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First conformal transformations of the S matrix are derived in massless �4 theory. Then it is shown that

the anomalous transformations can be rewritten as a symmetry once one has introduced a local coupling

and interprets the charge of the symmetry accordingly. By introducing a suitable effective coupling on

which the S matrix depends, one is able to identify via the � function an underlying new spacetime with a

nontrivial conformal (flat) metric.
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I. INTRODUCTION

It is well known that conformal transformations realized
in quantum field theories in four-dimensional spacetime as
a rule are beset with anomalies. Formulated in terms of
Green functions (which are off-shell quantities) they are
parametrized by � functions, associated with the anoma-
lous behavior of interaction vertices and by � functions
associated with anomalous dimensions of the fields.
Exceptions were discovered mainly in the context of super-
symmetric quantum field theories, notably the famousN ¼
4 super-Yang-Mills theory. The question arises, Which
effects of these anomalies survive in physical quantities
like S-matrix or Green functions of physical operators? A
first answer has been given quite some time ago by
Zimmermann [1] for the dilatations in massless �4. In an
axiomatic setting he has shown that the S operator scales
with the � function

�2@�2S ¼ ��@�S: (1)

This can be understood as the renormalization group equa-
tion for the S operator. There is no contribution by �. This
result depends crucially on the fact that the propagator can
be shown to have a pole at vanishing momentum with finite
residue and therefore a field operator exists whose propa-
gator has a pole at zero momentum with residue one.
Hence the appearance of � is a consequence of normaliz-
ing the field operator unphysically. A first attempt to extend
this result to the special conformal transformations for a
massive �4 theory has been undertaken in [2]. But the
massless limit was not considered there, since the calcu-
lation suffered from divergences, which were too difficult
to control. In the present paper we work directly in the
massless limit by using the Bogoliubov-Parašiuk-Hepp-
Zimmermann-Lowenstein (BPHZL) subtraction scheme.
Assuming that the same normalization conditions hold as
the ones Zimmermann used, we find that the special con-
formal transformations change the S operator according to

i½K�; S� ¼ lim
Z

dx2x���

�

��ðxÞS: (2)

The term ‘‘lim’’ refers to constant coupling �, because in

the course of deriving this result the coupling � had been
generalized to be a function of spacetime, i.e. to vary with
x. Here, too, no effect of � shows up. By putting in (2) the
right-hand side to the left one can interpret the new equa-
tion as the expression for a symmetry, where the notion of
charge is extended to include the external field �. Yet
another possibility of using (2) will lead to the identifica-
tion of an underlying spacetime which is still flat, but has a
nontrivial conformal metric. Hence one has an interacting
theory which lives on a spacetime which is not Minkowski
and satisfies the axioms in the sense of perturbation theory.
The paper is organized as follows. In Sec. II we reca-

pitulate a few facts on conformal transformations for con-
stant and for x-dependent coupling �. In particular, we
present the Ward identity (WI) for dilatations and special
conformal transformations of the Green functions after the
anomalies have been absorbed. In Sec. III we derive the
transformation laws for the S operator. In Sec. IV these
transformation laws will be reinterpreted on a transformed
space (by dilatations and special conformal transforma-
tions, respectively). Section V contains discussion and
conclusions.

II. DILATATIONS AND SPECIAL CONFORMAL
TRANSFORMATIONS OF THE GREEN

FUNCTIONS

A. The classical approximation

The classical action

�cl ¼
Z

d4x

�
1

2
@�@�� 1

4!
��4

�
(3)

is invariant under dilatations and special conformal trans-
formations

�Dðx; d ¼ 1Þ� ¼ ð1þ x�@�Þ�; (4)

�K
�ðx; d ¼ 1Þ� ¼ ð2x�x� � ��

�x2Þ@��þ 2x��: (5)

Interpreting the classical action as the tree graph approxi-
mation of the generating functional � for vertex functions
(one-particle-irreducible Green functions)
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�cl ¼ �ð0Þ (6)

(loop number ¼ zero), one can express this invariance as a
WI

WD�ð0Þ ¼ 0; (7)

WK
��

ð0Þ ¼ 0; (8)

where

WD � �i
Z

d4x�D�
�

��
; (9)

WK
� � �i

Z
d4x�K�

�

��
: (10)

In higher orders these WI’s will be broken by anomalies.
In order to deal with those, it is convenient to promote the
coupling constant � to an external field �ðxÞ, for then one
can generate nonintegrated vertices by differentiation with
respect to �ðxÞ, a process which in the BPHZL renormal-
ization scheme is under control by the action principle. It is
also very useful to construct respective currents as x mo-
ments of the improved energy-momentum tensor. This can
be realized by starting from suitable WI operators (‘‘con-
tact terms’’).

~wT
	 � @	�� 1

4
@	

�
�

�

��

�
þ @	�

�

��
; (11)

WD½�;�� � �i
Z

dxx� ~wT
�; (12)

WK
�½�;�� � �i

Z
ð2x�x	 � ��

	x2Þ ~wT
	: (13)

Here the external field �ðxÞ has been assigned vanishing
canonical dimension and assumed to be �ðxÞ 2 SðR4Þ.

B. Higher orders

For quantization and calculation of higher orders we
employ the BPHZL renormalization scheme which first
of all means introducing an auxiliary mass term

�mass ¼
�Z

d4x

�
� 1

2
M2ðs� 1Þ2�2

��
4

4
; (14)

which results in a free propagator �c

�cðxÞ ¼ i

ð2
Þ4
Z

d4p
e�ipx

p2 �M2ðs� 1Þ2 þ i"Z
: (15)

"Z ¼ "ðM2ðs� 1Þ2 þ p2Þ
is Zimmermann’s epsilon which yields Euclidean minor-
ants and majorants for the momentum space integrals of
Feynman diagrams. The variables s and s� 1 participate
in the subtractions like the external momenta, and

Zimmermann’s epsilon leads to absolute convergence
once subtractions have been properly performed.
Nontrivial quantum corrections can show up when one
wants to go to the massless limit s ¼ 1 which is possible
only in expressions where s� 1 appears outside of normal
products and thus no longer participates in the subtractions.
The relation between such normal products differing only
in the position of the s� 1 factors is given by an identity
(due to Zimmermann) to which all non-naive deviations
from, say, symmetry in the quantum theory can be traced
back. The next ingredient is �eff from which Feynman
diagrams follow. In the BPHZL renormalization scheme,
where �eff ¼ �free þ

R
Lint, �eff is to be understood as a

normal product with infrared and ultraviolet subtraction
degree four. In the case of local coupling �ðxÞ, external
field h�	ðxÞ (to which the energy-momentum tensor cou-

ples), and quantum field � it is given by [3,4]

�effð�;�; hÞ ¼ X1
n¼0

Z �
� 1

2
zðnÞIðnÞl � 1

2
M2ðs� 1Þ2IM�n;0

� 1

4!
�ðnÞIðnþ1Þ

4 þ 1

2
ĉðnÞIðnÞc þ ~zðnÞIðnÞ1

þ zðnÞ� IðnÞ�

�
(16)

with the basis of ð4; 4Þ insertions
IM ¼ ð�gÞ1=4�; (17)

IðnÞl ¼ ð�gÞ3=8g�	�n�ð@�@	 � �	0
�	@	0 Þð�g�1=8�Þ;

(18)

IðnÞ4 ¼ �n�4; (19)

IðnÞc ¼ ð�gÞ1=4�nR�2; (20)

IðnÞ1 ¼ ð�gÞ1=2g�	�n�1@��@	ðð�gÞ�1=4�2Þ; (21)

IðnÞ� ¼ ð�gÞ1=4g�	�n�2@��@	��
2; (22)

Î ðnÞ
k ¼ ð�gÞ1=2g�	 1

2
ð@�@	 � �	0

�	@	0 Þðð�gÞ�1=4�n�2Þ;
(23)

Î ðnÞ
2 ¼ ð�gÞ1=2g�	 1

n
ð�	0

�@	 � �	0
�	Þðð�gÞ�1=4�2@	0�

nÞ:
(24)

Here g ¼ detðg�	Þ, R is the curvature scalar, and ��
�	 is the

Christoffel symbol in the usual conventions. In the follow-
ing this curved background spacetime will not be needed
explicitly—all curvature dependent terms will vanish and
the Christoffel symbols are constant in the case of dilata-
tions and special conformal transformations. For the deri-
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vation of the subsequent WI’s they are, however, crucial
and similarly for considerations of other observables than
the S matrix studied in the sequel.

As far as normalization conditions are concerned, we
spell out explicitly only those relevant for h�	 ¼ 0 and

� ¼ const

@p2���jp2¼��2

s¼1

¼ 1; �����jp¼pðsymmÞ
s¼1

¼ ��:

The subtraction scheme implies that ��� vanishes at p ¼
0, s ¼ 1. (For the complete list we refer to [4].)

Going through some algebraic analysis which is based
on the presence of h�	 and using consistency conditions,

one finds (see [4]) that in all higher orders of perturbation
theory the following broken WI’s hold at s ¼ 1:

WD�½�;�� ¼ �i
X1
k¼1

�Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ

�
Z

dx�̂ðkÞ�kðxÞ� �

��

�
�½�;��; (25)

WK
��½�;�� ¼ �i

X1
k¼1

�Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞ

�
Z

dx2x��̂
ðkÞ�kðxÞ� �

��

�
�½�;��; (26)

��ðxÞ �
X1
k¼1

�̂ðkÞ
� �kþ1ðxÞ; (27)

�ðxÞ � X1
k¼1

�̂ðkÞ�kðxÞ: (28)

It is then tempting to absorb the right-hand sides of the
WI’s into new WI operators and to generate homogeneous
WI’s

ŴD½�;�� � WD½�;�� þ i
X1
k¼1

�Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ

�
Z

dx�̂ðkÞ�kðxÞ� �

��

�
; (29)

Ŵ D�½�;�� ¼ 0; (30)

Ŵ K
�½�;�� � WK

�½�;�� þ i
X1
k¼1

�Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ

� �

��ðxÞ �
Z

dx2x��̂
ðkÞ�kðxÞ� �

��

�
;

(31)

Ŵ K
��½�;�� ¼ 0: (32)

A good reason to proceed into this direction stems from the

remarkable fact, already stated in [4], that these new WI
operators fit to the moment construction and satisfy the
conformal algebra. The derivatives with respect to �ðxÞ
generate insertions; hence one can in the limit of constant �
understand the terms added to the original WI operators as
nonlinear field transformations which complete the linear
transformations to formally true symmetries of the system.
We may thus expect conserved currents and associated
charges operating on the Hilbert space of the theory, in-
volving, however, the external field �.
To pave the way to the charge operators, one needs the

WI’s formulated on the generating functional of the gen-
eral Green functions.
In a first step one goes over to the connected Green

functions by Legendre transformation

ZcðJÞ ¼ �ð�Þ þ
Z

J�; (33)

� J ¼ ��

��
; (34)

and then in a second step to general Green functions

Z ¼ eiZc :

The WI’s become

ŴD½J; �� � �
Z

dxJðxÞ�Dðx; d ¼ 1Þ �

�JðxÞ
þ

Z
dx�Dðx; d ¼ 0Þ�ðxÞ �

��ðxÞ (35)

� X1
k¼1

�Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ

þ
Z

dx�̂ðkÞ�kðxÞJðxÞ �

�JðxÞ
�
; (36)

Ŵ DZ½J; �� ¼ 0; (37)

ŴK
�½J; �� � �

Z
dxJðxÞ�K

�ðx; d ¼ 1Þ �

�JðxÞ
þ

Z
dx�K

�ðx; d ¼ 0Þ�ðxÞ �

��ðxÞ (38)

� X1
k¼1

�Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞ

þ
Z

dx2x��̂
ðkÞ�kðxÞJðxÞ �

�JðxÞ
�
; (39)

Ŵ K
�Z½J; �� ¼ 0: (40)

As above for the one-particle-irreducible Green functions,
they express the formal invariance of general Green func-
tions under these generalized, nonlinear transformations.
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TheWI’s hold at s ¼ 1, the massless theory. The respective
Green functions exist as Lorentz invariant distributions for
nonexceptional momenta, the vertex functions as Lorentz
invariant functions for nonexceptional momenta. At values
s � 1 the WI’s are broken by soft mass contributions
vanishing in the deep asymptotic Euclidean region. As
long as the coupling is local there is no infrared problem
anyway.

III. TRANSFORMATION LAWS FOR THE S
OPERATOR

Starting point for the subsequent analysis is the S op-
erator as defined by

S ¼: � : ZjJ¼0; (41)

� ¼ exp

�Z
dxdy�inðxÞr�1Kðx� yÞ �

�JðyÞ
�
; (42)

Z½J� ¼ expfiRLintð �
i�JÞg expf12

R
dxdyiJðxÞ�cðx� yÞiJðyÞg

½expfiRLintð �
i�JÞg expf12

R
dxdyiJðxÞ�cðx� yÞiJðyÞg�jJ¼0

: (43)

Here, as above, Z½J� denotes the generating functional
for general Green functions, �inðxÞ the asymptotic field
(which is free), r the wave function renormalization con-
stant, and Kðx� yÞ ¼ hþM2ðs� 1Þ2 the inverse wave
operator [5]. In the massless ��4 theory we have

� ¼ exp

�Z
dx�inðxÞr�1hx

�

�JðxÞ
�
: (44)

� amputates the external legs and when evaluating the
integral, �in puts the external momenta on the mass shell.

Suppose now that a WI operator WA generates a sym-
metry WAZðJÞ ¼ 0, then one can apply a standard method
(see [6,7]) to find a symmetry of the S operator in Hilbert
space by establishing the following identity via integration
by parts:

½WA; :�:�ZjJ¼0 ¼ ½QA; :�:�ZjJ¼0: (45)

Here the left-hand side is a calculation in the functional
space, whereas the right-hand side is a calculation in
Hilbert space with QA representing the charge operator
generating the transformation in question

i½QA;�inðxÞ� ¼ �A�inðxÞ: (46)

In simple cases the left-hand side of (45) vanishes because
in the first contribution to the commutator one uses the WI,
and in the second contribution one uses that at J ¼ 0 the
WI operator vanishes. The right-hand side represents the
commutator of the charge with the S operator which is thus
zero; hence the S operator is symmetric with respect to the
transformation generated by A. In the present case this
holds e.g. true for the Lorentz transformations and the
translations. For the dilatations and special conformal
transformations the situation is, however, more compli-
cated: the M2ðs� 1Þ2 terms in � disturb the relation
(45), the reason for working with a � at vanishing mass,
i.e. at s ¼ 1 within � and taking the propagators of the
external legs also at s ¼ 1.

A. Dilatations

Taking into account the remark at the end of the preced-
ing paragraph, we calculate the commutator of � at s ¼ 1

with ŴD and put also in the external legs of the Green
functions s ¼ 1. We obtain (Wick dots omitted)

ŴDð�ZÞjJ¼0;s¼1 ¼
�Z

dx�Dðx; d ¼ 0Þ�ðxÞ �

��ðxÞ
� X1

k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ
�
S; (47)

where we performed as indicated the limit J ¼ 0 in the WI
operator. This is the nontrivial contribution of the commu-
tator in the functional space and represents eventually the
breaking of the dilational symmetry.
The commutator

½ŴD;��ZjJ¼0;s¼1 ¼
�Z

dx�inðxÞr�1hx�
Dðx; d ¼ 1Þ �

�JðxÞ
(48)

�
Z

dy�Dðy; d ¼ 0Þ�ðyÞ

�
Z

dx�inðxÞr�1

�
�

��ðyÞ lnðrxÞ
�
hx

�

�JðxÞ (49)

þ X1
k¼1

Z
dy�̂ðkÞ

� �kþ1ðyÞ

�
Z

dx�inðxÞr�1

�
�

��ðyÞ lnðrxÞ
�
hx

�

�JðxÞ (50)

þ X1
k¼1

Z
dx�inðxÞr�1hx

�
�̂ðkÞ�kðxÞ �

�JðxÞ
��
�ZjJ¼0;s¼1

(51)

is to stand for the commutator of the charge operator Dop

with the S operator. Because of the special s ¼ 1 prescrip-
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tion (48) becomes

Z
dx�inðxÞr�1hx�

Dðx; d ¼ 1Þ �

�JðxÞ
¼ �

Z
dx�Dðx; d ¼ 1Þ�inðxÞr�1hx

�

�JðxÞ : (52)

If we now perform the limit �ðxÞ ! � at least the terms
with derivatives of the coupling will vanish, especially
�Dðx; d ¼ 1Þ�ðxÞ. Hence (49) will not contribute. But
similarly

Ŵ D½J; ��ð�ZÞjJ¼0;s¼1 ¼ �X1
k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞS:

(53)

In addition, we use a statement to be found in [1].
Zimmermann proved there that in a specific domain of
the coupling constant, i.e. between two stationary points,
it is possible to normalize on-shell even for the massless
theory and the S-matrix elements exist. We choose the
lowest possible regime (smallest coupling) in order to
fulfill the requirements of perturbation theory and with
the on-shell normalization conditions for the propagator
and the collinear point normalization for the coupling we
are able to set the wave function renormalization constant
(power series in �) equal to one and find

lnrx ¼ ln1 ¼ 0: (54)

Hence (49) and (50) vanish. (The transition to the collinear
point normalization for the coupling is only a finite renor-
malization, compatible with the subtraction scheme, main-
taining the WI; the propagator normalizations of [1] and
ours agree anyway.)

Zimmermann also stated that the anomalous dimension
� ¼ 0 after normalizing on-shell. We show this in an
explicit calculation for every order. Inserting

�inðxÞ ¼
Z d3q

ð2
Þ3=2 ffiffiffiffiffiffiffiffiffi
2!q

p ðaqe�iqx þ ayqeiqxÞ; (55)

�kðxÞ ¼
Z d4p

ð2
Þ4 e
�ipx�ðpÞ; (56)

�cðx� yÞ ¼
Z d4k

ð2
Þ4 e
�ikðx�yÞ i

k2 þ i�Z
(57)

into (51), translatinghx into Fourier space and performing
the coordinate space integration we get

Z
dx�inðxÞhxð�kðxÞ�cðx� yÞÞ (58)

¼
Z d3q

ð2
Þ3=2 ffiffiffiffiffiffiffiffiffi
2!q

p d4pd4k

ð2
Þ4 eikyðaq�ð4Þðqþ kþ pÞ

þ ayq�ð4Þðkþ p� qÞÞ�ðkþ pÞ2
k2 þ i�Z

�ðpÞ (59)

¼
Z d3q

ð2
Þ3=2 ffiffiffiffiffiffiffiffiffi
2!q

p d4p

ð2
Þ4
�
aqe

�iðpþqÞy �q2

ðqþ pÞ2 þ i�Z

þ ayqeiðp�qÞy �q2

ðq� pÞ2 þ i�Z

�
�ðpÞ (60)

¼ 0 (61)

since �inðxÞ is the asymptotic (free) field of the theory and
sits on-mass-shell, i.e. q2 ¼ 0. In addition, we know that
the denominators lead to well-defined distributions and do
not contain any ‘‘hard’’ singularities:

� 2 SðR4Þ ) �k 2 SðR4Þ ) � 2 SðR4Þ: (62)

Collecting all arguments we obtain

Z
dx�Dðx; d ¼ 1Þ�inðxÞr�1hx

�

�JðxÞ�ZjJ¼0;s¼1

¼ X1
k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞS: (63)

Recalling (46) and (48) we have

i½Dop; S� ¼ lim
�!const

X1
k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ S; (64)

where Dop is the same charge of the dilatations as in the
case of constant coupling. Because of

�2@�2� ¼ iWD� (65)

the commutator (64) is nothing but the renormalization
group equation, (1) for the S operator. Zimmermann de-
rived this renormalization group equation axiomatically
under the assumption that perturbation theory and the non-
perturbative theory are related to each other in the sense of
an asymptotic series where all derivatives on, say, Green
functions etc., with respect to the coupling in the non-
perturbative setting go over to the perturbative regime for
small enough coupling. For the present perturbative deri-
vation of the same relation this implies that after one has
arranged the on-shell normalization conditions for the
propagator (residue ¼ 1, pole at p ¼ 0) and collinear nor-
malization for the coupling, maintaining the scheme inde-
pendent WI’s cancellations of potential infrared
divergences occur in sums of diagrams which might not
be easily seen. In the one-loop approximation, where only
one diagram contributes there must not occur an infrared
divergence. This is indeed true as we show in the
Appendix.
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B. Special conformal transformations

For the special conformal transformations we can follow
the derivation of the preceding subsection line by line.

½ŴK
�;��ZjJ¼0;s¼1 ¼ ŴK

�ð�ZÞjJ¼0;s¼1 � �ðŴK
�ZÞjJ¼0;s¼1;

(66)

ŴK
�ð�ZÞjJ¼0;s¼1 ¼

�Z
dx�K

�ðx; d ¼ 0Þ�ðxÞ �

��ðxÞ
� X1

k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞ
�
S;

(67)

½ŴK
�;��ZjJ¼0;s¼1 ¼

�Z
dx�inðxÞr�1hx�

K
�ðx; d ¼ 1Þ �

�JðxÞ
(68)

�
Z

dy�K
�ðy;d¼ 0Þ�ðyÞ

Z
dx�inðxÞr�1

�
�

��ðyÞ lnðrxÞ
�
hx

� �

�JðxÞ (69)

þ X1
k¼1

Z
dy2x��̂

ðkÞ
� �kþ1ðyÞ

Z
dx�inðxÞr�1

�
�

�

��ðyÞ lnðrxÞ
�
hx

�

�JðxÞ (70)

þX1
k¼1

Z
dx�inðxÞr�1hx

�
2x��̂

ðkÞ�kðxÞ �

�JðxÞ
��
�ZjJ¼0;s¼1:

(71)

Then (68) becomes

Z
dx�inðxÞr�1hx�

K
�ðx; d ¼ 1Þ �

�JðxÞ
¼ �

Z
dx�K

�ðx; d ¼ 1Þ�inðxÞr�1hx

�

�JðxÞ ; (72)

and we arrive also at

Ŵ K
�½J; ��ð�ZÞjJ¼0;s¼1 ! ŴK

�½0; ��ð�ZÞjJ¼0;s¼1

¼ ŴK
�½0; ��S: (73)

In the limit of constant �, �ðxÞ ! �, at least the terms
with derivatives of the coupling vanish, in particular,
�K
�ðx; d ¼ 1Þ�ðxÞ. Hence (69) will not contribute and also

ŴK
�½J; ��ð�ZÞjJ¼0;s¼1 ¼ �X1

k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ

� �

��ðxÞS: (74)

With the on-shell normalization conditions and in the
limit of constant �, as above

lnrx ¼ ln1 ¼ 0: (75)

Finally we obtain

Z
dx�K

�ðx; d ¼ 1Þ�inðxÞr�1hx

�

�JðxÞ�ZjJ¼0;s¼1

¼ X1
k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞS; (76)

which is nothing but

i½K�; S� ¼
X1
k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞ S; (77)

where K� is the same charge of the special conformal

transformations as in the case of constant coupling.
Here, in the conformal case we cannot dispose over a

renormalization group argument if we wish to relate our
perturbative result to a possible nonperturbative one; there
is, however, an algebraic argument available. The WI

operator ŴK
� is via the moment construction related to

ŴD and satisfies with it the usual commutator relation

½ŴD; ŴK
�� ¼ iŴK

�

to all orders of perturbation theory. Therefore we expect
that this relation is also valid in the nonperturbative theory
and maintained in the sense of an asymptotic expansion.
Hence we expect here the same cancellations of potential
infrared divergences to take place as in the case of
dilatations.
In any case the off-shell relations (37) and (40) for the

Green functions hold.

C. Conserved transformations

In this subsection we round up the discussion ‘‘symme-
try versus anomalies’’ by giving an interpretation of (64)
and (77) which parallels (37) and (40).
A superficial look at the WI’s (37) and (40) says that the

Green functions are invariant under dilatational and special
conformal transformations once those are modified to in-
clude transformations of the external field �. In which
sense can this be reconciled with (64) and (77) telling
that the S matrix of �4 theory is anomalous; i.e. the
respective charges do not commute with the S operator?
The statement on the charges is obviously correct. We are,
however, allowed to rewrite (64) and (77) as

�
i½D;�� � lim

�!const

X1
k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ
�
S ¼ 0;

(78)
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�
i½K�;�� � lim

�!const

X1
k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ �

��ðxÞ
�
S ¼ 0;

(79)

where we may interpret the terms containing the � func-
tion as a contribution to the respective charge. The first
term acts as it should as an operator in Hilbert space, the
second term acts as it can on the operator S. This is
perfectly legitimate in a quantum field theory which de-
pends on an external field; there it is standard that an S
operator depends not only on quantum fields, which propa-
gate, but also on classical fields, which do not propagate.
Hence also a charge operator may depend on classical
fields. Without the external field �ðxÞ the charges D and
K� could only change via one-particle singularities in the

WI’s. However, terms nonlinear in the quantum field do not
cause such singularities in perturbation theory. And this is
why the homogeneous WI version of the situation seduces
to talk about symmetry which is, however, only correct
after noticing that the changes for � can indeed be under-
stood as being changes of the charges, which can easily be
read off from (78) and (79). The operator within curly
brackets may be interpreted as a derivation, where the
two terms act on their respective spaces, the whole space
being Hilbert

Nfexternal fieldsg.
Taking into account that both terms of the left-hand sides

of (78) and (79) are changes, we may write the complete
symmetry transformations for the S operator to first order
in the transformation parameters as

�
Iþ�

�
i½D;��� lim

�!const

X1
k¼1

Z
dx�̂ðkÞ

� �kþ1ðxÞ �

��ðxÞ
��
S¼S;

(80)

�
I þ �

�
i½K�;�� � lim

�!const

X1
k¼1

Z
dx2x��̂

ðkÞ
� �kþ1ðxÞ

� �

��ðxÞ
��
S ¼ S: (81)

The charges D and K� are not multiplicatively renormal-

ized when going from classical approximation (no loop,
� ¼ 0) to nontrivial loop order, but acquire an additive
change via the �-function terms.

IV. � FUNCTION IDENTIFIES CHANGES OF
SPACETIME

In this section we would like to show that the trans-
formation laws for the S operator under dilatations and
special conformal transformations, respectively, admit the
definition of an S operator on a spacetime which is ob-
tained from standard Minkowski by performing the (infini-
tesimal) dilatation, resp. special conformal transformation
with parameters �, resp. �.

For dilatations we have found the relation

i�½D; Sð�Þ� ¼ �
X1
k¼1

Z
dx�̂ðkÞ

� �kþ1 �

��ðxÞSð�Þ: (82)

Let us recall how one finds the transformation law of a
scalar field when performing an infinitesimal translation

x� ! x� � a�:

Requiring that the transformed field at the new coordinate
be the same as the old field at the old coordinate one finds

�ðxÞ ! �ðxþ aÞ ¼ �ðxÞ þ a�@��ðxÞ:
In the same sense we write the S matrix in a transformed
space, dilated Minkowski, with an effective coupling

�eff ¼ �þ �
X
k

�̂ðkÞ�kþ1; (83)

obtaining

Sð�Þ ! S

�
�� �

X
k

�̂ðkÞ�kþ1

�
(84)

¼ X
n

SðnÞ
�
�� �

X
k

�̂ðkÞ�kþ1

�
: (85)

Expanding this order by order in @ we get

Sð0Þ ¼ Sð0Þð�Þ; (86)

Sð1Þ ¼ Sð1Þð�Þ � �
Z

dx�̂ð1Þ�2 �

��ðxÞS
ð0Þð�Þ; (87)

Sð2Þ ¼ Sð2Þð�Þ � �
Z

dx�̂ð1Þ�2 �

��ðxÞS
ð1Þð�Þ

� �
Z

dx�̂ð2Þ�3 �

��ðxÞS
ð0Þð�Þ; (88)

Sð3Þ ¼ Sð3Þð�Þ � � � � ; (89)

..

.

Expanding the Smatrix in (82) and omitting terms / �2,

i.e. Sð�� �
P

k�̂
ðkÞ�kþ1Þ ! Sð�Þ, we get

i�

�
D; S

�
�� �

X
k

�̂ðkÞ�kþ1

��
¼ i�

�
D;

X
n

SðnÞð�Þ
�

(90)

¼ �
X
k

Z
dx�̂ðkÞ�kþ1 �

��ðxÞ
X
n

SðnÞð�Þ: (91)
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Performing the transformation we have

S

�
���

X
k

�̂ðkÞ�kþ1

�
þi�

�
D;S

�
���

X
k

�̂ðkÞ�kþ1

��
¼Sð�Þ;

(92)

or by a shift

Sð�Þ þ i�½D; Sð�Þ� ¼ Sð�effÞ; (93)

where the right-hand side can be understood as an S
operator on a flat space with metric g�	 ¼ ð1� 2�Þ��	.

Here � is the parameter determining the dilatation in
question. The nonvanishing � function triggers the tran-
sition to this space. If it were to vanish, dilatations would
be realizable on the original Minkowski space as a true
symmetry. We could not detect the transformation. Via the
Sð�effÞ and its nontrivial dependence on �we can, however,
spot it. So, clearly one cannot identify the underlying
spacetime per se, out of nothing, but the change from a
four-dimensional Minkowski space to a four-dimensional
dilated space is characterized by the � function.

The case of special conformal transformations can be
dealt with in complete analogy,

Sð�Þ þ i½�K�; Sð�Þ� ¼ Sð�effÞ; (94)

where now �eff is given by

�conf
eff ¼ �þ 2x��

X
k

�̂ðkÞ�kþ1: (95)

As above  is the infinitesimal parameter of the respective
special conformal transformation.

The metric of the transformed space reads to first order
in 

g�	 ¼ ð1� 4x��Þ��	: (96)

The x dependence of effective coupling and metric have an
interesting effect: ‘‘constant’’ coupling is now to be under-
stood as ‘‘conformally constant,’’ i.e. relative to the new
metric. Again the same comment applies as in the case of
dilatations: due to the nonvanishing � function we can
identify the (conformally) transformed spacetime depart-
ing from ordinary Minkowski space.

V. DISCUSSION AND CONCLUSIONS

In the present paper we treat two topics. The first one
concerns the change of the S matrix under dilatations and
special conformal transformations of the massless �4 the-
ory in the context of perturbation theory. For dilatations
Zimmermann [1] has obtained the respective result (1) in
an axiomatic setting. We arrive perturbatively at the same,
(64), by rendering the coupling local and using the fact that
with the help of local � all dilatational anomalies can be
absorbed into a homogeneous WI (30) [4]. As long as � is
local there is at every vertex a nonvanishing external
momentum; hence one can go on-shell without meeting

an infrared divergence. Following Zimmermann we as-
sume that the nonperturbative theory is linked to the per-
turbative version in the sense of an asymptotic expansion.
We know therefore from [1] that no infrared divergences
can arise in the limit of constant coupling, once we realize
perturbatively the same normalization conditions as em-
ployed by Zimmermann, which we do. The amputated on-
shell Green functions are thus finite. Single diagrams may
be infrared divergent, but these divergences cancel in the
sum which represents the Green function. And, indeed, in
the one-loop approximation which is given by just one
diagram, no infrared divergence shows up.
For special conformal transformations we find the analo-

gous result, (77). By the moment construction the special
conformal transformations are closely related to the dila-
tations, hence the same cancellation of infrared divergen-
ces takes place, as the one-loop approximation shows
explicitly.
The learned reader might object that the �4 theory is

trivial. However, rigorous proofs of triviality exist only for
dimensions strictly smaller or strictly larger than four. For
exactly four dimensions no such proof seems to be
available.
As the second topic we discuss an application of these

results for the Smatrix. We show that upon introduction of
a suitable effective coupling an S matrix can be defined
which signals the underlying transformed spacetime which
is obtained from Minkowski space by dilatation, special
conformal transformation, respectively (93) and (94).
Crucial here is the fact that the � function does not vanish.
In the case of dilatations this effective coupling agrees with
the standard running coupling obtained from the renormal-
ization group equation. The effective coupling for the
special conformal case (95) is particularly interesting be-
cause it depends explicitly on x�. Constant coupling then

means conformally constant. In our understanding we
contribute with this result to a presently ongoing general
program: the construction of quantum field theories on
nontrivial spacetimes [8–10]. Beginning perhaps with
Wald [11] it gradually became clear how to define S
matrices on spacetimes which are globally hyperbolic
and asymptotically flat. Here we present an explicit and
nontrivial example: the perturbatively nontrivial S matrix
of �4 theory in Minkowski space gets translated to a
dilated, resp. conformally (flat) spacetime via the effective
coupling. If it is possible to go to finite transformations one
will obtain (in the conformal case) a space which is curved,
conformally and asymptotically flat. If one succeeds in
finding the corresponding expression for the S matrix
(i.e. one integrates the effective coupling), one has a non-
trivial S matrix on such a space.
The axioms which hold for Sð�Þ onMinkowski space get

via Sð�conf
eff Þ translated on the transformed space, where-

from its explicit realization can be read off, notably that of
locality, i.e. causality.
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� functions arise from Zimmermann identities among
normal products. The Zimmermann coefficients encode the
information on anomalies, hence when interpreted as we
propose also on spacetimes.

Which extensions of these results can one expect in
other theories? Of utmost interest are gauge theories.
There, however, one has to cope with the fact that gauge
fixing is not conformally invariant. Therefore the identifi-
cation of the physical subspace of the entire Fock space is
technically nontrivial. If the S matrix exists, i.e. in models
with complete breakdown of the gauge symmetry, one has
to separate the soft breaking of conformal invariance from
hard breaking. But then one should find essentially similar
results as presented here. This expectation is based on the
fact that the � functions can be constructed as gauge
independent quantities. If the S matrix does not exist
(e.g. in pure QCD) one has to consider other observables,
the energy-momentum tensor being a prime candidate.
Here one has to check whether other anomalies than those
related to the � function come into play. As far as the
identification of an underlying spacetime is concerned, we
expect in any case an analogous result to the above:
anomalies of geometric symmetries identify respective
spacetimes.

What about anomalies of internal symmetries? Here we
expect a change of geometry of the internal space. The
relevant anomaly coefficients are, if properly constructed,
also gauge independent, hence physical. The geometry of
the internal space might get a nontrivial physical meaning.
These questions certainly deserve further investigation.
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APPENDIX: ONE-LOOP APPROXIMATION

In this Appendix we calculate explicitly the one-loop
contribution to the scattering amplitude of two particles
going into two particles and the conformal transformation
of this process. There are two diagrams contributing to this

S-matrix element Sð1Þ2;2: they involve four fields and the

outcome is equivalent to the four-point vertex function

�ð1Þ
4 at the same loop order.

We expect a contribution to the breaking of conformal
invariance as shown in [4], clearly for constant coupling.
Since the counterterm behaves trivially under special con-
formal transformations, we can omit its treatment. Then

the relevant relation for Sð1Þ2;2 is

Sð1Þ2;2 ¼ �Zð1Þ
2;2½J�jJ¼0;s¼1; (A1)

� ¼ expfXg ¼ exp

�Z
dx�inðxÞr�1hx

�

�JðxÞ
�
; (A2)

Zð1Þ
2;2½J� ¼

�
�i

�

4!

�
2 � 36 �

Z
dz1dz2ð�cðz1 � z2ÞÞ2

�
�Z

d��cðz1 � �ÞiJð�Þ
�
2

�
�Z

d��cðz2 � �ÞiJð�Þ
�
2 � Z0: (A3)

By applying the Ward-Operator WK
� we first regain (45).

(Wick dots are omitted.)

½�;WK
�� ¼ ½X;WK

��� (A4)

¼
Z

dx�inðxÞr�1hx�
K
�ðx; d ¼ 1Þ �

�JðxÞ� (A5)

¼ �
Z

dx�K
�ðx; d ¼ 1Þ�inðxÞr�1hx

�

�JðxÞ� (A6)

¼ �½K�;��: (A7)

In the one-loop approximation the wave function renor-
malization constant r ¼ 1; hence the full expression of the
transformed matrix element reads

½WK
�; S

ð1Þ
2;2� ¼

�2

24

Z
dz1dz2ð�inðz1Þ�K

�ðz1; d ¼ 1Þ�inðz1Þ
��2

inðz2Þ þ�2
inðz1Þ�inðz2Þ�K

�ðz2; d ¼ 1Þ
��inðz2ÞÞ�2

cðz1 � z2Þ: (A8)

In order to simplify the calculation we use the following
relations,

�inðxÞ�K
�ðx; d ¼ 1Þ�inðxÞ ¼ 1

2
�K
�ðx; d ¼ 2Þ�2

inðxÞ; (A9)

Z
�2

cðxÞ�K
�ðx; d ¼ 2Þ�2

inðxÞ ¼ �
Z

�2
inðxÞ�K

�ðx; d ¼ 2Þ
� �2

cðxÞ; (A10)

and obtain

½WK
�; S

ð1Þ
2;2� ¼ ��2

48

Z
dz1dz2�

2
inðz1Þ�2

inðz2Þð�K
�ðz1; d ¼ 2Þ

þ �K
�ðz2; d ¼ 2ÞÞ�2

cðz1 � z2Þ: (A11)

Here �2
c is identical with �ð1Þ

4 and becomes well defined

only after we have specified a renormalization scheme,
because it is logarithmically divergent by power counting.
We choose the BPHZL scheme with the propagator as
given in (15) and one subtraction at p ¼ 0 and s ¼ 0,
leading to
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�2
cðz1 � z2Þ ¼

Z dp

ð2
Þ4 e
�ipðz1�z2Þ

Z dk

ð2
Þ4

�
�

i

k2 �M2ðs� 1Þ2 þ i"Z

� i

ðp� kÞ2 �M2ðs� 1Þ2 þ i"Z

� i2

ðk2 �M2 þ i"ZÞ2
�
: (A12)

With the Zimmermann "Z this expression is absolutely
convergent. We translate �K

�ð:; d ¼ 2Þ via expfipðz1 �
z2Þg into momentum space, where monomials of dimension
�1 result, i.e. derivatives with respect to the external
momentum p. Hence the subtraction term vanishes and
the first term becomes convergent in its own right.

We introduce Feynman parameters, which help evaluat-
ing the integrals, and obtain

½WK
�; S

ð1Þ
2;2� ¼ � i�2

24

�ð1Þ
�

3

Z
dz12z1;��

4
inðz1Þ: (A13)

Until this stage of the calculation we did not consider
symmetries of the specific diagram with respect to the
external lines. Noticing that the s, t, u channels give the
same contribution we have a factor of 3 and the final result
is

½WK
�; S

ð1Þ
2;2� ¼ � i�2

4!

Z
dx2x��

ð1Þ
� :�4

inðxÞ:: (A14)

Here we reintroduced the Wick dots. We note that we did
not come across any infrared divergence. This is the result
for the S operator used in the main text.
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