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We study the stress-energy two-point function to show how short distance correlations across the

horizon transform into correlations among asymptotic states, for the Unruh effect, and for black hole

radiation. In the first case, the transition is caused by the coupling to accelerated systems. In the second,

the transition is more elusive and due to the change of the geometry from the near horizon region to the

asymptotic one. The gradual transition is appropriately described by using affine coordinates. We relate

this to the covariant regularization used to evaluate the mean value of the stress energy. We apply these

considerations to analogue black holes, i.e. dispersive theories. On one hand, the preferred rest frame gives

further insight about the transition, and on the other hand, the dispersion tames the singular behavior found

on the horizon in relativistic theories.
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I. INTRODUCTION

In Minkowski space the vacuum of quantum fields, the
ground state of the Hamiltonian, is globally defined. For
instance, for a massless free field� in two dimensions, it is
the state annihilated by the destruction operators ak asso-

ciated with the positive norm modes �k ¼
e�i�tþkz=ð4��Þ1=2, where � ¼ jkj> 0. When probed lo-
cally, it determines correlation functions, such as that of the
stress-energy tensor. Considering TUU ¼ ð@U�Þ2, whereU
(V) is the retarded (advanced) null coordinate U ¼ t� z,
(V ¼ tþ z), the connected function is

hTUUðUÞTUUðU0Þi ¼ ð@U@U0
h�ðUÞ�ðU0ÞiÞ2

¼
�
1

4�

1

ðU�U0 � i�Þ2
�
2
: (1)

The regulator � ! 0þ specifies the nature of the singularity
in the limit U ! U0. It arises from the fact that only
positive frequency � ¼ i@U contribute to Eq. (1).

Even though this function monotonically behaves in
�U�4, it determines subtle effects. This can be seen by
considering accelerated systems where both local and non-
local phenomena related to the Unruh effect [1–7] can be
obtained from Eq. (1). Moreover, the correlations of TUU in
the (Unruh) vacuum across the future horizon of a black
hole behave as in Eq. (1). However, since the black hole
geometry is nonuniform, as one probes the vacuum further
away from the horizon, there is a gradual change which
results, on one hand, in correlations typical of a thermal
flux at the Hawking temperature [3,8,9] and, on the other,
in correlations across the horizon between Hawking quanta
and their partners [10].

The aim of the present paper is to analyze the black hole
case in the light of the Minkowski case. We show that the

gradual change in the correlations comes through the ob-
servables used to probe the state, and not from � which is
conformally invariant and thus insensitive to the geometry.
We relate this gradual change to that obtained when con-
sidering renormalized expectation values which also de-
pend on the conformal factor. In the last part, we consider
dispersive field theories [11], or analogue black holes in
condensed matter [12,13]. First, we show that the preferred
rest frame [14] associated with dispersion defines new
scalars (observables) which give an unambiguous meaning
to the gradual change of the stress-energy correlations.
Second, we study how dispersion affects the correlation
pattern.1 In addition to the robustness of the spectral prop-
erties of Hawking radiation [11,16,17], that of the long
distance correlations across the horizon was established by
constructing wave packets of in modes [16]. We shall
return to this observation and make contact with the analy-
sis of density-density correlations in Bose-Einstein con-
densates [18–20].
We have organized the paper as follows. In Sec. II, we

describe the behavior of the stress-energy two-point func-
tion in flat space and interpret its properties by introducing
external (accelerated) systems which probe the field. In
Sec. III, we perform the same analysis in a black hole
geometry. Using affine coordinates, we present an invariant
description of the transition from its near horizon behavior,
which is similar to Eq. (1), to its long distance behavior.
Finally, in Sec. IV, we consider the stress-energy correla-
tions in dispersive theories, and investigate what are the
modifications induced by dispersion. We conclude with
remarks about the similarities between these dispersive
effects and those obtained with relativitic fields propagat-
ing in fluctuating metrics [21,22].
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1While completing this work, we became aware of [15] where
similar conclusions are reached.
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II. UNRUH EFFECTAND CORRELATIONS
ACROSS A RINDLER HORIZON

We introduce the null coordinates au ¼ � lnð�aUÞ,
av ¼ lnðaVÞ, defined, respectively, for U < 0 and V > 0.
These are related by � ¼ ðuþ vÞ=2 to �, the proper time of
an accelerated system which follows z2 � t2 ¼ 1=a2 in R,
the right quadrant z > jtj. (a is the constant acceleration.)
When U and U0 are negative, i.e. with both points on the
right of U ¼ 0, the future horizon of the accelerated sys-
tem, Eq. (1) can be rewritten using u. Introducing TR

uu ¼
ð@u�Þ2 ¼ TUUe

�2au, Eq. (1) becomes

hTR
uuðuÞTR

uuðu0Þi ¼
�

1

16�

a2

ðsinha2 ðu� u0 � i�ÞÞ2
�
2
: (2)

Since 1=ðsinhyÞ2 ¼ �nðyþ in�Þ�2, where the sum over n
goes from �1 to 1, hTR

uuT
R
uui is the periodic function in

Imu of period 2�=a whose zeroth term, n ¼ 0, behaves as
in the vacuum, see Eq. (1). Hence Eq. (2) is the two-point
function in a thermal bath at a temperature equal to a=2�.
Noticing that along the accelerated trajectory, one has � ¼
u (because v ¼ u) Eq. (2) determines the correlation func-
tion of the energy density probed by the accelerated sys-
tem. In this way, we recover the Unruh effect: accelerated
systems perceive the vacuum as a thermal ensemble at that
temperature [1].

It is less usual but equally interesting to consider Eq. (1)
with one point on either side of the horizon. Using u and
Tuu on the right, and their symmetrical counterpart on the
left, a �u ¼ lnðaUÞ and TL

uu ¼ ð@ �u�Þ2 ¼ TUUe
2a �u for U >

0, Eq. (1) becomes

hTL
uuð �uÞTR

uuðu0Þi ¼
�

1

16�

a2

ðcosha2 ð �uþ u0ÞÞ2
�
2
: (3)

Quite surprisingly, hTL
uuT

R
uui possesses a ‘‘bump’’ which is

centered at �uþ u0 ¼ 0. In terms of the affine coordinate
U, it is located atU ¼ �U0, on the opposite value from the
horizon. This is unnexpected because, at fixed �V,
h�ðU;VÞ�ðU0; V0Þi ¼ �1

4� ln�Uþ Cst has no maximum

when expressed in terms of �u and u0. In fact, the maximum
in Eq. (3) results from the combined effect of the Jacobians
dU=du associated with the tensorial character of TUU, and
the monotonic power law decay of Eq. (1).2 These prop-
erties apply to massless fields in any space-time dimension
d. Because of the dimensionality of the � field [ ¼ ðd�
2Þ=2], the location of the maximum is shifted at �uþ u0 ¼
� 2

a arctanh
d�2
dþ2 .

So far, however, Eq. (3) is simply a reexpression of
Eq. (1): no physics is gained when writing a tensor in a
new coordinate system. So, is not the maximum of Eq. (3)
just a coordinate artefact? No, Eq. (3), as Eq. (2), governs

physical effects. For instance, when looking at the state of
two opposite accelerated systems [7], the correlation ma-
trix of this bi-partite system exhibits a nontrivial entangle-
ment near the maximum of Eq. (3). Similarly, the
scattering by two opposite accelerated mirrors destruc-
tively interferes near that maximum [6]. As another ex-
ample [4], expressions closely related to Eq. (3) are
obtained when looking at the value of TL

uu which is corre-
lated to the fact that an accelerated detector inR has made a
transition. In all cases, the physics is the same: measure-
ments performed in R are statistically correlated to those
performed on the other side of the horizon.
To convey the idea that the rewriting of Eq. (1) as

Eqs. (2) and (3) is not merely a coordinate change but
has to do with the physics of accelerated systems, we make
two observations. First, it is conceptually useful to intro-
duce the (U part of the) scalar energy density that such
system in R will measure: �R ¼ T��u

�
Ru

�
R , where u

�
R ¼

dx�R=d� is the unit vector field tangeant to its trajectory.
Then, the left-hand side of Eq. (2) is h�Rð�Þ�Rð�0Þi.
Similarly, the left-hand side of Eq. (3) is h�Lð ��Þ�Rð�0Þi.
Hence, both Eqs. (2) and (3) have a clear interpretation as
energy-energy correlation functions of accelerated sys-
tems. Second, we notice that Eq. (2) only depends on u�
u0. This results from the invariance of the vacuum under
Lorentz transformations u ! uþ b, U ! Ue�ab. In fact,
the Minkowski distance between two points situated along
the accelerated trajectory v ¼ u is

s2 ¼ ��t2 þ�z2 ¼ � 4sinh2ðað�� �0Þ=2Þ
a2

: (4)

We therefore see that the stationarity of Eq. (2) in u for
arbitrary values of v are related to the properties of s2ð��Þ
evaluated along v ¼ u. In a similar fashion, Eq. (3) is
related to the distance s2op between two points situated

along the opposite accelerated trajectories defined by z2 �
t2 ¼ 1=a2. Using the proper time �0 ( ��) to localize the
point on the right (left) trajectory, one gets

s2op ¼ 4cosh2ðað ��þ �0Þ=2Þ
a2

: (5)

The maximum of correlation in Eq. (3) thus coincides with
the minimum (spacelike) distance between the two trajec-
tories. Because of Lorentz invariance, no preferred spatial
distance �z2 is selected though.
Yet, in preparation for the black hole problem, one

would like to know what is the origin of the mathematical
properties of Eqs. (2) and (3). In fact, these must be deeply
rooted since Eq. (3) is the analytical continuation of Eq. (2)
obtained by subtracting half of the imaginary period that
fixes the Unruh temperature. In addition, we wish to iden-
tify what could explain the maximum of correlation in
Eq. (3), which is independent of �V, and thus not neces-
sarily refers to Eq. (5) and accelerated systems in L. As
shown in Appendices A, B, and C, these properties can be
understood when using the Unruh modes [1]. In brief, the

2My attention was drawn to this point in a discussion with
Unruh and Jacobson that took place during the workshop
‘‘Towards the observation of Hawking radiation in condensed
matter systems’’ held at IFIC in Valencia in Feb. 2009.
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maximum of Eq. (3) finds its origin in the entanglement in
Fock space between states with opposite Killing frequency
! ¼ i@u. This entanglement translates into space-time
correlations because, in each pair, the partner mode lives
on the other side of the Rindler horizon, and is weighted in
Eq. (A2) by a factor z! which is real for all !. In addition,
the maximum value of correlations is directly related to the
mean occupation number of Rindler quanta.

III. HAWKING EFFECTAND CORRELATIONS
ACROSS THE HORIZON

We have a double aim. First, we wish to interpret the
equivalent of Eq. (1)–(3) in a black hole geometry. Second,
we aim to analyze the differences between the black hole
case and Minkowski. In particular, we are looking for a
smooth and coordinate invariant interpolation from the
near horizon region, where Eq. (1) should make sense, to
the asymptotic regions where Eqs. (2) and (3) should do.

To reach these ends, we need to identify what corre-
sponds to the Minkowski vacuum, the affine coordinate U,
and the u coordinate associated with boosts u ! uþ b,
U ! Ueab. For simplicity, we shall work with a two-
dimensional conformally invariant field �. Then, the iden-
tification is rather easy and known [1,5]. The novelty
mainly consists in the attention paid to the stress-energy
correlation function.

A. Prelude: conformal invariance

We work with a conformally invariant field because the
simplicity of the expressions will oblige us to identify
under which conditions identities valid in all space-times
acquire a physical meaning related to the Unruh and/or to
the Hawking effect.

In two dimensions, the line element can always be
written in double null coordinates as

ds2 ¼ �CðU;VÞdUdV: (6)

In these coordinates, � obeys @U@V� ¼ 0. Therefore the
conformal factor C drops out and the right and left moving
sectors remain decoupled � ¼ �ðUÞ þ�ðVÞ. As a result,
for anyU coordinate, one can consider theU-vacuum state

defined by the positive frequency modes �� ¼
e�i�U=ð4��Þ1=2. In that state, the connected correlation
function of TUU ¼ ð@U�Þ2,

hTUUðUÞTUUðU0Þic � hTUUðUÞTUUðU0Þi
� hTUUðUÞihTUUðU0Þi; (7)

obeys Eq. (1), independently of the regularization scheme
used to compute hTUUðUÞi.3 Introducing the coordinates

au ¼ lnð�aUÞ and a �u ¼ lnðaUÞ for, respectively, nega-
tive and positive values ofU, Eq. (2) and (3) also follow, as
mathematical identities valid in all space-times and for any
coordinate U. Some physical input is therefore needed to
transform these identities into meaningful relations among
observables.
To relate Eq. (2) to the Unruh effect is straightforward. It

suffices to consider a particle detector following the orbit
u ¼ v. It will perceive theU-vacuum as a thermal state at a
temperature a=2�. (In general, a is no longer the proper
acceleration, consider e.g. de Sitter space where the ther-
mal bath is also perceived by inertial detectors.) Similarly,
for Eq. (3), when introducing another detector which fol-
lows the mirror trajectory �u ¼ �v, the combined state of
these two detectors will be entangled as that of accelerated
detectors in Minkowski [7], again as a direct consequence
of the conformal invariance of �. This generalization of
the Unruh effect applies to any field and in any dimension,
but only approximately, provided that the acceleration is
much higher that the space-time curvature. (This limit is
also used in the thermodynamic analysis of space-time
[23]. However, the fact that Eq. (3) always applies indi-
cates that the purity of the quantum state, and not only the
mean fluxes, is a key ingredient.)
To relate Eqs. (2) and (3) to the Hawking effect is more

elaborate. As we shall see, the metric plays a crucial role in
‘‘selecting’’ the U-vacuum and the coordinate u. This
follows from the fact that, unlike the connected two-point
function of Eq. (7), other observables are not conformally
invariant, as for instance the renormalized expectation
value of TUU [9]

hTUUiren ¼ � 1

12�
C1=2@2U

1

C1=2
: (8)

In Sec. III D, we shall see that the breakdown of the
conformal invariance comes from the renormalization
scheme and not from the ‘‘bare’’ operator.

B. The correspondence

We work with one-dimensional stationary black hole
metrics that we describe using Eddington-Finkelstein
(EF) coordinates v, r in which the line element reads

ds2 ¼ �ð1� w2ðrÞÞdv2 þ 2dvdr: (9)

We shall not consider specific functions for w2, as e.g.
2M=r which describes a Schwarzschild black hole. Hence,
the coordinate r should not be conceived as associated with
spherical symmetry. In fact, from a two-dimensional point
of view, r in Eq. (9) is an affine coordinate along v ¼ cst.
We also notice that r is affine along � ¼ cst, where � is the
proper time appearing in Painlevé-Gullstrand (PG) coor-
dinates [13], where ds2 ¼ �d�2 þ ðdr� wd�Þ2. This
guarantees that the forthcoming analysis can be made in
PG coordinates.

3The connected two-point function of T�� governs gravita-
tional back-reaction effects beyond those included in the semi-
classical Einstein equations [22]. This provides its dynamical
relevance.
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When w is a constant, the geometry is Minkowski.
Therefore the differences with Sec. II will all stem from
the gradient of wðrÞ. We have adopted these coordinates
because they are well behaved in the late time portion of
the space-timewhich is relevant for the Hawking effect and
the correlations across the horizon, see e.g. [5]. In particu-
lar, they stay regular whenw2 crosses 1, say at r ¼ rh. This
locus is the future horizon (for the static observers at fixed
r > rh) and it is a null line U ¼ cst. The absence of the
corresponding V (past) horizon induces a disymmetry: left
moving modes are regular across the horizon U ¼ cst and
play no role in the following.

Assuming that wðrÞ ! w1 ¼ cst for r ! 1, the asymp-
totic observers at fixed r are inertial, at rest with the black

hole, and their proper time is �as ¼ vð1� w21Þ1=2. By
rescaling v and r, one can work in a gauge in which w1 ¼
0. From now on, we adopt it. The positive norm modes that

these observers will use are �as
! ¼ e�i!u=ð4�!Þ1=2, with

!> 0. When r ! 1, u, v are related to �as by �as ¼ ðuþ
vÞ=2. At finite r, one has u ¼ v� 2

R
dr=ð1� w2Þ. One

sees that u might diverge when w2 crosses 1.
To settle this, one needs to know how w behaves across

rh. We assume a regular behavior w2ðrÞ � 1� 2�ðr� rhÞ
as this is the case for regular collapses. (� > 0 coincides
with the surface gravity since w1 ¼ 0 [24]. The extreme
case � ¼ 0 requires a special treatment [25].) At fixed v,
one finds u��� lnðr� rhÞ. Therefore, when r ! rþh at

fixed v, �as
! behaves as

�as
!ðuÞ � ðrvðuÞ � rhÞi!=�

ð4�!Þ1=2 ; (10)

and can be taken to vanish for r < rh. The function rvðuÞ
obeys

drv ¼ �1
2Cðu; vÞdu; (11)

where Cðu; vÞ ¼ ð1� w2Þ is the conformal factor in the u,
v coordinates. It should be emphasized that rvðuÞ is an
affine parameter for all wðrÞ, and this property is governed
by C which appears here for the second time. (It was
implicitly used before when imposing that the coordinates
u, v are related to the asymptotic proper time by 2�as ¼
uþ v.)

When replacing the acceleration a by � in Eq. (10), the
correspondance with Eq. (A2) is manifest, and physically
meaningful because rv is affine, as U is in Minkowski
space. However, this correspondence is confined near the
horizon since �as

! behaves as ei2!r for r ! 1 at fixed v.

Therefore, the gradual change of the mode�! from�ðr�
rhÞi!=� to �ei2!r is what distinguishes the back hole case
from Minkowski. These facts have been recognized in
[1,26] and shall be further exploited below.

The second part of the correspondence concerns the
state of�. While inMinkowski space the notion of vacuum
is unambiguous, in a black hole geometry this is lost.
Nevertheless the late time behavior [8] is universal and

stationary when described in terms of u (or �as). This can
be verified by considering different collapses and different
initial states: in each case there are transients, but after a
few e-folding u times 1=�, these fade out as�e��u and the
stationary values set in (unless the collapse and/or the state
is singular). Therefore, as far as the description in terms of
u is concerned, a single stationary state is selected. As
noticed in [1], this state is most simply characterized by
Unruh modes, �!, exactly as the Minkowski vacuum can
also be; see the discussion after Eq. (A2). The particular

combination of modes weighted by z! ¼ e��!=� means
that �! only contains positive frequencies �K ¼ i@UK

where UK is the regular coordinate across rh which is
related to u by dUK=du ¼ e��u. Indeed, stationarity re-
quires an exponential relation bewteen u and UK, whereas
regularity across rh fixes the decay rate d lnUK=du to be �.
The correspondence is now completed: the regularity

and the stationarity of the state allow us to characterize it
by the modes of Eq. (A2), with U replaced by UK ¼
�e��u=�. This exponential is no longer related to a
Lorentz transformation, but is still related to an isometry

whose Killing field norm / ð1� w2Þ1=2 vanishes on the
horizon.

C. Correlation functions and asymptotic quanta

In the Unruh vacuum, the connected two-point function
of TUU ¼ ð@UK

�Þ2 [see Eq. (7)] is exactly given by Eq. (1).
Then, since �u ¼ � lnð��UKÞ, Eq. (2) with a ! � also
obtains. However, as discussed in Sec. III A, there is noth-
ing special about these identities. What makes Eq. (2)
meaningful here is that both UK and u are affine, respec-
tively, across the horizon and asymptotically. Hence,
Eq. (2) tells us that when evaluated in the regular state,
the two-point function used by inertial asymptotic observ-
ers is that of a thermal flux at the Hawking temperature
�=2� [3].
Let us now consider the equivalent of Eq. (3).

Introducing on the other side of the horizon � �u ¼
ln�UK, Eq. (3) with a ! � automatically obtains. But
what does it mean? Unlike for the Unruh effect, we cannot
refer to accelerated systems in the L quadrant.
Nevertheless, the procedure of [7] applies to black holes,
and one can study the T�� correlated to the detection of an

asymptotic quantum. As in Minkowski, there is a reduction
of the state: expectation values should be computed with
the reduced density matrix, see Appendix C. Then, because
of the entanglement of Eq. (B2), there is a correlation
between T�� evaluated inside the horizon and a detection

on Iþ [10]. Equivalently, one can directly look for corre-
lations in energy across the horizon and obtain Eq. (3).
There is however an important difference between

Eqs. (2) and (3). It originates from the different status of
the coordinates u and �u. Equation (2) has a clear interpre-
tation because du at fixed v is affine for r ! 1. If we can
consider the equivalent of Eq. (2) with both points inside,
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and obtain the same answer when using �u, we should ask
under which conditions would hTL

uuT
L
uui posses an intrinsic

meaning (without any reference to the external region). For
this, it ‘‘suffices’’ that the inside region be also infinite and
that w ! const for r ! �1. Whereas, it is unlikely that
this be relevant for black holes, we assume it is the case and
consider the consequences. (In Sec. IV we discuss ana-
logue black holes where this possibility can easily be
realized.) When w ! const for r ! �1, the notion of
asymptotic quanta equally applies to the negative fre-
quency partners [27]. Then, hTL

uuT
L
uui has the same mean-

ing as hTR
uuT

R
uui, and the long distance correlation hTL

uuT
R
uui

of Eq. (3) can be probed.

D. Locality, covariance, and renormalization

To interprete Eq. (7), we have so far used the asymptotic
properties of the metric. However, we would like an intrin-
sic description of the gradual transition from the horizon to
the asymptotic regions. To this end, we consider the renor-
malization procedure. As we shall see, its covariance sup-
plies the intrinsic description we are looking for, and this
by breaking the conformal invariance. (It should be clear
that different rules on how to interpolate will give different
behaviors since the two-point function of TUU is not a
scalar).

We noticed that both u and UK are affine, respectively,
for r ! 1 and r� rh. We also noticed that rv of Eq. (11) is
affine all the way through. In what follows, we exploit this
to relate the two-point function of TUU to its renormalized
value of Eq. (8). To this end, we study the coincidence
point limit of Eq. (7) in the Unruh vacuum using

Trr ¼ ð@r�Þ2 ¼
�
dU

dr

�
2
TUU; (12)

which is ‘‘coordinate invariant’’ since rv is, up to a scale,
globally defined. To present the concepts, we first work at
spatial infinity. There, in the limit u0 ! u, one has

hTuuðuÞTuuðu0ÞiK ¼
�
dUKðuÞ
du

dUKðu0Þ
du0

�
2
�
1

4�

� 1

ðUKðuÞ �UKðu0Þ � i�Þ2
�
2

¼
�
1

4�

1

ðu� u0 � i�Þ2
�
2

þ 2hTuuðuÞirenK

4�ðu� u0 � i�Þ2 þO

�
1

u� u0

�
;

(13)

where hTuuðuÞirenK is the asymptotic expectation value of
Tuu in the Unruh vacuum. Indeed, it is defined [5,9] as

hTuuðuÞirenK ¼ lim
u0!u

@u@u0ðh�ðuÞ�ðu0ÞiK � h�ðuÞ�ðu0ÞiMÞ

¼ 1

12�

�
dUK

du

�
1=2

@2u

�
dUK

du

��1=2 ¼ �2

48�
; (14)

where h�ðuÞ�ðu0ÞiM ¼ �1
4� lnðu� u0 � i�Þ is evaluated in

the asymptotic (Boulware) Minkowski-like vacuum. The
procedure of Eq. (13) is clear: by subtracting the asymp-
totic vacuum divergence, one extracts the excess in the
‘‘noise’’ and thus identifies the mean value of Eq. (14).
Moreover, this procedure can be unequivocally covarian-
tized and applied at every space-time point. This is
achieved by making use of rvðuÞ:

hTrrðuÞTrrðu0ÞiK ¼
�
1

4�

1

ðrvðuÞ � rvðu0Þ þ i�Þ2
�
2

þ 2hTrrðu; vÞirenK

�
1

4�

� 1

ðrvðuÞ � rvðu0Þ þ i�Þ2
�
þ � � � ;

(15)

where hTrrðu; vÞirenK is the renormalized value of Trr which
is defined as

hTrrðu; vÞirenK ¼ lim
u0!u

@r@r0ðh�ðuÞ�ðu0ÞiK
� h�ðuÞ�ðu0ÞilocalÞ

¼ 1

12�

�
dUK

dr

�
1=2

@2r

�
dUK

dr

��1=2
; (16)

where

h�ðuÞ�ðu0Þilocal ¼ � 1

4�
lnðrvðuÞ � rvðu0Þ þ i�Þ: (17)

In virtue of the covariance, when using the affine coordi-
nate rv, the subtraction term possesses this universal form.
This explains why Eq. (16) generalizes Eq. (14) at every
point.
Several remarks should be made. First, using Eq. (11),

one verifies that Eq. (16) gives back Eq. (8) in all space-
times and all vacua. Hence, Eq. (16) can be seen as an
alternative expression for it. Second, since the vacuum is
defined through the coordinate UK, and the subtraction
only refers to the metric through Eq. (11), hTrrirenK is
governed by dUK=dr and nothing else. Third, even though
hTUUTUUiK is independent of v, the covariance of the
divergent terms in Eq. (15) unambiguously defines the v
dependence of hTren

rr iK in Eq. (16).

E. Covariant description of stress tensor correlations

Following the same logic, we use Trr of Eq. (12) to
characterize the stress-energy correlations in the Unruh
vacuum at every point. Using Eq. (1), Eq. (7) gives
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hTrrðv;rÞTrrðv0;r0ÞiK ¼ð@r@r0h�ðv;rÞ�ðv0;r0ÞiKÞ2

¼
�
dUK

dr

dUK

dr0

�
2
�
1

4�

� 1

ðUKðv;rÞ�UKðv0;r0Þ� i�Þ2
�
2
:

(18)

This bi-tensor field depends on �U�4
K since the state is the

Unruh vacuum, but unlike Eq. (1), it depends on the actual
location of the two points through the v dependence of the
Jacobians dUK=dr. Using UKðv; rÞ ¼ e��vUKðrÞ, which
follows from the stationarity of the metric, we can extract
this v dependence and obtain

hTrrðv; rÞTrrðv0; r0ÞiK ¼
�
dUK

dr

dUK

dr0

�
2

�ð4�ðeð��ðv�v0ÞÞ=2UK

� eð�ðv�v0ÞÞ=2U0
K � i�Þ2Þ�2:

(19)

There is yet another interesting way to write this correlator.
Using

1� w2 ¼ 2�

�
d lnUK

dx

��1
; (20)

which follows from Eq. (11), we get

hTrrðv; rÞTrrðv0; r0ÞiK ¼
�
�2

�

UKU
0
K

ð1� w2Þð1� w2
0Þ

� 1

ðUK �U0
K � i�Þ2

�
2
: (21)

From Eq. (19), it is clear that the correlator is a function
of only 3 variables, r, r0, and v� v0, the state (Unruh
vacuum) being stationary. Because it still depends on 3
variables, its behavior in different two-dimensional sec-
tions illustrates different aspects of the correlations asso-
ciated with the Hawking effect. When fixing r0, v0 on Iþ,
Eq. (18), function of r, v, describes the correlations asso-
ciated with a late detection on Iþ [10]. Instead, at equal
time v0 ¼ v, Eq. (18) describes the correlations in the r, r0
plan that have been accumulated in the past of that time
[19].

Before studying these two cases, we need to be more
precise about the black hole geometries we shall work
with. As explained before, we consider profiles that be-
come constant for r ! �1. To have a simple example at
hand, we choose directlyUKðrÞ since it is the only relevant
function in Eq. (19):

�UKðxÞ ¼ �ðe2�x � e�2 ��xÞ; (22)

where x ¼ r� rh. This is a kind of symmetrized version of
the Schwarzschild metric where UK ¼ �xe2�x. Using
Eq. (20), one gets

1� w2 ¼ e2�x � e�2 ��x

e2�x þ ��
� e

�2 ��x
: (23)

Near the horizon, for �x � 1, one has w2 ¼ 1� 2�x for
all values of ��, and the asymptotic values are w1 ¼ 0 for
x ! 1, and w2�1 ¼ 1þ �= �� for x ! �1.

1. Correlations to a late detection

We fix x0, v0 on Iþ
R , on the future right infinity, and label

it with u0. We consider Eq. (18)

�T rrðr; vÞju0;Iþ � hTrrðv; rÞTrrðu0; Iþ
R ÞiK; (24)

as a one-point function. As such, �Trrðr; vÞ is a special case
of the conditional value

�T rrðr; vÞj�R
¼ hTrrðv; rÞ�̂Iþ

R
iK; (25)

where �̂Iþ
R
is a projector that specifies a state on Iþ

R , see

Appendix C for a brief account, and Appendix C of [5] for
details. The projector can be chosen at will. If it is taken to

be aasy! aas! , it selects the subset of states (present in the
Unruh) which contains that asymptotic quantum without
specifying when it is detected. One can also consider
the other limit in which one only specifies the moment of
detection u0. In that case, Eq. (25) is identical to Eq. (24),
up to an overall constant factor, as can be seen by taking
fð�Þ ¼ 	ð�� u0Þ in Eqs. (55, 56) of [10]. From this, we
learn the physical meaning of Eq. (24): it gives the mean
value of Trr when the in state is Unruh vacuum, and when a
particle is detected on Iþ at u ¼ u0.
When (r; v) is also on Iþ

R and coordinated by u, Eq. (24)
is given by Eq. (2) (times 42), as can be seen using Eq. (21),
and �u ¼ � lnð��UKÞ. In this we recover the thermal
correlations [3] of the asymptotic radiation. When (r; v)
is taken on the opposite null infinity Iþ

L , or sufficiently far
away from the horizon so thatw is constant, �Trr behaves as
Eq. (3) when using the mirror coordinate � �u ¼ lnð�UKÞ.
Moreover, when (r; v) is near the horizon, �ðr� rhÞ � 1,
and parametrized by UK, �Trr behaves as in Eq. (1), as can
be seen using Eq. (18) and dUK=dr��2 for r ¼ rh. In
this we recover that when probed near the horizon, for
�x � 1, Unruh vacuum behaves like Minkowski vacuum.
In addition to these three asymptotic behaviors, the

nontrivial information contained in �Trr of Eq. (24) is the
smooth interpolation from one to the other, which is rep-
resented in Fig. 1. From this, we clearly see the gradual
emergence from v ¼ �8 of the energy flux associated with
the partner on the other side of the horizon. What is non-
trivial is the following. In the past of that time, �Trr is
essentially constant along the outgoing null lines UK ¼
const and, as could have been expected, behaves exactly as
�TUU would in Minkowski. On the contrary, near the hori-
zon and in the future, �Trr behaves very differently since the
lines �Trr ¼ const cross the horizon. This peculiar behavior
could not have be found had we studied the two-point

RENAUD PARENTANI PHYSICAL REVIEW D 82, 025008 (2010)

025008-6



function of Eq. (7) because the latter obeys Eq. (1) and
depends only on U, even in a black hole geometry. This
establishes that the use of Trr of Eq. (12) with r affine is
truly necessary. It should be also noticed that the above
behavior of �Trr cannot be found in Minkowski using affine
coordinates either. In fact, it is characteristic of pair crea-
tion processes, as can be seen by comparing Fig. 1 to
Fig. 1.1 of [5] which describes pair creation in an electric
field. As noticed in [10], these properties of �Trr provide a
clear answer to the long standing question: where is a
Hawking quantum ‘‘born?’’ [28].

2. Equal time correlations

We consider Eq. (18) at equal EF time v ¼ v0. Since
UK ¼ e��vUK, the correlator

CKðr; r0Þ ¼ hTrrðrÞTrrðr0ÞiK ¼ ð@r@r0h�ðrÞ�ðr0ÞiKÞ2;
(26)

is given by Eq. (21) withUK replaced byUK. UsingUK of
Eq. (22), CKðr; r0Þ diverges as �ðr� r0Þ�4 when r ! r0,
as expected since the Unruh vacuum is a Hadamard state.
Moreover, when r ! 1, since UK ��e�2�r, one has

CKðr; r0Þ ¼ �4

16�2sinh4ð�ðr� r0ÞÞ
: (27)

The thermal noise of Eq. (2) associated with the asymptotic
radiation is properly encoded in CK since at fixed v, du ¼
�2dr. Similarly, when x and x0 are on opposite sides of the

horizon, since UK ��e�2 ��jxj for x ! �1, one asymp-

totically gets

CKðr; r0Þ ¼ �2 ��2

16�2cosh4ð ��xþ �x0ÞÞ
; (28)

thereby recovering Eq. (3), and making contact with
[18,19], see Fig. 2 on the left. To further investigate the
gradual change from near horizon configurations to long
distance correlations, we consider the subtracted two-point
function4

SKðr; r0Þ ¼ @r@r0

�
h�ðrÞ�ðr0ÞiK � ð�1Þ

4�
lnðr� r0Þ

�
:

(29)

The substraction term is the same as in Eq. (17), but
considered here for all values of r� r0. From the the right
plot in Fig. 2, we see that the residual signal is free of UV
divergences and describes the emergence of the pairs on
distances �ðr� rhÞ ¼ �x� 1, i.e. characterized by the
geometry.
One first notices that the correlations across the horizon

in SK are negative (as in inflation [29]). In fact, the corre-
lator h@r�@r0�iK is negative ‘‘everywhere,’’ as can be seen

from Eqs. (19) and (22). We have added quotation marks
because this correlator is a distribution. In fact, the coin-
cidence point limit is ruled by the i�, see Eq. (1). It
specifies that (the real part of) h@r�@r0�iK diverges posi-

tively for r ! r0 same v, and it ensures that the integralR1
�1 dUh@U�@U0

�i vanishes in the Minkowski vacuum.

(This is reminiscent of the behavior of hTUUiFR, the mean
flux evaluated in the Fulling-Rindler vacuum [30].) We
also notice that for close points, SK is positive because
the subtraction is larger than the bare term. Moreover,
when evaluated at the same point, SKðx; xÞ is equal to
hTrrðxÞirenK of Eq. (16). For x ! 1, one verifies that
SKðx; xÞ ¼ ð�1=3Þ � SKðx;�xÞ. Finally, we notice that
Fig. 2 is symmetrical under x ! �x. This follows from
the symmetry of 1� w2 in Eq. (23) when � ¼ ��. When
��=� � 1, this is lost, and 1� w2 resembles more to
Schwarzschild. We hope to report on this case soon.

F. Time-dependent growth of flux and correlations

So far, we considered the stationary correlation patterns
found in the Unruh vacuum. We now consider the early
transient effects. As already said in Sec. III B, they are not
universal. However, their late time behavior is when the
state contains no high frequency excitations, i.e. when it is
an Hadamard state. There is a simple and efficient way to
characterize this behavior. It consists in assuming that the
initial state specified at v ¼ vin is the Minkowski vacuum.

3 2 1 0 1 2 3

14

12

10

8

6

4

2

FIG. 1. The stress-energy conditional to a late detection. We
represent �Trr of Eq. (24) in the x, v plane (v being vertical) for a
detection at x0 ¼ 4, v0 ¼ 0, outside the picture in the top right-
hand region where wðrÞ is constant. The horizon is at x ¼ 0 and
� ¼ �� ¼ 1 in Eq. (23). When jxj 	 1, on both sides, the pattern
is translation invariant along the null direction because w is
constant. Instead for jxj< 1, one sees the endless focusing of the
null lines for v ! �1. The ‘‘post-selected’’ partner propagates
along vþ 2x ¼ �8 ¼ v0 � 2x0, i.e. along the opposite trajec-
tory fixed by x0, v0. These features were found in [10] consid-
ering Eq. (25) for a typical Hawking quantum.

4For simplicity, we worked with the square root of Eq. (26)
rather than CK itself. The reason is that the subtraction needed to
obtain a finite expression for r ! r0 is more complicated, as it
requires three terms. The subtracted correlator of hTrrTrriK
possesses the same behavior as SK.
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(This state can be found in a gravitational collapse when
the infalling matter is a lightlike thin shell [10].) In this
state, v ¼ vin, the two-point function at is Ginðr; r0Þ ¼
�1
4� lnðr� r0 þ i�Þ, as in Eq. (17). In the future, one has

Ginðr; v; r0; v0Þ ¼ � 1

4�
lnðXinðr; vÞ � Xinðr0; v0Þ þ i�Þ;

(30)

where Xinðr; vÞ gives the value of x ¼ r� rh hit by the
outgoing null ray issued from r, v when it crosses vin. In
this state, the mean flux of Eq. (16) becomes

hTrrðr; vÞirenin ¼ 1

12�

�
dXinðr; vÞ

dr

�
1=2

@2r

�
dXinðr; vÞ

dr

��1=2
;

(31)

and the correlator of Eq. (18) is

hTrrðv; rÞTrrðv0; r0Þiin
¼

�
dXin

dr

dXin

dr0

�
2
�
1

4�

1

ðXinðv; rÞ � Xinðv0; r0Þ þ i�Þ2
�
2
:

(32)

In both expressions, one has simply replaced UK, the
Kruskal coordinate encoding the Unruh vacuum, by Xin

which encodes the time-dependent state which is vacuum
at vin.

In the metrics of Eq. (23), these expressions flow to-
wards Eqs. (16) and (18), exponentially in v� vin in the
near horizon region where @rw ¼ �, and linearly when
@rw� 0. To show this, we make use of UKðxÞ, solution
of Eq. (20). Calling XðUKÞ the inverse function, and using
UKðx; vÞ ¼ UKðxÞe�v, we obtain

Xinðr; vÞ ¼ X½UKðxÞe��ðv�vinÞ
; (33)

for all profiles w2ðxÞ. To give a simple example, we use
Eq. (22) with �� ¼ �, and we get

2�Xinðr; vÞ ¼ arcsinhðe��ðv�vinÞ sinhð2�xÞÞ;
dXin

dx
¼ coshð2�xÞ

½e2�ðv�vinÞ þ sinh2ð2�xÞ
1=2 : (34)

In Fig. 3, on the left, we represent Eq. (32) evaluated at
equal time for different values of v� vin. In these plots,
one clearly sees the growth of the correlations across the
horizon with a rate given by � [19]. One also observes a
narrowing of the spread of the dominant correlations cen-
tered along x ¼ x0. This is due to the progressive replace-
ment of vacuum correlations �1=ðx� x0Þ2 by the thermal
ones ��2=sinh2�ðx� x0Þ of Eq. (27). On the right plots,
the subtracted function Sinðr; r0Þ, the equivalent of Eq. (29)
evaluated in the in vacuum, displays both the growth of the
long distance correlations, and the modifications of the
local correlations.
It is worth analyzing these time-dependent effects

through two other perspectives. In Fig. 4, on the left, we
present the mean flux of Eq. (31) in the x, v plane from the
onset of the vacuum at v ¼ vin ¼ 0. hTrriin contains tran-
sients which propagate along u ¼ v� 2x� 0. It then
reaches a constant x-dependent profile. For x ! 1, one
recovers the standard value �2=12� [9]. In the metric of

Eq. (22) with � ¼ ��, hTrriin crosses 0 for sinh2x ¼ ffiffiffi
2

p
, i.e.

x��0:57, and on the horizon, it is negative and equal to
�2�2=12�. When including gravitational back-reaction
effects, this term participates to the evaporation of the
black hole; see [31] for a numerical analysis in similar
settings. On the right plot, we show �T �u �uð �uÞju0 of Eq. (24),
the flux correlated to a late detection at u0 on Iþ

R , that we
evaluate on Iþ

L and parametrize with �u, the mirror coor-

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

FIG. 2. Equal time correlations. On the left, we represent Eq. (26), and on the right, Eq. (29), both in the metric of Fig. 1. The
horizon is at x, x0 ¼ 0. On the left, the signal diverges for x ! x0 whereas the pattern along xþ x0 ¼ 0 represents Eq. (28). It is
translation invariant in x� x0 once w has reached a constant. On the right, the subtracted SK is everywhere finite and regular. It is
dominated by the correlations across the horizon. The subdominant patterns centered along x� x0 ¼ 0 are due to the fact that the
unsubtracted correlator in Eq. (29) decreases faster than the subtraction. On the diagonal, SKðx; xÞ ¼ hTrrðxÞirenK , the renormalized flux
of Eq. (16).
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FIG. 4. Time dependence of the mean flux and of the asymptotic correlations. On the left, we represent Eq. (31) with Eq. (34) from
the onset of the vacuum at v ¼ 0 till �v ¼ 8, and for �x from 0 to 4 (It is symmetric under x ! �x). The transients propagate on null
lines u ¼ v� 2x� 0. After they passed, hTrriin is v independent. On the right plot, we represent �Tuuð �uÞju0 of Eq. (24) in the u0, �u

plane with �u vertical, with u0 and �u defined on the future null infinity v0 ¼ v ¼ 1. For u0 < 0, before the transients, there is no
correlations across the horizon. Instead for u0 > 3, �Tuuð �uÞju0 only depends of u0 þ �u, and is given by Eq. (3).
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FIG. 3. The growth of equal time correlations. We represent Eq. (32) at equal time on the left, and Eq. (29) on the right, after a lapse
of time �ðv� vinÞ ¼ 1 in the upper plots, and �ðv� vinÞ ¼ 4 in the lower ones. On the left, one observes the growth of the
correlations across the horizon centered along xþ x0 ¼ 0. One also observes a narrowing of the correlations centered along x ¼ x0.
On the right, Sinðr; r0Þ displays two distinct features. A strong signal associated with the building up of the correlations across the
horizon, and subdominant patterns on both sides of the horizon due to the growth of thermal correlations of Eq. (27). At late times, both
patterns asymptote to the stationary ones of Fig. 2.
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dinate � �u ¼ ln�UK. There are no correlations from Iþ
R to

Iþ
L for u0 <�1 in conformity to the fact that no Hawking

radiation as yet reached the null infinites. Then, for positive
u0, the correlations settle to a stationary pattern centered
around u0 þ �u ¼ 0 found in the Unruh vacuum.

In conclusion, it is interesting to observe that, even
though the transients give rise to a higher value of the
mean flux, they are not associated with stronger correla-
tions across the horizon, and this because, unlike the steady
Hawking radiation, the transients are not composed of
entangled pairs of opposite frequency !. This can be
checked by comparing �Tuuð �uÞju to the asymptotic flux
hTuuiin evaluated for x, v ! 1, with u ¼ v� 2x fixed:

hTuuðuÞirenin ¼ �2

48�

1þ e�2�u

ð1þ e�2�u=4Þ2 ;

�T �u �uð �uÞju0 ¼
�
�2

�

�
2ððe2�u0 þ 1=4Þðe�2� �u þ 1=4Þ

� ðarcsinhðe��u0=2Þ þ arcsinhðeþ� �u=2ÞÞ4Þ�1:

(35)

IV. DISPERSIVE THEORIES AND ANALOGUE
BLACK HOLES

In a nonhomogeneous medium, linear density fluctua-
tions obey a relativistic d’Alembert equation in a curved
metric when their wave lengths are larger than the inter-
atomic distance [12]. Instead, for shorter wave lengths, the
propagation becomes dispersive [32]. Assuming the speed
of sound is constant and set to 1, it can be described by

�2 ¼ ð!� wpÞ2 ¼ F2ðp2Þ; (36)

where� is the comoving frequency measured with respect
to the atoms, w the velocity of the fluid, and p, ! the wave
vector and the frequency measured in the lab. The disper-
sion can be incorporated in a modified field equation [11]

ð@� þ @xwÞð@� þ w@xÞ�� @2x�� 1

�2
@4x� ¼ 0; (37)

which reduces to the relativistic one when sending the
dispersive scale � ! 1. For simplicity, we chose quartic,
super (þ ) or subluminal (� ) dispersions: F2 ¼
p2 � p4=�2.

Equation (37) can then be used to study the impact of
dispersion on Hawking radiation. In [11], the thermicity
and the stationarity of the asymptotic radiation have been
shown to be robust, i.e. hardly affected by dispersion when
� � �. This is sufficient for recovering Eq. (27). By
constructing wave packets of in modes, it was then shown
[16] that at large distance from the horizon one also
recovers the correlations between Hawking quanta and
their partners, and this, even though the early propagation
was radically affected by dispersion. This second aspect is

sufficient for obtaining Eq. (28), Fig. 2, and the late time
properties of Fig. 1.
To clarify this, we shall compare the properties of wave

packets of �in
!, the in modes of Eq. (37),

�� �!ð�; xÞ ¼
Z

d!e�i!��in
!ðxÞ �f!; (38)

where �f! selects the wave packet, with the correlation
function

Ginð�; x; �0; x0Þ � h�ð�; xÞ�ð�0; x0Þiin
¼

Z
d!e�i!��in

!ðxÞ½e�i!�0�in
!ðx0Þ
�;

(39)

evaluated in the stationary in vacuum. When dispersion is
weak, the similarity of expressions guarantees that similar
patterns will be found. However, since dispersion grows as
approaching the horizon, the way one probes the correla-
tions, i.e. by extracting some limited range of! through �f!
in Eq. (38), or not as in Eq. (39), can lead to different
behaviors. We now review the relevant points for achieving
this comparison following [16,24]; other treatments are
mentioned in [33].

A. Kinematics

From a relativistic point of view, the presence of disper-
sion defines a preferred frame [14] which allows to define
new scalars. This is best seen by ‘‘covariantizing’’ Eq. (36),
i.e. by introducing a unit timelike vector field u�, and
viewing the field � as propagating on a manifold endowed
with both the metric and u�. Then, the energy in the
preferred frame, and the spatial momentum perpendicular
to it are, respectively,

� ¼ u�p�; p ¼ s�p�; (40)

where �u2 ¼ 1 ¼ s2 and s�u� ¼ 0. The PG coordinates

used in Eq. (37) can then be invariantly defined by @x ¼
s�@� and d� ¼ u�dx

u. The field u� also defines the scalar

density � ¼ u�u�T�� which corresponds to the proper

energy that observers following dx�=d� ¼ u� would mea-
sure. It is interesting to note that in the hydrodynamical
limit, one gets

� ¼ Txx ¼ ð@x�Þ2: (41)

In other words, � coincides with Trr of Eq. (12) with r
defined by Eq. (11). This nontrivial correspondence fol-
lows from the affinity of r at fixed v and �, see the remarks
after Eq. (9).
In the same spirit, we notice that the surface gravity

measured with respect to the preferred frame is also scalar.
It is given by the expansion [34] 
 ¼ u

�
;� ¼ @xw evaluated

on the horizon. (The second expression is valid in PG
coordinates.) The ambiguity of the scale of the surface
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gravity in covariant theories is thus removed when using
u�.

B. The modified modes

In linear field theories, the modifications of the stress-
energy correlations due to dispersion will stem from the
modifications of the modes, solutions of Eq. (37). When
� � �, these are modifications localized near the horizon,
for �ðr� rhÞ ¼ �x � 1. As noticed in [16], it is appro-
priate to work in the p representation (with x ¼ i@p) with

wðxÞ linearized: w ¼ �1þ �x ¼ �1þ i�@p. In this rep-

resentation, Eq. (37) becomes

ð!� pwÞð!� wpÞ ~�! ¼ F2 ~�!: (42)

Usingw ¼ �1þ i�@p, the modified modes have the form,

for details see the Appendix of [24],

~�! ¼ ~�0
! � e�ip=��ðpÞ; (43)

where ~�0
! ¼ jpj�i!=��1 is the standard dispersion less

mode, and where � obeys

� �2@2p� ¼ F2

p2
� ¼ H2�: (44)

The in state which generalizes the notion of the Unruh
vacuum, the ‘‘free falling vacuum,’’ is characterized by the
positive norm modes which contain only positive � of
Eq. (40). These in modes are related to the Unruh modes,
see Eq. (A4),

~�U
! ¼ 
ðpÞp

�i!=��1

ð4��Þ1=2 ; (45)

by [16]

~� in
! ¼ ~�U

! � e�ip=��ðpÞ; (46)

where �ðpÞ is the solution of Eq. (44) with a Wronskian
equal to ��@p�� �@p�

� ¼ 2i=�. The corresponding

WKB solution is

�ðpÞ ¼ 1

ðHÞ1=2 exp

�
i
Z p

p0

Hðp0Þdp0=�
�
: (47)

It provides a reliable approximation when � � �. In the

limit � ! 1 fixed p, H ! 1 and e�ip=�� ! 1, thereby

implying that ~�in
! smoothly gives back ~�U

!.
5

To understand the impact of dispersion, we now study
the characteristics of Eq. (37) since the maximum of
correlations will be localized along them. Having already
the modes in p space, the simplest way to get them is to
consider Eq. (38) in p space, and look for the stationary
phase condition in !. Using Eq. (46), since � is indepen-
dent of !, one gets

pð�Þ ¼ p0e
���; (48)

irrespective of the dispersion relation F, and thus as in
relativistic theories.
To get the modified characteristics in x, we use !�

wp ¼ F, the root of Eq. (36) describing the right moving
modes. Using w��1þ �x, one gets [35]

�

2
½x!ðpÞ � x�!ðpÞ
 ¼ !

p
;

�

2
½x!ðpÞ þ x�!ðpÞ
 ¼ 1�HðpÞ:

(49)

The first equation is again independent of F and coincides
what is found in relativistic theories, namely, when propa-
gated backwards in time, pairs of characteristics pill up
exponentially in PG time. The second equation tells us that
the ‘‘center of mass’’ of a pair which is centered on the
relativistic horizon for 1�H � 1, i.e. p � �, gradually
moves away as p increases. For sub (super) luminal dis-
persion, H < 1 (H > 1), the pair is sent outwards (in-
wards). For quartic dispersion, the momentum at the
turning point is given by p3

t:p: ¼ 2�2j!j [36]. Because of

this movement away from the horizon, the increase of p
and the focusing of x! � x�! will stop when the pair
reaches j�xj �D, where the gradient @xw drops down. A
straightforward calculation gives that the focusing stops for

p��D1=2.
The end of the focusing and the movement away from

the horizon are the principal consequences of dispersion.
They imply that the early properties of Fig. 1 are inevitably
modified, as we shall see below.

C. Correlations from wave packets

To show how dispersion affects the correlation pattern
encoded in Eq. (38), we need Eq. (46) in x space

�in
!ðxÞ ¼

Z 1

0

dp

ð2�Þ1=2 e
ipx ~�in

!ðpÞ: (50)

Far away from the turning point, one can evaluate this
integral at the saddle point approximation (since it is
reliable [16,36]), and decompose Eq. (50) in terms of out-
going modes defined for low momenta. By doing so, one
finds

�in
!ðxÞ ¼ �!½
ðxÞ’!ðxÞ þ z!
ð�xÞð’�!ðxÞÞ�
; (51)

where ’!ðxÞ is the x-WKB mode of Eq. (37) with unit
norm. Explicitly, it is given by

5At fixed x instead, the limit � ! 1 can be singular as some
roots pðx;!Þ of Eq. (36) are sent to infinity. The p-WKB
approximation should not be confused with the usual one defined
in x space. For the Airy function, the modes in p are exactly
given by their p-WKB approximation. Similarly here, the cor-
rections to Eq. (47) are negligible when�=� � 1. This has been
confirmed by numerical analysis, see [27] for a detailed study.
From now on, we neglect them and work in the adiabatic
approximation with Eq. (47).
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’!ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p!ðxÞ
@!

s
expðiRx

x0
dx0p!ðx0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��ðp!ðxÞÞ
p ; (52)

where p!ðxÞ is the corresponding low momentum root of
Eq. (36). One easily verifies that these out modes are
identical to the relativistic ones for p! � �. Moreover,

for � � �, up to a phase, one finds z! ¼ e��!=�. Hence,
Eq. (51) gives the equivalent of Eq. (A2).6

In addition to the above two low momentum modes,
there is a third saddle—on the left (right) of the horizon for
super (sub) luminal dispersion, in conformity with Eq. (49)
—which gives a high momentum mode. Its WKB wave is
also given by Eq. (52) with p! being the unique large
positive real root of Eq. (36). One verifies that its overall
coefficient is unity in conformity with the fact that it
describes the incoming mode that shall be scattered.

Therefore, considering Eq. (38) with �f! centered around
0< �! � !max, we get two results. First, at late times,
using Eq. (51) and (52), one finds two low momentum
packets following Eq. (49) with! ¼ � �!, where the nega-
tive frequency packet has its amplitude reduced by z �!, as in

Eq. (A3). Since z! ¼ e��!=�, and since both ’! of
Eq. (51) behave as relativistic modes once p is small
enough (F� p � p), at large distances, the pattern is
indistinguishable from the relativistic one obtained by
replacing Eq. (46) by Eq. (45).

Second, at early times, only the incoming high momen-
tum mode constructively interferes. It has a mean positive
frequency �!, follows the second line of Eq. (49) with p �
�!, and leaves the near horizon region with p��. This is
completely different from what is obtained in the relativ-
istic case. Indeed, using Eq. (45), p would keep increasing
for ever following Eq. (48), and the spread in x correspond-
ingly decrease as �1=p.

From the analysis of wave packets, we have thus reached
two important results. On one hand, the low momentum
(late time) properties of the relativistic pattern of Fig. 1 is
unaffected by dispersion. On the other hand, the early
properties of this pattern will be radically affected by
dispersion since the peak of correlations will follow
Eq. (49), as represented in Fig. 4 of [16]. To further
investigate how dispersion affects the properties of
Figs. 1 and 2, we now consider the pattern encoded in
Eq. (39) rather than in Eq. (38).

D. Correlations in energy density

We start with the correlations of a relativistic field ex-
pressed in the present language. Since � ¼ p, the corre-
lation function of � of Eq. (41) is

h�ðx; �Þ�ðx0; �0Þiin ¼
�
@x@x0

Z 1

�1
d!e�i!ð���0ÞGin

!ðx; x0Þ
�
2
;

(53)

whereGin
! ¼ �in

!ðxÞð�in
!ðx0ÞÞ� is the! component ofGin of

Eq. (39). In the p representation, using Eq. (45), one gets

~GKðp; �;p0; 0Þ ¼
Z 1

�1
d!e�i!� ~Gin

!ðp; p0Þ

¼ 
ðpÞ
ðp0Þ 1

2pp0

	ð��þ lnðp=p0ÞÞ:
(54)

On one hand, we recover the classical evolution law of
Eq. (48). On the other, we learn that in the Unruh vacuum,
at � ¼ �0, only configurations with equal values of p
contribute. There is no spread in p in this state. When
inverse Fourier transform, one gets

GKðx; �; x0; 0Þ ¼ � 1

4�
lnðx� x0e

�� þ i�Þ: (55)

We recover the standard result, Eq. (B5), expressed in PG
coordinates. At equal PG time, we notice also that the
argument of the log is x� x0. We shall return to this point
below. When computing @x@x0GK, one obtains

@x@x0GKðx; �; x0; 0Þ ¼ � 1

4�

e��

ðx� x0e
�� þ i�Þ2 ; (56)

which is the square root of Eq. (19) in the near horizon
region where UK ��x.
When introducing dispersion, � receives corrections

with respect to ð@x�Þ2 due to the nonlinearities of F2.
This is hardly relevant for us, because in the near horizon
region, the momenta p are much smaller than the UV scale
�. They are of course modifications in the UV sector of the
theory, but these ultra local effects are the same as in
Minkowski space. Therefore the main modifications will
come from the replacement of the Unruh modes by the
modified ones. Using Eq. (46), Eq. (54) is replaced by7

~G inðp; �;p0; 0Þ ¼ ~GKðp; �;p0; 0Þ

� expi
R
p
p0
½Hðp0Þ � 1
dp0=�

ðHðpÞHðp0ÞÞ1=2
: (57)

It should be noticed that the frequency !max mentioned in
Footnote 6, will cut out the integral in Eq. (53), below
�!max for superluminal dispersion, and above !max for
subluminal. We ignored for this UV cutoff in computing
Eq. (57) because Eq. (46) is no longer trustworthy anyway
when! ! !max. In fact, in the adiabatic approximation of
Eq. (47), there are cancelling errors, in that the next equa-
tion can be shown to be exact.

6This approximation is valid provided ! is sufficiently small.
For quartic dispersion, there is a critical frequency !max, related
to both � and the asymptotic velocities wð�1Þ, above which z!
identically vanishes [27]. From the numerical results of
Ref. [27], a good fit is jzF!j ¼ e��!=�ð1�!=!maxÞ1=4.

7We proceed as in [15]. Nevertheless, the forthcoming equa-
tions differ in several respects.
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1. Equal time correlations

At equal times, Eq. (57) gives

~G inðp; p0; 	� ¼ 0Þ ¼ 
ðpÞ	ðp� p0Þ
2�ðpÞ ; (58)

and in the x representation, one has

Ginðx; x0; 	� ¼ 0Þ ¼
Z 1

0

dp

4�

eipðx�x0Þ

�ðpÞ : (59)

The only effect of dispersion is to replace in the denomi-
nator the relativistic law � ¼ p by � ¼ FðpÞ. Therefore,
Eq. (58) is exactly what one obtains in Minkowski vacuum
in the preferred frame. The reason is again that x is affine at
fixed �: ds2 ¼ dx2. In fact, as in the relativistic case, see
Sec. III F, a nonstationary vacuum can be defined at a given
time but for all values of x by plane waves eipx with p > 0.
Then, the negligible character of the nonadiabatic correc-
tions to Eq. (47) in the near horizon region gives Eq. (57)
which implies that in that region but at all times the
vacuum stays characterized by p > 0.8 This also implies
that the dispersive version of the time-dependent Eq. (30)
will evolve towards the stationary Eq. (39), as Eq. (30)
evolved into the stationary function in the Unruh vacuum.

From Eq. (59), several consequences can be drawn. If
one probes the in state for �jxj � 1, the deviations with
respect to the relativistic case for x� x0 < 1=� (p >�)
are the same as in Minkowski, and are therefore insensitive
to presence of the black hole. If one probes the in state
further away from the horizon and for momenta p <�,
since �� p, Eq. (39) will behave as the relativistic func-
tion, as it obeys the same equation, and possesses the same
initial conditions. Hence, the whole analysis of Sec. III E 2
applies. In particular, as soon as w is constant, @xw � �,
Eq. (53) will obey Eq. (27) when both points are on the
same side of the horizon, and Eq. (28) when one is on either
side.9 Thus the properties of Fig. 2 (left) are not affected by
dispersion when � � !max. Those of Fig. 2 (right) are not
either when subtracting the dispersive expression that re-
places the log in Eq. (29), because SK varies on scales
1=� � 1=�.

The insensitivity of Fig. 2 against introducing dispersion
is quite surprising since, as discussed before, we expect
that the properties of Fig. 1 be affected by the drift of

Eq. (49) which occurs for rather low momenta

��2=3�1=3 � �. The reason of the disappearance of the
drift (at equal PG time) is the following. In Eq. (53),
because we are summing over !, we erase the coherence
in x space that exists in each ! sector, thereby recovering
the translation invariance of the in state, as in Eq. (B5). In
other words, it is only when isolating some ! content out
of all vacuum configurations that the early pattern charac-
teristic of wave packets emerges. This deserves further
comments.
Given Eq. (59), what can be said about the entanglement

entropy? The regular behavior of the dispersive in modes
and the entanglement in Fock space between states of
opposite ! [see Eq. (B2)] were exploited in [24] to argue
that the entanglement entropy of a black hole is finite (in
1þ 1 dimensions). However, using Eq. (59) one would
conclude that upon tracing over inside configurations x <
0, one would obtain the same (diverging) result as in
Minkowski [37]. This conflicting result indicates that there
is probably no unique notion of the entanglement entropy.
Therefore to get a well defined result, it is needed to
specify what one exactly means by ‘‘tracing over the inside
configurations.’’
We saw that the two-point correlation function (at equal

time) does not display the characteristic pattern of wave
packets with a given frequency content. This is quite
general. It was discussed in [6] when studying the corre-
lations amongst particles emitted by accelerated mirrors,
and in a inflationary context in [29].10

2. Correlations at different times

When � � 0, in the relativistic case one gets Eq. (55).
Instead, Eq. (57) gives

Ginðx; �; x0; 0Þ ¼
Z 1

0

dp

4�
eip	

e��=2

½�ðpÞ�ðpe��Þ
1=2

� expi
Z p

pe��
½Hðp0Þ � 1
dp0=�; (60)

where 	 ¼ x� x0e
��. The nontrivial modifications of the

correlations due to dispersion are best seen by evaluating
this integral at the saddle point approximation. The value
of the saddle p� answers the classical question: given that
one starts at x0, �0 ¼ 0 and ends at x, �, what is the
momentum at that time? It is given by

�	 ¼ ½e��ðHðp�e��Þ � 1Þ � ðHðp�Þ � 1Þ
: (61)8Equation (58) is also obtained in the adiabatic approximation,
in cosmological backgrounds when the preferred frame is
aligned along the cosmic frame. Moreover, this correspondence
becomes exact (beyond the adiabatic approximation) when con-
sidering de Sitter space when the Hubble parameter H ¼ � since
the linearized expression w ¼ �1þ �x describes this space in
PG coordinates when �1< x<1.

9In this, we recover what has been found in Bose-Einstein
condensates when looking at the density-density correlation
function [18,19]. In that case, in the hydrodynamical limit, the
atom density fluctuation is given by @x�, and the correlation
corresponds to Eq. (56).

10These remarks raise the question of the choice of (the set of)
observables used to probe a quantum state. To give a concrete
example: in inflationary cosmology, it is generally assumed that
the large amplification experienced by primordial fluctuations
erase all quantum properties and would give a state indistin-
guishable from a stochastic ensemble of classical fluctuations. In
[38], it was shown that irrespective of the amplification, there
exist observables exhibiting violations of Bell inequalities (for
linearized modes).
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To understand the implications of this expression, we con-
sider three regimes. First, if �	 � 1 and ��� 1, the two
points are almost connected by a null ray and the red-
shifting effect is moderate. In this case, p�=� � 1 and
one recovers the relativistic behavior of Eq. (55).

Second, we study the nontrivial correlation far away
from the light cone (but still in the near horizon region).
For definiteness, we restrict attention to quartic laws F2 ¼
p2 � p4=�2. We expand Eq. (61) to first order in 1=�2,
and using H � 1��p2=2�2, we get

�	 ¼ � p2�
2�2

ðe3�� � 1Þ: (62)

When x ¼ x0 > 0, irrespective of the sign of �, there is no
(real) saddle for the þ sign, i.e., superluminal dispersion,
in agreement with Eq. (49) which says that both partners
are dragged inside the black hole horizon. Instead, for
subluminal dispersion, since they are both dragged outside,
there must be a nontrivial solution. To confirm this, we take
�� such that e�� � e���. In this regime, Eq. (62) reduces
to �x0 ¼ p2�e2��=2�2. From this, we can deduce !� the
mean value of the frequency corresponding to the trajec-
tory that goes from x0 back to it in a lapse equal to �. It is
approximately given by

!� ¼
ffiffiffi
2

p
�ð�x0Þ3=2e���: (63)

This result can also be derived using Eq. (49) (and applied
to superluminal dispersion for x < 0). Thus, when studying
Gðx; �; x0; 0Þ at sufficiently large ��, unlike what we found
in Eq. (59), the correlations are now in agreement with the
locus of constructive interferences of wave packets be-
cause only a limited range of frequencies centered about
!� significantly contributes. This confirms that near hori-
zon behavior of Eq. (53) will completely differ from that of
Fig. 1, and will be similar to those of Fig. 1. in [24]. What
remains to be clarified concerns the profile of Eq. (53) at
early times. Namely, at fixed x0, �0, what is the trajectory
of the maximum of Eq. (53), and what is its spread in x as a
function of x0, �� �0, and �? We conjecture that both of
these quantities are ruled by !max of footnote IVC.

What can be studied [15] is the ‘‘off-shell’’ limit of very
large blueshift e�� � 1 encoded in a backward propaga-
tion at fixed x and fixed 	 ¼ x� x0e

��. This limit displays
how dispersion tames the ‘‘trans-Planckian’’ behavior
found for the relativistic field. In that case, Eq. (56) gives

@x@x0GKðx; 0; x0;��Þ ¼ � 1

4�

e��

ð	þ i�Þ2 ; (64)

however large is �� > 0, in agreement with Fig. 1. In the
dispersive case, using Eq. (60) andHðpÞ � 1��p2=2�2,
one has

@x@x0G
inðx; 0; x0;��Þ ¼

Z 1

0

dp

4�

p2e3��=2

½�ðpÞ�ðpe��Þ
1=2

� expi

�
p	� p3e3��

6�2�

�
: (65)

When the blueshift is moderate, i.e. e�� < �	ð�=�Þ2=3,
Eq. (65) behaves as Eq. (64) plus corrections in
e3��=�2�	3 � 1 that can be computed perturbatively, as
can be seen by changing variable p ! q ¼ p	. Instead,

when the blueshift is large: e�� > �	ð�=�Þ2=3, the integral
becomes independent of 	 as is seen by using k ¼
pe��=ð�2�Þ1=3. Explicitly, one finds
@x@x0G

inðx; 0; x0;��Þ � ð�2�Þ2=3e��� � C�ð�=�; �Þ;
(66)

where C�ð�=�; �Þ are slowly varying functions which stay
bounded for � ! 1. This exponentially decreasing result
can be seen as the contribution on the horizon of the tail of
the configurations with high p which follow the second
equation in Eq. (49).
This smoothing out of the relativistic behavior is very

reminiscent to what was found in [21] when studying the
backwards evolution of Ginðx; 0; x0;��Þ of a relativistic
field propagating in a stochastically fluctuating black hole
metric. In addition, for nearby points, Gin in a stochastic
geometry also behaved as Eq. (59), as can be seen in
Eq. (4.7) of [21]. Based on this similarity, it was argued
[22] that when taking into account the gravitational radia-
tive corrections, the dressed Green functions should effec-
tively behave near a black hole horizon as in Eq. (66),
thereby reinforcing the idea that the unbounded growth of
Eq. (64) cannot ‘‘accommodate gravitational nonline-
arities.’’

V. CONCLUSIONS

We showed that the monotonic function found in the
vacuum Eq. (1) gives rise to a maximum of correlation
across a Rindler horizon when reexpressed in terms of
coordinates associated with accelerated systems, see
Eq. (3). This maximum is not a mere coordinate artefact
as it affects the combined state of coaccelerating systems.
In Sec. III, we transposed this analysis to stationary

black hole geometries, and recalled that the regularity of
the state across the horizon and the inertial character of
asymptotic observers are essential to provide a physical
meaning to the thermal correlations of Eq. (2). When
considering black hole geometries which contain asymp-
totic regions on both sides of the horizons, the correlations
of Eq. (3) are found at large distances when using inertial
coordinates. We then make use of the affine parameter rv
of Eq. (11) to obtain an invariant description of the energy
correlations in the entire space-time. We compared the
correlation pattern associated with a late detection,
Fig. 1, to that obtained at equal EF time, Fig. 2. In both
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cases the gradual emergence of a maximum of correlations
across the horizon is clearly visible. By considering the
subtracted correlations of Eq. (29), we saw that the remain-
ing signal is dominated by the long distance correlations
across the horizon, and also contains a subdominant local
contribution associated with Eq. (2). This analysis was
generalized in III F by including the transients effects
which precede the stationary patterns found in the Unruh
vacuum.

In Sec. IV by studying both wave packets and correla-
tion functions, we studied how these patterns are modified
by dispersion. Far away from the horizon, the pattern is
robust, i.e. hardly affected by dispersion. Close to the
horizon, we saw that dispersive effects show up differently
depending on how one probes the state. When probed at
equal PG time, the correlation function is translation in-
variant, and as in Minkowski, see Eq. (59). Instead wave
packets of in modes centered around a given frequency !
display a characteristic pattern which follows the modified
characteristics of Eq. (49). When the momentum has suffi-
ciently increased (in a backward in time propagation) the
wave packets are dragged away from the horizon, and, the
blueshift effect saturates. This behavior is recovered from
the correlation function when considered at different times
and appears through a nontrivial saddle point in Eq. (60).
When considering the correlation function for two points
separated by a very large PG time, the drag with respect to
the relativistic horizon results in an exponentially sup-
pressed amplitude in the place of the exponentially grow-
ing result found in relativistic theories, compare Eq. (64)
with Eq. (65). These properties are reminiscent to what was
found when considering field propagation in a fluctuating
black hole metric, and could possibly be found when
taking into account gravitational interactions at the quan-
tum level.
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APPENDIX A: UNRUH MODES

First, they are solutions of d’Alembert equation
@U@V�! ¼ 0, and thus only depend on either U or V.
Second, they have a fixed boost frequency !, i.e. they
are eigenmodes of

i@u�! ¼ �iaU@U�! ¼ !�!: (A1)

Third, they are only composed of the positive norm modes:

�� ¼ e�i�U=ð4��Þ1=2 with �> 0. Explicitly, they are
given by

�! ¼ �!

ð4�!Þ1=2 ð�aUþ i�Þi!=a

¼ �!

ð4�!Þ1=2 ½
ð�UÞð�aUÞi!=a

þ z! � 
ðUÞðaUÞi!=a
; (A2)

where the normalization obeys j�!j2 ¼ ð1� e�2�!=aÞ�1,

and where z! ¼ e��!=a. This factor arises from the i�
prescription which specifies that the analytic continuation
from the R to L quadrant must be done in lower half
complex U plane. As in Eq. (1), this prescription comes
from the fact that only positive frequency� ¼ i@U modes
contribute.
Moreover, they are globally defined,�1<U <1, and

form a complete and orthonormal basis of positive norm
modes when �1<!<1 (with respect to the standard
Klein-Gordon product). Hence, the Minkowski vacuum
can be alternatively defined as the state annihilated by
the destruction operators a! associated with these modes.
Thus, when a quantum system is (linearly) coupled to �

which is initially in the vacuum, the transition amplitudes
will contain some (linear) combination of the �!. When
the system is not accelerated (e.g. inertial), the decompo-
sition (A2) presents no interest since the system will cross
U ¼ 0. On the contrary, when it is uniformly accelerated
in, say, the R quadrant, Eq. (A2) guarantees that every
transition occurring in the Minkowski vacuum defines a
partner wave in L, see Appendix C for more details.
This R� L partnership can be studied in simpler terms

and without referring to accelerated systems by construct-
ing wave packets of Unruh modes

�� ¼
Z 1

0
d! �f!�! ¼ ��R þ ��L: (A3)

Equation (A2) thus implies that to every packet ��R local-
ized in R will correspond ��L, its partner wave in L. More
can be said: since z! in the right-hand side is real for all!,
when ��R constructively interferes around some �UR < 0,
Eq. (A2) guarantees that ��L will do so near � �UR. This
explains why the maximum in Eq. (3) arises for opposite
values of U. In addition, from the fact that high ! are

exponentially suppressed by z! ¼ e��!=a, the maximum
in Eq. (3) cannot diverge as it does in Eq. (2). Instead it
must scale as a4. In brief, the mathematical properties of
Eq. (3) are deeply rooted to those of the modes �!.
There exists an efficient way to encode the properties of

the Unruh modes which turns out to be very useful when
analyzing Hawking radiation in the presence of dispersion.
It consists in computing the Fourier transform at fixed t:
~�!ðpÞ ¼

R
dze�ipz�!=ð2�Þ1=2. Taking into account the

i� in Eq. (A2), up to an irrelevant phase, one finds

~�!ðpÞ ¼ 
ðpÞp
�i!=a�1

ð4�aÞ1=2 : (A4)

The restriction to positive p follows from the fact that only
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positive � contribute to �!, and from the dispersion
relation � ¼ p which describes right moving modes. We
also note that when considering Eq. (A3) in the p repre-
sentation, the two wave packets found in the x representa-
tion on either side the horizon are now described by a
single packet in p space. This is characteristic of pair
production phenomena, see e.g. Secs. 1.2–1.3 in [5]. We
shall return to this in Sec. IV.

APPENDIX B: FULLING-RINDLER STATES AND
PARTNERSHIP IN FOCK SPACE

Though a mode analysis is sufficient to understand the
behavior of Eq. (3) in space-time, a deeper quantum me-
chanical understanding of Eq. (3) is obtained by analyzing
the bi-partite structure of the vacuum in the Fock space
when using states with a fixed frequency!. To this end, we
should discuss yet another property of Eq. (A2). It con-
cerns the fact that the mode on the left (U > 0) has a
negative norm (for !> 0) thereby implying that the
norm of the right component is correspondingly larger.
This invites to consider the inequivalent quantization of
� based on the ‘‘Fulling-Rindler’’ (FR) modes. These are
normalized eigenmodes of frequency !, Eq. (A1), local-
yzed either on the right, or the left, of U ¼ 0. Hence, we
rewrite Eq. (A2) as

�! ¼ �!�
R
! þ !ð�L

!Þ�; for !> 0;

�! ¼ ��!�
L�! þ �!ð�R�!Þ�; for !< 0;

(B1)

where �R
! ¼ e�i!u=ð4�!Þ1=2 (�L

! ¼ e�i! �u=ð4�!Þ1=2)
vanishes on the left (right) of the horizon, and where ! ¼
z!�!. One easily verifies that �2

! � 2
! ¼ 1, which im-

plies 2
! ¼ ðe2�!=a � 1Þ�1. For each !> 0, Eq. (B1)

defines a (two-mode) Bogoliubov transformation relating
ð�!;��!Þ to ð�R

!;�
L
!Þ. This implies that the vacuum can

be written as a product over !> 0 of two-mode squeezed
states

j0i ¼ �!

�
1

�!

expðz!aR!aL!Þy
�
j0iRj0iL; (B2)

where the R vacuum j0iR is the state annihilated by the aR!,
the destruction operators associated with the �R

!, and
similarly for the L sector. Since the squeezing operator is
quadratic and diagonal in !, for free fields, all expectation
values are expressible in terms of the following two vac-
uum expectation values:

hðaR!ÞyaR!i ¼ hðaL!ÞyaL!i ¼ j!j2; (B3)

haR!aL!i ¼ !�
�
! ¼ z!j�!j2: (B4)

It is now instructive to see how these two expressions
enter in Eqs. (2) and (3). To this end, we consider the (U
contribution of the) 2 point function of �

h�ðUÞ�ðU0Þi ¼
Z 1

�1
d!�!ðUÞð�!ðU0ÞÞ�

¼ � 1

4�
lnðU�U0 � i�Þ: (B5)

Using Eq. (B1), two different expressions are obtained
depending if both points are on one side, or on either
side, of U ¼ 0. Explicitly, when both U are negative and
written as �aU ¼ e�au, one has

h�ðUÞ�ðU0Þi ¼
Z 1

0

d!

4�!
ðj�!j2e�i!ðu�u0Þ

þ j!j2eþi!ðu�u0ÞÞ: (B6)

Instead, when one point, say U, is positive and written as
aU ¼ ea �u, one has

h�ðUÞ�ðU0Þi ¼
Z 1

0

d!

4�!
2Reðj�!j2z�!e�i!ð �uþu0ÞÞ:

(B7)

One sees that Eqs. (B6) and (2) arise from diagonal terms,
hence weighted by j!j2 of Eq. (B3), whereas Eqs. (B7)
and (3) arise from interfering terms weighted by ��

!! of
Eq. (B4) which encodes the entanglement, in Fock space,
amongst the R and L sectors.
It is an interesting exercise to verify that when using the

actual functions for �! and !, Eqs. (B6) and (B7) both
give back, as they must, the log�U of Eq. (B5). Therefore,
they are only complicated reexpressions of Eq. (B5).
Similarly, Eq. (B2) is only a mathematical reexpression
of the Minkowski vacuum. However, it prepares the analy-
sis of the physical processes related to the Unruh effect, to
the quantum fluxes emitted by noninertial mirrors [3,6],
and to black hole physics. In these three cases, there is an
external agent—respectively, an accelerated system, a non-
inertial mirror, a nontrivial metric—which acts on the field
and ‘‘transforms’’ the FR states into asymptotic states. This
is particularly neat in the case of the noninertial mirror, see
Eqs. (3.27–3.28) in [3], and Sec. 2.5 in [5].

APPENDIX C: THE CONDITIONALVALUE
ASSOCIATED WITH A DETECTION IN R

We recall how a detection of a FR quantum in R defines
first, a partner state in L, and second, a projector which
allows to define the conditional value of an operator asso-
ciated with this detection. We describe the detected quan-
tum in R by

j ��Ri ¼
Z 1

0
d!f!ðaR!Þyj0iR: (C1)

The EPR partner state is defined by reducing the bi-partite
state. In the present case, the latter is the Minkowski
vacuum expressed as Eq. (B2). The partner state is thus

j ��Li ¼ h ��Rj0i ¼
Z 1

0
d!z

�
!f

�
!ðaL!Þyj0iL: (C2)
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One notices that its Fourier components are fixed by z�! and
f�!, i.e. by both the state and the complex conjugated of the
component of selected wave packet.

It is instructive to relate these two states to the (classical)
wave packets of Eq. (A3). To this end, we introduce the

projector �R ¼ j ��Rih ��Rj and consider the value of �2

conditional to the fact that the detection took place (for
more details, see [5])

�� 2 ¼ h0j�2�Rj0i ¼ ð ��2ÞR þ ð ��2ÞL: (C3)

A direct calculation gives

ð ��2ÞR ¼
�Z 1

0
d!f!�

R
!

��Z 1

0
d!f!jz!j2�R

!

��
;

ð ��2ÞL ¼
��������
Z 1

0
d!f

�
!z

�
!�

L
!

��������2

:

(C4)

When f! ¼ �!
�f!, where �f! given in Eq. (A3), ð ��2ÞL

exactly gives j ��Lj2 of that equation. Similarly, the first
factor in the first line is ��R. The second factor is not its

complex conjugated due to the presence of jz!j2 in the
integrand. However, for wave packets with a small spread
! with respect to a, this quantum mechanical feature
(whose consequences are discussed in [10]) does not sig-
nificantly affect the spatial properties of the Rwave packet.
Thus we basically recover the modulus square of the two
packets of Eq. (A3).
The lesson of this exercise is that the pattern obtained by

constructing wave packets of Unruh modes as in Eq. (A3)
offers a reliable description of the quantum correlations
across a Rindler horizon (when the spread in ! is small
enough). This transposes in black hole metrics (without
and with dispersion) and implies that the correlation pat-
terns of in modes also offer a reliable description of the
quantum correlations across the horizon.
Finally, we mention that the study of highly excited

coherent states (see Appendix C of [20]) offers another
way to relate the packets of Eq. (A3) to quantum states.
Using these coherent states, one can verify the agreement
of both descriptions in describing the R� L correlations.
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