
Studying a relativistic field theory at finite chemical potential with the density matrix
renormalization group

David J. Weir*

Theoretical Physics, Blackett Laboratory, Imperial College London, SW7 2AZ London, United Kingdom
(Received 22 May 2010; published 6 July 2010)

The density matrix renormalization group is applied to a relativistic complex scalar field at finite

chemical potential. The two-point function and various bulk quantities are studied. It is seen that bulk

quantities do not change with the chemical potential until it is larger than the minimum excitation energy.

The technical limitations of the density matrix renormalization group for treating bosons in relativistic

field theories are discussed. Applications to other relativistic models and to nontopological solitons are

also suggested.
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I. INTRODUCTION

In relativistic field theory on the Euclidean lattice, the
chemical potential manifests itself as an imaginary vector
potential in the imaginary time direction [1]. The use of
Monte Carlo techniques and reliance on importance sam-
pling has the effect of making the probability weight mean-
ingless if the action or the fermion determinant is complex;
this is known as the ‘‘sign problem.’’ With lattice fermions,
the sign problem is also a consequence of a complex
fermion determinant resulting from the inclusion of a
chemical potential term. A variety of techniques are com-
monly used to circumvent this problem, including Glasgow
reweighting [2] and analytic continuation to an imaginary
chemical potential [3].

The aim of this paper is to use the density matrix
renormalization group (DMRG) to study a toy model in
relativistic quantum field theory with a nonzero chemical
potential. The results of this paper demonstrate that this
approach correctly captures the phenomenology of the
theory. We seek the ground state of the Hamiltonian for
the system using variational methods and so DMRG does
not suffer from the aforementioned sign problem [4]. This
problem of relativistic field theories at finite density should
be contrasted with the negative sign problem of fermions in
quantum Monte Carlo technique [5]. It is already widely
acknowledged that this is avoided by DMRG [6,7]. As far
as we are aware, however, no attempt has been made to
circumvent the relativistic finite-density sign problem with
DMRG.

When the chemical potential � is smaller than the low-
est excitation energy (at zero coupling, the bare mass m),
the bulk quantities studied are seen to have the same value
as at� ¼ 0. This effect is known from QCD as the ‘‘Silver
Blaze’’ problem [8]. Such an effect cannot be studied in a
nonrelativistic field theory.

For larger chemical potentials, the system condenses.
We cannot voyage far into the condensed phase because

the truncation in states converges more slowly. For smaller
values of the chemical potential, however, convergence is
better. Nonetheless, the truncation in bosonic states and the
limitation to (1þ 1) dimensions remain the main draw-
backs of using DMRG as a nonperturbative tool in quan-
tum field theory.
The density matrix renormalization group has previ-

ously been applied to bosonic problems with nonzero
chemical potential for condensed-matter systems [9]. In
such cases the models usually describe a single bosonic
field and there is no symmetry between the particles and
antiparticles. Such Hamiltonians emerge as the nonrelativ-
istic limit of the model considered here when the parts of
the Hamiltonian concerning the antiparticles and their
interactions are neglected [10]. The current work, however,
accurately describes the fully relativistic U(1) model. Toy
models in particle physics have been studied using DMRG
previously, in particular, a one-component scalar field with
��4 interaction [11], the massive Schwinger model [12],
and a simple model exhibiting asymptotic freedom [13].
SUðNÞ spin chains have also been studied [14].
In this paper we consider a scalar field model with U(1)

symmetry in (1þ 1) dimensions. For convenience, we
transform fields to a two-component real scalar field, giv-
ing a Lagrangian

L ¼ 1
2ð@��nÞð@��nÞ � 1

2m
2�n�n � 1

4�ð�n�nÞ2: (1)

The conjugate momenta are �n ¼ _�n. We then perform a
Legendre transform to give the corresponding Hamiltonian
density for this theory [15],

H 0 ¼ 1
2ðr�nÞðr�nÞ þ 1

2�n�n þ 1
2m

2�n�n

þ 1
4�ð�n�nÞ2: (2)

This model has one conserved charge

Q ¼
Z

dxj0 ¼
Z

dx½�1�2 ��2�1�: (3)

We introduce the chemical potential � as a Lagrange
multiplier into an effective HamiltonianH for minimizing*david.weir03@imperial.ac.uk
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the energy at nonzero total charge Q and obtain

H ¼ H 0 ��j0

¼ 1
2ðr�nÞðr�nÞ þ 1

2�n�n þ 1
2m

2�n�n

þ 1
4�ð�n�nÞ2 ��ð�1�2 ��2�1Þ; (4)

which we will use for our studies of this model using the
DMRG.

This paper is organized as follows. In Sec. II we outline
the density matrix renormalization group as applied to the
present model and discuss places where our implementa-
tion differs from those in the literature. Our numerical
results are presented in Sec. III, and our final remarks
can be found in Sec. IV.

II. THE DENSITY MATRIX RENORMALIZATION
GROUP

The density matrix renormalization group is a varia-
tional technique for finding quantum states of quasi-one-
dimensional systems [16]. Originally conceived to study
systems—such as the Heisenberg model—on lattices too
large to treat with exact diagonalization, it is essentially a
development of Wilson’s numerical renormalization group
for handling interacting systems [6,17,18]. A brief quali-
tative summary is given here. The entire system is termed
the ‘‘superblock,’’ and is divided into two renormalized
‘‘system blocks,’’ between which one or more sites are
‘‘inserted.’’ This allows numerical diagonalization of a
smaller Hamiltonian than if the entire system were exactly
diagonalized. Typically, one is only interested in the
ground state, and so only one eigenvector needs to be
numerically obtained. Operators are transformed to best
represent the states of interest and the inserted site is
incorporated into one of the system blocks. The process
repeats with a new ‘‘inserted site.’’

When this technique is used to study a finite system as in
the present case, the representation of the system is opti-
mized by repeated ‘‘sweeping’’ to one end of the lattice and
then the other. The system size is kept constant by growing
one system block at the expense of the other. Sweeping
stops when observables of interest no longer change. If the
system is homogeneous then the symmetries of the system
can be exploited to accelerate this process.

Our approach is to insert only a single site, rather than
two sites, during the sweeping process. This approach has
been used successfully to study the one-component ��4

model in Ref. [11], and its use remains appropriate here.
Generally, when fermionic systems are considered, the
number of states per lattice site required to fully describe
the system is not large and indeed for small lattices it
would in principle be possible to exactly diagonalize the
system. In addition, there are unambiguous reasons why
adding two sites helps to improve efficiency when using
the infinite-volume algorithm with spin systems [16], in-
cluding that it keeps the system symmetric. However, in

our present system we must truncate the tower of bosonic
states and even for a small system there is no way to
exactly diagonalize the Hamiltonian. As each inserted
site gets incorporated into our renormalized blocks the
highest state accessible is given by the highest state in
the truncation used for the single site.
Let us label the number of states kept in the system block

by M and the number of states on the inserted site N. By
the above argument it seems reasonable to expect that, for
bosonic systems with a given maximum dimension D of
the Hamiltonian, the best numerical results will be ob-
tained by taking the largest possible truncation for three
sites (D � M2N) rather than for four (D � M2N2).
Unlike in Monte Carlo simulations, where the prefer-

ence is for periodic or twisted boundary conditions, for
DMRG calculations the results are more precise when
obtained with open boundary conditions. The interaction
between the extreme ends of the lattice cannot be renor-
malized within the traditional scheme for a finite system
DMRG and hence the system only has an approximate
translational invariance. A translationally invariant ap-
proach is possible when one reformulates the problem in
terms of matrix-product states [19,20]. Treating bosons
will remain difficult, due to the high bond dimension of
the matrices needed. For the purposes of this paper, it is
sufficient to consider the ‘‘traditional’’ choice of boson
number states, with open boundary conditions.

A. The model

A single-component relativistic scalar field was first
studied with the DMRG in Refs. [11,21]. This discussion
therefore parallels these works, extended to a two-
component field. Moving to a (L�1) lattice, we keep
the conjugate momenta as operators �n but discretize the
gradient term in (4) in the usual way,

r�n ! 1

a
½�nðxþ aÞ ��nðxÞ�; (5)

where we have introduced a lattice spacing a and label the
sites of the lattice by 0; . . . ; x; xþ a; . . . ; L. We can set a ¼
1 without loss of generality as we can vary m, �, and �
instead. We work with real-space DMRG (although
momentum-space formulations exist), which means we
need a set of basis states for every lattice site. We treat
�1 and �2 as separate fields with their own creation and
annihilation operators,

�nðxÞ ¼ 1ffiffiffi
2

p ðayn ðxÞ þ anðxÞÞ; (6)

n ¼ 1, 2, and

�nðxÞ ¼ iffiffiffi
2

p ðayn ðxÞ � anðxÞÞ; (7)

where ayn and an create and annihilate particles of type n at
sites labeled by x on the lattice. This motivates the use of
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jp; qi for boson number states at a given lattice site, where
p and q label each of the two different particle types.

The equal time commutation relation,

½�nðxÞ; �mðyÞ� ¼ i�x;y�m;n; (8)

becomes

½anðxÞ; aymðyÞ� ¼ �x;y�m;n: (9)

The Hamiltonian becomes

H0 ¼
XL
x¼1

�
1

2
½�1ðxÞ2 þ �2ðxÞ2� þ 1

2
m2½�1ðxÞ2 þ�2ðxÞ2�

þ 1

4
�½�1ðxÞ2 þ�2ðxÞ2�2

�

þ XL�1

x¼1

1

2
ð½�1ðxÞ ��1ðxþ 1Þ�2

þ ½�2ðxÞ ��2ðxþ 1Þ�2Þ: (10)

We then arrive at the effective Hamiltonian on the lattice

H ¼ H0 �
XL
x¼1

�½�2ðxÞ�1ðxÞ � �1ðxÞ�2ðxÞ�: (11)

Quantized as outlined above,H0 can always be written as a
real symmetric matrix. A nonzero chemical potential re-
quires us to diagonalize a complex, Hermitian Hamiltonian
H but this has been done previously in DMRG studies of
electron systems with persistent currents [22]. It does not
present any problem for the DMRG.

We split the Hamiltonian up into the Hamiltonians for
the two renormalized system blocks and the single inserted
site, plus interaction terms [11],

H ¼ HL þ hn�1;n þ hn þ hn;nþ1 þHR; (12)

where HL and HR are the left and right system blocks,
respectively. The single site hn is

hn ¼ 1
2½�1ðnÞ2 þ �2ðnÞ2� þ 1

2m
2½�1ðnÞ2 þ�2ðnÞ2�

þ 1
4�½�1ðnÞ2 þ�2ðnÞ2�2 þ�½�2ðnÞ�1ðnÞ

� �1ðnÞ�2ðnÞ�; (13)

and the interaction term hn;nþ1 is given by

hn;nþ1 ¼ 1
2ð½�1ðnÞ ��1ðnþ 1Þ�2
þ ½�2ðnÞ ��2ðnþ 1Þ�2Þ: (14)

Diagonalizing H numerically, we obtain an approximation
to the ground state jc i,

jc i ¼ X
i;j;k

c ijkjiijjijki; (15)

where the single labels i, j, and k run over the truncated
bases. The left and right blocks are in general renormalized
(except at the ends of the lattice) and the basis states are

optimized, but the central site’s basis jji always corre-
sponds to a sum over the two-particle basis states jp; qi.
The matrix elements are stated for ��4 with a single

scalar field in Ref. [21], and have been summarized in a
form generalized to the present case in Appendix A.
Regardless of what numerical technique we use to study

the discretized Hamiltonian system, we will have to trun-
cate the basis states in (15). This can be interpreted as a UV
cutoff that may not always be as high as that of the lattice
spacing, 1=a.

B. Relation with microscopic Hamiltonians for
Bose-Einstein condensation

The density matrix renormalization group has been used
in condensed-matter systems to study microscopic
Hamiltonians that exhibit Bose-Einstein condensation,
such as Bose-Hubbard models [9,23]. These models are
substantially different from the present case as there is no
possibility of spontaneous symmetry breaking; there is
only a single particle species present. In this section we
show how the present work corresponds to relativistic
physics that cannot be obtained with a microscopic
Hamiltonian motivated by problems in condensed matter.
For the current discussion, let us work with free fields

(� ¼ 0). In condensed-matter systems, Bose-Einstein con-
densates are often modeled by the Gross-Pitaevskii equa-
tion. Following Ref. [10], we therefore want to transform to

nonrelativistic fields � and �� that (together with their
complex conjugates) satisfy the Gross-Pitaevskii equations
of motion with a nonrelativistic chemical potential �nr,�

�i
@

@t
þ k2

2m2
��nr

�
� ¼ 0; (16)

and equivalently for ��. In terms of �1 and �2 (and their
conjugate momenta), the appropriate transformation is

�1ðxÞ þ i�2ðxÞ ¼ 1ffiffiffiffiffiffiffi
2!

p ð�ðxÞ þ ���ðxÞÞ; (17)

�1ðxÞ þ i�2ðxÞ ¼ i

ffiffiffiffi
!

2

r
ð��ðxÞ � ��ðxÞÞ; (18)

where! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. One should then expand to order k2.

If we compare the free-field action for the relativistic fields

Srel ¼
Z

dt
Z

dx
X2
n¼1

�n

�
@2

@t2
� @2

@x2
þm2

�
�n; (19)

with that for one of the nonrelativistic fields

Snr ¼
Z

dt
Z

dx��
�
i
@

@t
þ 1

2m
r2 þ��m

�
�; (20)

then we see that the nonrelativistic fields split into two

parts, one for the � field and one for the �� field. We have

omitted the nonrelativistic fields �� and ��� corresponding
to one of the particle species, as they are suppressed by a
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factor e�ð�þmÞ ��� �� in the partition function. The transfor-
mations (17) and (18) have had the added effect of diago-
nalizing the chemical potential term for each particle
species—the term in the Hamiltonian referring to the
chemical potential is now just � ���, a number operator
that is usually combined with m to give �nr. Hence, the
sign problem disappears for nonrelativistic models at finite
density as one can treat the system with one field.

C. Extension to finite temperature

Ideally, we would be able to study nonzero density at
finite temperature. Since we keep the conjugate momenta
�n as operators throughout we are dealing with a ð1þ
1Þ-dimensional system, and cannot introduce finite-
temperature physics in the standard, Euclidean, way. For
the DMRG, the traditional method used to treat small T >
0 is to find several low-lying states [6,24]

jc ðnÞi ¼ c ðnÞ
ijkjiijjijki (21)

when numerically diagonalizing the Hamiltonian, and
weight them by the Boltzmann factor in the reduced den-
sity matrix � to give

� ¼ X
n

e��En

X
k0
c ðnÞ

ijk0c
�ðnÞ
i0j0k0 : (22)

This adds an extra layer of truncation: we must make sure
that the number of excited states included in the density
matrix is large enough to correctly capture the finite-
temperature behavior to the accuracy allowed by our trun-
cation. The most straightforward way to implement this is
to vary the number of eigenvectors obtained by our nu-
merical diagonalization code for inclusion in Eq. (22). If
increasing the number of eigenvectors obtained does not
affect the observables of interest then we can consider the
truncation adequate. This ought to happen when the small-
est obtained Boltzmann weight, associated with the highest
energy e��Enmax is comparable in size to our algorithm’s
convergence tolerance.

These added complications mean that finite-temperature
behavior for a bosonic system cannot be reliably obtained
by the traditional method, given present computing ca-
pacity. A more promising direction is to use the transfer-
matrix DMRG (TDMRG) method to handle a discretized
imaginary time direction of finite size [25]. This should
give good results at high temperature and permits access to
thermodynamic quantities (but not long-distance correla-
tion functions). However, one would then have to abandon
the naı̈ve chemical potential term used in the present work
and add an imaginary, constant vector potential as is usual
in Euclidean lattice studies [1].

D. Measurements

For expectation values of observables defined on a single
lattice site it is desirable to take measurements at the center

of the lattice, using the single inserted site. Then for an
observable O (for example j0) defined on the single site,
we have

hOi ¼ X
ijj0k

c ð0Þ�
ijk ½OðxÞ�jj0c ð0Þ

ij0k ¼ Tr�O: (23)

We calculate the correlation length � in the system by
looking at the decay of the two-point function. This serves
as a useful cross-check to verify that the onset of a nonzero
particle density occurs, as one would expect, close to � ¼
m at weak coupling. Unlike in Monte Carlo simulations,
we do not have access to anything other than equal time
correlations.
To calculate the two-point function

Cabðx� yÞ ¼ h�aðxÞ�bðyÞi � h�aðxÞih�bðyÞi; (24)

we must store the operators for �aðxÞ and �bðyÞ until we
are ready to calculate the two-point function

h�aðxÞ�bðyÞi ¼
X
ii0jkk0

c ð0Þ�
ijk ½�aðxÞ�ii0 ½�bðyÞ�kk0c ð0Þ

i0jk0 (25)

and disconnected pieces

h�aðxÞi ¼
X
ii0jk

c ð0Þ�
ijk ½�aðxÞ�ii0c ð0Þ

i0jk; (26)

h�bðyÞi ¼
X
ijkk0

c ð0Þ�
ijk ½�bðyÞ�kk0c ð0Þ

ijk0 : (27)

So that the sum is over a complete set of states, it is
simplest from a practical point of view if the two operators
come from different DMRG blocks [18]. Since our main
interest in the two-point function is to determine the re-
normalized mass from the long-distance behavior, there is
no reason to choose operators on the same block. Therefore
we sacrifice measurements of the short-distance behavior
to give better results at longer distances.

III. RESULTS AND COMPUTATIONAL
CONSIDERATIONS

The renormalized block Hamiltonians H are Hermitian
matrices of size M2N �M2N. The main limitation on the
accuracy and quality of the calculations presented here is
the memory required to store these matrices (even when
represented in a sparse format, this is over a gigabyte), and
to a much lesser extent the additional computation time
required by � � 0. One ‘‘sweep’’ to the right or the left in
the algorithm takes several hours of computer time for the
largest truncations used here, although this can be less
depending on the value of �; for � ¼ 0 the Lanczos
algorithm is used and performance is much better. It also
depends on the number of eigenvectors required, making
T � 0 prohibitively expensive given current computational
resources.
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Computations were carried out with exhaustive searches
of the parameter space. Numerical diagonalization routines
from the Numerical Algorithms Group were used; the
superblock was stored as a sparse matrix. For � ¼ 0, the
Hamiltonian is a real, symmetric matrix and the Lanczos
method can be used. The current work, however, is primar-
ily concerned with � � 0, for which it is easiest to use an
implicitly restarted Arnoldi algorithm. For all the results
shown, we tolerate a fractional error of at most 10�8 in the
numerically obtained Ritz vectors.

The ground state energy is obtained directly when di-
agonalizing the Hamiltonian. Other measurements are
made as described in Sec. II D.Wewait until results change
by no more than 1 part in 106 between sweeps before
considering a quantity adequately converged.

One naturally expects the charge operator Q to be self-
adjoint so that in adding a term ��Q to form an effective
Hamiltonian we must have � real. Unlike in calculations
where the chemical potential is analytically continued, we
have not made any changes to the original model. With
enough memory and computer time we could work with
� � m2, M and N very large and study nonzero particle
densities far from the onset of condensation. There is no
sign problem, merely the problem of representing a con-
densate using the DMRG. However, it is accepted that the
picture given by a finite truncation serves to capture the
physics [6].

A. Convergence with truncation size and arrangement

Noting that storage considerations are a limiting factor,
we must consider the most reasonable approximate basis
for the lattice sites. For simplicity, let us take the number of
sites in the renormalized blocks M to equal those of the
single site N. Finite-truncation effects are more noticeable
when varying M, the renormalized block size.

We choose a consistent way of truncating the bosonic
states at each site as, in principle, there is an infinite tower
that must be truncated. One might choose to fix either the
maximum number of bosons of any type fji; jiji � n; j �
ng, or the maximum number of bosons of either type
fji; jijiþ j � ng. It seems better to adopt the latter orga-
nization, as this is the truncation that better respects the
global symmetry of the theory. Consider a field transfor-
mation

�1 ! �1 cosð	Þ þ�2 sinð	Þ;
�2 ! �1 cosð	Þ ��2 sinð	Þ:

(28)

To quantize this equivalent field theory, we can define new
creation and annihilation operators in terms of the old ones
that will obey the same canonical commutation relations

ay1 ðxÞ ! ay1 ðxÞ cosð	Þ þ ay2 ðxÞ sinð	Þ;
ay2 ðxÞ ! ay1 ðxÞ cosð	Þ � ay2 ðxÞ sinð	Þ:

(29)

Therefore if we use the truncated basis fji; jijiþ j � ng,
then we will always be able to reexpress the rotated state
using the truncated basis whereas starting with the trun-
cated basis fji; jiji � n; j � ng risks leaving us outside the
span. Given this choice, Fig. 1 shows how varying the
number of states in the renormalized blocks affects the
ground state energy.
It is clear that, for a bosonic system, the DMRG con-

verges quickly for zero particle density. It can also be
reliably used to determine the onset of nonzero particle
density. However, for large particle densities the truncation
is overwhelmed and accuracy is greatly diminished.

1.04 1.08 1.12 1.16 1.2 1.24
µ

62

64

66

68

E

N=10
N=15
N=21
N=28

FIG. 1. Truncating the tower of bosonic states, with L ¼ 40,
m2 ¼ 1, � ¼ 0:1, andM ¼ N. The ground state energy is shown
as a function of � for various consistently truncated bases.

1.1 1.2
µ

0

0.5

1

1.5

j 0

L=10
L=20
L=40

FIG. 2. Plot of the charge density j0 as a function of � at
various L, for m2 ¼ 1, � ¼ 0:1, and M ¼ N ¼ 28. There is no
discernible finite-size effect for the spatial lattice size. It should
be emphasized that for � smaller than that shown here the
charge density is exactly zero down to � ¼ 0.
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B. Condensation and finite-size effects

For � ¼ 0:1 and various lattice sizes L, the particle
density j0 measured at the center of the lattice is shown
in Fig. 2. These show a transition to a nonzero particle
density as � is increased, with no discernible dependence
on L. On the other hand, the ground state energy per site—
shown in Fig. 3—has a very clear dependence on volume.
The volume dependence is qualitatively similar for all
values of the chemical potential studied.

In Ref. [11] it was noticed that more sweeps were
required for convergence close to the critical coupling.
For � close to condensation, a similar effect is observed.

C. Two-point function and phenomenological accuracy

As � is increased from zero, the chemical potential at
which the particle density becomes nonzero moves away
from the free-field result. Figure 4 shows this for L ¼ 40.
We would expect that the condensation occurs when � *
mR, the renormalized mass, at weak coupling. The behav-
ior of the two-point function is shown in Fig. 5 for various
�. We obtain the scalar masses nonperturbatively from
these results by a fit to the long-distance behavior CðxÞ ¼
Ae�mx=

ffiffiffi
x

p
. As is familiar from studies in lattice

Monte Carlo simulations, the ‘‘plateau’’ in the fitting errors
is taken, to eliminate undesirable short-distance behavior
(typically, the plateau is found at x � 6). Finite-size effects
were determined to be negligible by comparison with
similar measurements taken with L ¼ 10 and L ¼ 20.
Similarly, there was no discernible difference with results
for a smaller truncation on the same lattice volume (L ¼
40 and N ¼ M ¼ 21). The measurements from these cal-
culations agree within errors with the results summarized
in Table I.
Taken together, these plots demonstrate that the present

technique sidesteps the sign problem, and only gives a
nonzero particle density in the phenomenologically ex-
pected region � * mR. As shown in Table I, we can
separately estimate the value of the chemical potential at
which we see nonzero particle density from the data shown

1.05 1.1 1.15 1.2 1.25
µ

1.5

1.55

1.6

1.65

1.7

1.75
E

/L
L=10
L=20
L=40

FIG. 3. Plot showing the ground state energy per site E=L as a
function of �, for m2 ¼ 1, � ¼ 0:1, andM ¼ N ¼ 28 at various
L. The finite-size effect is much more prominent here than in
Fig. 2.

4.12.11
µ

0

0.5

1

1.5

j 0

λ=0.1
λ=0.2
λ=0.5

FIG. 4. The charge density j0 is plotted as a function of �, for
m2 ¼ 1, L ¼ 40, and M ¼ N ¼ 28 at various �. The phenom-
enologically expected zero charge density is observed for �<
�C.

0 5 10 15
x

-6
1 x 10

-8
1 x 10

0.0001

0.01

1

C
(x

)

λ=0.1
λ=0.2
λ=0.5

FIG. 5. Example measurements of the two-point correlator
CðxÞ for various �, m2 ¼ 1 with volume L ¼ 40 and truncation
M ¼ N ¼ 28.

TABLE I. Comparing renormalized masses and values of the
chemical potential at which condensation occurs. For mR, the
error quoted is the estimated error in the plateaued fit whereas for
�con it is half the spacing between parameter choices.

� mR �con

0.1 1:071� 0:001 1:065� 0:005
0.2 1:114� 0:001 1:123� 0:003
0.5 1:231� 0:001 1:275� 0:005
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in Fig. 4, and the renormalized mass from fits to data
comparable to that of Fig. 5. Taking the onset of nonzero
particle density as occurring halfway between the last
parameter choice where hj0i ¼ 0 and the first for which
hj0i � 0, the numbers are consistent for small �.

IV. CONCLUSIONS

We have shown that it is possible to use the DMRG to
study bosonic, relativistic quantum field theories with two
components in (1þ 1) dimensions at zero temperature but
nonzero chemical potential. The method correctly captures
the formation of a nonzero particle density for large chemi-
cal potentials. It is our hope that it could serve as a useful
numerical bridge from work in condensed-matter systems
using microscopic Hamiltonians to studies of relativistic
field theories at finite density.

Our discussion has considered various sources of error,
and how best to capture the nonperturbative physics with a
finite truncation in boson number states. With improve-
ments in numerical algorithms, and by taking advantage of
developments originally employed in condensed-matter
contexts, the DMRG shows promise as an alternative to
other numerical methods in relativistic field theory. With
better computing resources, the results described here can
be extended to finite temperature through the techniques
described in Sec. II C.

The applicability of the DMRG to bosonic systems will
always be limited by the truncations and approximations
involved: to a finite basis per site, to a finite volume, and to
machine precision or worse in convergence of the Arnoldi
algorithm. Fermionic systems do not suffer from the first of
these three issues. Hence, as a step toward the long-term
goal of studying QCD, one could revisit the massive
Schwinger or Thirring models with nonzero chemical po-
tential and at finite temperature [26].

Another innate limitation of DMRG is to one spatial
dimension. Fortunately, much progress has been made by
approaching the problem from a different direction. By
identifying suitable tensor network states and correspond-
ing renormalization procedures, systems in higher spatial
dimensions can be studied. Such approaches include pro-
jected entangled pair states [27] and the multiscale entan-
glement renormalization ansatz [28,29]. With these
methods, the major issue to overcome is the large bond
dimension needed to treat the system discussed in the
present work; this will make adequate system sizes com-
putationally too expensive for the time being [30].

The work in this paper has been carried out in the grand
canonical ensemble. We can work in the canonical en-
semble by finding low-lying eigenvectors of the total
charge Q. This compels us to simultaneously diagonalize
H andQ. If we have a potential with interactions that allow
a stable Q-ball to form [31,32], then we would anticipate
that such an inhomogeneity would appear. This would
allow the nonperturbative, relativistic study of nontopolog-

ical solitons, even if the possibilities are limited by the lack
of dynamics and the restrictive dimensionality.
Perhaps one can also go the other way, from particle

physics to condensed matter. A single-component Bose-
Hubbard model can be used to study nontopological sol-
itons in nonrelativistic field theory; these may be thought
of as Q-ball analogs [33]. With such a simple model, it is
possible to explicitly work in a sector of fixed charge by
choice of basis [16], and then one simply diagonalizes the
Hamiltonian as usual to find the ground state and excita-
tions of the nontopological soliton. The interactions neces-
sary to create such an object have not, to our knowledge,
been studied with the DMRG in either condensed matter or
particle physics.
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APPENDIX: MATRIX ELEMENTS

Here we give the matrix elements for a position-space
discretized two-component scalar field with an Oð2Þ sym-
metry, an extension of the work in Ref. [11]. We begin with
the operators for the individual fields and their conjugate
momenta. On a given lattice site with basis states jm; ni it is
straightforward to see, given (6) and (7) and requiring
normalization,

hm; nj�1jm0; n0i ¼ 1ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
�m�1;m0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 � 1

p
�m;m0�1��n;n0 ; (A1)

hm; nj�2jm0; n0i ¼ 1ffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
�n�1;n0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � 1

p
�n;n0�1��m;m0 ; (A2)

hm; nj�1jm0; n0i ¼ iffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
�m�1;m0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 � 1

p
�m;m0�1��n;n0 ; (A3)

and

hm; nj�2jm0; n0i ¼ iffiffiffi
2

p ½ ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
�n�1;n0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � 1

p
�n;n0�1��m;m0 : (A4)

To construct higher moments of the fields, we must write
explicitly

hm; nj�a�ajm0; n0i ¼ hm; nj�2
1 þ �2

2jm0; n0i; (A5)
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hm; nj�a�ajm0; n0i ¼ hm; nj�2
1 þ�2

2jm0; n0i; (A6)

and

hm; njð�a�aÞ2jm0; n0i ¼ hm; nj�4
1 þ 2�2

1�
2
2 þ�4

2jm0; n0i:
(A7)

For the momenta components we then have

hm; nj�2
1jm0; n0i ¼ 1

2½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� 1Þðm� 2Þp

�m�1;m0þ1

þ ð2m� 1Þ�m;m0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm0 � 1Þðm0 � 2Þp
�mþ1;m0�1��n;n0 ;

(A8)

and

hm; nj�2
2jm0; n0i ¼ 1

2½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

p
�n�1;n0þ1

þ ð2n� 1Þ�n;n0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 � 1Þðn0 � 2Þ

p
�nþ1;n0�1��m;m0 :

(A9)

Finally, for the field components we have

hm; nj�2
1jm0; n0i ¼ 1

2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 1Þðm� 2Þ

p
�m�1;m0þ1

þ ð2m� 1Þ�m;m0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 � 1Þðm0 � 2Þ

p
�mþ1;m0�1��n;n0 ;

(A10)

hm; nj�2
2jm0; n0i ¼ 1

2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn� 1Þðn� 2Þp

�n�1;n0þ1

þ ð2n� 1Þ�n;n0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 � 1Þðn0 � 2Þ

p
�nþ1;n0�1��m;m0 ;

(A11)

hm; nj�4
1jm0; n0i ¼ 1

4½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� 1Þðm� 2Þðm� 3Þðm� 4Þp

�m�1;m0þ3 þ 4m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� 1Þðm� 2Þp

�m;m0þ2

� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm� 1Þðm� 2Þp

�m�1;m0þ1 � 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 � 1Þðm0 � 2Þ

p
�mþ1;m0�1 þ 3ð2m2 � 2mþ 1Þ�m;m0

þ 4m0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm0 � 1Þðm0 � 2Þp
�mþ2;m0 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm0 � 1Þðm0 � 2Þðm0 � 3Þðm0 � 4Þp

�mþ3;m0�1��n;n0 ; (A12)

hm; nj�4
2jm0; n0i ¼ 1

4½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þðn� 3Þðn� 4Þ

p
�n�1;n0þ3 þ 4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

p
�n;n0þ2 � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þðn� 2Þ

p
�n�1;n0þ1

� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 � 1Þðn0 � 2Þ

p
�nþ1;n0�1 þ 3ð2n2 � 2nþ 1Þ�n;n0 þ 4n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 � 1Þðn0 � 2Þ

p
�nþ2;n0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 � 1Þðn0 � 2Þðn0 � 3Þðn0 � 4Þ

p
�nþ3;n0�1��m;m0 : (A13)
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[17] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[18] R.M. Noack and S. R. White, Springer Lecture Notes in

Physics (Springer, Heidelberg, 1999), Chap. 2.
[19] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93,

227205 (2004).
[20] F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405

(2010).
[21] T. Sugihara, Nucl. Phys. B, Proc. Suppl. 140, 791 (2005).

DAVID J. WEIR PHYSICAL REVIEW D 82, 025003 (2010)

025003-8

http://dx.doi.org/10.1016/0370-2693(83)91290-X
http://dx.doi.org/10.1016/S0920-5632(97)00484-2
http://dx.doi.org/10.1016/S0920-5632(97)00484-2
http://dx.doi.org/10.1016/0550-3213(86)90582-1
http://dx.doi.org/10.1088/1126-6708/2005/07/022
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1080/00018730600766432
http://dx.doi.org/10.1103/PhysRevLett.81.445
http://dx.doi.org/10.1103/PhysRevLett.81.445
http://dx.doi.org/10.1103/PhysRevLett.102.131601
http://dx.doi.org/10.1088/0953-4075/39/24/015
http://dx.doi.org/10.1088/0953-4075/39/24/015
http://dx.doi.org/10.1088/1126-6708/2004/05/007
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://dx.doi.org/10.1103/PhysRevLett.83.1514
http://dx.doi.org/10.1103/PhysRevLett.83.1514
http://dx.doi.org/10.1002/andp.200810326
http://dx.doi.org/10.1103/PhysRevD.25.502
http://dx.doi.org/10.1103/PhysRevD.25.502
http://dx.doi.org/10.1103/PhysRevB.48.10345
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1103/PhysRevLett.104.190405
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.290


[22] V. Meden and U. Schollwöck, Phys. Rev. B 67, 035106
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