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We propose a new approach to the fermion sign problem in systems where there is a coupling U such

that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to

worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to

regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and

may be solved using the determinantal trick. In the parameter regime where the fermion bags are small

and their typical size does not grow with the system size, construction of Monte Carlo methods that are far

more efficient than conventional algorithms should be possible. In the region where the fermion bags grow

with system size, the fermion bag approach continues to provide an alternative approach to the problem

but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new

insights and solutions to sign problems. A natural solution to the ‘‘silver blaze problem’’ also emerges.

Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag

approach and demonstrate some of these features. We compute the critical exponents at the quantum phase

transition and find � ¼ 0:87ð2Þ and � ¼ 0:62ð2Þ.
DOI: 10.1103/PhysRevD.82.025007 PACS numbers: 71.10.Fd, 02.70.Ss, 11.30.Rd

I. INTRODUCTION

Theories containing fermions at a microscopic level,
which interact strongly with each other, are of interest in
both condensed matter and particle physics. In condensed
matter physics, such theories are used to describe quantum
critical behavior in strongly correlated electronic materials
[1,2]. Strongly interacting gapless Dirac fermions arise
naturally in the physics of graphene [3]. In particle physics,
the u and d quarks, which are almost massless, interact
with each other strongly to produce the complex dynamics
of nuclear physics [4,5]. Even the Higgs particle of the
standard model, which remains to be discovered, could be
a strongly coupled bound state of fermionic particles that
may exist beyond the standard model [6].

Although the microscopic theory for these wide range of
phenomena are quite different, the computational difficul-
ties that one encounters when dealing with strongly inter-
acting fermions are remarkably similar. First, perturbative
methods are not applicable since there are no small pa-
rameters in the problem. Other methods, which go beyond
perturbation theory, such as mean field theory, often in-
volve uncontrolled approximations. The best alternative
approach is the Monte Carlo method. However, the state
of the art of Monte Carlo methods for fermionic systems is
still primitive. The major stumbling block is the infamous
fermion sign problem, which arises due to the quantum
nature of fermions and needs to be solved before impor-
tance sampling techniques can be employed. In this context
it is useful to distinguish fermion sign problems with other
sign problems that arise in lattice field theories. For ex-

ample, in some formulations, even bosonic lattice field
theories contain sign problems in the presence of a chemi-
cal potential that favor particles over antiparticles [7].
However, these sign problems are solvable completely in
a different formulation [8,9]. There are indeed sign prob-
lems in bosonic lattice field theories that remain unsolv-
able. These arise when bosons interact with gauge fields in
the presence of a chemical potential or contain frustrations
[10]. In this work we focus on the fermion sign problem
although some of the ideas may be applicable more
generally.
Solutions to sign problems always involve resummation

over a class of configurations. This resummation is cum-
bersome and makes the Monte Carlo updates slow. Two
methods have been discovered so far to solve the fermion
sign problem completely. One is the auxiliary field method
[11], and the other is the meron cluster method [12]. The
auxiliary field method is based on converting an interacting
fermion problem into a free fermion problem in the back-
ground of an auxiliary field. The sum of all free fermion
configurations is equal to the determinant of a fermion
matrix. If this determinant can be shown to always be
positive, the sign problem is solved. We refer to
Monte Carlo algorithms based on of this approach as
conventional algorithms. Even when the sign problem is
solved, these conventional algorithms can be inefficient
since the problem becomes completely nonlocal in the
system size. One well-known problem is that often the
fermion matrix develops a large number of small eigenval-
ues. In these cases the algorithms slow down substantially
with system size. In practical calculations, the small eigen-
values of the fermion matrix are controlled by the addition
of new couplings to the theory, which are then extrapolated
to zero to extract physical answers. This introduces sys-
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tematic errors that cannot easily be controlled. Finally, and
most importantly, when the determinant is not positive,
little insight can be gained about the fermion sign problem
itself. In contrast to the auxiliary field method, the meron
cluster method is based on cleverly rewriting the partition
function as a sum over configurations that naturally divide
the physical system into clusters or regions so that the sign
problem is solved by resumming configurations within
each region. Because of the cleverness involved, the
method is not widely applicable. On the other hand, when-
ever it works, large system sizes can be studied more easily
since the problem breaks up the system into smaller re-
gions and one does not have to consider the entire system
size to solve the fermion sign problem. In particular,
lattices of the order of 128� 128 have been solved using
this method [13]. Additional couplings to control the effi-
ciency of the algorithm become unnecessary.

In this work we propose a more general approach to the
fermion sign problem based on the underlying physics. In a
sense we extend the meron cluster idea by combining it
with the determinantal trick to solve the fermion sign
problem in a wider class of theories. The essential idea is
that many fermionic theories contain a coupling, which we
will call U, such that when U ¼ 1 the fermions become
paired into bosons and the partition function is naturally
written with positive definite Boltzmann weights. In other
words, there is no fermion sign to worry about. When the
coupling is large but not infinite, fermions become un-
paired but remain confined to small regions which we refer
to as fermion bags. The fermion sign problem is then
confined to these bags and can sometimes be solved using
the usual determinantal trick. When the bags remain small,
the computational effort to solve the sign problem does not
grow with the system size just like the meron cluster
approach. Thus, Monte Carlo methods for these problems
can be far more efficient than algorithms which do not take
this physics into account. As the coupling reduces further
the fermion bags merge and begin to grow with the volume.
In this region the fermion bag approach loses its main
advantage and suffers form similar slowing down as the
auxiliary field methods. However, it is useful to remember
that at small couplings perturbation theory is usually a
good approach and the recently proposed diagrammatic
Monte Carlo method may be a better approach for small
and moderate values of the couplings [14].

The main message behind the fermion bag idea is the
following: When fermions are delocalized over the whole
system, the increased computational cost associated to
dealing with fermionic degrees of freedom is natural. But
it is definitely unnatural in the regime where fermions are
confined to small regions. The auxiliary field method to the
fermion sign problem does not make use of this underlying
physical picture. The similarity of the fermion bag ap-
proach to the meron cluster approach is striking: The
bags, like the clusters, do not occupy the whole volume

and makes the computational effort somewhat reduced. In
addition, as we will discuss in this work, new insights and
solutions to the fermion sign problems emerge. The fer-
mion bag idea was first discussed in [9].
Our article is organized as follows: In Sec. II, we illus-

trate the ideas outlined above concretely using a simple but
relatively less studied example of the massless lattice
Thirring model constructed with a single flavor of stag-
gered fermions. In particular, we contrast the fermion bag
approach with the auxiliary field method. In Sec. III, we
introduce a fermion chemical potential and discuss how the
silver blaze problem [15], present in the auxiliary field
method, is naturally solved in the fermion bag approach.
In Sec. IV, we given an example of a sign problem which
seems unsolvable in the auxiliary field formulation but is
solvable in the fermion bag approach. In Sec. V, we discuss
updated algorithms for the massless Thirring model in the
bag formulation. In Sec. VI, we discuss the fermion bag
distribution in the massless Thirring model. In particular,
we show that the typical fermion bag size does not grow
with system size forU * 1:2. In Sec. VII, we discuss some
results obtained using the bag approach in the massless
Thirring model and in Sec. VIII, we discuss the quantum
critical behavior. Section IX contains our conclusions
where we argue that the fermion bag approach is rather
general and must be applicable to many lattice field theo-
ries. In particular, we show how similar ideas may be
adapted to study the crossover from a Bardeen-Cooper-
Schrieffer (BCS) superconductor to a Bose-Einstein con-
densate (BEC).

II. THE FERMION BAG APPROACH

Although the fermion bag approach is applicable to a
wide class of problems in any dimension, it is useful to
understand the details in the context of a simple model.
Here we introduce the fermion bag approach using the
example of the massless lattice Thirring model with one
flavor of staggered fermions on a three-dimensional cubic
lattice. The action is given by

S ¼ �X
x;y

�c xDx;yc y �U
X
x;�

�c xþ�̂c xþ�̂
�c xc x; (1)

where the matrix D is the free staggered Dirac operator
given by [16]

Dx;y ¼ �x;�

2
½�xþ�̂;y � �x;yþ�̂�: (2)

In our notation x � ðx1; x2; x3Þ denotes a lattice site on a
three-dimensional cubic lattice of size L3, �c x and c x, are
Grassmann valued fields and � ¼ 1, 2, 3 runs over the
three positive directions. The staggered fermion phase
factors �x;� ¼ expði��� � xÞ are defined through the 3-

vectors �1 ¼ ð0; 0; 0Þ, �2 ¼ ð1; 0; 0Þ, and �3 ¼ ð1; 1; 0Þ.
We also define the phase "x ¼ ð�1Þx1þx2þx3 for later
convenience.
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The main feature of the model is that it contains mass-
less fermions interacting with each other with a Ufð1Þ �
U�ð1Þ chirally invariant interaction. Indeed, it is easy to

check that the action is invariant under the usual fermion
number Ufð1Þ transformations: c x ! expði�Þc x and
�c x ! expð�i�Þ �c x, and the chiral U�ð1Þ transformations:

c x ! expði"x�Þc x and �c x ! expði"x�Þ �c x. When U ¼ 0
the model describes free massless Dirac fermions. At
infinite U, all fermions are confined and the model reduces
to a hard-core dimer model made up of paired fermions and
the low energy physics is in the same universality class as
the XY model in its broken phase [17]. Hence, at some
critical value Uc the model undergoes a quantum phase
transition. This model and its variants have been studied
earlier with the auxiliary field method [18–26]. However,
none of the earlier calculations were performed in the
massless limit due to algorithmic difficulties. Here we
use the fermion bag approach to tackle the massless limit
for the first time.

The partition function of the model is given by

Z ¼
Z Y

x

½dc xd �c x� expð�SÞ; (3)

where the integration is over the Grassmann fields. In the
determinantal approach one uses the Hubbard-
Stratanovich transformation to convert the four fermion
coupling into a fermion bilinear at the cost of introducing
an integral over an auxiliary bosonic field. It is easy to
verify that

Z ¼
Z

d	½d �c dc � exp
�X
x;y

�c xðM½	�Þx;yc y

�
; (4)

where M½	� is given by

Mð½	�Þ ¼ �
ðxÞ½�xþ
;yð12 þ
ffiffiffiffi
U

p
ei	
ðxÞÞ

� �x;yþ
ð12 þ
ffiffiffiffi
U

p
e�i	
ðxÞÞ�: (5)

The auxiliary field 	�ðxÞ is integrated over the angles 0 �
	
ðxÞ< 2�. Integrating over the Grassmann variables first

we can obtain

Z ¼
Z
½d	�DetðMð½	�ÞÞ: (6)

The matrix M is anti-Hermitian and so its eigenvalues are
purely imaginary. Further, it anticommutes with the matrix
�x;y ¼ �x�x;y, which means that if � is an eigenvalue, then

so is ��. Thus, DetðM½	�Þ � 0 for every ½	� and the sign
problem is solved. While different Monte Carlo algorithms
exist to solve the remaining problem, the most popular is
the hybrid Monte Carlo (HMC) method due to its favorable
scaling with the volume [27].

Let us now briefly discuss the cost of the HMC algo-
rithm. The HMC method is based on generating a new
independent configuration ½	� based on a series of mo-

lecular dynamics update. The new configuration is then
accepted or rejected based on a Metropolis accept reject
step. Let NMD be the number of molecular dynamics steps
necessary to generate a statistically independent configu-
ration. Each step of the molecular dynamics update re-
quires the computation of the force which requires a
particular matrix element of ðM½	�Þ�1. Typically this re-
quires NCGL

3 operations where NCG is the number of
conjugate gradient steps in the inversion process. Thus,
the cost of generating an independent configuration in an
HMC is given by L3NCGNMD. Both NCG and NMD are
dependent on the physics and the model. In the current
context, for large and intermediate values of U, the matrix
M½	� contains a nonzero density of small eigenvalues due
to chiral symmetry breaking. Hence, one expects NCG �
L3. On the other hand, NMD grows with the largest corre-
lation length in the problem and for the moment we will
assume this to be Lwhich is the best case scenario since the
theory contains massless particles. Thus, the HMC effort
scales at least as L7. One can reduce NCG drastically if we
can control the small eigenvalues of the matrixM½	�. This
is usually accomplished by adding a fermion mass term.
However, in many applications, including lattice QCD, it is
important to be able to take the limit of small fermion
mass. Recently, much progress has been achieved in re-
ducing both NMD and NCG as one approaches the limit of
massless fermions [28,29]. For a recent review we refer to
[30]. However, as far as we know, a systematic scaling
study of these new techniques with volume in the presence
of exactly massless quarks in different models and regimes
has not been performed yet. In particular, all previous
calculations of the Thirring model studied here have al-
ways used a nonzero fermion mass. Further, no calcula-
tions of the massless Thirring model at large U have been
attempted using the HMC method. At small values of U
experience shows that NCG � L since the fermions are
almost free. Assuming that again NMD � L, the HMC
effort now scales as L5.
How is the fermion bag approach different? Instead of

introducing an auxiliary field to rewrite the four-fermion
term as a fermion bilinear, we begin with the partition
function given by

Z ¼
Z
½dc d �c � exp

��X
x;y

c xDx;yc y

þX
x;�

U �c xc x
�c xþ�c xþ�

��
; (7)

and expand it in powers of U using

expðU �c xc x
�c xþ�c xþ�Þ ¼ 1þU �c xc x

�c xþ�c xþ�: (8)

The Grassmann integration then gives

Z ¼ X
nx;�¼0;1

ðY
x;�

Unx;�ÞDetðW½n�Þ; (9)
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where nx;� ¼ 0, 1. The nx;� ¼ 1 bonds are referred to as

dimers. Note that in this approach the Grassmann integra-
tion leads to a determinant of a different matrix W½n�,
which is just the free fermion matrix where the sites con-
nected to nx;� ¼ 1 are dropped. It is easy to verify that

W½n� is also anti-Hermitian and anticommutes with � and
so DetðW½n�Þ � 0. Thus, the sign problem is again solved.

Let us now show that we have captured important phys-
ics in this new formulation. Note that the configuration ½n�
divides the lattice into disconnected regions or ‘‘bags’’Bi,
i ¼ 1; 2; . . . . Each bag consists of sites connected with
only nx;
 ¼ 0 bonds. Inside each bag the fermions hop

freely while outside they are confined in the form of
dimers. The size and shape of the bags are dynamically
determined by the value of U. One such configuration is
illustrated in Fig. 1. Note that a single world line configu-
ration of fermions inside the bag can give negative weights
due to quantum mechanics. However, we can resum all the
possible fermion world lines within the bag exactly. Indeed
the quantum interference of all the fermion paths inside the
bag Bi is simply DetðW½Bi�Þ � 0 and so

Det ðW½n�Þ ¼ Y
i

DetðW½Bi�Þ: (10)

Thus, we see that fermions have become classical objects
when they are considered as nonlocal objects in the form of
bags. For this reason we call our method as the fermion bag
approach. The size, the shape, and other properties of these
bags encode the fermion physics.

Let us now discuss the effort required to generate a
statistically independent configuration in the fermion bag
approach using a specific algorithm discussed later in
Sec. V. In our algorithm, a local update requires the com-
putation of a single matrix element of ðW½Bx�Þ�1 whereBx

is the bag associated to the site x. The effort associated with
this step is equal to NBNCG. The total effort of obtaining a
statistically independent configuration is then of the order
NBNCGL

3. Here we assume that one sweep through the

lattice is sufficient to generate such a configuration. This is
almost true due to the availability of a directed path update
(see Sec. V). When U is large, the bags are small compris-
ing of a few neighboring bonds and thus independent of the
volume. Although each local update can be difficult the
computational cost of a local update (NBNCG) does not
grow with the volume. This makes the fermion bag ap-
proach far more efficient for large system sizes compared
to the determinantal approach. The former scales as
NBNCGL

3 while the latter scales as L7 as discussed earlier.
When U is small, the bags can percolate and become as

big as the system size. Here we expect NB � L3. On the
other hand, since the fermions are almost free, the matrix
inversion using the conjugate gradient algorithm becomes
easy. We find that NCG � L and hence the overall effort
now grows as L7. On the other hand, the auxiliary field
method based on the HMC algorithm scales as L5 and so is
clearly superior. It may be interesting to explore a HMC
type algorithm in the fermion bag approach if possible so
as to combine the good features of both. But this is not the
focus of the current work. Further, as mentioned earlier, at
small U the diagrammatic Monte Carlo algorithm may be
the best option [14].
At intermediate values of U, especially close to the

phase transition, the HMC most likely continues to scale
as L7 or worse due to critical slowing down. On the other
hand, the scaling of the bag algorithm is more tricky and
needs to be studied carefully. We find three reasons to
remain optimistic: (1) The bags of all sizes exist in the
simulation so some updates are much faster. (2) The matrix
WBx is the free matrix except for mesoscopic fluctuations
coming from the boundaries of the bag. Hence, NCG may
scale favorably in the bag approach. (3) The existence of
the directed path algorithm to update variables outside the
bag may eliminate a lot of the critical slowing down. More
research is necessary to compare the two algorithms in the
intermediate U region.

III. SOLUTIONOF THE SILVERBLAZE PROBLEM

The fermion bag approach also offers new insights into
sign problems. Here we discuss a simple resolution of the
so called silver blaze problem, a general paradox related to
sign problems that arises in the auxiliary field method in
the presence of a fermion chemical potential [15]. Before
we discuss how the fermion bag approach solves this
problem, let us first review its origin in the current context
of the massless lattice Thirring model.
In the presence of a chemical potential 
, the Dirac

operator given in Eq. (2) changes to

Dð
Þx;y ¼ �x;�

2
½�xþ�̂;ye


��;t � �x;yþ�̂e
�
��;t�: (11)

In the auxiliary field method the four-fermion term is again
converted to a fermion bilinear using the Hubbard-
Stratanovich transformation and the partition function is

space

tim
e

Dimers

Bags

FIG. 1 (color online). An illustration of a ‘‘fermion bag’’
configuration as discussed in the text.
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again given by Eq. (6), except that the matrixM½	� is now
given by

Mð½	�Þ ¼ ��ðxÞ½�xþ
;yð12 þ
ffiffiffiffi
U

p
ei	�ðxÞþ
��;tÞ

� �x�
;yð12 þ
ffiffiffiffi
U

p
e�i	
ðxÞ�
��;tÞ�: (12)

Unfortunately, the properties that we used to argue that
DetðM½	�Þ � 0 are no longer valid when 
 � 0. Indeed,
the determinant can be negative as soon as 
 � 0 for all
values of U. This is the well-known sign problem in the
presence of a chemical potential.

Consider large values of U where the fermions become
massive due to chiral symmetry breaking. In this phase the
chemical potential should have no effect on the ground
state of the system until a critical chemical potential is
reached. This means, for low temperatures a small chemi-
cal potential must have little effect on the physics.
However, the sign problem does not respect this mild
behavior with respect to the chemical potential. The sign
problem becomes severe as soon as the chemical potential
is nonzero at small temperatures. This paradox has been
called the silver blaze problem [15]. The auxiliary field
method offers almost no explanation for this paradox,
except the fact that the cancellations due to the sign prob-
lem are crucial to get the right physics.

The fermion bag approach also suffers from a sign
problem in the presence of a chemical potential. But the
sign problem tracks the physics of the model very closely.
To see this note that the partition function is again given by
Eq. (9) except that nowW½n� is the free Dirac operator with
the chemical potential given in Eq. (11) where the sites
connected to nx;
 ¼ 1 are dropped. Again it is no longer

possible to argue that DetðW½n�Þ � 0 when 
 � 0.
However, this sign problem is qualitatively different.
Since the chemical potential only enters through fermion
world lines that wrap around the temporal direction, the
chemical potential completely drops out of the determinant
of a fermion bag which lives completely inside the space-
time volume. We call these nontemporal winding bags and
two such bags are shown in Fig. 2. The fermions hopping
within this bag will never have a fermion world line with a
nonzero temporal winding. Only bags with a nonzero
temporal winding are sensitive to the chemical potential.
One such bag is also shown in Fig. 2. At large U and small
temperatures (large temporal direction), such bags are
exponentially suppressed. Thus, the sign problem is natu-
rally absent for small chemical potentials and low tem-
peratures at large U in the fermion bag approach as
dictated by physics.

For small U when the fermions are massless, temporal
winding bags proliferate and the fermion bag approach
also suffers from a severe sign problem in the presence
of a chemical potential. We do claim to have a solution to
this sign problem in the case of a single flavor of staggered
fermion. However, in the next section we argue that the

fermion bag approach allows us to solve this sign problem
with an even number of flavors.

IV. NEW SOLUTIONS TO SIGN PROBLEMS

The fermion bag approach also offers new solutions to
some seemingly unsolvable sign problems. In order to
appreciate this consider the action of the N flavor model
given by the action

S ¼ �X
x;y

�c xDð
Þx;yc y þU
X
x;�

ð �c xþ�̂c xÞð �c xc xþ�̂Þ;

(13)

where c x is an N-component column vector and �c x is an
N-component row vector. This action is invariant under a
UðNÞ �UðNÞ symmetry. The partition function in the
auxiliary field method turns out to be

Z ¼
Z
½d	�fDetðMð½	�ÞÞgN; (14)

where the matrixM½	� is the same as the one-flavor model
given in Eq. (12). Since the DetðM½	�Þ is a general com-
plex number in the presence of a chemical potential, itsNth
power remains complex for all N. Unfortunately, this sign
problem remains unsolved within the fermion bag ap-
proach as well. On the other hand, consider the model
given by the action

S ¼ �X
x;y

�c xDð
Þx;yc y � U

ðN!Þ2
X
x;�

fð �c xþ�̂c xÞ

� ð �c xc xþ�̂ÞgN: (15)

This action is again invariant under the sameUðNÞ �UðNÞ
chiral symmetry. In the auxiliary field method one will
need many auxiliary fields to convert the 4N-fermion
term to a bilinear. Further, even with these additional fields,
it is difficult to see why the determinant of the fermion
matrix that will arise will be positive for any value of N for

space

winding bag
non−temporal

winding bag
temporal

tim
e

FIG. 2 (color online). An illustration of a fermion bag con-
figuration with one temporal winding bag and two nontemporal
winding bags.
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the same reasons outlined above. On the other hand, in the
fermion bag approach this modified model is described by
the partition function

Z ¼ X
nx;�¼0;1

�Y
x;�

Unx;�

�
fDetðW½n�ÞgN: (16)

Since DetðW½n�Þ is real, there is no sign problem with even
N. Thus, the fermion bag approach is able to solve a sign
problem that seems unsolvable with the auxiliary field
method. In this context we must point out that there are
indeed other actions that are invariant under UðNÞ �UðNÞ
symmetry whose partition functions can be written without
a sign problem using the auxiliary field method for even
values of N.

V. THE MONTE CARLO METHOD

In order to solve the massless Thirring model using the
fermion bag approach, in this section we discuss two
updated algorithms: (1) LOCAL HEAL BATH, and
(2) DIRECTED PATH ALGORITHM. For generality we discuss
these algorithms for any dimension d, although the current
work is focused on d ¼ 3. We will argue that these two
update algorithms together provide an efficient way to
solve the problem forU * 1:2. When 0:2<U< 1:2, these
algorithms do slow down dramatically; however, they con-
tinue to provide a useful way to solve the problem. The
efficiency may be comparable if not superior to the HMC
method. For values of U < 0:2 the HMC algorithm will be
a better approach. However, it is likely that the diagram-
matic Monte Carlo provides a better algorithm for small
and intermediate values of U [14].

The configurations are described by nx;� ¼ 0; 1 bond

variables. A dimer is represented by nx;� ¼ 1. We will

assume that � can take any of the 2d values: � ¼
	1;	2; . . .	 d, where the negative signs indicate nega-
tive directions. This means nx;� � nxþ�̂;��. For conve-

nience we also define site variables mx ¼ 0, 1. A
monomer is represented by mx ¼ 1. To begin with we set
mx ¼ 0 at all sites. It is useful to remember that a site x that
belongs to a fermion bag should have both mx ¼ 0 and
nx;� ¼ 0, 8�. The parity of a site x is defined as "x ¼
ð�1Þx1þx2þ...þxd .

A. LOCAL HEAT BATH

The first update we discuss creates and destroys dimers.
This is accomplished with a LOCAL HEAT update. The exact
update is as follows:

(1) Pick a site x at random on the lattice.
(2) There are 2dþ 1 possible values for fnx;�g: nx;� ¼ 1

for one of the 2d values of� or nx;� ¼ 0,8�. In this
latter configuration let us label the fermion bag that
is connected to the site x as Bx. Let W½Bx� be the
free Dirac matrix inside this bag. If DetðW½Bx�Þ ¼
0, the update ends without changing the original

configuration. Otherwise the update proceeds to
the next step.

(3) Let !� ¼ UjððW½Bx�Þ�1Þx;xþ�̂j2 for the 2d values

of �. We set !0 ¼ 1.
(4) We pick � with probability

P� ¼ !�P
�
!�

: (17)

(5) If � ¼ 0, we set nx;� ¼ 0 for all values of � and

stop. Otherwise, we set nxþ� ¼ 1 and others to zero
then stop.

We define a sweep as consisting of ðL=2Þ3 LOCAL HEAT

BATH updates.

The most time-consuming step of this LOCAL HEAT BATH

update is the computation of ðW�1½Bx�Þx;xþ�̂. It clearly

depends on the size of the bag Bx. When the typical bag
size does not scale with the volume the time to compute the
inverse also does not scale with the volume. This is the
reason for the efficiency of the Monte Carlo method in the
fermion bag method. We will show that this is indeed the
case when U * 1:0.
In order to compute the inverse we set the vector by ¼

�x;y and then solve the equation Wv ¼ b. Practically we

solve ð�W2Þv ¼ ð�WbÞ and since (�W2) is a positive
definite matrix, we can use the conjugate gradient method.
The convergence of the answer is checked by the parameter

 ¼ jWv� bj2. If this norm is less than 10�20, we assume
that the solution has been found. Another useful norm is

0 ¼ jð�W2ÞvþWbj2 and can be used to detect exact
zero modes of W using the conjugate gradient method.
Note that (�Wb) eliminates the zero mode subspace from
the source vector and the space on which conjugate gra-
dient acts. Thus, the conjugate gradient method can always
make 
0 arbitrarily small. If 
 cannot be made smaller than
10�20 even when 
0 < 10�30, we declare that configuration
to have an exact zero mode. This method appears to work
reliably.

B. Directed path update

The second update preserves the number of dimers but
moves them around. This update is similar to the directed
path update discussed in [31] and reduces to it in the limit
of large U. The philosophy behind it is similar to the worm
algorithm [32]. The update is as follows:
(1) Pick a site x at random.
(2) If nx;� ¼ 0, 8�, the update stops. If not, we label x

and all sites with the same parity as active sites. The
sites with the opposite parity are labeled as passive
sites. We then perform either an active or a passive
update depending on our current site as discussed
below. After each update we move through the
lattice according to the rules of the update until we
return to the first site, where the update ends.
Active update: If we are on an active site x, we do
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one of four things depending on the configuration on
the site.

(a) If x is the first site such that mx ¼ 0 and nx;� ¼ 1,
then we set nx;� ¼ 0 and mx ¼ 1 and mxþ�̂ ¼ 1. In
other words, we break a dimer into two monomers.
The update then moves to the site xþ �̂.

(b) If x is not the first site such that nx;� ¼ 1 and we just

came to the site from the previous site xþ �̂, then
we set nx;� ¼ 1, mxþ� ¼ 0 and mxþ� ¼ 1. The

update then moves to the site xþ �̂.
(c) If x is not the first site such that nx;� ¼ 0 for all the

values of � and we just came to the site from the

previous site xþ �̂, then we pick a direction 
 with
probability P
ðxÞ to be discussed below. We set

mxþ�̂ ¼ 0 and mxþ
̂ ¼ 1. In other words, we

move the monomer from the site xþ �̂ to xþ 
̂.
(d) If x is the first site such that mx¼1 and nx;�¼0,

then we would have returned to it from the neigh-

boring site xþ �̂ such that mxþ�̂¼1. We then set

mx ¼ 0, mxþ�̂¼0 and nx;�¼1. The update then

ends.
Passive update: If we are on a passive site x, then we must
have mx ¼ 1. We pick one of the 2dþ 1 directions �
including 0 at random. If � ¼ 0 the update remains on
the same site, we get a contribution to the two-point
correlation function discussed below. If � � 0, the update
moves to the neighboring active site xþ �̂.
Let us now discuss the probability P
ðxÞ on an active site x
such that nx;� ¼ 0 for all values of � and such thatmy ¼ 1,

where y ¼ xþ �̂. The site x is associated to a fermion bag
sayBx. Note that the passive site y is not in the bag. Let x0
be another active site which is not in the bag, but contains a
neighboring site which is in the bag. Thus, both x0 and y
‘‘touch’’ the bag Bx but are not a part of it. Let us extend
the bag to include both y and x0 call the extended bag
Bx;x0;y. The probability P
 is then given by

P
ðxÞ ¼
!xþ
̂P


!xþ
̂

; (18)

where !z ¼ j½ðW½Bx;x0;yÞ�1�x0;zj2. It is possible to show

that while!z depends on x0, P
 does not. Further, if xþ 
̂

does not belong to the bag Bx;x0;y P
ðxÞ ¼ 0.

The most time-consuming step in this update is the
computation of the probabilities P
ðxÞ on an active site

x. Fortunately, as long as the fermion bags are not disturbed
!y does not change on any site y inside the bag. So P
ðxÞ is
then simple to compute. However, if the fermion bag is
disturbed, the extra effort in computing the inverse is
necessary. For large values of the U the bags are small
and the effort does not grow with the volume.

During the passive update on there is a probability to
remain on the same site. This can be shown to be the
correct probability to create a monomer at that site along

with another monomer at the first site. Hence, it contributes
to the two-point correlation function

Gðx; yÞ ¼ h �c xc x
�c yc yi: (19)

Thus, we can compute this correlation function during this
update. Here we use this to compute the susceptibility. We
have tested the algorithm against exact calculations on a
small lattice and the results are given in the Appendix.

VI. DISTRIBUTION OF FERMION BAGS

Fermion bags encode the fermionic physics, and under-
standing their properties is an important research problem
in itself. For example, the eigenvalue distribution of the
corresponding Dirac operator could be interesting. What
role do the low eigenvalues play? Can their distribution be
described by some simplified theory like random matrix
theory? However, we postpone such studies to the future.
Here we focus on computing a much simpler quantity,
namely, the size distribution of the fermion bags as a
function of the coupling U. This quantity helps us under-
stand the efficiency of the fermion bag approach and
identify the range of U where the approach is clearly
superior.
Let NBðSÞ be the number of bags of size S in a single

configuration. In Fig. 2, we plot the average of NB over the
ensemble of configurations generated by the algorithm at
U ¼ 1:3 for L ¼ 8, 12, 16, and 20. The figure shows that
the number of bags of a given size increases with the
volume but the density of the bags of a given size remains
constant. Indeed, the three data points for L ¼ 12, 16, and
20 collapse on a single curve once the density is plotted as
shown in the inset of the figure. We find that NBðSÞ drops
like a power for small values of S, but somewhere around
S * 100, a sudden drop in NB is observed. This behavior is
similar for all values of L except that the sudden drop
moves slightly. This we attribute to a finite size effect.
For large values of S, we find NBðSÞ decays exponentially
as a function of S. Assuming that the bag size represents a
three-dimensional lattice volume then we naturally expect

NBðSÞ ¼ A expð�M3SÞ; (20)

where M is a lattice mass scale. The data for L ¼ 20 fits
well to this form when S � 84, we get A ¼ 0:61ð2Þ, M ¼
0:286ð1Þ and a �2=DOF ¼ 0:8. This fit is shown as a solid
line in the plot of Fig. 3. It is tempting to relate the scaleM
with the mass of the fermion. However, given that the
critical point where the fermion becomes massless is
roughly around U� 0:25 [22] we think that the scale M
is not the mass of the fermion. We postpone the study of its
origin to a later publication.
In Fig. 4, the bag distribution is shown for many values

of U at L ¼ 8. We see that distribution changes qualita-
tively when U becomes small. Instead of decaying expo-
nentially with size, a bump develops in the bag distribution
at a value of S of about half the system size. The position of
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the bump then begins to grow until it becomes as big as the
system size for very smallU. This is easily understandable.
As U reduces the bags merge so that now the whole lattice
becomes one large bag with small regions of confined (or
paired) fermions which in a sense form ‘‘dual bags.’’

It is useful to define a typical size of a fermion bag as the
size of the bag that one encounters on an average during the
update. More precisely, we pick a site at random and define
S� as the size of the bag associated to that site. We can then
average it over the ensemble of the configurations gener-
ated. It is easy to argue that

hS�i ¼ 1

L3

��X
B

S2B

��
; (21)

where SB is the size of the bag B and the sum is over all the
bags in a given configuration. In Fig. 5, we plot hS�i as a
function of L forU ¼ 1:3, 1.2, and 0.8. The solid line is the
fit given by 0:0806ð2ÞL3. The figure shows clearly that for
U ¼ 1:2 and 1.3 the typical fermion bag size begins to
saturate, indicating that the Dirac matrix used in the con-
jugate gradient has a typical size independent of the lattice
size for large volumes. When U ¼ 0:8 this advantage is no
longer valid since the bags begin to grow with the spatial
volume. Thus, the fermion bag approach is guaranteed to
be efficient only when U * 1:2. For smaller U the bag
approach continues to be an alternative approach but be-
comes less attractive. However, note that at U ¼ 0:8 the
bags only occupy roughly 1=10 the size of the system.
Thus, the bag approach may continue to be competitive at
intermediate values of U and moderate values of L.

VII. RESULTS IN THE MASSLESS THIRRING
MODEL

In this section we present some results obtained using
the fermion bag approach in the massless Thirring model
with one flavor of staggered fermions in three dimensions.
We focus on the following three observables:
(1) Chiral condensate susceptibility:

� ¼ U

L3

X
x;y

h �c xc x
�c yc yi: (22)

Here the factor U ensures that in the U ¼ 1 limit
the chiral condensate � is finite.

(2) Fermion charge susceptibility:

hQ2
fi ¼

X
x2S;y2S0

hJf�;xJf�;yi: (23)
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FIG. 4. Plot of the average distribution of fermion bags hNBi of
size S as a function of the S for U ¼ 0:1, 0.25, 0.5, 0.8, 1.3 and
1.5 for L ¼ 8. We note that the distribution changes qualitatively
between large and small U.
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FIG. 5. Plot of the typical bag size as a function of L for three
different values of U. The solid line is a fit to the form AL3. Note
the L axis is shown on a logarithmic scale.
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FIG. 3 (color online). Plot of the average number of fermion
bags hNBi of size S as a function of the S for L ¼ 8, 12, 16 and
20 at U ¼ 1:3. The solid line is an exponential fit as discussed in
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Here S and S0 are two different two-dimensional
surfaces perpendicular to the direction � and

Jf�;x ¼ �x;�

2

�
�c xc xþ� þ �c xþ�c x

�
(24)

is the conserved fermion current. In the bag formu-

lation one can show that

hQ2
fi ¼

�
1

2

X
x2S;y2S0

�x;��x;�½ðD�1Þx;yþ�ðD�1Þxþ�;y

þ ðD�1Þx;yðD�1Þxþ�;yþ��
�
; (25)
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where D�1 is the inverse of the free Dirac operator
inside the bag containing all the four points x, y, xþ
�, yþ �. If any of these points is not part of the bag,
then the corresponding contribution is set to zero. It
is easy to check that Q2

f defined here is independent

of the surfaces chosen on every bag configuration.
(3) Chiral charge susceptibility:

hQ2
�i ¼

X
x2S;y2S0

hJ��;xJ��;yi; (26)

where the notation is the same as for the fermion
charge susceptibility, except the conserved chiral
current is given by

J
�
�;x ¼ "x�x;�

2
f �c xc xþ� � �c xþ�c xg: (27)

On every bag configuration let us define

q� ¼ X
x2SðBÞ

"x�x;�ðD�1Þx;xþ� þ X
x2SðCÞ

2"x; (28)

where SðBÞ is the set of sites on the two-dimensional
surface S which belongs to some fermion bag while
SðCÞ are the remaining set of sites on the surface.
For a given bag configuration we find that q� is also

independent of the surface. Further,

hQ2
�i ¼ hQ2

fi þ hq2�i; (29)

where the average is over the fermion bag configu-
rations generated.

For large values of U chiral symmetry is broken sponta-
neously and fermions acquire a mass. Chiral perturbation
theory predicts that [33],

hq2�i ¼ 4�sL

�
1þ 0:224

�sL
þ a

ð�sLÞ2
	
; (30a)

� ¼ L3�2

2

�
1þ 0:224

�sL
þ b

ð�sLÞ2
	
; (30b)

and that hQ2
fi goes to zero exponentially. The parameters

�s, �, a and b are the low energy constants and can be
determined from fitting the data. The constant �s is a mass
scale and plays the role of F� in four-dimensional chiral
perturbation theory. The chiral condensate in the chiral
limit is given by �. The factor 4 in the expression for
hq2�i is not standard. However, in our definition the charge

q� takes only even values at U ¼ 1 and so �s will not be

properly normalized without this factor. For small values
ofU chiral symmetry is restored, but due to the presence of
massless fermions we expect

� ¼ Uð�0 þ �1=Lþ �2=L
2 þ . . .Þ; (31a)

hq2�i ¼ q1=Lþ q2=L
2 þ q3=L

3 . . . ; (31b)

hQ2
fi ¼ 
0 þ 
1=Lþ 
2=L

2 þ . . . : (31c)

For free staggered fermions (i.e., when U ¼ 0) we find
�0 
 1:01 093 and 
0 
 0:37 085 while hq2�i ¼ 0.

Our data are consistent with these expectations qualita-
tively for both large and small values of U. In Fig. 6, we
plot the three observables scaled appropriately as a func-
tion of L for different values of U (left plots) and for L ¼
8, 12 as a function of U (right plots). We see that there the
finite size scaling changes abruptly between U ¼ 0:2
(symmetric phase) and U ¼ 0:3 (broken phase). In par-
ticular, � and �s are nonzero for U � 0:3, but vanish for
U � 0:2. On the other hand, hQ2

fi remains nonzero when

U � 0:2 and begins to drop significantly when U � 0:3.
Thus, there is a clear phase transition in the model some-
where between these two couplings. We will study
this quantum phase transition quantitatively in the next sec-
tion.
Quantitatively, we can fit our data to expectations from

chiral perturbation theory only for U � 1:2 where the
fermion bag approach allows us to go to large volumes.
Typically we have found that the fits to the finite size
scaling forms given in Eq. (30) are good in the range 16 �
L � 32. The values of the low energy constants that give
good fits for U � 1:2 are given in Table I. We observe that
a change from U ¼ 1 to U ¼ 1:2 leads to only about 7%
change in the mass scale �s and about 10% change in the
chiral condensate. This again shows that the effort of
conventional determinantal methods is unnecessary and
the fermion bag approach is the better method in this range
of couplings. For small values of U, in the symmetric
phase, the fermion bag approach slows down considerably.
Hence, we have been able to perform calculations only up
to L ¼ 20. In Fig. 7, we show results for U ¼ 0:0, 0.1, and
U ¼ 0:2. In Table II, we show the results of the fits to
Eq. (31).
While our data fits to the expected finite size scaling

forms even for small U, due to the small system sizes used
in the calculations we do not claim to be able to extract the
L dependence reliably except for the free theory. In par-
ticular, we expect large systematic errors in the determi-
nation of the coefficients shown in Table II. In fact, we
have used the free theory to guide our fits. For example it is
tempting to associate 
0 ¼ 0:370 840 . . . to a universal

TABLE I. The coefficients in Eq. (30) obtained by fitting the
data. In the fits of � the coefficient b was set to zero and �s was
fixed from the second column. The data in the range 16 � L �
32 were used for fits of hq2�i while the range 8 � L � 32 was

used for �.

U �s a �2=DOF � �2=DOF

1 0.191(1) �0:48ð5Þ 0.4 0.3302(3) 1.7

1.5 0.184(1) �0:52ð7Þ 0.8 0.2980(3) 0.7

1.3 0.181(1) �0:56ð10Þ 0.3 0.2927(3) 0.9

1.2 0.176(2) �0:23ð11Þ 0.9 0.2881(3) 1.9
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constant for free massless fermions. It is likely that this
does not change with U since we expect that the infrared
physics to be that of free massless fermions. The small
change that we observe in our fits perhaps is due to system-
atic errors associated to fitting the data at smaller lattice
sizes. Further work is clearly necessary to reliably under-
stand the small U regime.

VIII. QUANTUM PHASE TRANSITION

We next focus on the quantum phase transition in the
model. This transition has already been studied earlier
using mean field theory [18], auxiliary field method [21]
and through a formulation as a strongly coupled Uð1Þ
lattice gauge theory with scalar fields [18,23]. In the latter
two studies, algorithmic difficulties forced the use of a
nonzero fermion mass. This usually makes the study of
finite size scaling close to a second order transition more
tricky since the fermion mass introduces a new length
scale. However, by making a judicious choice of the scal-
ing relations, both these studies concluded that the transi-
tion was consistent with a second order transition. The
critical coupling was estimated to be Uc ¼ 0:25ð1Þ [21]
and Uc ¼ 0:28ð1Þ [23], while the critical exponents were
determined to be � 
 2:5ð4Þ, � 
 0:71ð9Þ [21] and � 

3:1ð3Þ, � 
 0:88ð9Þ [23]. For comparison, mean field the-
ory in d ¼ 3 predicts Uc ¼ 0:177ð6Þ, � ¼ 2 and � ¼ 1
[18,34]. The errors we quote here include systematic errors
estimated from the different fitting procedures used in the
previous work. In the present work we estimate these
parameters again in the fermion bag approach.
One main difference as compared to the previous work is

that we work with exactly massless fermions which helps
with a clean finite size scaling analysis. Assuming the
transition to be a conventional second order phase transi-
tion we expect

hq2�i ¼ �0 þ �1ðU�UcÞL1=�

þ �2ðU�UcÞ2L2=� þ . . . ; (32a)

�=L2�� ¼ f0 þ f1ðU�UcÞL1=�

þ f2ðU�UcÞ2L2=� þ . . . : (32b)

A combined fit of our data to these relations give the
following results:

TABLE II. The coefficients in Eq. (31) obtained by fitting the
data. The missing coefficients have been assumed to be zero in
the fit. For U ¼ 0:0 we computed the coefficients exactly but
assigned an error of 10�6 uniformly. The results were then fit for
L > 10. ForU ¼ 0:1 and 0.2 data from 8 � L � 20 were used in
the fit.

U �0 �1 �3 �5 �2=DOF

0.0 1.010 930(1) �1:11 288ð5Þ �3:61ð1Þ 69(1) 0.6

0.1 1.55(11) �0ð2Þ �95ð32Þ . . . 0.3

0.2 5.35(14) �21ð1Þ . . . . . . 0.3

U q1 q3 q5 q7 �2=DOF

0.1 0.077(3) 4.3(5) 150(27) . . . 0.6

0.2 0.58(2) 23(2) . . . . . . 0.35

U 
0 
2 
4 
6 �2=DOF

0.0 0.370 840(1) 8.858(2) 92.8(7) 12 204(100) 0.9

0.1 0.3734(2) 6.45(6) 425(6) �9558ð133Þ 0.5

0.2 0.365(2) 4.3(5) 445(41) �9493ð960Þ 2.0
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FIG. 7. Plots of �, hq2�i and hQ2
fi as a function of the lattice

size for small values of U. The solid lines are fits to the expected
forms given in Eqs. (31a)–(31c)
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� � Uc f0 f1 f2 f3 �0 �1 �2 �3

0.62(2) 0.87(2) 0.2604(5) 0.074(4) 0.11(1) 0.11(2) 0.04(1) 0.354(6) 0.68(4) 0.65(9) 0.24(5)

with a �2=DOF of 1.6. The data used in the combined fit
and the fits themselves are shown in Fig. 8. Using hyper-
scaling relations 2� ¼ �ðd� 2þ �Þ and � ¼
ðdþ 2� �Þ=ðd� 2þ �Þ, we estimate � 
 0:71ð4Þ and
� 
 2:70ð4Þ. While, these results are in complete agree-
ment with the earlier work, our values seem more accurate.
One obvious caveat is that our results are also obtained on
rather small lattices compared to what is available in
bosonic models. Thus, we may be underestimating some
systematic errors. In principle we could also include other
corrections to scaling [35]. However, we postpone such an
analysis to the future since establishing the critical expo-
nents is not the main focus of the current work. On the
other hand, we have exactly massless fermions so some of
the fitting procedures are cleaner. In any case, accurate
results on larger lattices are desirable to confirm these
findings.

It was pointed out in [36] that the Thirring model is
different from the Gross-Nevue (GN) model in many ways.
However, recent work suggests that the two models may be
equivalent close to the quantum critical point and that
studies in both these models are relevant to the physics
of graphene [37,38]. The critical exponents in a lattice GN
model with a Ufð1Þ � Z2 symmetry with staggered fermi-

ons have been computed and it was found that � ¼ 1:00ð4Þ
and � ¼ 0:754ð8Þ [39]. These critical exponents have also
been obtained from other techniques [40,41] and they
clearly appear to be different from what we find above.
However, since the lattice symmetries are different be-
tween the two models, the critical behavior may fall under
different universality classes. The critical behavior with a
continuous Ufð1Þ �U�ð1Þ GN model was studied in [42].

It was found that � ¼ 1:02ð8Þ and � ¼ 0:89ð10Þ which
also seem to be different from our results but only at the
2-� level. More work is necessary to clarify the issue of
whether the GN model and the Thirring model have the
same critical exponents.

IX. DISCUSSION AND CONCLUSIONS

In this work we have introduced a new approach to the
fermion sign problem which we call the fermion bag
approach. The essential idea behind the new approach is
to recognize that fermionic degrees of freedom are usually
contained inside dynamically determined space-time re-
gions (bags). Outside these regions they are hidden since
they become paired into bosonic objects. Then it is likely
that the sign problem is localized to the regions inside these
bags and may be solved using determinantal tricks. Such a
scenario is clearly natural in systems where there is a
coupling U such that when U is infinite all the fermions
are paired up and there is no sign problem. Then as U
becomes finite, the fermions are liberated out but are
confined to bags. In such systems, if the sign problem is
contained within the bags and can be solved, then there will
be regions in parameter space where the bags do not grow
with the volume. In these regions of parameter space it
should be possible to construct Monte Carlo algorithms
which are far more efficient than conventional algorithms.
In this work we showed an explicit example of a lattice
field theory, namely, the massless lattice Thirring model,
where all these features are realized. In particular we
developed a Monte Carlo algorithm and showed that it is
efficient for large couplings as expected. For smaller cou-
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1
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FIG. 8 (color online). Plots of hq2�i and �=L2�� as a function of U for L ¼ 8, 12, 16, and 20. The solid lines show the combined fit of
all the data to Eq. (32) as discussed in the text. Based on the fits we find the critical point to be U ¼ 0:2604ð5Þ, � ¼ 0:87ð2Þ and
� ¼ 0:62ð2Þ.
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plings the efficiency of the algorithm was lost, but still the
fermion bag approach continued to provide an alternative
approach to the problem. In particular we could determine
the critical exponents near the quantum phase transition
present in the model with reasonable effort.

While the fermion bag approach loses its main advan-
tage when the bags begin to merge and the fermions are
delocalized in the entire space-time volume, it still pro-
vides new insights into the sign problem itself. For ex-
ample, we explained in this work how a natural solution to
the silver blaze problem emerges within this approach.
Further, we also showed that new solutions to sign prob-
lems emerge. Although the discussion in this work focused
on a single model, the idea behind the fermion bag ap-
proach is more general and must be applicable to other
lattice field theories when formulated cleverly. As an ex-
ample below we sketch how one can formulate a model to
study the physics of the BCS-BEC crossover in the fermion
bag approach.

Let ði; tÞ be the coordinates of a cubic space-time lattice
where i � ðix; iyÞ, ix, iy ¼ 0; 1; 2; . . . ; ðL� 1Þ is the two-

dimensional spatial coordinate and t ¼ 0; 1; 2 . . . ; ðLt � 1Þ
is the temporal coordinate. Let ei represent the four neigh-
boring spatial sites of the site i. Let the spin be represented
with s ¼" , # . The fermion fields are represented by four
independent Grassmann variables c s;i;t and �c s;i;t per site

which satisfy antiperiodic boundary conditions in time but
periodic boundary conditions in space. Using this notation,
consider the lattice field theory model described by the
action S ¼ S0 þUS1, where

S0 ¼ �X
i;t;s

�
ð �c s;i;tþ1e


" � �c s;i;tÞc s;i;t

þ "te
"
X
ei

�c s;ei;tþ1c s;i;t

�
; (33a)

S1 ¼ �X
i;t

�
e2
" �c #;i;tþ1

�c ";i;tþ1c ";i;tc #;i;t

þ �c #;i;t �c ";i;tc ";i;tc #;i;t

þ "e2
"
X
ei

�c #;ei;tþ1
�c ";ei;tþ1c ";i;tc #;i;t

�
: (33b)

Note that the action is invariant under SUð2Þ spin symme-
try and Uð1Þ fermion number symmetry as required.

The partition function is given by

Z ¼
Z Y

x;t;s

½d �c x;t;sdc x;t;s� expð�SÞ: (34)

When U ¼ 1 the model describes the physics of paired
fermions (hard-core bosons) hopping on the lattice, similar
to the quantum XY model. On the other hand, whenU ¼ 0,
the fermions are free. Hence, as we tune U, the model
should describe the physics of BCS-BEC crossover. For
intermediate values ofU we expect regions where fermions
are paired and regions where they are free. A sketch of such

a configuration is shown in Fig. 9. The regions where the
fermions are free are shown in as a bag in the figure.
Further, it is easy to argue that the Boltzmann weight is
always positive due to two flavor nature of the problem.
Based on the above reasoning we believe we have un-

covered a somewhat unconventional approach to fermionic
field theories which may prove to be a powerful alternative,
especially when the coupling strengths are large and where
perturbation theory is expected to fail.

APPENDIX: ALGORITHM VERSUS EXACT
RESULTS

In this Appendix, we present some exact results on a 23

lattice and compare them with the results from the algo-
rithm in order to test the algorithm. Table III gives the
various possible configurations [their degeneracy factors
(Deg), the corresponding bag determinants (Bdet) and the

paired

fermion bags
free

fermions

FIG. 9 (color online). A sketch of a fermion bag configuration
in a model described in the text that contains the physics of BCS-
BEC crossover. The solid lines represent spin-up and spin-down
fermions strongly paired into a spin-zero boson. The blobs
represent regions where fermions can be liberated and become
essentially free.

TABLE III. Contributions to the partition function for 23 lat-
tice.

Config. Deg. Bdet. BWt Config. Deg. Bdet. BWt

1 81 81 24 9 216U

48 4 192U2 96 1 96U2

24 1 24U2 96 1 96U3

192 1 192U3 48 1 48U4

96 1 96U4
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Boltzmann weights (BWt)]. We find that the partition
function is given by

Z ¼ 81þ 216Uþ 312U2 þ 288U3 þ 144U4: (A1)

The average number of bonds is given by

hNBi ¼ 1

4Z
ð216Uþ 624U2 þ 864U3 þ 576U4Þ; (A2)

where we have normalized it so that for large U it ap-
proaches one. The typical bag size is given by

hS�i ¼ 1

Z
ð648þ 972Uþ 600U2 þ 144U3Þ: (A3)

The condensate susceptibility is obtained from configura-
tions with two monomers. These along with their degen-
eracy factors, bag determinants and Boltzmann weights are
given in Table IV. Based on this table we find that

� ¼ U

Z
ð27þ 90Uþ 132U2 þ 88U3Þ: (A4)

The above exact expressions have been tested against our
Monte Carlo method. The results for a few values of U are
shown in Table V.
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