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We give a systematic treatment of the quantum mechanics of a spin zero particle in a combined

electromagnetic field and a weak gravitational field that is produced by a slow moving matter source. The

analysis is based on the Klein-Gordon equation expressed in generally covariant form and coupled

minimally to the electromagnetic field. The Klein-Gordon equation is recast into Schroedinger equation

form, which we then analyze in the nonrelativistic limit. We include a discussion of some rather general

observable physical effects implied by the Schroedinger equation form, concentrating on gravitomagnet-

ism. Of particular interest is the interaction of the orbital angular momentum of the particle with the

gravitomagnetic field.
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I. INTRODUCTION

Over the course of centuries there has been enormous
effort devoted to theories and experiments for classical
systems in external gravitational fields [1–4]. Two recent
experiments purport to give evidence for a gravitomagnetic
field, which is the gravitational analog of a magnetic field
due to the motion of source matter: the LAGEOS experi-
ments detect gravitomagnetic effects on the orbital motion
of two earth satellites, and the Gravity Probe B experiment
detects gravitomagnetic effects on the precession of four
gyroscopes in earth orbit [5,6].

Much attention has also been given to the theory of
quantum fields in classical background gravitational fields,
in particular regarding Hawking radiation by black holes
[7]. Notable work has been done on quantum systems in
classical background gravitational fields, for example, on
neutrons in the earth’s field [8,9], and more recently for
atomic beam interferometry; this last work is largely based
on semiclassical calculations of phase shifts along the
classical atomic trajectories [10]. Much less work has
been done on gravitomagnetic effects on fully quantum
mechanical systems. Experiments to detect such effects
should clearly be expected to be quite difficult, but would
be of fundamental interest [11,12].

In this work we give a systematic treatment of a scalar or
spin zero quantum particle in a combined electromagnetic
and weak gravitational field. We describe the particle with
the generally covariant Klein-Gordon equation, minimally
coupled to the electromagnetic field in standard fashion
[13]. The weak gravitational field is naturally treated ac-
cording to linearized general relativity, and we also limit
ourselves to slowly moving sources. In this case the gravi-

tational field equations are quite analogous to those of
classical electromagnetism [14]; we refer to this as the
gravitoelectromagnetic or GEM limit.
We proceed by first casting the Klein-Gordon equation

in an exact Schroedinger equation form (SEF), which
curiously does not seem to appear in the literature [15].
The SEF of course lends itself well to considerations of the
nonrelativistic limit for the quantum particle, which we
then study to leading order in the relevant energies [16].
The reader not interested in the theoretical development
may skip directly to the results in Sec. V, in particular,
Eq. (5.1).
Our main focus is on gravitomagnetic effects on a

quantum system, so we briefly consider a number of
possibly observable physical effects, in particular using
a fictitious spin zero electron bound to an atom in a
gravitomagnetic field. (That is we ignore spin.) It is con-
ceivable that some novel interactions we derive, involv-
ing the product of the electromagnetic vector potential and
the gravitomagnetic field, might be of interest. In consid-
ering
such physical effects we only present parametrizations and
rough numerical estimates since it is beyond the scope of
the present work to analyze specific experiments; we leave
such considerations as a challenge to experimentalists.
In a subsequent paper wewill consider spin 1=2 particles

and compare the results to those of the present work,
especially those related to gravitomagnetic interactions
with spin angular momentum.
It should be emphasized that here we treat gravity en-

tirely classically, so our work does not relate to quantum
gravity or quantum spacetime [1,17].
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II. GRAVITY IN THE
GRAVITOELECTROMAGNETIC (GEM) LIMIT

In this section we review very briefly linearized general
relativity for slowly moving matter sources such as the
earth, paying special attention to the gravitomagnetic part
of the field [2,14]. Note that it is the gravitational source
matter that we assume is moving slowly, not the quantum
objects in the field. We use @ ¼ c ¼ 1, but retain dimen-
sions for G.

For a weak gravitational field the metric may be written
in Lorentz coordinates as

g �� ¼ ��� þ h��; (2.1)

where ��� is the Lorentz metric and h�� is a small

perturbation. For ordinary matter such as that of the earth
the energy momentum tensor is well approximated by the
matter or ‘‘dust’’ tensor [18],

T�� ¼ �u�u�: (2.2)

Here � is the scalar density of the source matter and u� is

its 4-velocity. To first order in h�� the field equations are

[14]

@2ðh�� � 1
2���hÞ ¼ �16�G�u�u�: (2.3)

Here @2 ¼ @2t �r2 is the d’Alembertian operator and we
have used coordinate freedom to impose the Lorentz con-
dition

ðh�� � 1
2���hÞj� ¼ 0: (2.4)

The single slash denotes an ordinary derivative.
For slowly moving source matter we may ignore second

and higher order terms in the source velocity. Then the
linearized field Eqs. (2.3) imply a simple form for h��

h�� ¼
2� h1 h2 h3

h1 2� 0 0
h2 0 2� 0
h3 0 0 2�

0
BBB@

1
CCCA;

hk � h0k; � � h00=2;

(2.5)

where � is the Newtonian or gravitoelectric potential, and
hk is the gravitomagnetic potential. The fields � and hk
obey

�@2� ¼ 4�G�; �@2hj ¼ �16�G�vj; (2.6a)

4 _��r � ~h ¼ 0;
_~h ¼ 0: (2.6b)

Equations (2.6a) are the field equations, while Eqs. (2.6b)
follow from the Lorentz condition. For low velocity

sources we expect _� � �ðv=rÞ and €� � �ðv2=r2Þ where
r is the characteristic distance to the source, so we will

ignore €� in Eqs. (2.6) and everywhere else henceforth, but

we will retain _�. Similarly we will ignore both _hj and €hj.
Then Eqs. (2.6) become

r2�¼ 4�G�; r2hj ¼�16�G�vj; 4 _��r� ~h¼ 0:

(2.7)

We refer to Eqs. (2.7), with slowly varying fields, as the
GEM (for gravitoelectricmagnetic) approximation or limit.
Equations (2.6) are of course almost identical to the

equations of classical electromagnetism (EM) for the
Coulomb potential �c and the vector potential Aj,

�@2�c ¼ 4��q; �@2Aj ¼ 4��qv
j; _�cþr� ~A¼ 0:

(2.8)

Here �q is the charge density and the Lorentz gauge is

imposed. The only difference between EM and GEM
equations is a factor of �4 associated with the gravito-
magnetic potential. Moreover the analog of the electric
field is the Newtonian or gravitoelectric field ~g, while the

analog of the magnetic field ~B ¼ r� ~A is the gravitomag-

netic (or ‘‘frame dragging’’) field ~�, both defined by

~g ¼ �r�; ~� ¼ r� ~h: (2.9)

For many systems of interest the GEM equations are
easily solved in the same way as those of EM, for example,
by the use of a Biot-Savart type law. For a stationary
spinning sphere like the earth or (approximately) a neutron
star the exterior solutions are [14,19,20]

� ¼ �GM

r
; ~g ¼ �Gm

r2
r̂ ~h ¼ 2GI

r2
~!� r̂;

~� ¼ 2GI

r3
½3ðr̂ � ~!Þr̂� ~!�; (2.10)

where ~! is the spin and I is the moment of inertia of the
sphere; for a uniform density sphere I ¼ ð3=5ÞMr2s [14].
The fields in Eq. (2.10) are of course time independent.
Another body of theoretical interest is a hollow spherical

shell, since the gravitoelectric field vanishes in its interior,
while the gravitomagnetic field near the center is about
[20]

~� ¼ 2GM

rhs
~!: (2.11)

A gyroscope at the center of such a shell would precess at
~�=2 [14].

III. SCHROEDINGER EQUATION FORM (SEF)
AND ELECTROMAGNETIC INTERACTION

First we briefly discuss the free scalar Klein-Gordon
equation and recast it into a Schroedinger equation form
(SEF), which is useful in obtaining the nonrelativistic limit
[13,15]. The SEF is exact and equivalent to the usual
Klein-Gordon equation. Surprisingly, it does not appear
to be well known and we have found no reference to it in
the literature [15,21].
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The free Klein-Gordon Lagrangian and equation are

L ¼ ’�
j�’j���� �m2’�’; €’�r2’þm2’ ¼ 0:

(3.1)

The time variation of the scalar field ’ due to the rest
energy m can be separated out by the transformation

’ ¼ e�imtc : (3.2)

Substitution of this into Eq. (3.1) leads to an equivalent
form for the Klein-Gordon equation,

i _c ¼ �r2c

2m
þ

€c

2m
: (3.3)

Equation (3.3) is exact and has the form of a nonrelativistic
Schroedinger equation, but contains an extra term, a sec-
ond derivative, hence our appellation of SEF. An exact
solution to Eq. (3.3) is the plane wave expð�iEntþ i ~p �
~xÞ, where En ¼ E�m is the nonrelativistic energy.
In a low velocity system the time variation of c is

associated with nonrelativistic kinetic energy, which is
much smaller than that of e�imt associated with rest energy.
Thus the last term in Eq. (3.3) will be small for positive
energy solutions, and can be viewed as a relativistic cor-
rection; for negative energy solutions this is obviously not
so. To lowest order approximation the relativistic correc-
tion corresponds to the standard ~p4 term in the expansion
of the relativistic energy.

Note that if the second time derivative in Eq. (3.3) is
treated as a small perturbation the Cauchy initial value
structure is that of a first order Schroedinger equation. Of
course this presents no contradiction with the Cauchy
structure of the second order Klein-Gordon equation—so
long as we limit ourselves to positive energy solutions [22].

To include electromagnetic interactions we use the stan-
dard gauge invariant minimal coupling recipe, i@� !
i@� � eA� [13]. The Lagrangian then becomes

L ¼ ð�i’�
j� � eA�’

�Þði’j� � eA�’Þ��� �m2’�’;

(3.4)

which gives the Klein-Gordon equation in manifestly
gauge invariant form,

ði@� � eA�Þði@� � eA�Þ���’�m2’ ¼ 0: (3.5)

Equation (3.5) may also be written in a form displaying the
electromagnetic coupling separately on the right side,

’j�j���� þm2’ ¼ �2ie’j�A��
�� � ieA�j����’

þ e2A�A��
��’: (3.6)

Notice that we use only lower indices on the potential A�

and only upper indices on the Lorentz metric ���, which
will prove to be convenient. Also for convenience we use
the Lorentz gauge, without loss of generality, since the
Lagrangian is gauge invariant. Thus, henceforth we take

eA�j���� ¼ _V þ er � ~A ¼ 0, so the second term on the

right of Eq. (3.6) is zero. The Lorentz gauge is particularly
appropriate for problems involving a time-independent
potential or an external radiation field.
To recast Eq. (3.6) into SEF we make the substitution

Eq. (3.2), as before, to obtain

i _c ¼
~�
2
c

2m
þ Vc � ði@t � VÞ2c

2m
; _V þ er � ~A ¼ 0

V � eA0; ~p � ir; ~� � ~p� e ~A: (3.7)

Equivalently we could apply minimal coupling to the
free SEF Eq. (3.3) to obtain Eq. (3.7). Equation (3.7) is an
SEF for the spin zero particle interacting with the electro-
magnetic field in the standard way, with a second derivative
relativistic correction. It is exact and useful in obtaining the
nonrelativistic limit, but apparently does not appear in the
literature [21]. Note that in Eq. (3.7) there occurs a term

ier ~Ac in the kinetic energy and a term i _Vc in the
relativistic correction. In the Lorentz gauge that we are
using they cancel and are not really present in the SEF of
Eq. (3.7).
Equation (3.7) contains a somewhat subtle feature re-

lated to conservation of probability and reality of the
energy, which we next consider. In the Schrodinger equa-
tion of nonrelativistic quantum mechanics,

i _c ¼ Hc ¼ p2

2m
c þ Vc ; (3.8)

the potential V is usually taken to be real, thus making the
Hamiltonian Hermitian; this guarantees that its energy
eigenvalues are real and that probability is conserved. An
equivalent way to analyze probability conservation is in
terms of a probability density and associated 3-vector
current. These are defined as

� ¼ c �c ; ~j ¼ �1

2m
c �r$c � �i

2m
ðc �rc �rc �c Þ:

(3.9)

From Eq. (3.8), we readily obtain the conservation equa-
tion

_�þr � ~j ¼ ic �ðV � V�Þc ¼ 0: (3.10)

Thus probability is conserved if the potential is real.
For the relativistic Klein-Gordon equation interacting

with the electromagnetic field the analysis of probability
conservation proceeds in a similar way. The 4-vector cur-
rent is defined as

j� ¼ i

2m
ð’�’j� � ’�j�’Þ � eA�

m
’�’

� i

2m
’�@$�’� eA�

m
’�’: (3.11)

Conservation follows from the Klein-Gordon Eq. (3.5) or
(3.6), and is expressed as j�j� ¼ 0. The same j�, up to a
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constant factor, follows from the Lagrangian Eq. (3.4) as
the electromagnetic current. We normalize the current so
that the 3-vector part is consistent with the Schrodinger
current. In terms of c defined in Eq. (3.2) the density and
3-vector current are

j0 ¼
�
1� V

m

�
c �c þ i

2m
c �@$0c ;

jk ¼ i

2m
c �@$�c � eAk

m
c �c :

(3.12)

Thus the conserved probability density j0 is not the same as
the Schrodinger density c �c in Eq. (3.9), although it is
simply related to it, as we now discuss.

It is instructive to consider the case of an energy eigen-
funtion c ð ~x; tÞ ! e�iEtc ð ~xÞ. Then the probability density
in Eq. (3.12) becomes, approximately,

j0 ¼
�
1þ E� V

m

�
c �ð ~xÞc ð ~xÞ ffi

�
1þ ~p2

2m2

�
c �ð ~xÞc ð ~xÞ:

(3.13)

We can view Eq. (3.13) as a relativistic renormalization of
the wave function since the factor ð1þ p2=2m2Þ is a
Lorentz volume contraction factor. This is easy to see if
we write it in terms of the velocity, defined as ~v ¼ ~p=m,

1þ ~p2

2m2
¼ 1þ ~v2

2
ffi 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~v2
p : (3.14)

We will illustrate the importance of the wave function
renormalization for the important example of a slowly
moving particle in a time independent potential eA0 ¼ V

and zero 3-vector potential—that is _V ¼ 0 and ~A ¼ 0. This
calculation is the spinless analog of the well-known hydro-
gen fine structure calculation based on a nonrelativistic
reduction of the Dirac equation [23]. To seek energy ei-
genvalues we again set c ð ~x; tÞ ! e�iEtc ð ~xÞ and Eq. (3.7)
becomes

ðE� VÞc ¼ p2

2m
c � 1

2m
ðE� VÞ2c : (3.15)

The operators on the left side and the first term on the right
side are of order Oðmv2Þ and the last term on the right is
Oðmv4Þ; we will work to only this order. We iterate
Eq. (3.15) and obtain

Ec ¼ p2

2m
c þ Vc � 1

2m
ðE� VÞ p

2

2m
c

¼ p2

2m
c þ Vc � 1

2m
½ðE� VÞ; p2=2m�c

� p2

4m2
ðE� VÞc

¼ p2

2m
c þ Vc � p4

8m3
c þ 1

2m
½V; p2=2m�c : (3.16)

However, the last term in Eq. (3.16) is not Hermitian, as is

easily verified, so it is not a consistent eigenvalue equation
for the real energy. This is because the wave function c is
not correctly normalized. We renormalize it according to
Eq. (3.13) by defining a wave function that is normalized
like the Schrodinger wave function,

c S ffi ð1þ p2=4m2Þc ; c ffi ð1� p2=4m2Þc S:

(3.17)

Substituting Eq. (3.17) into Eq. (3.16) we obtain for c S,
correct to order Oðmv4Þ,

Ec S ¼ ð1þ p2=4m2Þ
�
p2

2m
þ V

�
ð1� p2=4m2Þc S

� p4

8m3
c S þ 1

2m
½V; p2=2m�c S

¼
�
p2

2m
þ V

�
c S þ ½p2=4m2; V�c S � p4

8m3
c S

þ 1

2m
½V; p2=2m�c S

¼
�
p2

2m
þ V

�
c S � p4

8m3
c S: (3.18)

Thus the non-Hermitian term has been cancelled by the
wave function renormalization, so the resulting equation
will have real energy eigenvalues. It is worth noting that
the procedure leading to Eq. (3.18) is analogous to that
leading to the hydrogen fine structure energy, but the result
is simpler since there are no spin-orbit and Darwin terms
[23].
In summary, Eq. (3.7) is gauge invariant, and contains

only Hermitian operators when the gauge is carefully
chosen and wave function renormalization is applied.
Similar considerations will be used in Secs. IV, V, and VI.

IV. GRAVITATIONAL INTERACTION

For a scalar field the interaction with gravity is obtained
by making the Klein-Gordon equation generally covariant.
To do this we need only multiply the flat space Lagrangian
by the square root of the absolute value of the metric
determinant (denoted

ffiffiffi
g

p
) to form a scalar density, replace

the Lorentz metric ��� by the Riemannian metric g��, and
substitute covariant derivatives for ordinary derivatives
[24]. Then, in covariant form, the Lagrangian in Eq. (3.4)
becomes a density,

L ¼ ffiffiffi
g

p ½ð�i’�
j� � eA�’

�Þði’jv � eA�’Þg�� �m2’�’�;
(4.1)

and the Klein-Gordon Eq. (3.6) becomes,

’j�k�g�� þm2’ ¼ �2ie’j�A�g
�� � ieA�k�g��’

þ e2A�A�g
��’: (4.2)

The double slash here denotes a covariant derivative and
the single slash an ordinary derivative; for a scalar they are
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the same. The covariant d’Alembertian and divergence
terms are conveniently expressed as [18],

’j�k�g�� ¼ ’k�
k� ¼ 1ffiffiffi

g
p ð ffiffiffi

g
p

’j�g��Þj�;

A�k�g�� ¼ A�
k� ¼ 1ffiffiffi

g
p ð ffiffiffi

g
p

A�Þj�:
(4.3)

We have here assumed only the simplest coupling to
gravity, consistent with the equivalence principle [20].
Additional terms involving the Riemann tensor are also
possible since they vanish in flat space and are thus con-
sistent with the flat space Klein-Gordon equation [7].

Covariant electromagnetism is gauge invariant so we

again choose for convenience the Lorentz gauge, Ak�
k� ¼

0; the second term on the right of Eq. (4.2) is then zero.
Recall that we are also using the Lorentz gauge for the
gravitational field, Eq. (2.4).

We next substitute Eq. (4.3) into Eq. (4.2), expand the
metric to first order, g�� ¼ ��� � h��, and apply the
Lorentz gauge condition Eq. (2.4); this yields

’j�j���� þm2’ ¼ ’j�j�h�� þ ð�2ie’j�A�

þ e2A�A�’Þð��� � h��Þ: (4.4)

This surprisingly simple result Eq. (4.4) only holds in the
Lorentz gauge for both the electromagnetic and gravita-
tional fields. Equation (4.4) holds to all orders in the
electromagnetic field, and to first order in the gravitational
field. The right side includes the electromagnetic terms of
(3.6), an additional term for coupling to the gravitational
field, and two mixed terms for coupling to the product of
the electromagnetic and gravitational fields. The mixed
terms are novel and may be of possible interest in connec-
tion with very strong electromagnetic fields, such as those
found in laboratory magnets or intense laser light, as we
will discuss in Sec. VI.

To recast Eq. (4.4) in SEF we separate out the rest energy
time dependence using Eq. (3.2) as before. Straightforward
manipulation leads to a generalization of Eq. (3.7) to
include gravitational interaction terms, which we write as

i _c ¼
~�
2
c

2m
þ Vc � ði@t � VÞ2c

2m
þHgc þHgec :

(4.5)

The term Hgc contains interactions with only the gravita-

tional field, and in the GEM approximation of Sec. II it is

Hgc ¼ �

�
mc �r2c

m
þ 2ði _c Þ �

€c

m

�

þ ð ~h � ~pÞ
�
c þ ði _c Þ

m

�
: (4.6)

The mixed term Hgec contains interactions with the prod-

uct of the gravitational and electromagnetic fields, and in

the same approximation it is

Hgec ¼
�
�2�V

�
c � i _c

m

�
� 2�

e ~A � ð ~pc Þ
m

� e ~A � ~h

�
c � ði _c Þ

m

�
� V ~h � ð ~pc Þ

m

�

þ
�
�
V2c

m
þ�

e2 ~A2c

m
þ Veð ~A � ~hÞc

m

�
: (4.7)

Equations (4.5), (4.6), and (4.7) are a restatement of
Eq. (4.4) in terms of the wave function c and in the
GEM approximation for the gravitational field. The only
approximations made so far are the GEM of Sec. II for the
external gravitational field, which assumes a slow moving
source. The electromagnetic field is treated exactly and
there is no low velocity approximation for the particle.

V. NONRELATIVISTIC LIMIT

In this section we consider the low velocity limit of
Eqs. (4.5), (4.6), and (4.7) to obtain our main, remarkably
simple, result. The four terms in the first parenthesis of
Eq. (4.6) are� times, respectively,OðmÞ,Oðmv2Þ,Oðmv2Þ,
and Oðmv4Þ; we will work to Oðmv2Þ and drop the last
term. In the second parenthesis the terms are h times,
respectively, OðmvÞ and Oðmv3Þ; again we drop the last
term. We then do the same order counting in Eq. (4.7) and
combine the remaining terms with those of Eq. (4.6) to
obtain an SEF,

i _c ¼
� ~�

2
c

2m
þ Vc � ði@t � VÞ2c

2m

�
þ�m

�
1þ 2 ~�

2

m2

�
c

þ ~h � ~�c : (5.1)

Thus the Newtonian field � couples to the particle mass
with a small correction factor, and the gravitomagnetic

field ~h couples to the kinematic momentum ~�. We will
discuss the gravitomagnetic coupling at length in the next
section.
The factor preceding the Newtonian field in Eq. (5.1) is

interesting. It may be written in terms of the particle

velocity as (1þ 2v2), with the velocity defined as ~v ¼
~�=m. We can show that ð1þ 2v2Þ� is simply the potential
that the moving particle sees in its rest frame. To see this
we apply a Lorentz transformation in the x direction to the
metric perturbation,

h0�� ¼ a��a
�
�h

��; a�� ¼ 	 �v	
�v	 	

� �
;

	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p :

(5.2)

Ignoring the small off-diagonal terms of the metric we see
from Eq. (2.5) that h00 and thus the Newtonian potential
transform like
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�0 ¼ ða00a00Þ�þ ða01a01Þ� ¼ 	2ð1þ v2Þ�
ffi ð1þ 2v2Þ�: (5.3)

Finally, we emphasize that Eq. (5.1) contains only
Hermitian terms in the gravitational interactions; recall
also that in Sec. III we showed that the rest of the equation
contains only manifestly Hermitian terms if the Lorentz
gauge is used and the wave function is properly renormal-
ized; thus no problem arises with conservation of proba-
bility and reality of the energy eigenvalues.

VI. GRAVITOMAGNETIC PHYSICAL EFFECTS

We will briefly discuss some physical effects implied by
Eq. (5.1), concentrating on gravitomagnetism. Our purpose
is only to provide some simple parametrizations and sam-
ple numerical estimates. A specific and detailed discussion
of any laboratory experiments or astrophysical observa-
tions is beyond our present scope, so we leave it as a
challenge to experimentalists to design and analyze spe-
cific experiments.

We will consider here only neutral systems, perhaps
containing charged particles, since electromagnetic effects
on a system with net charge generally swamp gravitational
forces by many orders of magnitude [1].

The gravitoelectric or Newtonian term�mc in Eq. (5.1)
is generally much the dominant gravitational interaction.
Its effects have been seen in diverse experiments, notably
on neutrons in the earth’s gravitational field, which make it
clear that nucleons do indeed fall and behave as expected
[8,9]. That term is also responsible for most of the phase
shift seen in recent atomic beam interferometry gravity
experiments [10]. Such experiments may be able to test the
equivalence principle to 10�15 or better; however the phase
shifts, including small subtle corrections, may be calcu-
lated more easily and accurately with the semiclassical
approach of Dimopoulous et. al. that treats the atoms as
neutral particles, rather than the approach we adopt here
[10].

Our present interest is more on the gravitomagnetic term
~h � ~�c of Eq. (5.1). The first part, ~h � ~pc , is the analog of
the EM coupling to the vector potential, as we see by
writing out the kinetic energy term [25],

~�
2
c

2m
¼ ~p2c

2m
� e ~A � ~pc

m
þ ier � ~Ac

2m
þ e2 ~A2c

2m
: (6.1)

From the second term of Eq. (6.1) the correspondence
between magnetic and gravitomagnetic couplings is thus
evident,

~h , � e

m
~A: (6.2)

It is illuminating to take the quantum system to be a
fictitious atom containing a scalar electron of mass me,

which we then place in ~B and/or ~� fields that are approxi-

mately constant over the size of the atom. In this case we
may conveniently choose the potentials as

~A ¼ 1
2
~B� ~r; ~h ¼ 1

2
~�� ~r; (6.3)

where ~r ¼ 0 is the center of mass of the atom. The mag-
netic and gravitomagnetic interactions are then, from
Eqs. (5.1) and (6.1),

� e

me

~A � ~pc ¼ � e

2me

~B� ~r � ~pc ¼ � e

2me

~B � ~r� ~pc

¼ � e

2me

~B � ~Lc ; (6.4a)

~h � ~pc ¼ 1
2
~�� ~r � ~pc ¼ 1

2
~� � ~r� ~pc

¼ 1
2
~� � ~Lc : (6.4b)

Here the orbital angular momentum ~L is taken with respect
to the center of mass. Thus Eq. (6.4a) means that orbital

angular momentum produces a magnetic moment ~� ¼
ðe=2meÞ ~L, since Eq. (6.4a) is the energy of a magnetic
moment in a magnetic field. In the same manner we
interpret Eq. (6.4b) to say that orbital angular momentum

produces a gravitomagnetic moment, ~�grav ¼ ð�1=2Þ ~L. It
is clear from the correspondence that, since a magnetic
moment precesses at the Larmor frequency eB=2me in a B
field, the gravitomagnetic moment will precess in a grav-
itomagnetic field with frequency �=2, and in the opposite
direction.
The classical analog of the gravitomagnetic coupling in

(6.4b) leads to the Lense-Thirring precession of a gyro-
scope in the field of the earth as observed in the Gravity
Probe B experiment [6,14]. Thus a quantum system such as
our fictitious atom should undergo the same precession as a
classical system in a gravitomagnetic field. This should be
expected for a fundamentally geometric effect, according
to general relativity.
We note that a similar analogy holds for classical orbital

motion: a charged particle in a constant B field (and no E
field) orbits at the cyclotron frequency eB=me, whereas a
massive particle in a constant� field (and no g field) orbits
at frequency� [20]. It is of course easy to produce a region

of ~B ffi const ~E ¼ 0 in the lab; it is similarly easy to

produce a region of ~� ffi const ~g ¼ 0 by using the interior
of a massive spherical shell, as we noted in Sec. II [20].
Thus a particle near the center of such a hollow shell will
orbit at � ¼ ð2 GM=rhsÞ!.
It is of some interest to estimate the gravitomagnetic

precession frequency of the fictitious atom near the surface
of two bodies of interest, the earth and a neutron star, both
approximated by a spinning sphere with a gravitomagnetic
field given by Eq. (2.10). In order of magnitude

� � 2GðMr2bÞ
r3

! ¼ rsr
2
b

r3
!; (6.5)

where rs ¼ 2GM is the body’s Schwarzschild radius and
rb is its actual radius. For the earth, r � rb ¼ 6� 103 km,
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rs ¼ 1:8 cm, ! ¼ 7:3� 10�5 rad=s. For a typical rapidly
spinning neutron star we take r � rb � 10 km, rs �
1 km, ! ¼ 102 rad=s. Then the precession frequencies
and associated energies are of order

� � 10�13 rad=s;

Echar � @� � 10�28 eV ðearthÞ (6.6a)

� � 10 rad=s;

Echar � @� � 10�14 eV ðneutron starÞ: (6.6b)

The energies in Eqs. (6.6) are of course extremely small
compared to typical atomic energies, even hyperfine ener-
gies; in any situation where GEM effects directly compete
with EM effects they will naturally be swamped by many
orders of magnitude.

The other part of the gravitomagnetic term in Eq. (5.1),

� ~h � e ~Ac , might conceivably be of interest for some
terrestrial or astrophysical environments if the vector po-

tential ~A is sufficiently large. Two example systems of
interest, obtainable in a terrestrial laboratory, are a high
field magnet and an intense laser beam [26,27]. We first
consider a quantum system such as our fictitious atom in a

large ~B field. The perturbation energy, with the use of
Eqs. (6.3) and (2.10), is of order

�E � h ~h � e ~Ai � �eBr2q ¼ �

�
eB

me

�
r2qm

¼
�
eB

me

��
rq

c

��
rq
c

�
�: (6.7)

Here rq is the characteristic size of the quantum system,


c ¼ @=mec � 2:43� 10�12 m is the Compton wave-
length of the electron, and we have included a factor of c
to make the dimensions clear. For a numerical estimate we
take rq � 10�9 m,� � 10�13 rad=s from Eq. (6.6a), B �
102 T, and express the Bohr magneton as e=2me ¼ ð5:8�
10�5 eV=TÞ. Then the energy and associated frequency are
of order,

�E � 10�32 eV;

�! � 10�17 rad=s ðatom in terrestrialBÞ: (6.8)

This is even smaller than the values in Eq. (6.6a) so the
presence of the magnetic field would not appear to produce
a larger effect of interest.

However, if we suppose a much larger quantum system,
perhaps Cooper pairs in a Josephson junction of nearly
macroscopic size rq � 10�6 m, then the above values in-

crease by 6 orders of magnitude and possibly become more
interesting [28],

�E � 10�26 eV;

�! � 10�11 rad=s ðlarge quantum system in terrestrialBÞ:
(6.9)

We leave it to experimentalists to consider such larger
systems.

Finally we consider a fictitious atom in an intense laser
beam of frequency !l and electric field E. For a radiation
field A � E=!l and we may estimate the perturbation as
before

�E � h ~h � e ~Ai � �

�
eEl

!l

�
rq ¼

�
eEl

me!l

��
rq

c

�
�

¼ a0

�
rq

c

�
�: (6.10)

The quantity eEl=!l is the approximate energy transfer to
the electron in one cycle of the laser beam, so the dimen-
sionless parameter a0 � eE=me!l is the fraction of the
electron rest energy absorbed from the laser beam in one
cycle; it is a measure of how relativistic the quantum
system can become, and is thus also a convenient laser
intensity parameter [27]. Note that we may also express a0
in terms of the Schwinger critical field, at which sponta-
neous pair production is relevant, as a0 ¼ ðE=ESCÞðme=!lÞ
[29].
If we take as rough examples a0 ¼ 1 and rq � 10�9 m

we obtain from Eq. (6.10)

�! � 10�11 rad=s;

�E � 10�26 eV ðatom in terrestrial laserÞ: (6.11)

Of course our approximations do not hold for a0 much
larger than 1, and are probably not even very accurate for
a0 of order 1. The values in Eq. (6.11) are larger than those
in Eq. (6.6a) so the presence of the laser field may increase
the gravitomagnetic effect and possibly be of interest to
experimentalists.
For a larger quantum system, for example, a Josephson

junction as mentioned above, the values might increase by
perhaps 3 orders of magnitude, according to Eq. (6.10), to
about

�!� 10�8 rad=s;

�E� 10�23 eV ðlarger system in terrestrial laserÞ: (6.12)

We note incidentally that measurements of the Josephson
constant 2e=h (relating voltage to frequency) reach a pre-
cision of about 2� 10�11 [30].
There is a major difficulty associated with detecting

gravitomagnetic effects that we have not yet mentioned;
any rotation of the laboratory apparatus will in general
compete with and swamp gravitomagnetic effects via the
Sagnac effect [31]. Thus any experiment would need to
provide a way to suppress or separate such rotational
effects at about the level of 10�13 rad=s according to
Eq. (6.6a).

VII. SUMMARYAND CONCLUSIONS

Our study of the interaction of a spinless quantum
particle with an electromagnetic field and a weak gravita-
tional field has lead to a rather simple nonrelativistic limit
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expression that is useful for considering possibly observ-
able gravitomagnetic effects. The laboratory observation of
such effects is clearly a very difficult prospect, as our
illustrative examples indicate, but would be of fundamental
interest.
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