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In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with

insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N ¼
4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the

gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-

de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we

consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh

bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green’s correlator.

We then note that this particular prescription amounts to adapting the finite-temperature analog of

Veltman’s circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar

bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger

identities, the largest time equation, and the zero-temperature limit. When specializing to a particular

retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given

by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point

which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity,

since the retarded n-point functions are obtained by analytic continuation from the imaginary-time

Green’s function, and based on causality considerations.
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I. INTRODUCTION AND SUMMARY

In recent years, there has been a great deal of interest in
applying anti-de Sitter/conformal field theory (AdS/CFT)
methods to the study of strongly coupled quark-gluon
plasmas created at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory. This interest stems from
the fact that some features of strongly coupled quark-gluon
plasmas are captured by an analytically tractable example
of a gauge theory plasma at strong coupling: N ¼ 4
SUðNcÞ super Yang-Mills theory at finite temperature. In
the deconfined phase, this theory is expected to qualita-
tively resemble high-temperature QCD (see e.g. [1] for a
discussion of this). In the limit of large Nc and large
’t Hooft coupling, N ¼ 4 super Yang-Mills is holograph-
ically dual to weakly coupled string theory on a black hole
spacetime which asymptotes to the product of five-
dimensional anti-de Sitter space (AdS) with a five-
dimensional sphere [2–5]. Using the AdS/CFT correspon-
dence, many dynamical properties of the N ¼ 4 strongly
coupled plasma have been investigated: e.g. transport co-
efficients such as viscosity were related to a computation of
real-time 2-point correlators in the black hole background
(see [6] and references therein). The prescription for com-
puting 2-point real-time correlators goes back to Son and
Starinets [7] and to Son and Herzog [8] (for more recent

work see [9]). On the other hand, very little is known about
computing 3-point and higher correlators of operators in
real time and at finite temperature. In fact, this paper gives
the very first concrete expression for real-time finite-
temperature 3-point correlators.
According to AdS/CFT, one can compute a 3-point

correlator in super Yang-Mills by computing the analog
of a Feynman diagram (Witten diagram) in the anti-
de Sitter-Schwarzschild (AdS-S) background. This dia-
gram includes three bulk-to-boundary propagators for the
gravity field which couples to the super Yang-Mills opera-
tor under consideration, and these propagators meet at a
vertex point in the bulk. The location of the vertex must be
integrated over. For real-time (Minkowski signature) cal-
culations, a possible source of confusion concerns the
range of integration. Should one integrate only up to the
horizon in Schwarzschild coordinates? Or should one per-
haps think about the Penrose diagram of the AdS-S space
and integrate over the right and left quadrants only? One
could instead integrate over the whole diagram (including
the past and future quadrants), but then one would need to
specify how to carry out the integration at the singularities.
Or maybe one has to use an entirely different gravitational
background by gluing different geometries in such a way
that one constructs a gravitational analogue of the
Schwinger-Keldysh contour. Various authors have pro-
posed different ways of addressing this issue [8], [9,10].
Wewill resolve this integration ambiguity by extending the
work of Son and Herzog and using many insights from the
formalism of real-time finite-temperature field theory, of-
fering an alternative to other approaches in the literature

*eb4df@virginia.edu
†dv3h@virginia.edu
‡cw2an@virginia.edu
xparnold@virginia.edu

PHYSICAL REVIEW D 82, 025019 (2010)

1550-7998=2010=82(2)=025019(22) 025019-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.025019


which is quite simple to implement, and which yields
consistent results.

For simplicity, we consider operators which couple to
(massless) scalar fields in the AdS-S background, but we
expect that our results generalize easily to other spins. We
first construct the Schwinger-Keldysh scalar bulk-to-
boundary propagator. This is a 2� 2 matrix whose indices
correspond to the location of the boundary point (either the
right (R) or left (L) boundary) and to the location of the
bulk vertex point (either in the R or L quadrants). The
minimally coupled scalar action is defined to be integrated
over only the R and L quadrants, with a relative sign
between the two bulk integrals. This is along the lines of
Frolov and Martinez [11], who in turn were inspired by
Israel’s thermofield formalism [12]. It turns out that the
relative sign between the two contributions precisely
matches the relative sign between the contributions of the
physical and doubler fields in real-time finite-temperature
field theory. We note, following Kobes and Semenoff [13],
that the Schwinger-Keldysh propagator can be re-
interpreted in terms of circling rules (that is, the entries
of the Schwinger-Keldysh propagator can be related to the
Feynman and Wightman propagators, which are repre-
sented diagrammatically in terms of Veltman’s circling
rules [14,15]). Thus, the R-L prescription can be traded
for circling rules in the AdS-S background, and with the
integration over the bulk vertex only up to the horizon. The
various real-time 3-point functions are then computed
diagrammatically by placing circles around the boundary
and bulk vertex points, and summing the appropriate num-
ber of diagrams. For example, a time-ordered product of
three operators in real time and finite temperature is com-
puted by adding two gravity diagrams: one with three
boundary vertices of type 1 (uncircled) and three bulk-to-
boundary propagators meeting at a bulk vertex which is
either of type 1 (uncircled) or 2 (circled). As we have
already mentioned, the bulk vertex is integrated only up
to the horizon.

We subject our prescription to several checks: Kubo-
Martin-Schwinger (KWS) identities, the largest time equa-
tion, and the zero-temperature limit. Moreover, by focus-
ing on a special 3-point real-time correlator which is
retarded, we can make contact with the 3-point correlator
obtained in imaginary time (Euclidean signature). The
latter can be computed straightforwardly using Witten-
type diagrams in Euclidean AdS-S, without encountering
any of the subtleties we discussed before: Euclidean AdS-S
has no singularities (it caps at the horizon) and has only a
single boundary, just like Euclidean AdS. The retarded 3-
point function is related to the imaginary-time 3-point
Green’s function by analytic continuation in frequency.
Our more general prescription for computing generic
real-time finite-temperature 3-point correlators yields a
retarded 3-point function which has this property. In the
past, analyticity arguments were used in the context of

AdS/CFT by Gubser et al. [16] and by Iqbal and Liu
[17,18] to obtain the real-time 2-point correlators. Lastly,
using the causal nature of the retarded 3-point, we can
understand why the integration region over the bulk vertex
is only up to the horizon, that is, why one needs to integrate
only over the R region of the Penrose diagram (similar
causality arguments were used by Caron-Huot and Saremi
[19] when computing one-loop gravity corrections to the
retarded 2-point correlator).
The paper is organized as follows: In Sec. II, we first

derive the real-time 3-point correlators at zero temperature.
This is done so that we have a reference point when asking
the question: is the finite-temperature prescription compat-
ible with the zero-temperature result? In our approach we
start from the position-space field theory correlators and
Fourier transform. Amusingly, in this procedure, the AdS
radial coordinate arises as a Schwinger parameter. Next we
find that the real-time correlators are obtained by integrat-
ing over a region of the AdS space, the Poincaré patch. This
is in contrast to the more familiar AdS/CFT story in the
Euclidean signature, where the AdS tree-level diagrams are
obtained by integrating over the whole AdS space. In
particular, the final answer for the momentum-space re-
tarded 3-point correlator is expressed as the product of
three causal (two advanced and one retarded) bulk-to-
boundary AdS propagators, integrated over the position
of the bulk vertex only over the Poincaré patch.
Then, in Sec. III we review some of the basic elements of

real-time finite-temperature field theory formalism. In par-
ticular, we take note of an observation made by Kobes [20]
that in real-time formalism, the retarded n-point function,
which he proceeds to define, is the real-time correlator
which is obtained by analytic continuation in frequency
space from the imaginary-time finite-temperature
correlator.
In Sec. IV, we spend some time reviewing the construc-

tion of the bulk-to-boundary propagators. In particular, the
retarded bulk-to-boundary scalar propagator is the one
which behaves like an incoming wave at the horizon
[19]. We give a self-contained exposition of its expression
in terms of Heun’s functions, and explore its analytic
properties, connection with the Euclidean-signature bulk-
to-boundary propagator, causal properties and zero-
temperature limit. Then we notice that the Feynman propa-
gator in curved space is associated with a choice of vac-
uum. We construct the Feynman Green’s function from the
retarded Green’s function by borrowing the definition of a
thermal Feynman Green’s function from finite-temperature
field theory:

G FðE; ~P; uÞ ¼ ReGRðE; ~P; uÞ þ iImGRðE; ~P; uÞ
� cothð�E=2Þ; (1.1)

where u is related to the radial/holographic direction, and
� is the inverse temperature. We then note that the
Schwinger-Keldysh bulk-to-boundary propagator can be
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re-expressed in terms of circling rules propagators [14,15]
in a way entirely analogous to real-time finite-temperature
field theory [13].

We begin Sec. V by reviewing the real-time finite-
temperature 2-point correlators from AdS/CFT. Our defi-
nition for the scalar field action is in accord with the R-L
prescription. This choice is such that by evaluating the on-
shell AdS-S scalar kinetic action and picking up the R and
L boundary terms, one gets the 2-point Schwinger-Keldysh
field theory correlator. Next, we use the same R-L pre-
scription to evaluate the 3-point real-time finite-
temperature correlators. We have already advertised the
result: it is consistent with the known identities obeyed by
the real-time finite-temperature correlators, and with the
zero-temperature limit. Then, by focusing on the retarded
finite-temperature 3-point correlator, we find that although
numerous terms contribute, the answer is quite simple: it
can be viewed as arising from a single Witten-type diagram
containing three causal propagators (two advanced and one
retarded) joined at a bulk vertex which is integrated only up
to the horizon. This is what one expects to get based on
considerations of the zero-temperature limit and analytic
continuation from the Euclidean signature. Moreover, for a
causal 3-point function, one expects that one has to inte-
grate only over a causal bulk region determined by the
boundary points. Since our result gives the momentum-
space 3-point retarded correlator, the bulk integration can
only be over the R quadrant, which is a maximal causal
diamond. We view all of these results as consistency
checks of our prescription for the computation of the
real-time finite-temperature 3-point functions, which can
also be summed up by the use of circling rules, and a bulk
integration region from spatial infinity up to the black hole
horizon.

The technical details are relegated to the Appendices. In
Appendix A, for completeness, we give the momentum-
space zero-temperature 2-point CFT correlators. In
Appendix B, we obtain the real-time momentum-space
zero-temperature 3-point functions in terms of Witten-
type diagrams by employing a reverse-engineering proce-
dure, namely, starting from the CFT correlators and re-
packaging them as Witten diagrams. In Appendix C, we
discuss the zero-temperature retarded bulk-to-boundary
scalar propagators. In Appendix D, we give the closed-
form expression of the zero-temperature retarded 3-point
function for CFT operators with conformal dimension
� ¼ 2. Lastly, in Appendix E we give some background
material on the Heun function and its various local
representations.

II. FROM FIELD THEORY T ¼ 0 REAL-TIME
CORRELATORS TO ADS WITTEN DIAGRAMS

A. Real-time CFT correlators

To set our notation in a simplified setting, let us begin
with a massless scalar field theory. In the Minkowski

signature (that is, real time), one encounters different
Green’s functions. Besides the Feynman propagator,

DFðxÞ � h0jT�ðxÞ�ð0Þj0i
� �ðtÞDþðxÞ þ �ð�tÞD�ðxÞ
¼ 1

ð2�Þ2
1

ð�t2 þ ~x2 þ i�Þ ; (2.1)

where D� are Wightman’s functions

D�ðxÞ ¼ h0j�ð0Þ�ðxÞj0i ¼ 1

ð2�Þ2
1

½�ðtþ i�Þ2 þ ~x2� ;
(2.2)

DþðxÞ ¼ h0j�ðxÞ�ð0Þj0i ¼ 1

ð2�Þ2
1

½�ðt� i�Þ2 þ ~x2� ;
(2.3)

one defines the causal retarded and advanced propagators,

DRðxÞ � �ðtÞh½�ðxÞ; �ð0Þ�i ¼ DFðxÞ �D�ðxÞ

¼ � i

2�
�ðtÞ�ð�t2 þ ~x2Þ; (2.4)

DAðxÞ � ��ð�tÞh½�ðxÞ; �ð0Þ�i ¼ DFðxÞ �DþðxÞ

¼ � i

2�
�ð�tÞ�ð�t2 þ ~x2Þ: (2.5)

The retarded/advanced propagators (and the higher n-point
functions) can be obtained following Veltman’s circling
rules [14,15]. According to these rules, each vertex can be
circled or uncircled. The circling of a vertex brings a minus
sign. The propagator between uncircled vertices is the
usual Feynman propagator, DFðxÞ. The propagator be-
tween two circled vertices is the complex conjugate of
the Feynman propagator, D�

FðxÞ. The propagator between
a circled vertex and an uncircled one is D�ðxÞ, and the
propagator between an uncircled vertex and a circled one is
DþðxÞ (see Fig. 1). As a consequence of these circling
rules, Veltman was able to formulate the largest time
equation [14]. This is an algebraic identity stating that
the sum of all diagrams obtained from a single Feynman
diagram by placing circles around all vertices in all pos-
sible combinations, for a total of 2n diagrams if there are n
vertices, is zero. For example, one can easily verify that
DF �D� �Dþ þD�

F ¼ 0.

FIG. 1. Circling rules propagators.
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The causal retarded n-point function where the largest
time is associated with a certain vertex is computed by
adding all diagrams, where each vertex can be circled or
uncircled, with the exception of the vertex associated with
the largest time which remains uncircled. For the 2-point,
this indeed reduces to DRðxÞ ¼ DFðxÞ �D�ðxÞ.

Our notation is such that the propagator will be consis-
tently denoted by fonts of the letter D, while the n-point
Green’s functions will be denoted by fonts of the letter G.
For example, the 2- and n-point Feynman Green’s func-
tions are given by

iGFðx; x0Þ ¼ hT�ðxÞ�ðx0Þi;
in�1GFðx1; x2 . . . xnÞ ¼ hT�ðx1Þ�ðx2Þ . . .�ðxnÞi:

(2.6)

In a conformal field theory, the 2-point function is fixed
by symmetry. Considering for simplicity scalar operators
of the same conformal dimension �, the various real-time
2-point functions are1:

GFðxÞ ¼ �ih0jTOðxÞOð0Þj0i

¼ � i

ð2�Þ2
�

1

�t2 þ ~x2 þ i�

�
�
; (2.7)

GþðxÞ ¼ �ih0jOðxÞOð0Þj0i ¼ �ðtÞGFðxÞ � �ð�tÞG�
FðxÞ

¼ � i

ð2�Þ2
�

1

�ðt� i�Þ2 þ ~x2

�
�
; (2.8)

G�ðxÞ ¼ �ih0jOð0ÞOðxÞj0i ¼ �ð�tÞGFðxÞ � �ðtÞG�
FðxÞ

¼ � i

ð2�Þ2
�

1

�ðtþ i�Þ2 þ ~x2

�
�
; (2.9)

GRðxÞ ¼ GFðxÞ �G�ðxÞ ¼ �ðtÞðGþðxÞ �G�ðxÞÞ;
(2.10)

GAðxÞ ¼ GFðxÞ �GþðxÞ ¼ �ð�tÞðG�ðxÞ �GþðxÞÞ:
(2.11)

The CFT Green’s functions have the same i� prescription
as the scalar Green’s functions. For completeness, we give

the momentum-space 2-point functions in Appendix A. An
important observation which carries through, as will see
when discussing the retarded momentum-space propagator
of scalar fields in a black hole background, is that the
analytic continuation of the Euclidean-signature 2-point
function, with E ! �iðE� i�Þ yields the retarded/ad-
vanced 2-point correlators [16] [17,18].
Moving on to 3-point functions, these are also fixed by

conformal symmetry (up to an overall constant, which was
set to 1). For example

GFðx1; x2; x3Þ ¼ ð�iÞ2h0jTOðx1ÞOðx2ÞOðx3Þj0i

¼ ð�iÞ2
�

1

ð�t212 þ ~x212 þ i�Þ
� 1

ð�t223 þ ~x223 þ i�Þ
� 1

ð�t231 þ ~x231 þ i�Þ
�
�=2

: (2.12)

The non-time-ordered product of three scalar operators is

G123ðx1; x2; x3Þ ¼ ð�iÞ2h0jOðx1ÞOðx2ÞOðx3Þj0i

¼ ð�iÞ2
�

1

ð�t212 þ ~x212 þ i�t12Þ
� 1

ð�t223 þ ~x223 þ i�t23Þ
� 1

ð�t231 þ ~x231 � i�t31Þ
�
�=2

; (2.13)

where the i� prescription follows the same rules as for the
2-point functions, namely, the time coordinate of an op-
erator insertion is greater by i� than the time coordinate of
any other operator insertion to the right of it [21] (for a
recent AdS/CFT paper making use of this i� prescription
see [22]).
Knowing these correlators means that we can obtain the

retarded 3-point function for which x3 has the largest time
by using the analytic continuations which follow from the
circling rules (alternatively, see [23]):

GRðx1; x2; x3Þ ¼ �ðt31Þ�ðt12ÞðG312 �G132 þG213 �G231Þ þ �ðt32Þ�ðt21ÞðG321 �G231 þG123 �G132Þ

¼ ð�iÞ2�ðt31Þ�ðt12Þ
��

1

ðx212 � i�t12Þ�
1

ðx223 þ i�t23Þ�
� c:c:

��
1

ðx231 � i�t31Þ�
� 1

ðx231 þ i�t31Þ�
��

þ ð�iÞ2�ðt32Þ�ðt21Þ
��

1

ðx212 þ i�t12Þ�
1

ðx231 � i�t31Þ�
� c:c:

��
1

ðx223 þ i�t23Þ�
� 1

ðx223 � i�t23Þ�
��

; (2.14)

1TheN ¼ 4 super Yang-Mills theory 2-point functions have an additional overall constant 8 ��2
�

�ð�þ1Þ
�ð��2Þ which was stripped off from

the subsequent formulae, together with a factor which is dependent on the gauge group and representation.
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where we defined for brevity

� � �

2
; (2.15)

and GABC ¼ ð�iÞ2hOðxAÞOðxBÞOðxCÞi are the non-time-
ordered correlators.

B. Lessons for real-time AdS/CFT from CFT
correlators

Before we discuss the real-time correlators, we make a
detour in Euclidean space, and show how one could dis-
cover Witten’s AdS/CFT diagrams starting from the 3-
point momentum-space CFT correlator. We begin by
Fourier-transforming the position-space 3-point correlator.
To perform the integrals, we introduce three Schwinger
parameters. The integrals over the Euclidean-signature
coordinates x� are of the Gaussian type, and easily per-
formed. To deal with the intermediate result, we need to
introduce one more Schwinger parameter, z. As shown in
detail in Appendix B, the final answer is

i2GEðk1; k2; k3Þ ¼ 210�3��3�ð2�2Þ4�2�

� �4�2�ðk1 þ k2 þ k3Þ
�ð�2Þ3�ð3�2 � 4�2�

2 Þ
Z 1

0

dz

z5�2�

�Y3
i¼1

ð
ffiffiffiffiffi
k2i

q
Þ��ð4�2�Þ=2zð4�2�Þ=2

� K��ð4�2�Þ=2ð
ffiffiffiffiffi
k2i

q
zÞ: (2.16)

The expression in (2.16) is UV divergent, and to regularize
it we employed here dimensional regularization. It is
amusing to notice that the momentum-space 3-point CFT
correlator has been reassembled as an integral over the
AdS radial coordinate z of the product of three bulk-to-
boundary AdS scalar propagators. This is precisely a 3-
point function Witten diagram [3]. With a bit of hindsight,
from the measure factor and from the form of the propa-
gators in (2.16), the AdS metric can be reconstructed to
yield

ds25 ¼
dz2 þ dx�dx�

z2
: (2.17)

In the Euclidean signature, the Poincaré coordinates of
(2.17) cover the whole AdS space.

We should also point out that as a result of our use of
dimensional regularization in computing (2.16), the AdS
space has dimension dþ 1, with d ¼ 4� 2�. The scalar
field with mass m and d-dimensional momentum k� in
(dþ 1)-dimensional Euclidean AdS space has a bulk-to-
boundary propagator

ð
ffiffiffiffiffi
k2

p
Þ��ðd=2Þzd=2K��ðd=2Þð

ffiffiffiffiffi
k2

p
zÞ; (2.18)

where � is the conformal dimension of the CFT operator
which couples to mass m scalar field:

� ¼ 1

2
ðdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ: (2.19)

A different regularization which is more commonly used
in AdS/CFT calculations imposes boundary conditions at
z ¼ zB � 1 [24]. Then, the bulk-to-boundary propagators
which have a �-function support at zB in position space,
have the following expression in momentum space:

zd=2K��ðd=2Þð
ffiffiffiffiffi
k2i

q
zÞ

zd=2B K��ðd=2Þð
ffiffiffiffiffi
k2i

q
zBÞ

: (2.20)

Next, we would like to compute the Fourier transform of
(2.14) to get the momentum space retarded 3-point corre-
lator. The reason to perform this calculation is to find out
how the Witten diagrams look like in real time. In particu-
lar, we want to find out which is the region of the
Minkowski-signature AdS space where the tree-level grav-
ity diagrams need to be integrated over. This becomes
relevant later, in Sec. V, when we will inquire whether
the real time finite-temperature 3-point correlators have
the correct zero-temperature limit.
As wewill see, the answer is quite natural: sincewewant

to identify the four-dimensional coordinates x� in the field
theory and in the holographic dual, we will be using the
Poincaré parametrization of the AdS metric (2.17) with the
Minkowski signature. This also comes out naturally from
the reverse-engineering perspective that we are following:
as in (2.16), this identification is built-in. It follows that we
will not be integrating over the whole AdS space, since
(2.17) now covers just half of AdS. As for the question of
whether in real-time AdS/CFT we will be integrating over
the whole range of the radial coordinate z, we can antici-
pate that the answer will be affirmative, if the radial
coordinate enters, as it did before, as a Schwinger parame-
ter. Lastly, we might expect that the retarded 3-point is
obtained by performing an analytic continuation ! !
�ið!þ i�Þ of the Euclidean result, and that perhaps this
analytic continuation is allowed under the integral (2.16).
The answer to this second question is again affirmative.
The most straightforward proof of our previous state-

ments requires that we choose a certain momentum kine-
matics for the momentum-space correlator: if the time
associated with the spacetime point x3 is the largest of
x1, x2, x3, we will take the momenta p�

1;2;3 to be such that

E1;2 < 0, E3 > 0. With these kinematics, we can show that

our retarded 3-point correlator in momentum space is given
by the Fourier transform of GFðx1; x2; x3Þ. To see this we
only need to repackage the retarded 3-point in position
space as
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i2GRðx1; x2; x3Þ ¼
�

1

�t212 þ ~x212 þ i�

1

�t223 þ ~x223 þ i�

1

�t231 þ ~x231 þ i�

�
�=2

�
�

1

�ðt12 � i�Þ2 þ ~x212

1

�t223 þ ~x223 þ i�

1

�ðt31 þ i�Þ2 þ ~x231

�
�=2

�
�

1

�ðt12 þ i�Þ2 þ ~x212

1

�ðt23 � i�Þ2 þ ~x223

1

�t231 þ ~x231 þ i�

�
�=2

þ
�

1

�t212 þ ~x212 � i�

1

�ðt23 � i�Þ2 þ ~x223

1

�ðt31 þ i�Þ2 þ ~x231

�
�=2

(2.21)

and then write the Fourier transform in terms of an integral over a ‘‘loop momentum’’ and use the results given in
Appendix A for the Fourier transform of each of the three factors composing each one of the four terms in (2.21). The
energy step functions that enter the last three terms are incompatible with the kinematics that we have chosen. That is, with
these kinematics, the first term alone accounts for the retarded 3-point function.

As shown in Appendix B, the final answer for the momentum-space retarded 3-point correlator given in (2.21) is

GRðp1; p2;p3Þ ¼ ð2�Þ8
23��6�ð�=2Þ3�ð3�=2� 2Þ�

4ðp1 þ p2 þ p3Þ
Z 1

0

dz

z5
½z2ð�ðE1 � i�Þ2 þ ~p1Þð�=2Þ�1

� K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE1 � i�Þ2 þ ~p2

1

q
Þz2ð�ðE2 � i�Þ2 þ ~p2

2Þð�=2Þ�1K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE2 � i�Þ2 þ ~p2

2

q
Þ

� z2ð�ðE3 þ i�ÞÞ2 þ ~p2
3Þð�=2Þ�1K��2ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE3 þ i�Þ2 þ ~p2

3

q
Þ�: (2.22)

Each of the three factors present in the previous
formula (e.g. z2ð�ðE3 þ i�Þ2 þ ~p2

3Þð�=2Þ�1

K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE3 þ i�Þ2 þ ~p2

3

q
Þ) is a causal (retarded in this

case) bulk-to-boundary scalar propagator in the AdS back-
ground (see Appendix C). The retarded bulk-to-boundary
propagator in AdS can be obtained by analytic continu-
ation, E ! �iðEþ i�Þ, from the Euclidean propagator
(2.18).

The integral on the right-hand side of (2.22) is not
convergent for �> 2 (the case � ¼ 2 yields a convergent
integral whose closed-form analytic expression is given in
Appendix D). This is dealt with in the usual manner: the
integrals could have been regularized using dimensional
regularization, as we did before in manipulating the
Euclidean 3-point correlator, or one employs boundary
cutoff regularization. In this case, the integral over the
radial coordinate z is cutoff at zB � 1, and the propagators
are replaced by functions which are normalized at the
boundary as in (2.20).

III. FIELD THEORY T � 0 REAL-TIME
FORMALISM

In this section we review a few of the fundamental
notions and definitions of the field theory real-time finite-
temperature formalism.

In real-time formalism one distinguishes between physi-
cal fields

�1ðxÞ ¼ �ð ~x; tÞ (3.1)

and doubler fields

�2 ¼ �ð ~x; t� i�Þ ; (3.2)

where � is the arbitrary parameter of the Schwinger-
Keldysh contour. Correspondingly, the real-time n-point
Green’s functions are defined as

Ga1a2...anð1; 2; . . . nÞ
� ð�iÞn�1hT P�a1ð1Þ�a2ð2Þ . . .�anðnÞi�; (3.3)

where a1; . . .an ¼ 1, 2. By T P we denoted the time order-
ing along the Schwinger-Keldysh contour, where the�1ðxÞ
fields are time ordered, the �2ðxÞ doubler fields are anti-
time ordered, and lastly with any field �2 being defined to
have a larger path time than any other field �1. In (3.3) the
brackets h. . .i� denote the thermal average over all

Hamiltonian eigenstates, each being weighted by the
Maxwell-Boltzmann factor. The generating functional for
the Green’s functions is

Z½J1; J2� �
�
T P exp

�
i
Z

d4xðJ1�1 � J2�2Þ
��

�
; (3.4)

and so

Ga1a2...anð1; 2; . . .nÞ ¼ ið�1Þ
P

n
i¼1

ai

� �nZ½J1; J2�
�Ja1ð1Þ�Ja2ð2Þ . . .�JanðnÞ

:

(3.5)

If � ¼ �=2, then one can prove that

G�
a1a2...an ¼ ð�1Þn�1G �a1 �a2... �an ; (3.6)
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where �1 ¼ 2 and �2 ¼ 1. These are the KWS identities.
Consider now a massless scalar field theory at finite temperature in the real-time formalism. The propagator is a 2� 2

matrix

D11ðpÞ D12ðpÞ
D21ðpÞ D22ðpÞ

� �
¼

i
�p2þi�

þ nðjEjÞ2��ðp2Þ ð�ð�EÞ þ nðjEjÞÞ2��ðp2Þe�E=2
ð�ðEÞ þ nðjEjÞÞ2��ðp2Þe��E=2 �i

�p2�i�
þ nðjEjÞ2��ðp2Þ

0
@

1
A; (3.7)

where

nðjEjÞ ¼ 1

e�jEj � 1
; (3.8)

and � ¼ 1=T is the inverse temperature. The off-diagonal
components of the Schwinger-Keldysh propagator (3.7) are
related to the finite-temperature Wightman functions
D�ðpÞ:

D12 ¼ expð�E=2ÞD�; D21 ¼ expð��E=2ÞDþ;
(3.9)

while the diagonal components are related to the finite-
temperature Feynman propagator:

D11 ¼ DF; D22 ¼ D�
F: (3.10)

In more generality, if the parameter � of the Schwinger-
Keldysh contour is not equal to �=2 as in the previous
formulae, then

D11 ¼ DF; D22 ¼ D�
F;

D12ðpÞ ¼ expð�EÞD�ðpÞ;
D21ðpÞ ¼ expð��EÞDþðpÞ:

(3.11)

With the choice � ¼ �=2, the Schwinger-Keldysh propa-
gator is a symmetric matrix, as in (3.7). As it turns out, the
finite-temperature computations performed via AdS/CFT
following [8] yield 2-point correlators with � ¼ �=2.

The matrix propagator (3.7) contains the propagators
between all types of vertices: physical field vertices being
labeled 1, and doubler field vertices, labeled by 2. A real-
time Feynman G11...1 n-point function is computed dia-
grammatically by summing all distinct diagrams obtained
by letting the vertices not connected to external lines be of

either type, 1 or 2. The vertices connected to external lines
are taken to be of type 1. This turns out to be equivalent to
just using the circling rules, and the DF, D

�
F, D

� propa-
gators between circled/uncircled vertices, with only the
internal vertices being of either circled/uncircled type
[13]. Moreover, the largest time equation of Veltman still
holds at finite temperature.
These observations led Kobes [20] to define a ‘‘causal’’

n-point function, by adding all diagrams with a vertex
circled or uncircled, with the exception of the vertex asso-
ciated with ‘‘the largest time,’’ which remains uncircled.
This is very much the same prescription used at zero
temperature. It is this retarded n-point function which is
obtained by the analytic continuation of the n-point func-
tion computed in imaginary-time formalism [20].2

For example, a causal/retarded 3-point function, with the
outgoing momentum r ¼ �ðpþ qÞ vertex corresponding
to ‘‘the largest time’’ is equal to

GRðq; p; rÞ ¼ G111 � e��Ep=2G121 � e��Eq=2G211

þ e�Er=2G221: (3.12)

In addition to the identities which follow from (3.6)

G111 ¼ G�
222; G121 ¼ G�

212;

G112 ¼ G�
221; G211 ¼ G�

122;
(3.13)

the largest time equation yields one more identity

0 ¼ G111 � e��Ep=2G121 � e��Eq=2G211 þ e�Er=2G221

þ e�Ep=2G212 þ e�Eq=2G122 � e��Er=2G112 �G222;

(3.14)

which, using (3.13), can be rewritten as

� sinhð!r�ÞReG112ðq; pÞ ¼ sinhð!q�ÞReG211ðq; pÞ þ sinhð!p�ÞReG121ðq; pÞ;�ImG111ðq; pÞ
þ coshð!p�Þ ImG121ðq; pÞ þ coshð!q�Þ ImG211ðq; pÞ þ coshð!r�Þ ImG112ðq; pÞ ¼ 0:

(3.15)

Substituting (3.15) into (3.12) leads to a simpler expression for the causal 3-point function [20]:

ReGRðq; p; rÞ ¼ ReG111 þ
sinhð�Eq=2Þ
sinhð�Er=2Þ ReG121 þ

sinhð�Ep=2Þ
sinhð�Er=2Þ ReG211; (3.16)

2The other real-time finite-temperature correlators do not enjoy such a simple relationship with the imaginary-time correlator.
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ImGRðq; p; rÞ ¼ � tanhð�Er=2Þ

�
�
ImG111 þ

sinhð�Eq=2Þ
sinhð�Er=2Þ ImG121

þ sinhð�Ep=2Þ
sinhð�Er=2Þ ImG211

�
: (3.17)

IV. REAL-TIME ADS-S PROPAGATORS AND
CIRCLING RULES

Some of the results presented in this section are known
in the literature [19]. However, we could not find referen-
ces giving a comprehensive picture of the material in-
cluded here. Also since the literature is not conclusive in
terms of how to best formulate real-time AdS/CFT [7–
9,25–27], we have decided to spend some time discussing
the various bulk-to-boundary propagators (retarded,
Feynman, etc.) in AdS-S. These propagators will constitute
the basis of a diagrammatic expansion in terms of tree-
level gravity diagrams, modeled on the finite-temperature
real-time field theory formalism. The AdS-S retarded
propagator is the one which behaves like an incoming
wave at the horizon. We discuss its analytic properties,
causal nature and zero-temperature limit. The Feynman
propagator which corresponds to the thermal ‘‘Kruskal’’
vacuum is obtained from the retarded propagator using
(1.1), which is typical of finite-temperature systems. Next
we formulate the AdS-S circling rules as the curved space
counterpart of the same rules introduced in the previous
sections. This will help us develop a better perspective on
the prescription for computing the real-time finite-
temperature correlators in Sec. V.

A. The AdS-Schwarzschild geometry

The AdS-S black hole (times a five-dimensional sphere
S5) is the holographic dual of the finite-temperature N ¼
4 super Yang-Mills theory with gauge group SUðNcÞ, in the
limit Nc � 1, and in the deconfined (high-temperature)
phase [5].

The AdS-S metric is usually written as

ds210 ¼
r2

R2
ð�fðrÞdt2 þ d~x2Þ þ R2

r2fðrÞ dr
2 þ R2d�5

¼ R2

��fðzÞdt2 þ d~x2 þ dz2

fðzÞ
z2

þ d�2
5

�
; z ¼ R2

r
;

(4.1)

fðrÞ ¼ 1� r40
r4
; (4.2)

where the position of the black hole horizon is at r0 and the
asymptotic region of the black hole geometry is at r ¼ 1
(or z ¼ 0). The black hole Hawking temperature is

TH ¼ r0
�R2

: (4.3)

A better suited choice of coordinates is

u ¼ r20
R4

z2; fðuÞ ¼ 1� u2;

ds25 ¼
r20
R2

�
� 1� u2

u
dt2 þ d~x2

u

�
þ R2

4ð1� u2Þu2 du
2

¼ �2T2
HR

2

u
ð�ð1� u2Þdt2 þ d~x2Þ þ R2

4ð1� u2Þu2 du
2:

(4.4)

In these new coordinates, the horizon is at u ¼ 1, the
singularity is at u ¼ 1 and the asymptotic region is at
u ¼ 0.
It has been conjectured that finite-temperature correla-

tors should be related via AdS/CFT to n-point functions of
supergravity living in the maximally extended AdS-S ge-
ometry [8]. Therefore, we will begin by switching to global
coordinates which describe the extended geometry. We
will look for coordinates tK, xK which are the analog of
Kruskal coordinates for Schwarzschild black holes in flat
space. These can be found by starting with the ansatz:

tK ¼ RðuÞ sinhð2�THtÞ; xK ¼ RðuÞ coshð2�THtÞ:
(4.5)

In terms of tK and xK, we demand that the metric have the
form

ds2 ¼ WðuÞ½�dt2K þ dx2K� þ
ð�THRÞ2

u
d~x2 þ R2d�2

5:

(4.6)

Matching this metric to our black hole metric requires

R ðuÞ ¼ exp

�
�tan�1

ffiffiffi
u

p � 1

2
log

�
1þ ffiffiffi

u
p

1� ffiffiffi
u

p
��

; (4.7)

WðuÞ ¼ fðuÞ
4uR2ðuÞ : (4.8)

Since x2K � t2K ¼ RðuÞ2, the event horizon is described by
two intersecting lines in the tK=xK plane:

event horizon : x2K � t2K ¼ R2ð1Þ ¼ 0: (4.9)

In the above expression for RðuÞ, we have also taken the
liberty of setting to zero an integration constant which
would appear as an overall rescaling of R. This fixes the
distance between the origin ðtK; xKÞ ¼ ð0; 0Þ and the AdS
boundary to be 1:

AdS boundary: x2K � t2K ¼ Rð0Þ2 ¼ 1: (4.10)

This choice also fixes the distance between the origin and
the black hole singularity:
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singularity : x2K � t2K ¼ R2ð1Þ ¼ �e��: (4.11)

It is apparent from the above expressions for the event
horizon, AdS boundary and black hole singularity that, in
terms of tK and xK, there are two event horizons, two AdS
boundaries, and two singularities, if xK is analytically
continued to negative values. There is no obstacle to per-
forming this analytic continuation, and the result is the
extended AdS-S geometry. In the extended geometry, tK
and xK have the ranges tK 2 ð�1;1Þ and xK 2 ð�1;1Þ.
The Penrose diagram of the AdS-S geometry is given in
Fig. 2.3 The fact that there are two AdS boundaries is
particularly important for the computation of time-
dependent correlators.

In what follows we will ignore the fluctuations in the
compact S5 directions, and consider only gravity fluctua-
tions in the five-dimensional Schwarzschild geometry
(4.4).

B. The retarded bulk-to-boundary scalar propagator
in AdS-S

1. Minkowski signature

Consider a minimally coupled massless scalar propagat-
ing in the black hole background. To terms quadratic in
fields, its equation of motion is

@�ð ffiffiffiffiffiffiffi�g
p

g�	@	�ðx�; uÞÞ ¼ 0: (4.12)

After Fourier transforming along the x� coordinates to
momentum space, the scalar field equation of motion
becomes

F00 � 1þ u2

uð1� u2ÞF
0 þ

�
!2

uð1� u2Þ2 �
j ~pj2

uð1� u2Þ
�
F ¼ 0;

(4.13)

where �ðp�; uÞ ¼ Fð!; ~p; uÞ�0ðp�Þ, �0ðp�Þ is the
boundary value of the scalar field, and prime denotes
differentiation with respect to the bulk coordinate u. The
variables !, ~p are dimensionless quantities defined as

! ¼ E

2�TH

; ~p ¼ ~P

2�TH

; (4.14)

where E, ~P are the energy and momentum associated with
the scalar field modes. The norm of the dimensionless
spatial momentum is denoted by j ~pj. The bulk-to-boundary
propagator is further normalized to 1 at the boundary:
Fðu ¼ 0Þ ¼ 1. The five-dimensional AdS-S bulk-to-
boundary propagators admit analytic expressions in terms
of Heun’s functions (see also [7,28]).
We begin by making the substitution

F ¼ ð1� uÞð�i!Þ=2ð1þ uÞw=2H: (4.15)

Then, H obeys the differential equation

H00 þ
�
� 1

u
þ�1þ i!

1� u
þ 1þ!

1þ u

�
H0

þ 2ð!2 � j ~pj2Þ � ð1þ iÞ!þ i!2u

2uð1� u2Þ H ¼ 0; (4.16)

which is of the Heun type (see Appendix E), with parame-
ters4

d ¼ �1; q ¼ !2 � j ~pj2 � 1þ i

2
!;


 ¼ � ¼ 1� i

2
!; � ¼ �1; � ¼ 1� i!:

(4.17)

The two independent solutions of (4.16) are

H1ðuÞ � lim
�!�1

�
Hlð�1; q; 
; �; �; �;uÞ;þ 1

2

� ð!2 � j ~pj2Þ2
�þ 1

u1��Hlð�1; q0; 
0; �0; �0; �;uÞ
�
;

(4.18)

q0 ¼!2 �j ~pj2 � 1þ i

2
!�ð�� 1Þð!ð1þ iÞ��� 1Þ


0 ¼�0 ¼ 1� i

2
!��þ 1; �0 ¼ 2�� and;

H2ðuÞ � u2Hlð�1; q0;
0;�0;�0; �;uÞ; (4.19)

where in the definition of H1 � is kept arbitrary prior to
taking the limit [see Eq. (E5) and related discussion in
Appendix E]. In H2, � can be set to�1 directly. For future
reference we give the small u expansions of H1ðuÞ and
H2ðuÞ:

H1ðuÞ ¼ 1þ c1uþ ðc2 lnðuÞ þ c02Þu2 þ . . . ;

H2ðuÞ ¼ u2 þ . . . ;
(4.20)

where

P = t
K K−

x
K

= t K

RL

F

x

FIG. 2 (color online). The AdS-S Penrose diagram.

3We took the artistic license to draw a square Penrose diagram,
but this is accurate only for the three-dimensional AdS-S black
hole.

4The bulk-to-boundary propagator for a massive scalar field
can also be expressed in terms of a Heun’s function. In this case,
one starts with the ansatz F ¼ u�ð1� uÞð�i!Þ=2ð1þ uÞ!=2H,
where � ¼ �

2 or 2� �
2 . The Heun parameters will then also

depend on the conformal dimension �.
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c1 ¼ q ¼ � 1þ i

2
!þ!2 � j ~pj2;

c2 ¼ �ð!2 � j ~pj2Þ2
2

; c02 ¼
q

2
ð1� q�!ð1þ iÞÞ:

(4.21)

Next, we focus on constructing the solution of (4.16)
which corresponds to a purely incoming wave at the hori-
zon. This is the retarded bulk-to-boundary propagator in
the black hole background [19]:

Fðu ¼ 1Þ ¼ incoming wave and Fðu ¼ 0Þ ¼ 1:

(4.22)

5An incoming wave at the horizon (u ¼ 1) behaves as ð1�
uÞð�i!Þ=2, whereas the outgoing wave is ð1� uÞi!=2.

To this end, we make a change of variable,

w ¼ 1� u; HðuÞ ¼ ~HðwÞ: (4.23)

After substituting into (4.16), we arrive at another Heun
equation for ~H. The incoming wave at the horizon corre-
sponds to the solution

H3ðuÞ � Hl

�
2; !2

�
�1� i

2

�
þ 1þ i

2
!

þ j ~pj2; 1� i

2
!;

1� i

2
!; 1� i!;�1; 1� u

�
:

(4.24)

Finally, the bulk-to-boundary propagator corresponding to
an incoming wave can be expressed as

F ¼ Bð1� uÞ�ði!=2Þð1þ uÞ!=2H3ðuÞ; (4.25)

where B is a normalization coefficient

B ¼ 1

H3ð0Þ : (4.26)

Alternatively, we can write

F ¼ ð1� uÞ�ði!=2Þð1þ uÞ!=2ðH1ðuÞ þ AH2ðuÞÞ; (4.27)

where the coefficient A is6

A ¼
�

1

H3ð0Þ �H1ð1Þ
�

1

H2ð1Þ : (4.28)

A can be solved for in the limit of small ! and j ~pj2
directly from (4.16), by writing HðuÞ ¼ 1�HhðuÞ �
1� ð1þi

2 !þ j ~pj2Þ=2hðuÞ and solving for hðuÞ such that

to order H the solution one finds is regular at the horizon
and it is normalized to 1 at the boundary. This allows
computing the terms linear and quadratic in u, to order
H . Recalling that the terms quadratic in u in H have a
coefficient c02 þ A, we get

A ¼ 1þ i

2
!þ j ~pj2 þOð!2; !j ~pj2; j ~pj4Þ: (4.29)

Earlier we have advertised that F is the retarded bulk-to-
boundary propagator. To better understand that is so, we
will show that F is obtained by analytic continuation of the
Euclidean-signature propagator which is regular at the
origin (i.e. at u ¼ 1) for values of the Euclidean frequency
such thatReð!EÞ> 0. Then wewill argue that F is analytic
in the upper half ! plane, and its Fourier transform to
position space is a causal function, with support inside the
future light cone. Lastly, we will show that the zero-
temperature limit of the AdS-S retarded propagator is, as
expected, another causal propagator, the AdS retarded
bulk-to-boundary propagator.

2. Euclidean signature

Here we address the same problem of a bulk-to-
boundary propagator, but in the Euclidean version of the
AdS-S black hole:

ds25 ¼
ð�THRÞ2

u
½ð1� u2Þdt2E þ d~x2� þ R2

4u2ð1� u2Þdu
2:

(4.30)

The metric in (4.30) has a conical singularity at u ¼ 1,
unless the Euclidean time tE is periodic with period 1=TH.
Then, the origin is a regular point, which corresponds to the
black hole horizon in the Minkowski signature. Also in the
Euclideanized geometry, there is only a single (Euclidean)
AdS boundary. Oneway to see this is to return to our earlier
analysis of Kruskal coordinates. We could imagine writing
a Euclidean analog of Eq. (4.5):

tK ¼ RðuÞ sinð2�THtEÞ; xK ¼ RðuÞ cosð2�THtEÞ:
(4.31)

In terms of these coordinates, we no longer get two dis-
connected boundaries and two horizons. Instead, the hori-
zon is just a point (tK ¼ xK ¼ 0), and there is a single
connected boundary which is just a circle of radius one:
t2K þ x2K ¼ 1. The black hole singularity is not part of the
Euclidean geometry.
The wave equation for a massless scalar in this geometry

is

5For the case under consideration, that of a minimally coupled
massless scalar, the bulk-to-boundary propagator remains finite
at u ¼ 0 and therefore can be normalized at the boundary.
However, the 3-point correlator is expressed as an integral
over the radial coordinate u and has a divergent integrand at u ¼
0 because of the measure factor. The integral is regularized
usually by boundary cutoff regularization, in which case the
bulk-to-boundary propagators are normalized at uB � 1.

6In practice, in numerical computations we have matched
(4.25) and (4.27) at some value um ¼ 0:5 where both (4.25) and
(4.27) are within the radius of convergence of the corresponding
Heun’s functions.
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�00 � 1þu2

uð1�u2Þ�
0 � 1

uð1�u2Þ2 ð!
2
E þð1� u2Þj ~kj2Þ�¼ 0:

(4.32)

We are interested in positive frequency solutions that are
regular at the origin (u ¼ 1), so we set

FEðuÞ � �ðu; kÞ
�0ðkÞ ¼ ð1� uÞ!E=2ð1þ uÞi!E=2Hðu; kÞ;

(4.33)

where the dimensionless Euclidean 4-vector k� is k� ¼
ð!E; ~kÞ. �0ðkÞ is the value of the scalar field on the bound-
ary of Euclidean AdS-S. Given the periodicity of tE, we
must conclude that!E is integer valued. On the other hand,
for the purpose of performing analytic continuation, we
will allow !E to become complex valued.

Plugging this ansatz into the equation for�, we find that
H satisfies the Heun equation:

H00 þ
�
�

u
þ �

u� 1
þ �

u� d

�
H0 þ 
�u� q

uðu� 1Þðu� dÞH ¼ 0;

(4.34)

with the various parameters given by

� ¼ �1; � ¼ 1þ!E; � ¼ 1þ i!E;


 ¼ � ¼ 1þ i

2
!E; q ¼ 1� i

2
!E �!2

E � j ~kj2;
d ¼ �1: (4.35)

It is easy to check that the condition � ¼ 
þ �� ��
�þ 1 is satisfied. As in the previous section, we can write
the solution to the Heun equation either in terms of Heun’s
functions defined in a neighborhood of the boundary u ¼ 0
or in terms of functions defined in a neighborhood of the
horizon u ¼ 1. In the former case, we have

FE ¼ ð1� uÞ!E=2ð1þ uÞi!E=2ðH1ðuÞ þ AH2ðuÞÞ; (4.36)

where we normalized the Euclidean propagator u ¼ 0. H1

andH2 are two independent solutions to the Heun equation
which are defined as in (4.18) and (4.19), and whose
parameters are given in (4.35).
Alternatively, we may express FE in terms of a Heun’s

function defined near u ¼ 17:

FEðuÞ ¼ ð1� uÞ!E=2ð1þ uÞi!E=2Hlð1� d;
�� q;
;�; �; �; 1� uÞ
Hlð1� d; 
�� q;
;�; �; �; 1Þ : � ð1� uÞ!E=2ð1þ uÞi!E=2H3ðuÞ

H3ð0Þ : (4.37)

By matching these two expressions for FE, as in the previous section, we have

A ¼ 1

H2ð1Þ
�

1

H3ð0Þ �H1ð1Þ
�
: (4.38)

Using (4.37) we have generated plots for a wide range of the parameters!E, ~k
2
and u. We are only looking at the right half

!E complex plane since the solution (4.37) gives a regular Euclidean propagator only for Reð!EÞ 	 0. From these plots (a
couple of which are being shown in Fig. 3), we have determined that FE is a smooth function with no infinite singularities
for Reð!EÞ> 0. This is the expected behavior of an analytic function of !E in this region of the complex plane. The
retarded propagator which is obtained from the Euclidean propagator by the usual analytic continuation,

Fð!; ~p; uÞ ¼ FEð�ið!þ i�ÞÞ; ~p; uÞ; (4.39)

enjoys the same properties (smooth, free of infinite singularities) in the upper half Minkowski frequency plane Imð!Þ> 0.

3. Causality

Wewill next argue that the Fourier transform of the finite-temperature retarded propagator, Fð!; ~p; uÞ, is causal, i.e. has
support inside the forward light cone. This is closely related to the analytic properties of F. Our analysis will be restricted
for simplicity to the case when two spacetime points are separated in t and u but have the same coordinate ~x ¼ 0.

First, we construct the null AdS-S geodesics at ~x ¼ 0:

7The solution FE which is regular at the origin for negative frequencies is

ð1� uÞ�!E=2ð1þ uÞi!E=2Hlð1� d;�qþ ð�� 1Þ�dþ ð
� �þ 1Þð�� �þ 1Þ;�� �þ 1; 
� �þ 1; 2� �; �; 1� uÞ
Hlð1� d;�qþ ð�� 1Þ�dþ ð
� �þ 1Þð�� �þ 1Þ;�� �þ 1; 
� �þ 1; 2� �; �; 1Þ :

The analytic continuation of this Euclidean solution is the advanced propagator, which in momentum space is the complex conjugate
of the retarded propagator F.
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0 ¼ � 1� u2

u

r20
R2

dt2 þ R2

4ð1� u2Þu2 du
2; (4.40)

with the solution

tðuÞ ¼ 1

2�TH

�
arctanð ffiffiffi

u
p Þ þ 1

2
log

�
1þ ffiffiffi

u
p

1� ffiffiffi
u

p
��

� 1

2�TH


ðuÞ: (4.41)

Values of t lying outside the forward light cone obey the
condition t < tðuÞ.

Next we infer the behavior of Fð!; ~p; uÞ at large fre-
quency (! � 1) and fixed u8:

F ¼ ffiffiffiffi
�

p ð!þ i�Þ3=2u3=4e�ð3i�=4Þei!
ðuÞ þ . . . ; (4.42)

Plots of the exact F along with this leading-order behavior
are shown in Fig. 4. When Fourier-transforming to position
space, the leading term in (4.42) yields

� 3
ffiffiffiffiffiffiffi
2�

p
u3=4

8
�ðt� tðuÞÞ 1

ð2�THt� 
ðuÞÞ5=2 ; (4.43)

with support inside the forward light cone. The next sub-

leading term in (4.42) behaves like ð!þ i�Þ1=2ei!
ðuÞ. Its
Fourier transform also has support inside the forward light
cone. In order to analyze the behavior of the remaining
contributions to F, we consider the following integral:

1

2�

Z 1

�1
d!e�i!t½Fð!; ~p; uÞ � ð ffiffiffiffi

�
p ð!þ i�Þ3=2u3=4

� e�ð3i�=4Þ � ð!þ i�Þ1=2fð!; ~p; uÞÞei!
ðuÞ�; (4.44)

where fð!; ~p; uÞ refers to the first subleading term in
(4.42). For those values of t which lie outside the light
cone (tðuÞ � t > 0), we may close the contour in the upper

half ! plane. The integrand has no poles or cuts in this
region, and so the integral vanishes. Since the retarded
propagator is causal for ~x ¼ 0, and since the zero-
temperature limit of the retarded propagator is also causal
(see Sec. IVB4 and Appendix C), this provides strong
evidence that Fð!; ~p; uÞ is causal in general.

4. Zero-temperature limit

As we move farther away from the horizon, we expect
that near the boundary, the retarded propagator F ap-
proaches the AdS retarded propagator (which is expressed
in terms of a Hankel function) for j!2 � ~p2j sufficiently
large. To simplify our discussion of the small u limit we set
~p ¼ 0. In this limit, and switching to the Euclidean sig-
nature, the equation of motion for the massless scalar � is

�00
E � 1

u
�0

E �!2
E

u
�E ¼ 0: (4.45)

The general solution to this equation is

�E ¼ c1uK2ð2
ffiffiffi
u

p
!EÞ þ c2uI2ð2

ffiffiffi
u

p
!EÞ: (4.46)

This is, of course, the general solution to the scalar wave
equation in pure AdS, i.e. the zero-temperature limit of
AdS-S. The TH dependence in (4.46) actually drops out,
since !E

ffiffiffi
u

p ¼ Ez=2.
By allowing the range of z ¼ ffiffiffi

u
p

=ð�THÞ to extend from
0 to infinity, keeping the Bessel function which is well
behaved in the interior,

4 8 12

40

20

20

40

Re F ,p,u

2 4

8

4

4

Re F ,p,u

FIG. 4 (color online). The exact Fð!; ~p; uÞ (blue, solid) and its
leading-order behavior (4.42) in the large ! limit (red, dashed)
with u ¼ 0:5 and j ~pj ¼ 1. The plot on the right is a zoom at
small values of !.

Im FE

0
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Re E
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0

10

Im E
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Re E
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0

10

Im E

2
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2

FIG. 3 (color online). Re and Im parts of the Euclidean bulk-to-boundary propagator FE, with u ¼ 0:5 and ~k2 ¼ 1.

8This can be done in the WKB approximation. The propor-
tionality coefficient is fixed by solving FðuÞ for small u, such
that it is normalized to 1 at u ¼ 0, and constructing the

interpolating function: i�ð!þ i�Þ2u ffiffiffiffiffiffiffiffiffi

ðuÞp

=
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
u

pp
Hð1Þ

2 ðð!þ
i�Þ
ðuÞÞ.
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FEðu;!EÞ ¼ 2u!2
EK2ð2

ffiffiffi
u

p
!EÞ; u � 1; (4.47)

and analytically continuing this result to Minkowski space
ð!E ! �ið!þ i�ÞÞ, we obtain

Fðu;!Þ ¼ i�u!2Hð1Þ
2 ð2 ffiffiffi

u
p

!Þ; u � 1; (4.48)

where Hð1Þ
2 is a Hankel function of the first kind. In Fig. 5

we plotted both the retarded propagator F and the zero-
temperature propagator at u ¼ 0:1, with the two curves
almost perfectly overlapping (the two propagators differ
for small values of!). For comparison, we also plotted the
finite and zero-temperature propagator for u ¼ 0:5.

C. Thermal Feynman propagator and AdS-S circling
rules

Gibbons and Perry [29] noticed that the Hartle-Hawking
definition of the Feynman propagator in a black hole
background corresponds to the Kruskal vacuum. In other
words it is periodic in imaginary time, and therefore can be
identified with a thermal Green’s function.

To better understand this, we turn to the Rindler back-
ground example. Starting from two-dimensional
Minkowski space, ds2 ¼ �dt2 þ dx2 with the identifica-
tions x ¼ expð�Þ coshð
Þ, t ¼ expð�Þ sinhð
Þ one finds the
two-dimensional Rindler space metric ds2 ¼ expð2�Þ�
ðd�2 � d
2Þ. The Feynman propagator corresponding to
the Rindler vacuum is proportional to lnðð��þ �
Þð���
�
ÞÞ. On the other hand, the Feynman propagator corre-
sponding to the Minkowski vacuum is proportional to
lnðð�xþ�tÞð�x��tÞÞ. When writing the Minkowski
vacuum Feynman propagator in Rindler coordinates, one
discovers that it is periodic in imaginary Rindler time:
lnðcoshð
Þ � coshð�ÞÞ þ fð�Þ. We arrive at the same an-
swer when starting from the Rindler space retarded propa-
gator in momentum space, in conjunction with the relation

GFðE; PÞ ¼ ReGRðE; PÞ þ i cothð�E=2Þ ImGRðE; PÞ;
(4.49)

where � ¼ 1=T ¼ 2�. Lastly, we recall that the two-
dimensional Feynman propagator computed at finite tem-
perature in imaginary-time formalism is lnðcosð
EÞ �
coshð�ÞÞ. Thus the Feynman propagator derived from
(4.49) is a thermal Green’s function by construction.

Based on these observations, we proceed to define the
Feynman Green’s function corresponding to the Kruskal
vacuum of the AdS-S black hole by

G Fð!; ~p; uÞ ¼ ReGRð!; ~p; uÞ
þ i cothð!�Þ ImGRð!; ~p; uÞ; (4.50)

where we used the fact that ! ¼ E=ð2�THÞ. Since the
retarded Green’s function is analytic in the upper half
plane, (4.50) ensures that GF will be a thermal Green’s
function, periodic in imaginary time. At this stage we can
compute the other Green’s functions by the usual relations:

G � ¼ GF � GR; Gþ ¼ GF � GA: (4.51)

We can represent these bulk-to-boundary propagators us-
ing the same circling rules as before: the bulk-to-boundary
propagator between circled and uncircled vertices is D�,
between uncircled and circled vertices is Dþ, and the
propagator between two uncircled (or two circled) vertices
is DF (or D�

F, respectively).

V. REAL-TIME FINITE-TEMPERATURE ADS/CFT
CORRELATORS

A. The scalar 2-point function

In this section we review briefly the scalar 2-point
function computation in real time and at finite temperature,
following Son and Herzog [8]. We have already discussed
the difference between the Euclidean and Minkowski sig-
nature AdS-S geometries. We are interested in clarifying
the issue of what bulk region must the tree-level gravity
diagrams be integrated over.

1. Minkowski signature: the Schwinger-Keldysh
propagator

From the work of Son and Herzog [8] we know that in
real time, the gravity fields need to be specified on both
timelike boundaries of the Penrose diagram. Therefore,
one expects that one needs to integrate over the position
of the bulk vertices over at least the R and L quadrants of
the Penrose diagram. To obtain the result quoted in [8],
where the 2-point Schwinger-Keldysh field theory propa-
gator is given as a boundary term, with the R and L
contributions subtracted from each other, we will work
with the bulk action

S ¼ �N
Z
R

ffiffiffiffiffiffiffi�g
p ðg�	@��@	�þm2�2 þ interactionsÞ

� �N
Z
L

ffiffiffiffiffiffiffi�g
p ðg�	@��@	�þm2�2 þ interactionsÞ;

(5.1)

where �N is a supergravity normalization factor which
includes the volume factor of S5, which was integrated
over implicitly (to be specific, �N ¼ �N2

c=ð16�2R3Þ, where
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FIG. 5 (color online). The zero (in red, dashed) and finite-
temperature (in blue, solid) bulk-to-boundary propagators at u ¼
0:1 (left) and at u ¼ 0:5 (right), with ~p ¼ 0.
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we recall that Nc is the number of colors in the dual N ¼
4 super Yang-Mills theory, and R is the radius of S5).

In (5.1) the bulk right and bulk left contributions, from
the respective boundaries to the event horizon, come with
opposite signs ab initio. A similar action was used by
Frolov and Martinez [11] in their construction of the action
and Hamiltonian of eternal black holes in what they called
‘‘tilted foliation’’. The Hamiltonian received two opposite
sign contributions from the two causally disconnected
regions, namely, the R and L quadrants. Frolov and
Martinez [11] pointed out that the Fock states in the R
and L regions are akin to the doubling of the degrees of
freedom (physical/doubler) encountered in the real-time
formalism of finite-temperature field theories. Moreover,
the structure of the Hamiltonian, as H ¼ HR �HL, is also
similar to the real-time Hamiltonian, which includes a
physical particle Fock space contribution and a doubler
Fock space contribution.

The Kruskal coordinates tK and xK given in (4.5) are
useful when considering global aspects of the spacetime
and for defining notions such as incoming/outgoing and
positive/negative frequency modes. However, these coor-
dinates are cumbersome when it comes to solving the
equations of motion for � and computing its action. For
these tasks, it is simpler to return to the coordinate u, in
terms of which the AdS boundaries are given by u ¼ 0.
However, u is only defined for one half of the extended
AdS-Schwarzschild spacetime, so we need to define two
such coordinates, uL and uR. uR is precisely our original u
coordinate. We have

Z
R

ffiffiffiffiffiffiffi�g
p ¼

Z
d4x

Z 1

0
duR

ffiffiffiffiffiffiffi�g
p

;

Z
L

ffiffiffiffiffiffiffi�g
p ¼

Z
d4x

Z 1

0
duL

ffiffiffiffiffiffiffi�g
p

:

(5.2)

It may seem that there should be a minus sign in the second
equation since uL increases with increasing xK, while uR
decreases with increasing xK. However, tR and tL flow in
opposite directions with respect to tK. (tR flows roughly
parallel to tK, while tL is antiparallel.)

Only the boundary terms of the quadratic action S0 play
a role in the computation of the 2-point function. Since the
boundary is perpendicular to the u direction, only the
u-derivative terms,

S 0 ¼ �N
Z

d4x
Z 1

0
duR

ffiffiffiffiffiffiffi�g
p

guuð@u�Þ2

� �N
Z

d4x
Z 1

0
duL

ffiffiffiffiffiffiffi�g
p

guuð@u�Þ2 þ . . . (5.3)

contribute to the boundary terms. Writing

�ðx; uÞ ¼
Z d4p

ð2�Þ4 e
ip
x�ðp; uÞ; (5.4)

where p� ¼ ðE; ~PÞ, and integrating by parts, we obtain the

boundary terms9:

S0 ¼ � �N

2

Z
d4p

ffiffiffiffiffiffiffi�g
p

guu�ð�pÞ@u�ðpÞjuR!0

þ �N

2

Z
d4p

ffiffiffiffiffiffiffi�g
p

guu�ð�pÞ@u�ðpÞjuL!0: (5.5)

The 2-point functions are obtained by imposing the follow-
ing boundary conditions on the scalar field � [8]:
(i) �ðp; uÞ is such that in the right quadrant, at the

horizon, the positive energy modes are incoming
and the negative energy modes are outgoing; the
left quadrant modes are then uniquely determined
by analyticity;

(ii) �ðp; uÞ approaches two distinct functions at the two
boundaries:

lim
uR!0

�ðp; uRÞ ¼ �1ðpÞ;
lim
uL!0

�ðp; uLÞ ¼ �2ðpÞ:
(5.6)

With this boundary prescription, the bulk scalar field in the
R and L quadrants reads

�ðp; uaÞ ¼ �bðpÞGbaðp; uÞ; (5.7)

where10

G11 ¼ e2!�

e2!� � 1
Fðp; uRÞ � 1

e2!� � 1
Fð�p; uRÞ;

G21 ¼ 2i
e!�

e2!� � 1
ImFð�p; uRÞ;

G12 ¼ �2i
e!�

e2!� � 1
ImFð�p; uLÞ;

G22 ¼ e2!�

e2!� � 1
Fð�p; uLÞ � 1

e2!� � 1
Fðp; uLÞ:

(5.8)

The indices a and b take the values 1 and 2, where 1
corresponds to the R quadrant, and 2 the L quadrant. We
have adopted the convention that, for example, G12 is a
propagator11 which extends from a point on the R bound-
ary to a point in the L bulk. By identifying F with the
retarded bulk-to-boundary propagator,

Fðp; uRÞ ¼ GR; (5.9)

then the first equation in (5.8) is consistent with our defi-
nition of the Feynman bulk-to-boundary propagator (4.50)

9The horizon terms have been thrown away, based on the same
considerations as in [7], namely, the zero-temperature limit is
correctly reproduced by the boundary terms at uL;R ¼ 0.
10The relationship between fkðuÞ in [8] and our Fð!; ~p; uÞ is
complex conjugation.
11Strictly speaking, Gab are scalar bulk-to-boundary 2-point
Green’s functions, as indicated by the use of the letter G.
However, we will keep referring to Gab as scalar propagators,
and we hope that this is not a source of confusion.
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G 11 ¼ GF: (5.10)

Plugging these solutions into the above action and vary-
ing with respect to �1 and �2 yields a 2� 2 matrix of 2-
point functions Gab. It is important to recall that even
though the scalar field and its action were real to begin
with, the boundary conditions one had to impose at the
horizon break reality. The on-shell action evaluated on the

solution (5.7) is therefore complex and yields complex 2-
point functions

Gabðp1; p2Þ ¼ �ð�1Þaþb �2S0

��aðp1Þ��bðp2Þ : (5.11)

More concretely, the 2-point functions are

G11 ¼ �2 �N
ffiffiffiffiffiffiffi�g

p
guu

ðe2!� � 1ÞFðpÞ@uFðpÞ þ ðe�2!� � 1ÞFð�pÞ@uFð�pÞ
ðe2!� � 1Þðe�2!� � 1Þ

��������u¼0
;

G12 ¼ �2 �N
ffiffiffiffiffiffiffi�g

p
guu

e!�

e2!� � 1
ðFð�pÞ@uFð�pÞ � FðpÞ@uFðpÞÞju¼0; G21 ¼ �G�

12; G22 ¼ �G�
11;

(5.12)

where we stripped away a momentum delta function. This
differs slightly from the result quoted in Son and Herzog
[8] in that their retarded 2-point function is GR ¼
�2 �N

ffiffiffi
g

p
guuFð�p; uÞ@uFðp; uÞju¼0, whereas we find that

GRðpÞ ¼ �2 �N
ffiffiffiffiffiffiffi�g

p
guuFðp; uÞ@uFðp; uÞju¼0: (5.13)

However, since at the boundary Fðp; uÞ is normalized to 1
and the term linear in u in Fðp; uÞ is insensitive to the
replacement of ð!; ~pÞ by ð�!;� ~pÞ, this difference is
mostly cosmetic. Substituting (4.27), and using the small
u expansions in (4.20), the retarded 2-point function eval-
uates to12

GRðpÞ ¼ �4 �Nð�THÞ4R3

�
c21 þ c2 þ 2Aþ 2c02 þ

i� 1

2
!

þ 2!c1ð1þ iÞ þ i!2 þ divergent

�

¼ �2N2
cT

4
H

4

�
c21 þ c2 þ 2Aþ 2c02

þ ði� 1Þ
2

!þ 2!c1ð1þ iÞ þ i!2 þ divergent

�
;

(5.14)

with the divergent terms given by

divergent ¼
�
1þ i

2
!þ c1

�
1

uB
þ 2c2 lnðuBÞ

¼ !2 � j ~pj2
uB

� ð!2 � j ~pj2Þ2 lnðuBÞ: (5.15)

The coefficient A was computed in the limit of small
frequency in (4.29). The divergent terms can be dealt
with either by subtracting the zero-temperature result for
the retarded 2-point correlator, or by employing boundary

renormalization. As we will see in the next section, the
finite-temperature CFT retarded 2-point can be obtained by
analytically continuing the Euclidean result, yielding a
natural expression in terms of a retarded and advanced
supergravity mode propagator (a scalar mode in the
case under consideration), just as we have obtained it
from the R-L bulk action prescription, upon using
energy-momentum conservation.

2. Analytic continuation

In the context of AdS/CFT, it has been pointed out by
Gubser et al. [16] and by Iqbal and Liu [17,18] that
retarded CFT correlators can be obtained from Euclidean
correlators by performing an analytic continuation. As
before, only a boundary term in the classical action con-
tributes to 2-point functions:

S 0 ¼ � �N
Z d4k

ð2�Þ4
� ffiffiffi

g
p

guuFEð�k; uÞ@uFEðk; uÞ�0ð�kÞ�0ðkÞju¼0:

(5.16)

Since the integrand is singular as u ! 0, we placed the
boundary at u ¼ uB � 1.
Varying the Euclidean action with respect to �ð�kÞ and

�ðkÞ yields the 2-point function:
GEðkÞ ¼ �2 �N

ffiffiffi
g

p
guuFEð�k; uÞ@uFEðk; uÞju¼0 (5.17)

The analytic continuation from Euclidean to Minkowski
space in (5.17) will produce either the retarded or the
advanced propagators in the right-hand-side of (5.17),
depending on the sign of !E. In particular, for !E > 0,
this reduces to the previous expression found via the bulk
action (5.1), namely, 2 �N

ffiffiffi
g

p
guuFðp; uÞ@uFðp; uÞju¼0.

B. Real-time finite-temperature 3-point functions

Finally, we come to the main result of this paper, which
is the prescription for computing CFT 3-point functions at

12We have followed Son and Starinets by normalizing Fðu ¼
0Þ ¼ 1 and regularized GRðpÞ by computing it at u ¼ uB � 1.
Alternatively, we could have normalized Fðu ¼ uBÞ ¼ 1, and

found that Eq. (5.14) changes by the addition of � �2N2
cT

4
H

2 �
ð!2 � j ~pj2Þ2.
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finite temperature and in real time via supergravity
diagrams.

Once we have the bulk-to-boundary propagators Gab, it
is straightforward to compute 3-point functions. These are
obtained at tree level by computing the �3 term (with
coupling � say) in the action (5.1), plugging in the same
solutions to the equation of motion for � as in (5.7), and
varying with respect to the boundary fields�1 and�2 as in
(3.5):

Gabc ¼ �ð�1Þaþbþc� �N

�Z 1

0
duR

ffiffiffiffiffiffiffi�g
p

Ga1Gb1Gc1

�
Z 1

0
duL

ffiffiffiffiffiffiffi�g
p

Ga2Gb2Gc2

�
; (5.18)

where we recall that Gab were defined in (5.8).
We would like to check if this expression forGabc which

we have obtained from the R minus L quadrant prescrip-
tion for the AdS-S supergravity action (5.1) is correct. A
first check would be to verify whether (5.18) obeys known
identities for Schwinger-Keldysh 3-point functions. In par-
ticular, the KMS identities for the 3-point functions read

G�
abc ¼ G �a �b �c; (5.19)

where �1 ¼ 2 and �2 ¼ 1, and we have assumed that � ¼
�=2. Using that the bulk-to-boundary propagators Gab

have the property

G ab ¼ G�
�a �b
; (5.20)

it can be shown that, starting from (5.18), the identities
(5.19) are indeed satisfied.

Yet another test which (5.18) passes is to verify the
largest time Eq. (3.15). On the gravity side we can think
of this identity as arising from summing tree-level scalar
field diagrams, with three vertices on the boundary of the R
quadrant and one vertex in the bulk, with each vertex being
either circled or uncircled for a total of 24 diagrams. As
expected in a causal theory, the sum is zero.

Next, following [20] we define the causal (retarded) 3-
point correlator to be given by (3.12). As shown by Kobes
[20], the causal n-point functions are special, because they
make contact with the n-point function computed in
imaginary-time formalism. The causal real-time Green’s
functions are obtained from the imaginary-time Green’s
function by analytic continuation.

When substituting the various Gabc in terms of bulk
integrals in (3.12), given the multitude of terms that are
added, we find that the final expression is surprisingly
simple13:

GRðq; p; rÞ ¼ � �N�4ðpþ qþ rÞ
�

Z 1

0
du

ffiffiffiffiffiffiffi�g
p

F�ðqÞF�ðpÞFðrÞ; (5.21)

where FðrÞ is the retarded bulk-to-boundary propagator
GR. In hindsight, the retarded 3-point correlator could
only take the form in (5.21). That is because, by the circling
rules, the retarded 3-point function can be written as a sum
of R-quadrant tree-level gravity diagrams, with all vertices
being either circled or uncircled with the exception of the
vertex which has the largest time and which is uncircled.
These are the diagrams shown in Fig. 6. Their sum reduces
to a single tree-level diagram, with two advanced and one
retarded bulk-to-boundary propagator. This is the only
possible answer for a causal theory when computing a
tree-level retarded 3-point function.
As another check on (5.21), we can take the zero-

temperature limit. In this limit, the retarded/advanced
bulk-to-boundary propagators of a massless scalar field in
the AdS-S background approach the AdS retarded/ad-
vanced propagators (given in Appendix C), as discussed
in Sec. IVB3. The integration limits extend in the zero-
temperature limit to ð0;1Þ, and the integral in (5.21)
reproduces (2.22). We have also verified that (5.21) can
be obtained by analytically continuing the Euclidean space
3-point function.

APPENDIX A: MOMENTUM-SPACE 2-POINT CFT
CORRELATORS AT T ¼ 0

We now want to find the momentum-space expression of
all 2- and 3-point functions given above. The 2-point
correlator in momentum space, the Euclidean signature is

GEðkÞ ¼ �i
�ð2� �� �Þ��2�

4��1���ð�Þ ðk2Þ��2þ�; (A1)

where k2 ¼ E2 þ ~k2, and the Fourier-transform integral
was regularized by dimensional regularization. Note that
if the conformal dimension � is a positive integer greater
or equal to 2, then the 2-point will contain logs. Not

G

(

(

(

(

111

e
−(ω

e −ω  π

121 e −ω  π2

11 + ω2) π
221 211

GG

G

FIG. 6 (color online). The retarded 3-point function from
circling rules.

13A similar conclusion was reached in [30] regarding the
retarded 3-point function.
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surprisingly, this result coincides with the AdS/CFT
computation.

In the Minkowski signature, the story is a bit more
complex. The Fourier transform of the scalar field 2-point
Green’s functions yields:

G� ¼ �2�i�ð�EÞ�ðE2 � ~P2Þ; (A2)

GRðpÞ ¼ � 1

�ðEþ i�Þ2 þ ~P2
; GAðpÞ ¼ G�

RðpÞ;
(A3)

GFðpÞ ¼ � 1

�E2 þ ~P2 � i�
; (A4)

while the momentum-space expressions of the non-time
ordered, retarded, advanced and time-ordered 2-point sca-
lar field operator correlators are

G�
�>2 ¼ � 2�ið�� 1Þ

ð2��1�ð�ÞÞ2 �ð�E� j ~PjÞðE2 � ~P2Þ��2;

(A5)

GR;�>2ðpÞ ¼ ð�� 1Þ
ð2��1�ð�ÞÞ2 ðE

2 � ~P2Þ��2

� lnð�ðEþ i�Þ2 þ ~P2Þ�2Þ

¼ ð�� 1Þ
ð2��1�ð�ÞÞ2 ðE

2 � ~P2Þ��2

� ðlnðj � E2 þ ~P2j�2Þ
� i��ðE2 � ~P2ÞsgnðEÞÞ; (A6)

GAðpÞ ¼ G�
RðpÞ; (A7)

GF;�>2ðpÞ ¼ ð�� 1Þ
ð2��1�ð�ÞÞ2 ðE

2 � ~P2Þ��2ðlnðj � E2

þ ~P2j�2Þ � i��ðE2 � ~P2ÞÞ; (A8)

where� ¼ 1=�was used as a UV cutoff to regularize some
of the integrals, and � was assumed to be an integer, for
concreteness.
Note that the analytic continuation of the Euclidean-

signature 2-point function, with E ! �iðE� i�Þ yields
the retarded/advanced 2-point correlators.

APPENDIX B: MOMENTUM-SPACE REAL-TIME
3-POINT CORRELATORS AT T ¼ 0

Here we present the intermediate steps leading to the
results quoted in Sec. II B. We begin with the Euclidean 3-
point correlator in position space, and Fourier transform.
Since the integral is not convergent in d ¼ 4, we use
dimensional regularization, with d ¼ 4� 2�:

�ð�Þ3i2GEðk1; k2; k3Þ ¼ �ð�Þ3
�Y3
i¼1

Z
ddxie

�iki
xi
�

1

x2�12x
2�
23x

2�
31

¼
�Y3
i¼1

Z
ddxi

Z 1

0
dsis

��1
i e�iki
xi

�
e�s1x

2
12e�s2x

2
23e�s3x

2
31

¼
�Y3
i¼1

Z 1

0
dsis

��1
i

�
e�ðk2

1
s2þk2

2
s3þk2

3
s1=4ðs1s2þs2s3þs3s1ÞÞð2�Þd�d �dðk1 þ k2 þ k3Þ

ðs1s2 þ s2s3 þ s3s1Þd=2

¼ ð2�2Þd�4�2�ðk1 þ k2 þ k3Þ
�Y3
i¼1

Z 1

0
duiu

��1
i e�ðk2i ui=4Þ

��
1

u1u2u3ð 1u1 þ 1
u2
þ 1

u3
Þ
�
3��ðd=2Þ

¼ ð2�2Þd �
dðk1 þ k2 þ k3Þ
�ð3�� d

2Þ
Z 1

0
ds

�Y3
i¼1

Z 1

0
duiu

�2��1þðd=2Þ
i e�ðk2i ui=4Þe�ðs=uiÞ

�
s3��ðd=2Þ�1

¼ ð2�2Þd �
dðk1 þ k2 þ k3Þ
�ð3�� d

2Þ
Z 1

0
dz

�
z

2

�
6��1�d

�Y3
i¼1

Z 1

0
duie

�ðk2i ui=4Þe�ðz2=4uiÞu�2��1þðd=2Þ
i

�

¼ 210�3��3�ð2�2Þd �
dðk1 þ k2 þ k3Þ
�ð3�2 � d

2Þ
Z 1

0

dz

zdþ1

Y3
i¼1

ð
ffiffiffiffiffi
k2i

q
Þ��ðd=2Þzd=2K��ðd=2Þ

� ffiffiffiffiffi
k2i

q
z

�
; (B1)
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which is the expression we gave in (2.16).
Next, we compute the Fourier transform of (2.21) first in

the kinematics 1, 2 incoming and 3 outgoing, that is E1 <
0, E2 < 0, E3 > 0. The steps taken next follow closely the
path used for the Euclidean 3-point correlator. We could
have chosen to regularize the integrals using dimensional
regularization, as we did before. However, here we chose a
different regularization to show how the momentum-space
correlator can be obtained via a five-dimensional AdS
integral. At each step in our manipulations we will make
sure that we appropriately insert convergence factors, such
that the integrals are well defined.

To begin, we use again Schwinger parameters to write
the denominators of the first term in (2.21), which is the
only term that contributes in the chosen kinematics. For
example,�

1

�t2 þ ~x2 þ i�

�
� ¼ ð�iÞ�

�ð�Þ
Z 1

0
dse�s�þisð ~x2�t2Þs��1:

(B2)

The integrals over the position-space coordinates are of the
type Z 1

�1
dzei
z

2 ¼
ffiffiffiffiffiffiffi
�

j
j
r

eisgnð
Þ�=4; 
 2 R: (B3)

The intermediate result, where we still have to perform the
integral over the three Schwinger parameters, is very simi-
lar to what we have encountered in the Euclidean signa-
ture:

i2GRðp1; p2;p3Þ ¼ ð2�2Þ4ð�iÞ3�
�ð�Þ3 �4ðp1 þ p2 þ p3Þ

�Y3
i�1

�Z 1

0

dui
u2��1
i

e�ð~�ui=4Þ�ð�̂=uiÞ
�

� 1

ð 1u1 þ 1
u2
þ 1

u3
Þ3��2

� exp

�
� i

4
ðu1p2

1 þ u2p
2
2 þ u3p

2
3Þ
�
;

(B4)

where p2
1 ¼ �E2

1 þ ~P2
1 etc. The integrand in (B4) is prop-

erly regularized for both ui ¼ 0 and for large values of ui.
To deal with the 1=ð 1u1 þ 1

u2
þ 1

u3
Þ factor, we introduce an-

other Schwinger-type parameter, but in a slightly different
fashion than previously

1

ðaþ i�0Þn ¼
2e�ðin�=2Þ

�ðnÞ
Z 1

0
dzz2n�1eiðaþi�̂0Þz2 ; a 2 R:

(B5)

The three Schwinger parameter ui integrals are of the typeZ 1

0
duie

ðiuið�p2
iþi~�Þ=4Þþðiðz2þi�̂Þ=uiÞu��þ1

i

¼ 23��

�
ip2

i þ ~�

�iz2 þ �̂

�ð��2Þ=2
K��2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip2

i þ ~�Þð�iz2 þ �̂Þ
q

Þ:
(B6)

In what follows we set the convergence factor �̂ ¼ 0. Thus
we find that the retarded 3-point function in momentum
space can be written as

GRðp1; p2;p3Þ ¼ ð2�Þ8
23��6�ð�=2Þ3�ð3�=2� 2Þ�

4ðp1 þ p2 þ p3Þ
Z 1

0

dz

z5
½z2ð�E2

1 þ ~p2
1 � i�Þð�=2Þ�1

� K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2

1 þ ~p2
1 � i�

q
Þz2ð�E2

2 þ ~p2
2 � i�Þð�=2Þ�1K��2ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2

2 þ ~p2
2 � i�

q
Þ

� z2ð�E2
3 þ ~p2

3 þ i�Þð�=2Þ�1K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2

3 þ ~p2
3 þ i�

q
Þ�: (B7)

A convergence factor e��0z2 was also dropped since the integrand is convergent at large z. To simplify notation we removed
the tilde from ~�.

From the largest time equation we learn that the causal n-point function is real:

GRðfxgÞ ¼ G�
RðfxgÞ; (B8)
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which implies for the momentum-space causal retarded n-point function

G�
RðfpgÞ ¼ GRðf�pgÞ: (B9)

In particular, this gives us the causal retarded 3-point function for the energy configuration E1;2 > 0 and E3 < 0, and leads
us to the following expression for GRðp1; p2;p3Þ for general kinematics

GRðp1; p2;p3Þ ¼ ð2�Þ8
23��6�ð�=2Þ3�ð3�=2� 2Þ�

4ðp1 þ p2 þ p3Þ
Z 1

0

dz

z5
½z2ð�ðE1 � i�Þ2 þ ~p2

1Þð�=2Þ�1

� K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE1 � i�Þ2 þ ~p2

1

q
Þz2ð�ðE2 � i�Þ2 þ ~p2

2Þð�=2Þ�1K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE2 � i�Þ2 þ ~p2

2

q
Þ

� z2ð�ðE3 þ i�ÞÞ2 þ ~p2
3Þð�=2Þ�1K��2ðz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðE3 þ i�Þ2 þ ~p2

3

q
Þ�: (B10)

APPENDIX C: THE RETARDED BULK-TO-
BOUNDARY SCALAR PROPAGATOR IN ADS

SPACE IN POINCARÉ COORDINATES

In this section we briefly discuss the causal properties of
the retarded/advanced bulk-to-boundary scalar propagator
in five-dimensional AdS

GR ¼ Cz2ð�ðEþ i�ÞÞ2 þ ~p2Þð�=2Þ�1

� K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðEþ i�Þ2 þ ~p2

q
Þ; (C1)

where C is a real-valued normalization constant. The sim-
pler route to constructing the retarded propagator in posi-
tion space is to first compute the Feynman propagator

GFðE; ~p; uÞ ¼ GRðE; ~p; uÞ if E> 0; and

GFðE; ~p; uÞ ¼ G�
RðE; ~p; uÞ if E< 0; (C2)

which leads to

GF ¼ Cz2ð�E2 þ ~p2 � i�Þð�=2Þ�1K��2ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2 þ ~p2 � i�

q
Þ:

(C3)

Then the Fourier transform of the Feynman propagator can

be computed with the help of (B6)

G F ¼ C
i2��3�ð�Þ

�2

z�

ð�t2 þ ~x2 þ z2 þ i�Þ� : (C4)

This is the expression we might have gotten starting from
the Feynman bulk-to-boundary scalar propagator com-
puted in Euclidean AdS, after performing the usual Wick
rotation and analytic continuation.
Hence the retarded propagator in position space ob-

tained from

G R ¼ �ðtÞðGF þG�
FÞ (C5)

is causal, and has support only on the forward light cone.

APPENDIX D: THE RETARDED 3-POINT
MOMENTUM-SPACE CORRELATOR WITH � ¼ 2

AND AT T ¼ 0

In this appendix we give a closed-form analytic answer
for the retarded 3-point CFT correlator, of three scalar
operators with conformal dimension � ¼ 2. Again we
begin from the position-space (2.14), and we perform the
Fourier transform as follows:

i2GRðp1; p2;p3Þ ¼
Y3
i¼1

Z
d4xie

�ipixi i2GRðx1; x2; x3Þ

¼
Z

d4x2e
�i
P

3
i¼1

pix2
Z

d4x12e
�ip1x12

Z
d4x23e

ip3x23
Z

d4x31
Z d4k

ð2�Þ4 e
�ikðx12þx23þx31ÞGRðx1; x2; x3Þ

¼ �4ðp1 þ p2 þ p3Þ
Z

d4k
Z 1

�1
dz1

2�iðz1 � i�Þ
Z 1

�1
dz2

2�iðz2 � i�Þ
Z

d4x12
Z

d4x23
Z

d4x31

�
�
eiðE1þz1þ�Þt12e�ið ~P1þ ~KÞ ~x12e�iðE3��Þt23eið ~P3� ~KÞ ~x23eið�þz2Þt31e�i ~K ~x31

�
1

x212 þ i�t12

1

x223 � i�t23
� c:c

�

�
�

1

x231 þ i�t31
� c:c:

�
þ eiðE1�z1þ�Þt12e�ið ~P1þ ~KÞ ~x12e�iðE3þz2��Þt23eið ~P3� ~KÞ ~x23ei�t31e�i ~K ~x31

�
�

1

x212 � i�t12

1

x231 þ i�t31
� c:c

��
1

x223 � i�t23
� c:c:

��
: (D1)

Next substitute the Fourier transform of the functions depending on x12, x23, x31, and use that these are of the type
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�ð�EÞ�ðE2 � ~P2Þ ¼ �ðj ~Pj � EÞ
2j ~Pj (D2)

to perform the integrals over z1, z2 and�. The remaining d3K integral can be simplified by going to a Lorentz framewhere
~P3 is vanishing:

i2GRðp1; p2;p3Þ ¼ ð4�3Þ3
ð2�iÞ2

Z
d3 ~K

�
1

j ~P1 þ ~Kj þ j ~Kj þ E1 þ E3 þ i�

�2j ~Kj
ðj ~Kj þ E3 þ i�Þ2 � ~jKj2

� 1

�j ~P1 þ ~Kj � j ~Kj þ E1 þ E3 þ i�

�2j ~Kj
ð�j ~Kj þ E3 þ i�Þ2 � j ~Kj2 þ

1

j ~P1 þ ~Kj þ j ~Kj � E1 þ i�

� �2j ~Kj
ðj ~Kj þ E3 þ i�Þ2 � j ~Kj2 �

1

�j ~P1 þ ~Kj � j ~Kj � E1 þ i�

�2j ~Kj
ð�j ~Kj þ E3 þ i�Þ2 � j ~Kj2

�

� 1

j ~Kj2j ~P1 þ ~Kj
1

E3 þ i�
: (D3)

The three-dimensional integral over ~K is performed by using spherical coordinates, with ~P1 aligned with the z axis. The
integral over� is trivial and yields a factor of 2�. The remaining integrals over j ~Kj and � are re-expressed as integrals over
j ~Kj and j ~P1 þ ~Kj. The Jacobian of this change of variable is�������� @ðj ~Kj; cos�Þ

@ðj ~Kj; j ~P1 þ ~KjÞ
��������¼ j ~P1 þ ~Kj

j ~P1jj ~Kj
; (D4)

where j ~K þ ~P1j is integrated from jj ~Kj � j ~P1jj to j ~Kj þ j ~P1j. Lastly the integral over j ~K þ ~P1j is easily evaluated to a log,
and the final expression of the retarded 3-point function is

i2GRðp1; p2;p3Þ ¼ ð4�3Þ3
ð2�iÞ2

4�

j ~P1j
Z 1

0
dj ~Kj

�
� 1

E3 þ i�

�
1

E3 þ 2j ~Kj þ i�
ln

2j ~Kj þ j ~P1j þ E1 þ E3 þ i�

jj ~Kj � j ~P1jj þ j ~Kj þ E1 þ E3 þ i�

þ 1

E3 � 2j ~Kj þ i�
ln

�2j ~Kj � j ~P1j þ E1 þ E3 þ i�

�jj ~Kj � j ~P1jj � j ~Kj þ E1 þ E3 þ i�

�

� 1

E3 þ i�

�
1

E3 þ 2j ~Kj þ i�
ln

2j ~Kj þ j ~P1j � E1 þ i�

jj ~Kj � j ~P1jj þ j ~Kj � E1 þ i�

þ 1

E3 � 2j ~Kj þ i�
ln

�2j ~Kj � j ~P1j � E1 þ i�

�jj ~Kj � j ~P1jj � j ~Kj � E1 þ i�

��
: (D5)

With some effort, the integral over j ~Kj can be performed analytically:

i2GRðp1; p2;p3Þ ¼ ð4�Þ3ð2�Þ
ð2�iÞ2j ~P1jðE3 þ i�Þ

�
2Li2

��E2 þ j ~P1j þ i�

E1 þ j ~P1j � i�

�
� 2Li2

�
E2 þ j ~P1j � i�

�E1 þ j ~P1j þ i�

�

þ 1

2
ln2

�
��E2 þ j ~P1j þ i�

E1 þ j ~P1j � i�

�
� 1

2
ln2

�
� E2 þ j ~P1j � i�

�E1 þ j ~P1j þ i�

�
þ 1

2
ln2

�
E2 þ j ~P1j � i�

E1 þ j ~P1j � i�

�

� 1

2
ln2

��E2 þ j ~P1j þ i�

�E1 þ j ~P1j þ i�

��
; (D6)

where we recall that we went to a special Lorentz frame
such that ~P3 ¼ 0. We have checked that in this frame, our
result coincides with Eq.. (28) of [31]. The final form of the
Fourier-transformed retarded 3-point function, with p3

being the momentum flowing in the vertex with the largest
time, is obtained by covariantizing the previous expression
with the help of the following relations:

j ~P1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1p

2
2 � ðp1p2Þ2

p2
3

s
; E2

1 ¼ �ðp1p3Þ2
p2
3

;

E2
2 ¼ �ðp2p3Þ2

p2
3

:

(D7)
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APPENDIX E: THE HEUN’S FUNCTION

Heun functions arise as a generalization of the hyper-
geometric function, and are defined as solutions of the
Fuchsian differential equation [32–34]:

d2H

dz2
þ

�
�

z
þ �

z� 1
þ �

z� d

�
dH

dz
þ 
�z�q

zðz� 1Þðz�dÞH¼ 0;


�;�;�;�2 C: (E1)

This differential equation has four regular singular points:
0, 1, d, 1. Regularity at infinity is insured provided that

� ¼ 
þ �� �� �þ 1: (E2)

The characteristic exponents at the singular points are: 0,
1� � for z ¼ 0; 0, 1� � for z ¼ 1; 0, 1� � for z ¼ d,
and 
, � for z ¼ 1.

The Heun’s function is further defined to be normalized
to 1 at z ¼ 0:

Hlðd; q; 
;�; �; �; zÞjz¼0 ¼ 1;

d

dz
Hlðd; q; 
;�; �; �; zÞjz¼0 ¼ q

�d
:

(E3)

In the vicinity of z ¼ 0, the Heun’s function is analytic and
can be expressed in terms of a locally convergent series
expansion

P
k	0ckz

k, where the coefficients ck are obtained
recursively

ðkþ 1Þðkþ �Þdckþ1

� ½kððkþ �þ �� 1Þdþ ðkþ �þ �� 1ÞÞ þ q�ck
þ ðkþ 
� 1Þðkþ �� 1Þck�1 ¼ 0c�1 ¼ 0;

c0 ¼ 1: (E4)

The series expansion breaks down when � is a negative
integer, and the Heun’s function will exhibit logarithmic
behavior. This case will be further investigated, as it is
relevant for the physical problem we are considering.

Based on the characteristic exponents at z ¼ 0, there
are two independent solutions of the Heun differential
equation. One is Hlðd; q; 
;�; �; �; zÞ, and the other
is z1��Hlðd;q�ð�� 1Þð�dþ �Þ;���þ 1;
��þ 1;
2��;�;zÞ. Notice that for the latter function, having �
be a negative integer poses no special problems. Then, we
can search for a particular combination of these two inde-
pendent solutions such that the poles in � cancel. In
particular, for � ¼ �1, the linear combination

lim
�!�1

�
Hlðd; q; 
; �; �; �; zÞ

� c2
�þ 1

z1��Hlðd; q� ð�� 1Þð�dþ �Þ; �� �

þ 1; 
� �þ 1; 2� �; �; zÞ
�
; (E5)

where c2 is obtained from (E4)

c2 ¼ 1

2d

�
ðð�þ �Þdþ �þ �þ qÞ q

�d
� 
�

����������¼�1

(E6)

is well defined near z ¼ 0. In (E5), the limit is taken with d,

, �, �, z held fixed and with � treated as a function of �
according to its defining expression �ð�Þ ¼ 
þ �� ��
�þ 1. The leading term from the second Heun function
will cancel the z2=ð�þ 1Þ terms from the series expansion
of the first Heun’s function. The logarithmic behavior of
(E5) arises from the prefactor z1��=ð�þ 1Þ, written as
exp½ð2� ð�þ 1ÞÞ lnðzÞ�=ð�þ 1Þ � z2ð1=ð�þ 1Þ � lnðzÞþ
Oð�þ 1ÞÞ.
The series

P
k	0ckz

k converges for jzj<minð1; jdjÞ.
However, through analytic continuation it is possible to
extend the Heun’s function on the complex plane. There
are 192 known local solutions of the Heun differential
equation [34] which allow the Heun function to be ex-
tended in different regions of parameter space. For ex-
ample,

Hlðd; q; 
;�; �; �; zÞ ¼ ð1� zÞ1��Hlðd; q� ð�� 1Þ�d;�� �þ 1; 
� �þ 1; �; 2� �; zÞ: (E7)

Or, one can instead choose to express the solution of the Heun differential equation as an analytic expansion around z ¼ 1
instead of z ¼ 0:

Hlð1� d;�qþ 
�;
;�; �; �; 1� zÞ (E8)

is the solution with characteristic exponent 0, and normalized to 1, while

ðz� 1Þ1��Hlð1� d;�qþ ð�� 1Þ�dþ ð�� �þ 1Þð
� �þ 1Þ; �� �þ 1; 
� �þ 1; 2� �; �; 1� zÞ (E9)

is the solution with the characteristic exponent 1� �. The complete list of the 192 different local solutions of the Heun
function can be found in [34].
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