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Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-

conformal invariance in the N ¼ 1 three-dimensional supersymmetric Chern-Simons model, coupled to

a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant

Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter

superfields are dynamically generated after two-loop corrections to the effective superpotential. We also

discuss theN ¼ 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model

is not feasible, because it is incompatible with perturbation theory.
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I. INTRODUCTION

The mechanism of spontaneous symmetry breaking is
essential to explain the origin of masses of fermions and
vector bosons in the standard model, and it is the reason
why the Higgs particle, that is hoped to be discovered by
the LHC in the next years, was postulated. In 1973 [1],
Coleman and Weinberg (CW) discussed the very appealing
scenario that radiative corrections could naturally induce
this symmetry breaking. Their discussion was focused on
four-dimensional models, but the mechanism of dynamical
generation of mass in three-dimensional models was also
considered afterwards [2–6].

Three-dimensional fields models are interesting for of-
fering a simpler setting to study properties of gauge theo-
ries, including the possibility of the introduction of a
topological mass (Chern-Simons) term [7,8] in the
Lagrangian. From a more practical viewpoint, Chern-
Simons theories in three-dimensions were applied to the
understanding of the quantized Hall effect [9]. More re-
cently, supersymmetric Chern-Simons models [10,11]
have been on focus due to its duality with gravity [12].
Conformal Chern-Simons theory have been explored in the
construction of a theory modeling M2-branes [13–15], and
Chern-Simons gravities were coupled to 2p-branes [16].
When studying some three-dimensional gauge theories
coupled to a scalar field, in such a way that no dimension-
ful parameters appear in the classical Lagrangian, it was
found that quantum corrections dynamically introduce a
mass for the vector and scalar particles [2–6]. Different

from what happens in four-dimensional models, where the
gauge symmetry is dynamically broken already at one-loop
order, in three dimensions this mechanism appears only
when two-loop corrections to the effective potential are
taken into account.
It was long ago shown that the three-dimensional mass-

less supersymmetric quantum electrodynamics and Wess-
Zumino models do not exhibit dynamical generation of
mass up to one-loop level [17]. Recently, in [18], one of us
examined the two-loop quantum corrections to the D ¼
ð2þ 1Þ Wess-Zumino model and found the existence of
dynamical generation of mass, via Coleman-Weinberg
mechanism, and in [19] it was shown that the massive
three-dimensional supersymmetric quantum electrody-
namics exhibit a spontaneous gauge symmetry broken
phase. This motivates the investigation of whether dynami-
cal generation of mass also happens in higher loop levels in
the three-dimensional supersymmetric Chern-Simons-
matter model (SCSM).
In this work, we will study the possibility of dynamical

breaking of the gauge symmetry and of supersymmetry in a
three-dimensional supersymmetric Chern-Simons model
coupled to a complex scalar matter superfield with a
quartic self-interaction. This is the simplest supersymmet-
ric three-dimensional analog to the conformally invariant
model studied by Coleman-Weinberg [1], where no mass
scale appears in the classical Lagrangian. Our results are
that the superconformal and gauge symmetries admits a
broken phase but supersymmetry does not. We also show
that the CW mechanism of breakdown of the gauge and
superconformal symmetries does not work for the N ¼ 2
extension of the SCSM, in agreement with the results
obtained by Gaiotto and Yin [20] and by Buchbinder
et al. [21].
The paper is organized as follows. In Sec. II we will

define and study the N ¼ 1 SCSM model. In Sec. III we
will deal with the N ¼ 2 extension of SCSM model [22–
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24], and in Sec. IV we present a discussion and our final
remarks.

II. THE SUPERSYMMETRIC D ¼ ð2þ 1Þ CHERN-
SIMONS-MATTER MODEL

Our starting point is the classical action

S ¼
Z

d5z

�
A�W� � 1

2
r��r��þ �ð ���Þ2

�
; (1)

where W� ¼ ð1=2ÞD�D�A� is the gauge superfield

strength and r� ¼ ðD� � ieA�Þ it is the supercovariant
derivative. As we are not dealing with topological aspects
of the model, we absorbed the Chern-Simons level parame-
ter � into the dimensionless coupling e ¼ e0=

ffiffiffiffi
�

p
consid-

ered to be small. We use the notations and conventions
contained in [25]. The component expansions of the super-
fields involved in our work are provided in Appendix A.
This action possesses manifest N ¼ 1 supersymmetry,
but this symmetry can be lifted to N ¼ 2 by the elimina-
tion of the fermion-number violating terms [22], identify-
ing the coupling constants according to � ¼ �e2=8. This
extension will be treated in the next section.

The model defined in Eq. (1) is invariant under the
following infinitesimal Uð1Þ gauge transformations,

�� ! ��0 ¼ ��ð1� ie�Þ; � ! �0 ¼ ð1þ ie�Þ�;

A� ! A0
� ¼ A� þD��; (2)

where the gauge parameter � ¼ �ðx; �Þ is a real scalar
superfield.

At tree level, the gauge symmetry of this model is not
spontaneously broken, differently from what happens
when a mass term is included in the classical action [26].
Therefore, we will investigate if it can be broken by
radiative corrections. To this end, we shift the superfields
�� and � by the classical background field

�cl ¼ �1 � �2�2; (3)

where �1 and �2 are real constants. Rewriting them in
terms of two real quantum fields � and � in the form,

�� ¼ 1ffiffiffi
2

p ð�þ �cl � i�Þ � ¼ 1ffiffiffi
2

p ð�þ �cl þ i�Þ;
(4)

we assume the vanishing of the vacuum expectation values
(VEV) of the quantum superfields, i.e., h�i ¼ h�i ¼ 0 at
any order of perturbation theory. In terms of � and � an
infinitesimal gauge transformation results in

� ! �0 ¼ �þ e�ð�þ �clÞ;
� ! �0 ¼ �� e��;

(5)

and the gauge invariant action (1) results in

S ¼
Z

d5z

�
A�W� � e2�2

cl

4
A�A� � e�cl

2
D�A��

þ 1

2
�ðD2 þ 3��2

clÞ�þ 1

2
�ðD2 þ ��2

clÞ�

þ 1

2
�clD

2�cl þ �

4
�4

cl þ
e

2
D��A��� e

2
D��A��

� e2

2
ð�2 þ�2ÞA2 � e2�cl�A

2 þ �

4
ð�4 þ�4Þ

þ �

2
�2�2 þ ��cl�ð�2 þ�2Þ � eD��cl�A�

þ ð��3
cl þD2�clÞ�

�
: (6)

In the quantization process, we may eliminate the mix-
ing between the superfields A� and� that appears in third
term of Eq. (6), by using an R� gauge fixing, F G ¼
ðD�A� þ �e�cl�=2Þ. This is done by the inclusion of
the gauge fixing and Faddeev-Popov action,

SGFþFP ¼
Z

d5z

�
1

2�

�
D�A� þ �

e�cl

2
�

�
2 þ �cD2c

þ �

4
e2�2

cl �ccþ
�

4
e2�cl �c�c

�
: (7)

We must observe that even by using an R� gauge a

complete elimination of the mixing is not attained; in
fact the term �eD��cl�A� remains. This term will be
disregarded in the approximation we will consider below,
because it contains supercovariant derivatives of the clas-
sical superfield �cl.
From the last two terms of Eq. (6), we can see that the

model can exhibit a nonvanishing tadpole contribution. To
avoid problems with the quantization of this theory (e.g.
lack of unitarity), we have to impose that the tadpole
equation vanish: this condition is usually called the gap
equation. At the tree level, the gap equation for � only
allows the trivial solution �cl ¼ 0. In the sequel, by using
the tadpole method, we will calculate the one- and two-
loop corrections to the effective superpotential, in an ap-
proximation (Kählerian) that we will discuss first.
From Eq. (6), the zero loop effective action �cl, the

superpotential Vcl, the Kählerian superpotential Kcl and
the scalar potential Ucl can be seen to be given by

�½�cl� ¼ �
Z

d5zVcl ¼
Z

d5z

�
1

2
�clD

2�cl � Kclð�clÞ
�

¼ �
Z

d3xUcl ¼
Z

d3x

�
1

2
�2

2 � �2

dKcl

d�cl

ð�1Þ
�

(8)

where Kclð�clÞ ¼ � �
4�

4
cl and �2

dKcl

d� ð�1Þ ¼ ���2�
3
1.

After the elimination of the auxiliary field �2 the scalar

potential at classical level is given by: U0
eff ¼ �2

2 �
6
1.

As we are working in an explicit supersymmetric for-
mulation, the radiative corrections to the action and effec-
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tive superpotential will be of the form [27]

�rc½�cl� ¼ �
Z

d5zVrc

¼ �
Z

d5z½Krcð�clÞ
þ FðD��clD��cl; D

2�cl; �clÞ�; (9)

where Krcð�clÞ, a function of �cl but not of its derivatives,
stands for the radiative corrections to the Kählerian effec-
tive superpotential, and F stands for the radiative correc-
tions explicitly involving at least a derivative of the
classical field �cl. After integrating in d2� we get for �rc:

�rc½�cl� ¼ �
Z

d3xUrc

¼ �
Z

d3x

�
�2

dKrc

d�1

ð�1Þ þ �2
2fð�1; �2Þ

�
(10)

where in the second term we made explicit the fact that the
contributions coming from the F term start at least with
two powers of �2.

From Eq. (8)–(10), we have for the effective superpo-
tential and the effective scalar potential:

Veffð�clÞ ¼ �1

2
�clD

2�cl þFðD��clD��cl;D
2�cl;�clÞ

þKð�clÞ
Ueffð�1;�2Þ ¼ �1

2
�2

2 þ�2
2fð�1;�2Þ þ�2

dK

d�1

ð�1Þ; (11)

where K ¼ Kcl þ Krc. The vacuum of the model is deter-
mined by the equations:

0 ¼ @Ueff

@�1

¼ �2

d2K

d�2
1

ð�1Þ þ �2
2

@f

@�1

ð�1; �2Þ; (12)

0 ¼ @Ueff

@�2

¼ ��2 þ dK

d�1

ð�1Þ þ 2�2fð�1; �2Þ þ �2
2

@f

@�2

ð�2; �2Þ:
(13)

For �2 ¼ 0 these equations result in Ueffð�1; 0Þ ¼ 0 at its
minimum, signaling a supersymmetric phase, and the con-
dition:

0 ¼ dK

d�1

ð�1Þ: (14)

So, if a solution �1 ¼ v of this last equation exists, then
Ueffðv; 0Þ ¼ 0, and supersymmetry is preserved. In short:
the verification of the preservation of supersymmetry only
requires the knowledge of Kð�clÞ. From now on we will
restrict to its calculation, instead of the more involved
calculation of Veffð�clÞ.

To calculate Kð�clÞ it is enough to derive the Feynman
rules from Eqs. (6) and (7) by only preserving the depen-
dence in � and dropping dependences in D�� and D2�,
which also means, to make the D-algebra operations by
taking D�ð�XÞ ¼ �D�X and D2ð�XÞ ¼ �D2X. In this
way the free propagators are given by

hT�ðk; �Þ�ð�k; �0Þi ¼ �i
D2 �M�

k2 þM2
�

�ð2Þð�� �0Þ;

hT�ðk; �Þ�ð�k; �0Þi ¼ �i
D2 �M�

k2 þM2
�

�ð2Þð�� �0Þ;

hTA�ðk; �ÞA�ð�k; �0Þi ¼ i

4

�ðD2 þMAÞD2D�D�

k2ðk2 þM2
AÞ

þ �
ðD2 � �MAÞD2D�D�

k2ðk2 þ �2M2
AÞ

�

� �ð2Þð�� �0Þ: (15)

It is important to remark that the effective superpotential is
a gauge-dependent quantity, as discussed in [28]. For sim-
plicity, we will work in a supersymmetric Landau gauge,
that is � ¼ 0. With this choice, the ghosts superfields
decouple, and we can identify the ‘‘masses’’ of the inter-
acting superfields as

M� ¼ 3��2
cl; M� ¼ ��2

cl; MA ¼ e2�2
cl

4
: (16)

First, let us consider the one-loop corrections to the
tadpole equation, which are drawn in Fig. 1. The contribu-

tions at one-loop order, up to a common
R d3p

ð2	Þ3 d
2��ðp; �Þ

factor, can be written as

�ð1Þ
1lðaÞ ¼ 3i��cl

Z d3k

ð2	Þ3
1

k2 þM2
�

; (17a)

�ð1Þ
1lðbÞ ¼ i��cl

Z d3k

ð2	Þ3
1

k2 þM2
�

; (17b)

�ð1Þ
1lðcÞ ¼ i

e2

4
�cl

Z d3k

ð2	Þ3
1

k2 þM2
A

: (17c)

We will perform the integrals in Eq. (17) by using the
regularization by dimensional reduction [29]. This method
of regularization has some advantages: first, one-loop
graphs are finite; second, two-loop divergences are a sim-

(a) (b) (c)

FIG. 1. One-loop contribution to the tadpole equation in the
Landau gauge (� ¼ 0). Solid lines represent the � propagator,
double lines the � propagator, wave lines the gauge superfield
propagator, and cut solid lines � superfield.
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ple pole in 
 ¼ 3�D; and third, starting with a
Lagrangian with only massless parameters, no dimensional
parameters are generated (the � parameter introduced by
the regularization will only appears in logarithms). This

means, for example, that no mass term of the form ���
(which is not present in the unrenormalized Lagrangian) is
generated by the radiative corrections. For the tadpoles we
get

�ð1Þ
ð0þ1Þl ¼ i

�3
cl

4	

�
4	�� 10�2 � e4

16

�
: (18)

Setting �ð1Þ
ð0þ1Þl ¼ 0, we can see that the one-loop correction

is not enough to ensure a nontrivial solution to the gap
equation, therefore no mass is generated in the first quan-
tum approximation. The same happens in the supersym-
metric Maxwell theory [17], and nonsupersymmetric
three-dimensional gauge models [2–6].

Now, we evaluate the two-loop contributions to the tad-
pole equation, which arise from the diagrams depicted in
Fig. 2. Some details of this calculations are given in
Appendix B. The inclusion of such two-loop corrections
in the tadpole equation leads to

�ð1Þ
ð0þ1þ2Þl ¼ i�3

cl

�
b1 þ b2 ln

�2
cl

�

�
þ iB�3

cl; (19)

where B is the counterterm, to be fixed later, � is the mass
scale introduced by the regularization, b1 is a function of
the coupling constants and 1=
 ¼ 1=ð3�DÞ (D is the
dimension of the spacetime). The quantity b2 is explicitly
given by

b2 ¼ � 116e6 þ 543e4�þ 432e2�2 � 71 552�3

12 288	2

� �ð10�3Þe6 � ð4� 10�3Þe4�
� ð4� 10�3Þe2�2 þ 0:6�3: (20)

Let us evaluate the Kählerian effective superpotential
through the tadpole equation Eq. (24) using the tadpole
method [30–32] as in [19]. The Kählerian effective super-

potential is obtained from the tadpole equation asKð�clÞ ¼
i
R
d��ð1Þ, therefore the two-loop Kählerian effective

superpotential is given by

Kð�clÞ ¼ i
Z

d�cl�
ð1Þ
ð0þ1þ2Þl

¼ � b2
4
�4

cl

�
b1
b2

� 1

2
þ ln

�2
cl

�

�
� B

4
�4

cl: (21)

The normalization of the Kählerian effective superpoten-
tial, as usual, is defined in terms of the tree-level coupling
constant � according to

�

4
� 1

4!

@4Kð�clÞ
@�4

cl

���������cl¼v

¼ � 1

12

�
3Bþ 3b1 þ 11b2 þ 3b2 ln

v2

�

�
; (22)

where v is the renormalization point; Eq. (22) fixes the
counterterm B,

B ¼ �b1 � �� b2

�
11

3
þ ln

v2

�

�
: (23)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (s)(r)

FIG. 2. Diagrams that contribute to the tadpole equation at two-loop approximation in the supersymmetric Landau gauge.
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By substituting this counterterm in Eq. (19), the renormal-
ized Kählerian effective superpotential can be cast as

Kð�clÞ ¼ �b2
4
�4

cl ln

�
�2

cl

v2
exp

�
�

b2
� 25

6

��
: (24)

The minimum of the renormalized Kählerian effective
superpotential is at �cl ¼ v that satisfies,

@Kð�clÞ
@�cl

���������cl¼v
¼ 0; (25)

and a nontrivial minimum, with v � 0, requires the fol-
lowing constraint on the coupling constants,

� ¼ 11
3 b2

� �ð4� 10�3Þe6 � ð16� 10�3Þe4�
� ð13� 10�3Þe2�2 þ 2�3: (26)

The compatibility of this relation with the assumptions of
perturbation theory is the key of Coleman-Weinberg
mechanism. From Eq. (26), one can see that � must be of
order of ð4� 10�3Þe6 þOðe10Þ, thus for small e we are
safely within the regime of validity of the perturbative
expansion. In a model with vanishing e, however, the
dynamical gauge symmetry breaking is incompatible
with perturbation theory [1–6], because for e ¼ 0 the
Eq. (26) implies �� 1.

The mass term of matter superfield �cl is obtained as the
second derivative of the renormalized Kählerian effective
superpotential at its minimum. Using Eq. (26), we obtain

M� ¼ d2Kð�clÞ
d�2

cl

���������cl¼v
� ð2� 10�3Þe6v2; (27)

where the mass of the gauge superfield is given as

MA ¼ e2

12�
M� � �250e�4: (28)

III. EXTENDED SUSY MODEL

A supersymmetric extension of the model defined in
Eq. (1) to N ¼ 2 can be obtained by identifying the
coupling constants as � ¼ �e2=8, plus some others gen-
eralizations that can be seen in [22]. In particular, the
N ¼ 2 supersymmetric Chern-Simons action written in
terms of N ¼ 1 superfields was first obtained by Siegel
[33]. Evaluating the quantum corrections discussed in the
previous section in this case, the Kählerian effective super-
potential can be expressed by

Kð�clÞ ¼ c2
4
e6�4 log

�
�2

v2
exp

�
1

c2e
4
� 25

6

��
; (29)

where c2 ¼ 519
32 768	2 � ð1:6� 10�3Þ.

Now, studying a possible minimum of such a Kählerian
effective superpotential for v � 0, we found that e2 �

ð4:7� 10�2Þe6, which implies e� 2. Thus, as in other
four- and three-dimensional scalar models [1–6], in this
case the Coleman-Weinberg effect is not feasible, because
forN ¼ 2 the model presents only one coupling constant
into play. Our results are in agreement with previous results
obtained by Gaiotto and Yin [20] and Buchbinder et al.
[21,34], where it was shown that theN ¼ 2, 3 SCSM does
not exhibit spontaneous breaking of superconformal
invariance.

IV. CONCLUDING REMARKS

In this paper we studied the mechanism of dynamical
breaking of gauge symmetry in a three-dimensional super-
symmetric model with classical superconformal invari-
ance. Since we were working in an explicitly
supersymmetric formalism, no breakdown of supersymme-
try was detected, but we show how the two-loop quantum
corrections dynamically break the gauge and superconfor-
mal invariances of the model, generating masses to the
gauge and matter superfields. We also show that, in the
N ¼ 2 extension of the model studied by us, the
Coleman-Weinberg mechanism of dynamical symmetry
breaking is incompatible with perturbation theory, in
agreement with the results obtained by Gaiotto and Yin
[20] and Buchbinder et al. [21].
One natural extension of our work would be to consider

the possibility of supersymmetry breaking in the spirit of
what was done for the Wess-Zumino model in [35], or
through the component formulation as in [18]. Another
possibility is to study the effective superpotential for a
noncommutative extension of the present model, as done
in [27].
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APPENDIX A: THE EXPANSIONS OF
SUPERFIELDS

A complex superfield can be written as the sum of real
and imaginary parts as

�ðx; �Þ ¼ 1ffiffiffi
2

p ½�ðx; �Þ þ i�ðx; �Þ�;

��ðx; �Þ ¼ 1ffiffiffi
2

p ½�ðx; �Þ � i�ðx; �Þ�;
(A1)

where the real scalar superfields can be expanded in terms
of component fields as follows
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�ðx; �Þ ¼ �ðxÞ þ ��c �ðxÞ � �2FðxÞ;
�ðx; �Þ ¼ 	ðxÞ þ ����ðxÞ � �2GðxÞ: (A2)

The spinorial superfield (gauge superfield), possess the
following � expansion

A�ðx; �Þ ¼ ��ðxÞ þ ��½C��BðxÞ � iV��ðxÞ� � �2 ~��ðxÞ;
(A3)

and the associated field strength,

W� ¼ 1
2D

�D�A�; (A4)

satisfies the Bianchi identity D�W� ¼ 0. The component
expansion of this field strength reads

W� ¼ 1
2ð@���� þ ~��Þ þ ��f�� � �212ði@�� ~�� þh��Þ;

(A5)

where f�� ¼ ð@��V�
� þ @��V

�
�Þ is the 2-spinorial form

of the Maxwell field strength FMN ¼ ð@MAN � @NAMÞ, M
andN are the usual indices of the spacetime, which assume
the values 0, 1, and 2.

APPENDIX B: TWO-LOOP CALCULATIONS

At two loop, the contributions to the gap equation,
associated with the diagrams depicted in Fig. 2, are given
by

�ð1Þ
2lðaÞ ¼ i

3e2

2
��cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3
M�

ðk2 þM2
�Þ2ðq2 þM2

AÞ
;

(B1)

�ð1Þ
2lðbÞ ¼ �18i�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M�

ðk2 þM2
�Þ2ðq2 þM2

�Þ
; (B2)

�ð1Þ
2lðcÞ ¼ �3i�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3
M�

ðk2 þM2
�Þ2ðq2 þM2

�Þ
;

(B3)

�ð1Þ
2lðdÞ ¼ �i

3

4
�e2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 1

ðk2 þM2
�Þ2½ðkþ qÞ2 þM2

��q2ðq2 þM2
AÞ

� ½M2
�MAk � q� 2MAM�M�k � q�MAk

2k � q
� ðMA þM�ÞM2

�q
2 � ðMA þM� � 2M�Þq2k2

þ 2M�q
2k � q�; (B4)

�ð1Þ
2lðeÞ ¼

3i

16
�e4�3

cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 1

k2ðk2 þM2
AÞ½ðkþ qÞ2 þM2

��2q2ðq2 þM2
AÞ

� ½M2
�M

2
Aðk � qÞ �M2

Aðkþ qÞ2ðk � qÞ
� 2MAM�ðk � qÞðk2 þ q2Þ þ 4MAM�k

2q2

þM2
�k

2q2 � k2q2ðkþ qÞ2�; (B5)

�ð1Þ
2lðfÞ ¼ �18i�3�3

cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 5M2
� � k2

ðk2 þM2
�Þ2½ðkþ qÞ2 þM2

��ðq2 þM2
�Þ

;

(B6)

�ð1Þ
2lðgÞ ¼ �6i�3�3

cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M2
� þ 4M�M� � k2

ðk2 þM2
�Þ2½ðkþ qÞ2 þM2

��ðq2 þM2
�Þ

;

(B7)

�ð1Þ
2lðhÞ ¼ �i

e2

2
��cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M�

ðk2 þM2
�Þ2ðq2 þM2

AÞ
; (B8)

�ð1Þ
2lðiÞ ¼ �2i�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3
M�

ðk2 þM2
�Þ2ðq2 þM2

�
Þ ;

(B9)

�ð1Þ
2lðjÞ ¼ �6i�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M�

ðk2 þM2
�Þ2ðq2 þM2

�Þ
; (B10)

�ð1Þ
2lðkÞ ¼

i

4
�e2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 1

ðk2 þM2
�Þ2½ðkþ qÞ2 þM2

��q2ðq2 þM2
AÞ

� ½MAM�ð2M� �M�Þk � q�MAðk � qÞk2
�M2

�ðMA þM�Þq2 � 2M�q
2k � q

þ ðMA þM� � 2M�Þk2q2�; (B11)
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�ð1Þ
2lðlÞ ¼ � 4i

3
�3�3

cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 3M� þ 2M�M� � k2

ðk2 þM2
�Þ2ðq2 þM�Þ½ðkþ qÞ2 þM��

;

(B12)

�ð1Þ
2lðmÞ ¼ i

e4

8
�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 1

k2ðk2 þM2
AÞ2½ðkþ qÞ2 þM2

��ðq2 þM2
�Þ

� ½M2
AðM� �M�Þk � q�M�MAðMA þ 2M�Þk2

þ ðM� � 2MA �M�Þðk � qÞk2 þM�ðk2Þ2
� 2MAk

2q2�; (B13)

�ð1Þ
2lðnÞ ¼ � i

96
e6�3

cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� 1

k2ðk2 þM2
AÞ2½ðkþ qÞ2 þM2

��q2ðq2 þM2
AÞ

� ½M3
AM�k � q� ðk2Þ2q2 �MAðM� þMAÞ

� k � qk2 �M2
Ak � qq2 �MAð3MA þ 2M�Þk2q2

þ ðk � qÞk2q2�; (B14)

�ð1Þ
2lðoÞ ¼ i

e4

16
�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3
MA

ðk2 þM2
AÞ2ðq2 þM2

�Þ
;

(B15)

�ð1Þ
2lðpÞ ¼ i

e4

16
�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3
MA

ðk2 þM2
AÞ2ðq2 þM2

�Þ
;

(B16)

�ð1Þ
2lðqÞ ¼ �9i�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M�

ðk2 þM2
�Þðq2 þM2

�Þ½ðk� qÞ2 þM2
��

;

(B17)

�ð1Þ
2lðrÞ ¼ � 4i

3
�2�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

� M� þ 2M�

ðk2 þM2
�Þðq2 þM2

�Þ½ðk� qÞ2 þM2
��

;

(B18)

�ð1Þ
2lðsÞ¼�i

e4

16
�cl

Z d3k

ð2	Þ3
d3q

ð2	Þ3

�M2
AM�k�q�MAðk2þq2Þk�q�ð2MAþM�Þk2q2
k2ðk2þM2

AÞq2ðq2þM2
AÞ½ðq�kÞ2þM2

��
;

(B19)

where the D-algebra manipulations on the two-loop super-
graphs were performed with the help of SUSYMATH [36], a
MATHEMATICA� package for supergraph calculations.

Performing the integrals in Eqs. (B1)–(B19) with the
help of formulas [2–4], adopting the regularization by
dimensional reduction [29], and adding up the classical,
one and two-loop contributions, we obtain the following
one point function

�ð1Þ
ð0þ1þ2Þl ¼ i�3

cl

�
b1 þ b2 ln

�2
cl

�

�
; (B20)

where � is a mass scale introduced by the regularization

b2 ¼ � 116e6 þ 543e4�þ 432e2�2 � 71 552�3

12 288	2

� �ð10�3Þe6 � ð4� 10�3Þe4�
� ð4� 10�3Þe2�2 þ 0:6�3; (B21)

and b1 is some function of coupling constants and 1=
 ¼
1=ð3�DÞ (D is the dimension of spacetime).
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