same method as here; in
[19], the form of power series ofF ða; @Þ has been obtained
through analyzing the Mathieu function. Here we derive
the coefficients; in [21], direct gauge theory calculation
gives the instanton part of the prepotential up to four
instantons contribution; it is easy to check that our result
is coincident with theirs if we set �1 ¼ @, �2 ¼ 0. It is also
worth mentioning that, in [21], other choices such as �1 ¼
��2 ¼ @ or �1 ¼ �2 ¼ @ will give different results. Not

only the rational coefficients are different, the powers of a
are also different. For example, for the case �1 ¼ ��2, the
prepotential will be the one given in [10,11] which is
different from (21). This fact explicitly indicates that the
quantization of the integrable model we discuss here in-
deed corresponds to a special corner of the Nekrasov
theory with �1 ¼ @, �2 ¼ 0.

IV. MAGNETIC EXPANSION

Nowwe have confidence that theWKB contour integrals
of the integrable model indeed give the Nekrasov theory in
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the electric region. What we will do next is just to expand
the WKB contour integrals in the magnetic region, i.e. near
u ¼ 1 on the moduli space. In the magnetic region, mag-
netic monopoles couple to the dual U(1) Abelian gauge
fields as massive matter hypermultiplets. The effective
action is obtained by integrating out all massive fields;
their effects are encoded in the subleading terms of (28).

The motivation of studying magnetic expansion of
Nekrasov function comes from two sides.

First, the Nekrasov theory is formulated in the electric
region, where it can be explicitly expanded in terms of the
electric quantity a; however, its magnetic expansion is
much less known, although various dual quantities can be
formally defined. A special corner of the parameter space
�1 ¼ ��2 has been investigated in [10], using results of the
holomorphic anomaly equation of topological string the-
ory. However, the general case is unknown. In this paper,
through the relation with the integrable system, we can
explore another corner with �1 ¼ @, �2 ¼ 0.

Second, the electric-magnetic duality of the gauge the-
ory has some interplay with duality of the integrable
model. According to the discussion in [22], on the sym-
plectic manifold M related to the integrable system, the
Liouville’s theorem states that the symplectic form! has a
normal form locally written in terms of coordinates ðI; ’Þ:

! ¼ dI ^ d’; (22)

where ’ is the coordinate variable, and I is the action
variable in the sense that the Hamiltonian is a function of
only I: H ¼ hðIÞ. For the classical integrable model which
corresponds to the N ¼ 2 gauge theory, the symplectic
manifold is the tangent space of the gauge theory moduli
space, M ¼ C� T, where C is the complex plane related
to the vacuum expectation value of the adjoint complex
scalar field, and T is the torus related to the complex gauge
coupling �. The symplectic form is [15]

! ¼ dað0ÞðuÞ ^ dx

yðu; xÞ ; (23)

where y ¼ yðu; xÞ is the Seiberg-Witten curve. The
Hamiltonian of the integrable system is identified with

the beta function of the prepotential of the gauge theory,

and að0Þ is the action variable.
The gauge theory has electric-magnetic duality which

maps � ! � 1
� and að0Þ ! að0ÞD , and we can formulate the

theory as either electric theory or magnetic theory.
Therefore, in the magnetic formulation, the symplectic
structure discussed above is reformulated in the dual quan-
tities. Near u ¼ 1, the gauge theory is a weakly coupled

electric theory; the appropriate action variable is að0ÞðuÞ.
While near u ¼ 1 the gauge theory is a weakly coupled

magnetic theory, the appropriate action variable is að0ÞD ðuÞ.
On the u plane, we have dað0Þ ^ dað0ÞD ¼ 0; therefore there

exists a potential that maps að0Þ and að0ÞD to each other:

að0ÞD ¼ @

@að0Þ
F ð0Þ (24)

or

að0Þ ¼ @

@að0ÞD

F ð0Þ
D : (25)

Depending on the electromagnetic frame we work in, we

choose one of F ð0Þ and F ð0Þ
D as the potential. We say this

integrable system manifests the action-action duality. F ð0Þ

andF ð0Þ
D are dual to each other; they are the Seiberg-Witten

prepotential of the gauge theory in the electric and mag-
netic region, respectively. The magnetic expansion of the
Seiberg-Witten theory has been known [3], and investigat-
ing the quantum version is a natural next step.
If the classical electric-magnetic duality has a well-

defined quantum correspondence, then there should exist
a dual pair F ða; @Þ and F DðaD; @Þ. For the special case of
SU(2) pure Yang-Mills theory with �1 ¼ @, �2 ¼ 0, the
quantum correction can be expressed in terms of hyper-
geometric function through WKB series and can be ana-
lytically studied in the magnetic region. This provides a
glimpse to the dual phase of the integrable system.
Expanding (4) near the magnetic point u ¼ 1 (set 	 ¼

u� 1, therefore du ¼ d	), and using the differential op-
erators of (14) and (18), we get the asymptotic form of
âD ¼ iaD and a up to the order of @4:

âDð	Þ ¼ âð0ÞD ð	Þ þ @
2âð1ÞD ð	Þ þ @

4âð2ÞD ð	Þ þ � � �

¼ � 1

2
	þ 1

32
	2 � 3

512
	3 þ 25

16 384
	4 þ � � � � @

2

27

�
1� 5

16
	þ 35

256
	2 � 525

8192
	3 þ � � �

�

� @
4

218

�
�17þ 721

32
	� 10 941

512
	2 þ 141 757

8192
	3 þ � � �

�
: (26)

The inverse series gives
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	 ¼ �2âD þ 1

4
â2D þ 1

32
â3D þ 5

512
â4D þ � � � þ @

2

26

�
�1� 3

8
âD � 17

64
â2D � 205

1024
â3D þ � � �

�

þ @
4

217

�
9þ 405

16
âD þ 2943

64
â2D þ 69 001

1024
â3D þ � � �

�
: (27)

In the magnetic region, the series expansion of að	Þ contains many terms of the form ðc1 þ c2 ln2þ c3 ln	Þ	k, k ¼
0; 1; 2; . . . . Similar to the case of electric expansion, after substituting 	 ¼ 	ðâDÞ into að	Þ, we get the series expansion of
aðâDÞ with very simple structure. The dual prepotential F D can be obtained from a ¼ @

@aD
F D:

FDðaD; @Þ ¼ 1

i�

�
â2D
2

ln

�
� âD

2

�
þ 4âD � 3

4
â2D þ 1

16
â3D þ 5

512
â4D þ 11

4096
â5D þ � � �

�

þ @
2

i�25

�
1

3
lnâD � 3

23
âD � 17

27
â2D � 205

210 � 3
â3D þ � � �

�
þ @

4

i�211

�
� 7

45
â�2
D þ 135

29
âD þ 2943

213
â2D þ � � �

�
:

(28)

Some interesting features of the dual prepotential (28)
can be compared to that appearing in [10], although they
discuss a different corner of the Nekrasov theory with �1 ¼
��2 (see the Conclusion). Except the only two terms
containing lnâD, the quantum corrections are powers of
âD, their coefficients are all rational numbers, the same as
that in [10]. This fact serves a nontrivial examination of the
result itself. If there were mistakes in the coefficients of
expansions âDð	Þ, 	ðâDÞ and að	Þ, then (28) would con-
tain terms like c1 þ c2 ln2þ c3 lnâD in any other terms. In
the @4 order correction of F D, the first two terms of order
Oðâ�1

D Þ and Oð1Þ are absent. The same pattern happens in
formula (2.33) of [10]. Actually, in their case the ‘‘gap’’
phenomenon happens for all higher genus corrections; we
believe that in our case the gap phenomenon also persists to
higher order @ corrections.

Although no direct gauge theory calculation in the dual
magnetic fields is available, however, from the experience
of electric expansion, we have an explanation for the
different terms of F D. Terms of order â2D lnâD and
@
2 lnâD; @

4â�2
D ; . . . in the prepotential correspond to the

classical and one loop contributions. Other terms corre-
spond to integrating out multiparticle massive hypermul-
tiplets, which are monopole particles in the original
electric theory.

In [12,13], the prepotential of the gauge theory is iden-
tified with the Yang-Yang function [23] of the quantum
Toda integrable model. The problem has two kinds of
formulations, called type A and type B spectral problems.
The type B problem is solved by the periodic Mathieu
function with quantization condition [12]

1

@

@

@aD
F D ¼ a

@
¼ n; n 2 Z: (29)

This is studied in [19]. The type A problem is solved by the
dual equation

i

@

@

@a
F ¼ âD

@
¼ m; m 2 Z: (30)

The two quantization conditions serve as the Bethe equa-
tions of the corresponding spectrum problems. However,
the appearance of potential in (29) and (30) only serves as a
conceptual definition, in practice, only aðuÞ ¼ @n and
âDð	Þ ¼ @m are used to compute the energy spectrum u.
The type B’s eigenvalue as a function of the quantum
number n is given in (20) as series expansion; it can be
expressed in a more compact form as the periodic solution
of the Mathieu equation [19]. The type A’s eigenvalue as a
function of the quantum number m is given in (27). In the
next section we will further explain its relation to the
Mathieu equation. The two type problems are connected
by the S duality � ! � 1

� .

Therefore we have a clear picture about the role of the
electric-magnetic duality on the side of the integrable
model: it is the action-action duality [22] of the quantum
integrable model that maps type A and type B spectrums to
each other [12].

V. DYONIC EXPANSION

The untwisted N ¼ 2 SU(2) gauge theory has a global
Z2 symmetry acting on the u plane by u ! �u. Under the
Z2 symmetry the magnetic region at u ¼ �2 is mapped to
the dyonic region at u ¼ ��2. At the dyonic point, the
massless soliton particles are either charge ðne; nmÞ ¼
ð1;�1Þ dyons or charge ðne; nmÞ ¼ ð1; 1Þ dyons, depending
on the direction from which we cross the wall of marginal
stability and approach the dyonic point [24]. We choose the
convention ðne; nmÞ ¼ ð1;�1Þ; therefore, the Seiberg-
Witten solution behaves as a� aD � uþ 1 near u ¼
�1. The electric-magnetic duality together with the Z2

symmetry generate the electric-magnetic-dyonic triality.
In the following, we will give the dyonic expansion of
the Nekrasov theory; it is related to the magnetic expansion
by a Z2 symmetry of the Nekrasov theory.
The dyonic expansion is very similar to that of the

magnetic expansion, therefore we only briefly report the
main results. Setting $ ¼ uþ 1 we get
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aT ¼ a� aD ¼ að0ÞT þ @
2að1ÞT þ @

4að2ÞT þ � � �

¼ 1

2
$þ 1

32
$2 þ 3

512
$3 þ 25

16 384
$4 þ � � � þ @

2

27

�
1þ 5

16
$þ 35

256
$2 þ 525

8192
$3 þ � � �

�

þ @
4

218

�
17þ 721

32
$þ 10 941

512
$2 þ 141 757

8192
$3 þ � � �

�
: (31)

The inverse series gives the eigenvalue of the corresponding quantum mechanics problem:

$ ¼ 2aT � 1

4
a2T � 1

32
a3T � 5

512
a4T þ � � � þ @

2

26

�
�1� 3

23
aT � 17

26
a2T � 205

210
a3T þ � � �

�

þ @
4

217

�
�9� 405

24
aT � 2943

26
a2T �

69 001

210
a3T þ � � �

�
: (32)

We can substitute$ ¼ $ðaTÞ into either að$Þ or aDð$Þ, and the dyonic prepotential can be obtained from either aðaTÞ ¼
@

@aT
F T or aDðaTÞ ¼ @

@aT
F T . The two kinds of choice correspond to doing electric-dyonic duality and magnetic-dyonic

duality, respectively. We choose electric-dyonic duality and get

F TðaT; @Þ ¼ 1

i�

�
a2T
2

ln

�
� aT

16

�
þ 4aT � 3

4
a2T þ 1

16
a3T þ 5

512
a4T þ 11

4096
a5T þ � � �

�

þ @
2

i�25

�
� 1

3
lnaT þ 3

23
aT þ 17

27
a2T þ 205

210 � 3
a3T þ � � �

�
þ @

4

i�211

�
� 7

45a3T
þ 135

29
aT þ 2943

213
a2T þ � � �

�
:

(33)

The dyonic prepotential is very close to that of magnetic,
only differing by a � 3

2a
2
T ln2 term and a minus sign in the

@
2 correction.
Now, we will discuss a relation between the magnetic

(dyonic) expansion and the periodic solution of the
Mathieu equation. Equation (11) can be rewritten as

�00ðzÞ þ ðA� 2B cos2zÞ�ðzÞ ¼ 0 (34)

with A ¼ 8u
@
2 , B ¼ 4�2

@
2 , 2z ¼ �, and � restored. The peri-

odic solution is marked by a quantum number 
; 
 is an
even integer for the solution with period �, an odd integer
for the solution with period 2�. In [19] we have studied the

eigenvalue problem of the periodic solution in the case of

small
ffiffiffi
B

p

 expansion, which corresponds to the electric

expansion of gauge theory. Here, we will encounter the
small 
ffiffiffi

B
p expansion.

The eigenvalue formulas (27) and (32) have very similar
structure, restore � and set âD ¼ @



2 in (27), and set aT ¼

@


2 in (32), with 
 an even integer. Then (27) and (32) can

be rewritten in terms of A, B, 
, and we find that they are
asymptotic expansions of the following two more compact
expressions:

A
 ¼ 2B� 4

ffiffiffiffi
B

p þ 4
2 � 1

23
þ 4
3 � 3


26
ffiffiffiffi
B

p þ 80
4 � 136
2 þ 9

212B
þ 528
5 � 1640
3 þ 405


216B3=2

þ 2016
6 � 10 080
4 þ 5886
2 � 243

219B2
þ � � � (35)

for (27), and

A
 ¼ �2Bþ 4

ffiffiffiffi
B

p � 4
2 þ 1

23
� 4
3 þ 3


26
ffiffiffiffi
B

p � 80
4 þ 136
2 þ 9

212B
� 528
5 þ 1640
3 þ 405


216B
3
2

� 2016
6 þ 10 080
4 þ 5886
2 þ 243

219B2
þ � � � (36)

for (32). Formulas (35) and (36) can be found in the
formula (20.2.30) in [25]. Their notation w is related to
ours by w ¼ 2
. The terms of order 1

B2 come from the @
6

correction; we have checked all other higher order terms

which we do not explicitly list here for the sake of avoiding
unnecessary lengthy. The two cases are related to each
other by the Z2 symmetry 
 ! i
, B ! �B. To ensure
the expansions make sense, we need the ratio of the ad-
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jacent terms to be small 
ffiffiffi
B

p � aD=T

� � 1, which is the physi-
cal requirement that the expansions are performed in the
weakly coupled region of magnetic/dyonic theory.

The sine-Gordon model (11) is the quantum mechanics
problem on the moduli space of the Seiberg-Witten theory.
Its excitation spectrum can be classified into three species:
the excitations in the bottom of the potential are ‘‘dyonic
excitations’’; the excitations near the mouth of the poten-
tial are ‘‘magnetic excitations’’; the excitations far above
the top of the potential are ‘‘electric excitations.’’

VI. CONCLUSION

The recently discovered relation between the Nekrasov
gauge theory, i.e. N ¼ 2 gauge theory in the � back-
ground, and quantization of the algebraic integrable system
is an exciting field that needs deeper understanding. In this
paper we study the expansion of the SU(2) Nekrasov
theory with �1 ¼ @, �2 ¼ 0 on the whole moduli space,
through its relation to the sine-Gordon quantum mechanics
model. We focus on this relatively simple model because in
this case many quantities can be explicitly calculated,
however, it presents the basic features of the novel corre-
spondence. The consistence of theses results on both sides,
i.e. on the gauge theory side and the integrable model side,
gives nontrivial support to the correspondence. Using the
observation of [18], higher order quantum effects can be
obtained by acting on certain higher order differential
operators on the classical results, and can be compactly
expressed in terms of the hypergeometric function. The
hypergeometric function is well defined on the whole
moduli space, therefore studying the property in the mag-
netic (dyonic) region is straightforward, by expanding the
results near the magnetic (dyonic) points u ¼ �1. It is
remarkable that the coefficients of the subleading terms of
the prepotentials F , F D, and F T are all rational numbers.
We stress here that the three prepotentials F , F D, and F T

are the local asymptotic expansions of the same object that
is globally well defined. It seems that some symmetries of
the Seiberg-Witten theory, such as the �ð2Þ modular sym-
metry and the Z2 global symmetry, survive under the �
twist with �1 ¼ @, �2 ¼ 0.

The electric-magnetic duality of the gauge theory cor-
responds to the action-action duality on the integrable
system side. The action-action duality exchanges the role
of a and aD (or aT) and maps two kinds of spectrum
problem to each other. The prepotential F of the gauge
theory serves as the Yang-Yang function of the type A
spectrum problem, and the dual prepotential F D (and
F T) serves as the Yang-Yang function of the type B spec-
trum problem. For the case of pure SU(2) Yang-Mills
theory, the eigenvalue of the two types of problems are
well-known results of the Mathieu equation.

In the four-dimensional �-deformed theory, the two
parameters �1, �2 can take arbitrary complex value, the
full structure of the theory is very rich. Some special

corners of the parameter space have been studied in detail;
they are often related to some other field theory models.
We briefly list several cases that have appeared in the
literature:
(i) The case of �1 ¼ ��2 ¼ � has been studied in its

related contexts of topological string and matrix
models, see for example [11]. In that case, the par-
tition function takes the form

F ¼ X1
g¼0

�2g�2F ðgÞðaÞ: (37)

The higher order correction terms F ðgÞðaÞ corre-
spond to the gravitational couplings to the Seiberg-

Witten gauge theory. F ðgÞðaÞ is the holomorphic

limit of the quantity FðgÞð�; ��Þ of the type B topo-
logical sigma model which corresponds to the
higher genus gravity correction. In [10], the authors
study the SU(2) theory, using the �ð2Þ 	 SLð2;ZÞ
(quasi)modular property of FðgÞð�; ��Þ, the magnetic

expansion of F ðgÞ
D ðaDÞ was obtained by the limit

��D ¼ � 1
�� ! 1.

(ii) The case of �1 ¼ @, �2 ¼ 0 is related to the quanti-
zation of integrable systems, initiated in [12]. The
present work investigates the particular SU(2) pure
gauge theory using its connection with the inte-
grable system. Comparing our results with that in
[10], we know that the Nekrasov theory with �1 ¼
��2 � 0 and �1 � 0, �2 ¼ 0 will give the same

F ð0ÞðaÞ and F ð0Þ
D ðaDÞ which is the Seiberg-Witten

theory, but for higher order corrections, F ðgÞðaÞ and
F ðgÞ

D ðaDÞ for g � 1, they two cases give different
results.

(iii) The case �1 ¼ �2 is explored in [26]. The corre-
sponding gauge theory in the � background is
identical to the physical theory defined on the
Euclidean S4, with �1 ¼ �2 equal to the inverse of
the radius of the four sphere.

(iv) Recently, a relation between the four-dimensional
�-deformed theory and the two-dimensional
Liouville conformal field theory (CFT) is discov-
ered by Alday, Gaiotto, and Tachikawa [27]. It
states that the Nekrasov partition function is iden-
tical to the correlation function of Liouville CFTon
certain Riemann surfaces with punctures. In their
case, the corresponding Nekrasov theory sits in the
corner of �1 � �2 ¼ 1; the �1, �2 parameters are
related to the central charge of the Liouville CFT.

(v) More recently, in [28], the authors try to embed the
deformed gauge theory with general �1, �2 into
topological string theory. Its partition function
with generic �1, �2 satisfies an extended version of
the holomorphic anomaly equation. Especially, they
find that theory at �1 ¼ �2�2 can be identified with
an orientifold of the theory at �1 ¼ ��2.
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It seems that the Nekrasov theory is a very powerful
structure that unifies several fields in an unexpected way.
Exploring the general case of �1, �2, especially its modular
property, largely remains untouched.
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