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We show that Chern-Simons (CS) modified gravity with a prescribed CS scalar field admits rotating

black hole/string solutions with cylindrical topology of the horizon, and we present two intriguing

physical examples of such configurations. First, we show that the Banados-Teitelboim-Zanelli stationary

black string, which is obtained by adding a spacelike flat dimension to the Banados-Teitelboim-Zanelli

black hole metric of three-dimensional gravity, solves the field equations of CS modified gravity with a

specific source term irrespective of the choice of CS scalar field. Next, we consider the Lemos solution for

a rotating, straight black string in general relativity and show that, for the CS scalar field being a function

of the radial coordinate alone, this solution persists in CS modified gravity. We also present a new

nontrivial (non-general relativity) Gödel-type solution to the vacuum field equations of CS modified

gravity.
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I. INTRODUCTION

Chern-Simons (CS) modified gravity is an extension of
general relativity due to a parity-violating correction term
given by the Pontryagin density [1,2]. After all, such a
modification has its physical roots in string theory. As is
known, the low-energy limit of string theory comprises the
Einstein-Hilbert action supplemented by the Pontryagin
term, which is necessary for canceling the gravitational
anomaly in the theory [3]. The Pontryagin density has also
been explored in particle physics as well as in the context
of loop quantum gravity, playing the role of an anomaly-
canceling term (for more details see the review paper [4]
and references therein). On the other hand, the search for a
consistent theory of quantum gravity has stimulated studies
of lower dimensional gravity models. Among these mod-
els, Deser, Jackiw, and Templeton’s theory of topologically
massive gravity (TMG) is of considerable interest [5]. In
contrast to three-dimensional general relativity, TMG pos-
sesses a propagating degree of freedom with a single
massive graviton. Jackiw and Pi showed that one can also
arrive at CS modified gravity within a geometrical frame-
work, extending a parity-violating gravitational Chern-
Simons term of TMG into four dimensions [2]. This results
in the gravitational action which, in addition to the usual
Einstein-Hilbert term, also involves the Pontryagin term
coupled to a prescribed scalar field (a CS scalar field). As a
consequence, the field equations of CS modified gravity
consist of two sectors: the Einstein and Chern-Simons
sectors. In the latter case, the defining quantity is a
second-rank, symmetric, traceless tensor that can be for-
mally thought of as a four-dimensional ‘‘cousin’’ of the
three-dimensional Cotton tensor. Following the authors of
[2], we shall call it the four-dimensional Cotton tensor.1 It
is also important to note that the field equations of CS

modified gravity imply an additional constraint equation
(the vanishing of the Pontryagin density).
It is clear that the Pontryagin constraint would restrict

the class of possible exact solutions to CS modified gravity.
For instance, the Pontryagin density is not zero for the
familiar Kerr solution, and therefore, CS modified gravity
does not support this solution. Meanwhile, the
Schwarzschild and Reissner-Nordström metrics fulfill the
Pontryagin constraint, and for a canonical choice of the CS
scalar field (when it is a linear function of time alone),
these metrics are solutions of CS modified gravity as well
[2,7]. In further developments, some stationary metrics that
could serve as an analogue of the Kerr solution in CS
modified gravity have been discussed in a number of
works. For instance, in Refs. [8,9] a stationary, but non-
axisymmetric solution was given in the far-field approxi-
mation and with the canonical choice of the CS scalar field.
Meanwhile, a stationary and axisymmetric metric in the
limit of slow rotation and for a special (noncanonical)
choice of the CS scalar field was found in [10]. These
solutions are of importance to figure out gravitomagnetic
effects of CS modified gravity. These effects have been
used to constrain the theory from observations of both the
Solar System [11] and the double binary pulsar PSR J0737-
3039A/B [12]. On the other hand, it is worth noting that
none of these solutions corresponds to the desired analogue
of the Kerr metric.
A systematic attempt to find rotating black hole solu-

tions to CS modified gravity was undertaken in [13]. It was
shown that for noncanonical choices of the CS scalar field,
there exist two types of solutions: the ultrarelativistically
boosted limit of the Kerr solution (the Aichelburg-Sexl
limit) and a stationary axisymmetric solution belonging
to the van Stockum subclass of general stationary axisym-
metric metrics. Furthermore, the authors of [13] argued
against the existence of an exact counterpart of the Kerr
solution, even for the most general prescribed CS scalar1This notion differs from that given in [6].
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field. However, the situation may be different in the dy-
namical framework, where the scalar field evolves, being
driven by the Pontryagin density. Remarkably, such an
analytical solution for rotating black holes was given in
recent papers [14,15]. This solution is given in the slow-
rotation limit of the Kerr metric (up to second order in the
rotation parameter) which also involves a small CS correc-
tion term of the same order of magnitude. A similar prob-
lem was earlier studied in the context of some string-
inspired models, where the Chern-Simons term serves as
a source for axion fields in the background of the Kerr
metric [16,17]. However, it should be noted that the exact
Kerr solution with Chern-Simons ‘‘hairs’’ still remains
elusive. Nevertheless, the existence of slowly rotating
black holes in dynamical CS gravity makes its exploration
in astrophysical contexts important (see, for instance, [18]
and references therein).

In the following, we shall focus only on the theory of CS
modified gravity with a prescribed CS scalar field [2].
Motivated by the fact that this theory does not admit
rotating black hole solutions with spherical topology of
the horizon, for instance, the Kerr solution, we ask the
following natural question: Does it support rotating black
hole-type solutions with the horizon topology different from
the spherical one? It is the main purpose of this paper to
answer this question. As we have mentioned above, one
can arrive at CS modified gravity by embedding the Chern-
Simons term of TMG (along with an appropriate embed-
ding coordinate: the gradient of the CS scalar field) into
four-dimensional spacetime. That is, in some sense, CS
modified gravity can be thought of as a four-dimensional
‘‘counterpart’’ of TMG. As is known [19], TMG with a
negative cosmological constant supports the stationary
Banados-Teitelboim-Zanelli (BTZ) black hole solution
[20,21] which is thought to be an ‘‘analogue’’ of the Kerr
solution in three-dimensional gravity. The physical impor-
tance of the BTZ black holes is related to their indispens-
able role, as ‘‘theoretical laboratories,’’ in understanding
the classical and quantum nature of gravity in three dimen-
sions, especially in the context of the anti-de Sitter/confor-
mal quantum field theory (AdS/CFT) correspondence (see,
for instance, a recent paper [22] and references therein).
We recall that this correspondence relates the properties of
gravity in AdS background to those of dual CFT residing
on its boundary [23].

With all this in mind, it is of great importance to look for
BTZ-type solutions, as cylindrical black hole/string con-
figurations, in CS modified gravity with a negative cosmo-
logical constant. Of course, from the astrophysical point of
view such solutions describe an idealized situation, though
within general relativity it has been argued that the cylin-
drical collapse of appropriate matter in the background of
the negative cosmological constant will form the black
string configurations [24–26]. However, such solutions
would certainly be important in understanding the classical

and quantum structures of CS modified gravity with the
negative cosmological constant, at least, in the sense of
translating the unusual classical/quantum properties of
their counterparts in three-dimensional gravity into four
dimensions.
In this paper, we show that CS modified gravity does

indeed admit this type of rotating black string configura-
tion. First, we consider the stationary BTZ black string that
is obtained by adding an extra spacelike flat dimension to
the metric of the three-dimensional BTZ black hole, and
we show that it solves the field equations of CS modified
gravity with a specific source term determined by a nega-
tive cosmological constant, regardless of the form of the
CS scalar field. We note that such a cylindrical configura-
tion was earlier considered in [24] within general relativity.
Next, we consider a more general stationary black string
solution (or cylindrically symmetric rotating black hole
solution) found by Lemos [25] in general relativity. In
contrast to the BTZ black string, the existence of the
Lemos black string configuration in CS modified gravity
depends on the form of the CS scalar field. We show that
for a CS scalar field depending on the radial coordinate
alone, the Lemos black string configuration is supported by
CS modified gravity as well.
Finally, we discuss a new nontrivial Gödel-type solution

to CS modified gravity by uplifting to four dimensions a
general one-parameter family of Gödel-type solutions to
three-dimensional gravity with a negative cosmological
constant and with a matter source, corresponding to a
uniform pressureless dust [27]. This solution is obtained
by adding a flat spatial coordinate to the three-dimensional
Gödel-type metric with the parameter � ¼ 2, which solves
the vacuum field equations of TMG, and choosing the CS
scalar field as a linear function of this coordinate.
The paper is organized as follows: In Sec. II we present

the field equations of CS modified gravity with a cosmo-
logical constant and with a matter term and discuss their
basic properties. In Sec. III we study the BTZ and the
Lemos black string configurations that solve the field
equations of CS modified gravity with the negative cos-
mological constant. In Sec. IV we discuss a new Gödel-
type metric in CS modified gravity that, unlike the usual
Gödel solution of general relativity [28], exists in the
absence of the cosmological constant.

II. CS MODIFIED GRAVITY

The total action for CS modified gravity with the inclu-
sion of a matter term is given by

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�þ 1

4
#�RR

�
þ Smat; (1)

where the usual Hilbert term with the cosmological con-
stant � is supplemented with the Pontryagin density

�RR ¼ �R�
�
��R�

���; (2)
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coupled to the CS scalar field #, and Smat is the matter
action. The dual tensor in (2) is defined as

�R�
�
�� ¼ 1

2�
����R�

���; (3)

where the Levi-Civita tensor is given by ����� ¼
"����=

ffiffiffiffiffiffiffi�g
p

, "0123 ¼ 1.
Varying action (1) with respect to the spacetime metric,

we obtain the field equations

G�� þ�g�� þ C�� ¼ 8�T��; (4)

where the Einstein tensor

G�� ¼ R�� � 1
2Rg��; (5)

T�� is the energy-momentum tensor of matter, and C�� is

the four-dimensional ‘‘Cotton’’ tensor which is symmetric
and traceless [2]. The contravariant Cotton tensor is given
by

C�� ¼ #	�
	
�ð�R�Þ


;� þ #	

�R
ð��Þ	; (6)

where the semicolon denotes covariant differentiation and

#	 ¼ #;	; #	
 ¼ #	;
: (7)

Clearly, one can also perform the variational procedure in
(1) with respect to the CS scalar field (thinking of it as a
dynamical variable). This results in the constraint equation

�RR ¼ 0: (8)

Alternatively, taking the divergence of Eq. (4) and compar-
ing the result with the fact that

r�C
�� ¼ �1

8#
��RR; (9)

one can see that the contracted Bianchi identities along
with the energy-momentum conservation lead to Eq. (8) as
well. A detailed discussion of these issues can be found in
[4]. Thus, the field equations of CS modified gravity (4)
must be accompanied by the Pontryagin constraint (8).
Clearly, the Pontryagin constraint will be fulfilled only
for a certain class of spacetimes. As we have already
mentioned in the Introduction, it is automatically satisfied
for the Schwarzschild and Reissner-Nordström metrics
which are solutions to CS modified gravity for the most
general choice of the CS scalar field [13]. Comparison of
Eqs. (8) and (9) shows that Eq. (8) gives only a necessary
condition for a spacetime to be a solution of CS modified
gravity.

III. ROTATING BLACK STRINGS IN CSMODIFIED
GRAVITY

In this section, we discuss two examples of stationary
black string configurations that solve the field equations of
CS modified gravity with a negative cosmological con-
stant. The first example is the BTZ black string configura-
tion, which is obtained by adding a spacelike flat

dimension to the metric of a three-dimensional BTZ black
hole. Another example is the stationary black string (or
cylindrical black hole) solution of general relativity found
by Lemos in [25].

A. The BTZ black string

We begin by recalling some properties of the BTZ black
hole [20,21]. First of all, this is an anti-de Sitter–type
solution of three-dimensional general relativity. Though
the curvature is locally constant for this solution, the black
hole structure arises when identifying inequivalent points
of the anti-de Sitter space under a discrete subgroup of its
isometry group SOð2; 2Þ. As a consequence, the quotient
space represents a black hole with two physical parame-
ters: the massM and the angular momentum J. The metric
is given by

ð3Þds2 ¼
�
M� r2

l2

�
dt2 þ

�
r2

l2
�Mþ J2

4r2

��1
dr2

þ r2d�2 � Jdtd�; (10)

where we have introduced the length parameter l�2 ¼ ��.
This is a crucial length parameter for the horizon formation
in a three-dimensional theory, where the mass is dimen-
sionless. For M ¼ �1 and J ¼ 0 we have the usual anti-
de Sitter metric. The horizon structure of (10) is governed
by the equation

r2

l2
�Mþ J2

4r2
¼ 0; (11)

which has two roots, rþ and r�, corresponding to the radii
of outer and inner horizons, respectively. We have

r2� ¼ Ml2

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J2

M2l2

s �
: (12)

Cosmic censorship requires that

jJj � Ml; (13)

where the equality defines the extremal horizon of the
black hole.
It is interesting that the BTZ metric (10) is also a trivial

solution to TMG, as the three-dimensional Cotton tensor
vanishes identically for this metric [19]. Furthermore, the
BTZ black string configuration, as an extension of metric
(10) to four dimensions by adding on an extra flat direction,
is also known in ordinary general relativity [24]. With this
in mind, and taking into account the fact that CS modified
gravity can be obtained by uplifting (with an appropriate
embedding coordinate) TMG to four dimensions [2], it is
natural to ask the following question: Does the BTZ black
string configuration persist in CS modified gravity? In the
following, we answer this question, showing that the BTZ
black string configuration described by the metric

ds2 ¼ h��dx
�dx� þ dz2 (14)
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is also a solution to CS modified gravity with an appro-
priate source term, regardless of the form of the CS scalar
field. Here h�� denotes the three-dimensional metric given

in (10).
It is straightforward to show that metric (14) fulfills the

Pontryagin constraint (8). Next, what we need is to show
that the four-dimensional Cotton tensor (6) vanishes iden-
tically for this metric. For this purpose, we first note that
the cylindrical symmetry of this metric implies the exis-
tence of the Killing vector

 ¼ @=@z (15)

of constant length (2 ¼ 1). Unlike the timelike Killing
vector @=@t, this vector is hypersurface orthogonal, obey-
ing the equation

½�;��� ¼ 0: (16)

Thus, we can use the results of a recent work [29] to
examine all possible projections of the Cotton tensor (6)
in directions parallel and orthogonal to the Killing vector
(15). In [29], it was shown that the projection of this tensor
in a direction parallel to a hypersurface orthogonal Killing
vector vanishes identically. That is,

C�� ¼ C��
�� � 0: (17)

The mixed projection of the Cotton tensor is given by

�C �� ¼ C��
�h��; (18)

where h�� is the projection operator defined as

h�� ¼ ��
� � ��; h��

� ¼ 0; h��h
�
� ¼ h��:

(19)

Using now Eq. (6) in (18) and taking into account the
equations

ð3ÞR�� ¼ � 2

l2
h��; R�� ¼ � 2

l2
ðg�� � ��Þ;

(20)

for metrics (10) and (14), respectively, we find that

�C �� ¼ 1
2#	
��

�	��R

���h

�
�: (21)

In obtaining this expression we have also used the fact that

�;� ¼ 0; �R
�
��� ¼ 0 (22)

for the hypersurface orthogonal Killing vector of constant
length (see Ref. [29] for details). With this in mind and
using the equation

ð3ÞR���� ¼ h	�h


�h

�
�h

�
�R	
��

¼ � 1

l2
ðh��h�� � h��h��Þ; (23)

one can further transform expression (21) into the form

�C �� ¼ � 1

2l2
#	


��
�	��ðh
�h�� � h
�h��Þ: (24)

With expressions given in (19) it is easy to see that

�C �� � 0: (25)

The remaining step is to show that the orthogonal projec-
tion of the Cotton tensor (6) vanishes identically as well.
We appeal to a general expression for this projection given
in [29], which, in the case under consideration, can be
written in the form

�C�� ¼ �½ð#	
	Þ��
�ð�D�

�R�Þ

 � #	


	��
�ð� �R�Þ
� �;
(26)

where D� is the derivative operator with respect to the

three-dimensional metric and

�R�� ¼ h	�h


�R	
 ¼ ð3ÞR��: (27)

Comparing these equations with the first equation in (20),
we immediately see that

�C �� � 0: (28)

Thus, we obtain that all components of the Cotton tensor
vanish identically for the BTZ black string configuration
(14). This confirms that the BTZ black string is a solution
of the field equation (4) with the specific source term

8�T�� ¼ 2

l2
��; (29)

and irrespective of the form of the CS scalar field. Clearly,
one can also write

8�T ¼ 8�Tz
z ¼ 2

l2
: (30)

It follows that the source can be thought of as a fluid with
pressure along the axis of symmetry, but with zero energy
density.

B. The Lemos black string

It is a remarkable fact that the BTZ black string is not the
only example that relates three-dimensional gravity with a
negative cosmological constant to four-dimensional gen-
eral relativity with cylindrical symmetry. Lemos [25]
showed that there exists a ‘‘generic’’ stationary black string
solution to general relativity with a negative cosmological
constant. When reduced to three dimensions through a
dimensional reduction procedure, this solution corresponds
to a black hole in three-dimensional dilaton gravity (see
also [30]). The metric of the Lemos black string can be
written in the form
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ds2 ¼ �
�
r2

l2
�M

r
�2

�
dt2 þ

�
r2

l2
�M

r

��1
dr2

þ
�
r2 þM

r
a2
�
d�2 � 2Ma

r
�d�dtþ r2

l2
dz2; (31)

where the length parameter l2 ¼ �3��1 and

� ¼
�
1þ a2

l2

�
1=2

: (32)

The parameters M and a can be related to the physical
mass and angular momentum, respectively. It is important
to note that the latter quantities, just as in the case of the
BTZ string, must be defined per unit length of the string. In
[25,26], the mass and angular momentum were consis-
tently defined by passing to an equivalent three-
dimensional theory and employing the well-known
Hamiltonian approach with the Brown-York prescription
[31]. The horizon and ergosphere structures are given by
equations grr ¼ 0 and gtt ¼ 0, respectively.

A simple coordinate transformation of the form

T ¼ �t� a�; ’ ¼ a

l2
��� (33)

enables one to reduce metric (31) to that of a static space-
time. However, in general, such an identification is not
valid, as the spacetime is not simply connected (the first
Betti number is 1) and there are no global transformations
mapping static and stationary black string spacetimes. A
detailed analysis of the global structure of metric (31) can
be found in [26].

It is easy to see that metric (31) possesses time-
translational and rotational Killing vectors

ðtÞ ¼ @

@t
; ð�Þ ¼ @

@�
; (34)

as well as the Killing vector given in (15) that corresponds
to the translational symmetry along the z axis. This vector
is hypersurface orthogonal. However, in the case under
consideration, its length 2 � const.

In the following, we show that for some choice of the CS
scalar field the black string solution (31) solves equations
of CS modified gravity as well. First of all, it is easy to
check that this solution satisfies the Pontryagin constraint
(8). Next, we use the decoupling theorem of [29] which
states that for a hypersurface orthogonal Killing vector and
for a CS scalar field being constant along this vector, the
source-free equations of CS modified gravity decouple into
their Einstein and Cotton sectors. Thus, this theorem leads
to the following independent equations:

E�� ¼ G�� � 3

l2
g�� ¼ 0; C�� ¼ 0; (35)

with the CS scalar field, obeying the condition

L # ¼ ð#	
	Þ ¼ 0; (36)

where L is the Lie derivative along the hypersurface

orthogonal Killing vector . In fact, exploring for each
equation in (35) all respective projections in directions
along and orthogonal to the Killing vector [29], we find
that

C�� ¼ C��
�� � 0; �C�� ¼ C��h��h

�
� � 0;

�E�� ¼ E��
�h�� � 0:

(37)

With these identities, the remaining projections vanish as a
consequence of the field equations. Thus, we have

E�� ¼ E��
�� ¼ 0; �E�� ¼ E��h��h

�
� ¼ 0; (38)

and

�C �� ¼ C��
�h�� ¼ 0: (39)

It is straightforward to check that metric (31) satisfies
equations in (38) as required by its very existence.
Meanwhile, writing out for this metric all components of
Eq. (39) explicitly, we obtain that they are equivalent to the
vanishing of the Cotton tensor components

Ctz ¼ � 3Ml

2r6
�ð�@� þ a@tÞðr@r# � #Þ; (40)

Crz ¼ 3Ml

2r5

�
�@t þ a

l2
@�

�
ð�@�# þ a@t#Þ; (41)

C�z ¼ � 3Ma

2r6l
ða@t þ�@�Þðr@r# � #Þ; (42)

which allow us to specify the form of the CS scalar field as

# ¼ #ðrÞ: (43)

Thus, with this CS scalar field the black string solution of
general relativity given in (31) is also a solution to CS
modified gravity.

IV. NEW GÖDEL-TYPE SOLUTION

In this section, we examine a new nontrivial Gödel-type
solution to CS modified gravity by uplifting a one-
parameter family of three-dimensional Gödel-type metrics
[27] to four dimensions. We begin with the metric

ð3Þds2 ¼ �½dt� �ðcoshr� 1Þd��2 þ dr2 þ sinh2rd�2;

(44)

where � is an arbitrary constant parameter. It has been
shown that metric (44) possesses all peculiar properties of
the original four-dimensional Gödel spacetime [28]. That
is, for any nonzero value of �, this metric represents Gödel-
type solutions in three dimensions [27]. The discussion of
more general three-dimensional Gödel-type solutions can
be found in [32].
Next, we extend metric (44) to four dimensions by add-

ing on an extra spacelike flat dimension. This yields
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ds2 ¼ �½dt� �ðcoshr� 1Þd��2 þ dr2

þ sinh2rd�2 þ dz2: (45)

This metric, just like those in the previous cases (see
Sec. III), satisfies the Pontryagin constraint (8).
Furthermore, it also admits the hypersurface orthogonal
Killing vector (15) of length 2 ¼ 1. This means that with
the CS scalar field given in (36), the field equations of CS
modified gravity (4) decouple into the Einstein and Cotton
sectors, according to the decoupling theorem of [29]. Thus,
we have two independent equations,

G�� þ�g�� ¼ 8�T��; C�� ¼ 0; (46)

where

�T �� ¼ T��
�h�� � 0: (47)

It is straightforward to show that for � ¼ ffiffiffi
2

p
, the metric in

(45) goes over into the usual Gödel solution [28]; i.e. it
satisfies the Einstein field equations in (46) with

T�� ¼ �u�u�; u� ¼ ð1; 0; 0; 0Þ; (48)

and

8�� ¼ 1; � ¼ �4��: (49)

As for the second equation in (46), it was explored in [33],
where it was shown that for the CS scalar field in the form
# ¼ #ðr;�Þ the Gödel solution of general relativity [28]
survives in CS modified gravity as well.

We now consider the value of � ¼ 2 in metric (45). This
results in a new nontrivial Gödel-type solution to the
vacuum field equations of CS modified gravity. In [27], it
was shown that such a metric in three dimensions, given in
Eq. (44) (in units in which m ¼ 3), satisfies the vacuum
field equations of topologically massive gravity [5],

ð3ÞR�� þ 1

m
ð3ÞC�� ¼ 0: (50)

The three-dimensional Cotton tensor is given by

ð3ÞC�� ¼ �
�ð�D�
ð3ÞR�Þ


 ; (51)

where �
�� is the Levi-Civita tensor. That is, for � ¼ 2
metric (44) represents a Gödel-type solution not only to the
three-dimensional Einstein field equations, but also to the
vacuum field equations (50) of TMG.

In our previous paper [29], in addition to a decoupling
theorem in CS modified gravity, we have also proved a
reduction theorem which states the following: If a four-
dimensional spacetime admits a non-null hypersurface
orthogonal Killing vector of constant length and the gra-
dient of the CS scalar field is parallel to the Killing vector,
then CS modified gravity reduces to TMG in three dimen-
sions. From this theorem it follows that having extended to
four dimensions, the TMG solution for � ¼ 2 would also
solve the field equations of CS modified gravity in vacuum

for some choice of the CS scalar field. Choosing, in accor-
dance with this theorem, the CS scalar as

# ¼ 	z; (52)

where	 is an arbitrary constant, and calculating, for metric
(45) with � ¼ 2, the nonvanishing mixed components of
the Ricci tensor, we find that

� 1
2R

t
t ¼ Rr

r ¼ R�
� ¼ 1; Rt

� ¼ 6ðcoshr� 1Þ: (53)

Similarly, for the nonvanishing components of the Cotton
tensor in (6), we have

� 1
2C

t
t ¼ Cr

r ¼ C�
� ¼ �3	;

Ct
� ¼ �18	ðcoshr� 1Þ: (54)

It is easy to see that for 	 ¼ 1=3 these quantities solve the
field equations of CS modified gravity (4) in the vacuum
case. That is, for � ¼ 2 the metric in (45) represents a
nontrivial (non-general-relativity) Gödel-type solution to
the vacuum field equations of CS modified gravity.

V. CONCLUSION

CS modified gravity with a prescribed CS scalar field
does not support rotating black hole solutions with spheri-
cal topology of the horizon. This is because of the restric-
tion given by the Pontryagin constraint of the theory. For
instance, the Kerr solution of general relativity does not
satisfy this constraint, and therefore it is not a solution to
CS modified gravity. In this paper, we have shown that the
situation is different for rotating black holes with cylindri-
cal topology of the horizon. Such black objects exist only
in the presence of a negative cosmological constant, and
they are known as black strings. We have examined two
physical examples of the stationary black string
configurations.
We began with the BTZ black string configuration,

known as a cylindrical system in four dimensions, which
solves the Einstein field equations with a specific source
term determined by the negative cosmological constant.
We have shown that for this configuration the Cotton tensor
vanishes identically, regardless of the form of the CS scalar
field. Thus, the BTZ black string solves the field equation
of CS modified gravity with the same specific source term
as that in ordinary general relativity. Next, we have con-
sidered the Lemos solution for a stationary black string in
general relativity, which on reducing to three dimensions
through a dimensional reduction procedure, transforms
into a black hole in three-dimensional dilaton gravity
[25]. We have found that the Lemos black string is also a
solution to CS modified gravity with the CS scalar field
chosen as a function of the radial coordinate alone.
We have also found a new Gödel-type vacuum solution

of CS modified gravity by extending a one-parameter
family of Gödel-type solutions of three-dimensional grav-
ity to four dimensions. Fixing in the three-dimensional
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metric the value of the parameter to � ¼ 2 gives rise to a
Gödel-type solution [27] to the vacuum field equations of
TMG. We have shown that by adding to this solution an
extra spatial flat coordinate and choosing the CS scalar
field as a linear function of this coordinate, one arrives at a
new nontrivial Gödel-type vacuum solution of CS modified
gravity. Thus, CS modified gravity admits a non-general-
relativity Gödel-type solution with a characteristic closed
timelike curve structure, unlike the Gödel universe in
string theory that need not contain closed timelike curves
[34].

It should be emphasized that the stationary black string
solutions discussed above are of importance for several
reasons: (i) First of all, they are the first physical examples
of rotating exact metrics in CS modified gravity with a
prescribed CS scalar field. It turns out that the theory still
supports black objects with rotational dynamics, though
with the cylindrical horizon topology and in the presence
of a negative cosmological constant; (ii) in the framework

of AdS/CFT correspondence these solutions, just as their
counterparts in three-dimensional gravity, may play an
important role in understanding the classical/quantum
structure of CS modified gravity; (iii) in the astrophysical
aspect, the black string configurations may arise as end-
points of cylindrical collapse of appropriate matter in the
background of the negative cosmological constant [24–26].
However, it is most likely that they will describe an ideal-
ized astrophysical situation: (iv) Though the black strings
are general relativity solutions supported by CS modified
gravity as well, their physical content will be different, as
their thermodynamical characteristics such as the mass,
angular momentum, and the entropy, just like in the case
of the BTZ black holes in TMG [35], will be modified by
the Chern-Simons contributions. Finally, it would also be
interesting to explore the black string configurations in the
context of the dynamical formulation of CS gravity with an
evolving scalar field. All together, these issues are chal-
lenging tasks for future works.
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BLACK STRING AND GÖDEL-TYPE SOLUTIONS OF . . . PHYSICAL REVIEW D 82, 024043 (2010)

024043-7

http://dx.doi.org/10.1103/PhysRevLett.83.1506
http://dx.doi.org/10.1103/PhysRevLett.83.1506
http://dx.doi.org/10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1016/0370-2693(84)91565-X
http://dx.doi.org/10.1016/0370-2693(84)91565-X
http://dx.doi.org/10.1016/j.physrep.2009.07.002
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1016/0003-4916(88)90053-X
http://dx.doi.org/10.1016/0003-4916(88)90053-X
http://dx.doi.org/10.1088/0264-9381/21/4/024
http://dx.doi.org/10.1103/PhysRevD.76.044011
http://dx.doi.org/10.1103/PhysRevD.76.044011
http://dx.doi.org/10.1103/PhysRevD.75.124022
http://dx.doi.org/10.1103/PhysRevD.75.124022
http://dx.doi.org/10.1103/PhysRevLett.99.241101
http://dx.doi.org/10.1103/PhysRevLett.99.241101
http://dx.doi.org/10.1103/PhysRevD.76.024009
http://dx.doi.org/10.1103/PhysRevD.76.024009
http://dx.doi.org/10.1103/PhysRevLett.99.241101
http://dx.doi.org/10.1103/PhysRevLett.99.241101
http://dx.doi.org/10.1103/PhysRevD.80.042004
http://dx.doi.org/10.1103/PhysRevD.80.042004
http://dx.doi.org/10.1103/PhysRevD.77.044015
http://dx.doi.org/10.1103/PhysRevD.77.044015
http://dx.doi.org/10.1103/PhysRevD.79.084043
http://dx.doi.org/10.1103/PhysRevD.79.084043
http://dx.doi.org/10.1143/PTP.122.561
http://dx.doi.org/10.1143/PTP.122.561
http://dx.doi.org/10.1016/0370-2693(90)90227-W
http://dx.doi.org/10.1088/0264-9381/9/3/014
http://arXiv.org/abs/1005.1325
http://dx.doi.org/10.1103/PhysRevD.48.2598
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1103/PhysRevD.53.4684
http://dx.doi.org/10.1103/PhysRevD.53.4684
http://dx.doi.org/10.1016/0370-2693(95)00533-Q
http://dx.doi.org/10.1103/PhysRevD.54.3840
http://dx.doi.org/10.1103/PhysRevD.54.3840
http://dx.doi.org/10.1016/0370-2693(85)90199-6
http://dx.doi.org/10.1103/RevModPhys.21.447
http://dx.doi.org/10.1016/j.physletb.2010.05.021
http://dx.doi.org/10.1016/j.physletb.2010.05.021
http://dx.doi.org/10.1103/PhysRevLett.71.328
http://dx.doi.org/10.1103/PhysRevLett.71.328
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://arXiv.org/abs/0812.2576
http://dx.doi.org/10.1103/PhysRevD.79.124039
http://dx.doi.org/10.1103/PhysRevD.58.103502
http://dx.doi.org/10.1103/PhysRevD.58.103502
http://dx.doi.org/10.1103/PhysRevD.77.026011

