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We present the first comparison between numerical relativity (NR) simulations of an eccentric binary

black hole system with corresponding post-Newtonian (PN) results. We evolve an equal-mass, non-

spinning configuration with an initial eccentricity e � 0:1 for 21 gravitational wave cycles before merger,

and find agreement in the gravitational wave phase with an adiabatic eccentric PN model with 2 PN

radiation reaction within 0.1 radians for 10 cycles. The NR and PN phase difference grows to 0.7 radians

by 5 cycles before merger. We find that these results can be obtained by expanding the eccentric PN

expressions in terms of the frequency-related variable x ¼ ð!MÞ2=3 with M the total mass of the binary.

When using instead the mean motion n ¼ 2�=P, where P is the orbital period, the comparison leads to

significant disagreements with NR.
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I. INTRODUCTION

Tremendous progress towards detecting gravitational
waves is being made by observational efforts such as
LIGO, VIRGO, and GEO600. Just recently, LIGO has
reached its designed sensitivity and is currently undergoing
enhancements to increase the sensitivity by an order of
magnitude as a step towards advanced LIGO. In anticipa-
tion of these enhancements, it is essential to have models of
gravitational waveforms for all sources of gravitational
radiation, in particular, for binary black hole systems, since
they are expected to be one of the most promising sources
[1–5].

Constructing these waveforms is a nontrivial task.
Generating a complete waveform involves numerically
solving the full Einstein equations in order to correctly
describe the last few orbits and merger. This is computa-
tionally intensive with simulations running for weeks to
produce a single accurate waveform. Furthermore, the
parameter space of merging black hole binaries is quite
large. In addition to the intrinsic black hole parameters
(masses, spin magnitudes, and orientations), there are the
orbital parameters (eccentricity and semimajor axis).
Because of the computational cost of producing numerical
waveforms, the only way to have a hope of covering the
parameter space efficiently is to use waveforms that com-
bine numerical relativity (NR) solutions with results from
the post-Newtonian (PN) approximation. To achieve this
goal, it is first important to cross-check the two methods to
ensure that they give compatible results where PN is valid,
namely, for large enough binary separations. Second, it is
necessary to investigate how close to the merger one can
use the PN results (a recent study [6] addresses this ques-
tion in the extreme-mass-ratio case using the theory of
optimal asymptotic expansions).

Because of recent advances [7–9] in the field of numeri-
cal relativity, long-term accurate and stable evolutions of
binary black hole systems spanning several orbits as well
as the merger are now possible. The initial separations of
the black holes in these simulations are now sufficient to
make comparisons with waveforms generated in the PN
approximation. Such comparisons have been made for
equal-mass nonspinning [10–17], unequal-mass [18], and
spinning [19] binaries, all in quasicircular orbits. As a
result, hybrid waveforms for quasicircular orbits have
been constructed which combine the PN waveform, accu-
rate when the black holes are far apart, with the late inspiral
and merger waveform that can only be obtained using full
NR [20–23].
In this paper, we take the next step and extend for the

first time the NR and PN comparison to the case of eccen-
tric binary black hole systems. Only recently the first NR
studies of bound eccentric binary black hole systems have
been performed [24,25], where the dependence of the final
black hole mass and spin on the initial eccentricity for
nonspinning, equal-mass systems was studied. It has long
been known that far-separated eccentric binary systems
emitting gravitational radiation will circularize [26].
However, it was not known what would happen if a binary
black hole system still had significant eccentricity in the
late stages of inspiral. Rather than forming a final black
hole with a higher or lower spin, the NR results showed that
even up to an initial eccentricity of e� 0:4, the final black
hole mass and spin were the same as in the circular case,
indicating that the rate of loss of eccentricity was sufficient
for the binary to circularize prior to or during merger.
Because of the tendency of eccentric binary systems to
circularize, most of the expected astrophysical binary
black hole sources for Earth-based gravitational wave de-
tectors will have lost all their eccentricity by the time their
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waves enter the frequency band of the detector. However,
several astrophysical scenarios have been proposed in
which binary black hole systems in eccentric orbits might
be detectable, for which it will be necessary to understand
the dynamics and waveforms of eccentric binary black hole
systems.

One such scenario may occur in the dense cores of
globular clusters, where interactions between pairs of bi-
nary black hole systems eject one of the black holes,
resulting in a stable hierarchical triple. This is a three-
body system (three-body black hole systems have also
been studied recently in NR [27]) consisting of two closely
bound black holes and a third orbiting the center of mass of
the first two. When the two orbital planes are strongly tilted
with respect to each other, tidal forces from the third body
can cause an orbital resonance, increasing the eccentricity
of the inner binary. This is known as the Kozai mechanism
[28]. It has been suggested [29] that this could lead to
eccentricities greater than about 0.1 at the time the binary
enters the frequency band of advanced ground-based de-
tectors, followed by merger driven by gravitational radia-
tion reaction. Stellar mass black hole binaries in globular
clusters are expected to have a thermal distribution of
eccentricities [30], and intermediate mass black holes in
globular clusters are expected to have eccentricities be-
tween 0.1 and 0.2 while they are in the frequency band of
the LISA detector [31]. Supermassive black holes are also
sources for LISA, and it is currently unknown what eccen-
tricity they might have [32]. They could potentially merge
within the Hubble time from highly eccentric orbits if the
Kozai effect was occurring [33]. It has also been shown
that massive black hole binaries in disks of gas can merge
without losing eccentricity if the disc is rotating in the
opposite sense to the binary orbit [34]. Being able to
measure the nonzero eccentricity from the waveforms
will tell us about the physics of the system, and may also
have implications for detection if quasicircular templates
are used.

The energy and angular momentum fluxes from the
gravitational waves emitted by a comparable mass eccen-
tric binary were originally determined by Peters and
Mathews [26,35] in the Newtonian limit. By balancing
the time-averaged far-zone fluxes of energy and angular
momentum with the loss of binding energy and angular
momentum in the orbit, the rate of decay of the orbital
semimajor axis and eccentricity could be determined in the
adiabatic approximation. The result showed that the ec-
centricity of a binary reduces by approximately a factor of
3 when the semimajor axis is halved.

The next order corrections to this result were obtained to
1 PN and 1.5 PN order, enabling the study of the evolution
of the orbital elements using the quasi-Keplerian parame-
trization of the orbit [36–40]. With the use of a generalized
Keplerian representation [41–43], this work was extended
to 2 PN [44,45].

An improved method of variation of constants has been
developed [46,47] in order to construct models which for
the first time go beyond the adiabatic approximation. Very
small oscillations in the orbital elements were found on the
time scale of the orbital period. The conservative 3 PN
dynamics of an eccentric system in the quasi-Keplerian
representation have been derived [48]. Recently, the com-
plete 3 PN energy and angular momentum fluxes have been
determined [49–52].
The availability of the energy flux to 3.5 PN order [53] in

the quasicircular case has led to successful matches with
NR waveforms, with agreement in the waveform phase
within 0.05 radians between 30 and 15 cycles before
merger, and within several radians up to the merger [15]
for some PN models, though the level of agreement near
merger is model dependent. The TaylorT4 model, specifi-
cally, agrees within 0.05 radians up to M!gw ¼ 0:1.

Recently, it has been shown that for TaylorT4, the energy
flux is identifiably different from the NR result even 25
cycles before merger [17].
A circular binary black hole inspiral gives rise to wave-

form dynamics which are in some sense simple: the am-
plitude and frequency increase monotonically, which may
explain why the adiabatic approximation works so well.
Eccentric orbits on the other hand give rise to waveforms
with oscillations in the amplitude and frequency, and com-
parison with NR in this case will provide a significantly
more stringent test of the PN approximation.
In this paper, we present the first analysis of the agree-

ment between PN and NR eccentric waveforms.We restrict
to the equal-mass, nonspinning case. We use the 3 PN
conservative quasi-Keplerian orbit equations [48], com-
bined with the 2 PN evolution of the orbital elements
[46] to construct adiabatic PN waveforms, determined by
four independent initial parameters. We then present a full
NR evolution which starts 21 gravitational wave cycles
before merger with an estimated initial eccentricity of
e � 0:1. We assume that the NR simulation gives the final
stage of a full waveform, such as one that would be
observed in nature. We then choose a fitting interval in
time and use least squares fitting to find the parameters of
the PN waveform which best matches the numerical data in
that interval. We find agreement between the NR and PN
gravitational wave phase within 0.1 radians for 10 wave
cycles at the start of the simulation. The NR and PN phase
difference grows to 0.6 radians 5 cycles before merger,
corresponding to M!gw ¼ 0:1.

As has been previously shown in the circular case, we
find that different PN approximants lead to different levels
of agreement with NR [15]. We show here that an eccentric
PN model expanded in terms of the mean motion n ¼
2�=P, where P is the orbital period, leads to significant
disagreements with NR, whereas using the frequency-

related variable x ¼ ðð2�þ��Þ=PÞ2=3, where �� is the
precession angle per period, gives much better agreement.
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In Sec. II A, we describe the eccentric PN model we will
use in our comparisons. The PN expressions are given in
outline form to make clear precisely how we are construct-
ing the solutions; the full expressions are given in the
appendix. In Sec. II B, we describe the methods used in
our NR simulations that have not previously been de-
scribed; specifically, we discuss the method of constructing
initial data parameters with eccentricity e � 0:1. We
present the results of the numerical simulations in
Sec. III A, along with an analysis of the errors. In
Sec. II C, we describe the method we use for matching
NR and PN waveforms. Section III B contains the main
result of this paper, which is the comparison of the PN and
NR solutions. Finally, we discuss the consequences of the
results and our plans for future work in Sec. IV.

II. METHODS

A. Eccentric post-Newtonian model

We first review the solution of eccentric Newtonian
orbits, in order to fix notation and to illustrate our general
method for solving the PN system. For a detailed treat-
ment, see, for example, Ref. [54].1 The system under
consideration consists of two point particles of masses
m1 and m2. The total mass is M ¼ m1 þm2. We will use
M as the mass scale for all numerical quantities in our NR
simulations, and work in units in which G ¼ c ¼ 1. The
reduced mass is � ¼ m1m2=M and the symmetric mass
ratio is � ¼ �=M. We will give expressions for arbitrary
mass ratios �, although in this work we will only be
considering equal-mass systems, for which m1 ¼ m2 ¼
M=2, � ¼ M=4 and � ¼ 1=4. For Newtonian orbits, the
energy E and angular momentum J are constants of the
motion and can be expressed in terms of themean motion n
and the eccentricity e. The conservation of J means that
the orbit is restricted to a plane. The mean motion is related
to the orbital (pericenter to pericenter) period P and the

semimajor axis a by n ¼ 2�=P ¼ a�3=2M1=2. In the
Newtonian case, the pericenter occurs at the same value
of the relative angular coordinate� on each orbit; i.e. there
is no precession. There is no closed form solution for the

relative orbital radius r or angular frequency _� in terms of
time, but they can be expressed in terms of the eccentric
anomaly u,

r ¼ a½1� e cosu�; (1)

_� ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

½1� e cosu�2 : (2)

The eccentric anomaly u satisfies Kepler’s equation,

l ¼ u� e sinu; (3)

where the mean anomaly l is given by _l ¼ n. Since n is
a constant, we can integrate to obtain l ¼ nðt� t0Þ and
Eq. (3) is a transcendental algebraic equation for u, which
can be solved numerically, for example, by Newton’s

method, at each t. Thus we can obtain r and _� (and hence
_r and �) at any time t. Each orbit is parametrized by the
constants n, e, �0 � �ðt0Þ and l0 � lðt0Þ.
The Newtonian system is conservative in the sense that it

admits a conserved energy and angular momentum, which
can be expressed in terms of the constants n and e. One can
also derive conservative equations in the PN case; the

Newtonian equations for r, _� and l are modified by the
addition of higher order (in n) terms. In the PN case, the
quasi-Keplerian parametrization leads to three eccentric-
ities, et, er, and e�, representing deviations from circular

motion in t, r and �, but these are related to each other by
PN equations and it is sufficient to consider just et. To
Newtonian order, all three are equal.
In the conservative PN equations, n and et are still

constants, but the orbits precess. Note that the period P
of the orbit is defined to be the time from pericenter to
pericenter, and due to the effects of precession, this is not
the time to go from angular coordinate � to �þ 2�. The
angle of precession of the pericenter during one (pericenter
to pericenter) orbit of period P is denoted ��. Following
Refs. [49,50], we define

! � 2�þ ��

P
(4)

to be the angle swept out by the orbit from pericenter to
pericenter in one period P. Note that in the conservative PN

system, this is a constant. In the circular case, where _� is a

constant, we have ! ¼ _�. We will investigate two differ-
ent PN models which differ only in the choice of variable
used (and hence in higher order uncontrolled remainder
terms). In Ref. [47], the eccentric system is described in
terms of the mean motion n and the eccentricity et. We

present the equations here in terms of the variable x �
ðM!Þ2=3 and et. We call the two resulting PN models the x
model and the n model. See Sec. III C for more discussion
of these two models.
We now give the 3 PN conservative orbital dynamics; we

work throughout in modified harmonic coordinates, in
which these expressions have been derived [48]. The 3
PN conservative dynamics were first determined in
Ref. [48], and were written out explicitly in terms of n
and et in Ref. [47]. Here, for brevity, we will omit lengthy
high order PN expansions; the full expressions are avail-
able in the Appendix. The abbreviated forms of the con-
servative dynamics, in terms of x and et, are

r=M ¼ ½1� et cosu�x�1 þ r1PN þ r2PNxþ r3PNx
2

þOðx3Þ; (5)

1Note that in Ref. [54], the eccentric anomaly is called c
rather than u, and the period T rather than P. The notation used
in this work reflects that commonly used in the PN literature.
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M _� ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2t

p
½1� et cosu�2

x3=2 þ _�1PNx
5=2 þ _�2PNx

7=2

þ _�3PNx
9=2 þOðx11=2Þ; (6)

l ¼ u� et sinuþ l2PNx
2 þ l3PNx

3 þOðx4Þ; (7)

M _l ¼ Mn

¼ x3=2 þ n1PNx
5=2 þ n2PNx

7=2 þ n3PNx
9=2 þOðx11=2Þ;

(8)

where the quantities r1PN; _�1PN; . . . are functions of et and
u, but n1PN; . . . are functions only of et. Since the right-
hand side of Eq. (8) is given in terms of the constants x and
et, it can be trivially integrated to give lðtÞ in terms of an
integration constant l0 at some t0. So given constants x, et,
and l0, we can solve Eq. (7) numerically for u at each t by
root-finding, then insert u into Eqs. (5) and (6) to obtain the
coordinate motion of the conservative 3 PN system.

The conservative system is expected to be a good ap-
proximation on time scales over which the energy and
angular momentum lost to gravitational radiation is negli-
gible. To go beyond this approximation, we will model
these losses adiabatically; i.e. they will be averaged over
the orbital period. The losses are derived by computing the
gravitational wave energy and angular momentum flux at
infinity and equating the energy and angular momentum
radiated to that lost from the system. The equations for _E
and _J can be used to derive equations for _x and _et. The
equations to 2 PN order are given in Ref. [47] in terms of n
and et. In terms of x and et, we have

M _x ¼ 2�

15ð1� e2t Þ7=2
ð96þ 292e2t þ 37e4t Þx5 þ _x1PNx

6

þ _x1:5PNx
13=2 þ _x2PNx

7 þOðx15=2Þ; (9)

M _e ¼ �e�

15ð1� e2t Þ5=2
ð304þ 121e2t Þx4 þ _e1PNx

5

þ _e1:5PNx
11=2 þ _e2PNx

6 þOðx13=2Þ: (10)

Since the evolution is treated adiabatically, the functions
_x1PN; _e1PN; . . . depend only on et, and not on u. Hence, the
adiabatic evolution equations for x and et form a closed
system, and can be solved independently of the Kepler
equation. Given initial conditions xð0Þ and etð0Þ, we can
solve the system of ordinary differential equations numeri-
cally to obtain xðtÞ and etðtÞ.

In the presence of time-varying x and et, Eq. (8) must be
integrated to obtain lðtÞ. The rest of the computation pro-
ceeds as in the conservative case; u is determined numeri-
cally by root-finding in Eq. (7), and then u, x, and et are
inserted at each time into Eqs. (5) and (6).

We use analytical expressions for the functions

r1PN; _�1PN; . . . to obtain numerical solutions for r and _�,
but due to the complexity of the expressions for _r and �,
we choose to obtain _r and� by numerically differentiating

and integrating the r and _� solutions, respectively. This
makes a difference to terms at higher PN orders that we are
currently neglecting.

We have checked our expressions for r and _�, as well as
the 3 PN Kepler equation, by deriving them from the
orbital elements in terms of E and h [48] and by comparing
with the explicit expressions in terms of n and et [47]. This
completes the description of the coordinate motion.
Since the NR and PN solutions are in different coordi-

nate systems, we must compare them using some
coordinate-independent quantity. We will use the gravita-
tional wave frequency; specifically the ‘ ¼ 2,m ¼ 2mode
of the Newman-Penrose �4 quantity, as it is readily avail-
able from the NR simulations.
The complex PN waveform strain is given (to leading

Newtonian order) by

h ¼ hþ � ih�; (11)

hþ ¼ �M�

R

�
ðcos2�þ 1Þ

�
cos2�0

�
� _r2 þ r2 _�2 þM

r

�

þ 2r _r _� sin2�0
�
þ

�
� _r2 � r2 _�2 þM

r

�
sin2�

�
;

(12)

h� ¼ � 2M�

R
cos�

��
� _r2 þ r2 _�2 þM

r

�
sin2�0

� 2r cos2�0 _r _�

�
; (13)

where �0 � �� ’, and � and ’ are the spherical polar
angles of the observer. Equations (11)–(13) are taken from
Ref. [45] but with the sign convention for the cos2�0 and
sin2�0 terms of Refs. [46,47]. Using only the leading
(quadrupolar) contribution to h is called the restricted
waveform approximation. The strain h can be decomposed
into spin-weight s ¼ �2 spherical harmonics, and the ‘ ¼
2, m ¼ 2 mode is given by

h22 ¼
Z

�2Y
2�
2 ð�; ’Þhð�; ’Þd�; (14)

¼ � 4M�e�2i�

R

ffiffiffiffi
�

5

r �
M

r
þ ð _�rþ i _rÞ2

�
; (15)

where �2Y
2
2ð�;’Þ ¼ 1

2 e
2i’

ffiffiffiffiffiffiffiffiffi
5=�

p
cos4ð�=2Þ. We insert the

coordinates, �, _�, r, _r, into Eq. (15) to obtain the ‘ ¼ 2,
m ¼ 2 spin-weight s ¼ �2 [55] mode of the waveform

strain. Finally, using �22
4 ¼ €h22 we differentiate h22 twice

with respect to time to obtain the (complex) ‘ ¼ 2, m ¼ 2
mode of �4. This is split into amplitude and phase, and
undetermined additive multiples of 2� in the phase are
determined by continuity.
We have described one procedure for constructing PN

eccentric waveforms. Note that this is not unique; different
procedures will differ by the ‘‘uncontrolled remainder
terms’’ of higher PN order than we have considered.
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Specifically, we have chosen to solve the 2 PN truncated
adiabatic evolution equations for x and et numerically,
rather than constructing an analytic expansion for the
solution and then truncating it to 2 PN. This makes a
difference to the solution in the circular case [11], and
has been shown [15] to give better phase agreement with
NR. In Ref. [15], the circular waveform constructed using
this approach is named TaylorT4, and the waveform phase
agrees significantly better with NR than the TaylorT1,
TaylorT2, and TaylorT3 approximants. For simplicity, we
have also limited the computation of the waveform as a
function of the coordinates to Newtonian (quadrupolar)
accuracy, and restrict our comparisons to the phase rather
than the amplitude. Higher order corrections to the wave-
forms are available [44,56], though not in a form which is
convenient to use in this work. We have also chosen to
construct some derivative quantities by numerical differ-
entiation; where this is the case, we have verified that the
effects of discretization on the resulting waveform phase
are much smaller than any numerical errors we have in our
NR simulations.

B. Numerical relativity methods

Our NR simulations are based on the moving punctures
approach without excision [8,9]. Initial data representing
the binary black hole system is constructed with a con-
formally flat metric and Bowen-York extrinsic curvature,
and the constraints are solved using the TWOPUNCTURES

[57] spectral code. The evolution in time is performed
using our Baumgarte, Shapiro, Shibata, and Nakamura
(BSSN) [58–60] finite differencing code generated using
the KRANC [61] code generation package. The CACTUS [62]
infrastructure is used for parallelization, input/output, and
parameter handling, and for adaptive mesh refinement we
use Carpet [63]. The code has been previously described
in more detail [64]; however, we have since modified it to
use sixth order spatial finite differencing as described in
Ref. [65] in order to improve accuracy. We here use 9
levels of box-in-box mesh refinement, where the outermost
(base) grid covers the domain xi 2 ½�384; 384�. On the
outer boundary, a simple spherical outgoing wave bound-
ary condition is applied to each variable as is conventional
for finite differencing BSSN codes in NR (see Ref. [66] for
more details). Formally, this boundary condition respects
neither the constraints nor the characteristic structure of the
equations. For very short simulations, it is possible to place
the outer boundary far enough out that it is causally dis-
connected from the coordinate spheres on which the wave-
forms are computed, but for the long simulation we present
here it is not computationally feasible to do this in our
code. A discussion of the possible errors introduced can be
found in Sec. III A.

The free parameters in the Bowen-York extrinsic curva-
ture are the coordinate locations and linear momenta of the
two black holes. We obtain these parameters using the

conservative 3 PN expressions for eccentric orbits [47].
These expressions require specification of the two con-
stants, et and n (the eccentricity and mean motion). We
choose n ¼ 0:0156=M and et ¼ 0:1, compute the coordi-
nate separation r from the 3 PN expression in terms of n
and et, and use it in the Bowen-York extrinsic curvature.
The tangential linear momentum of each black hole at
apocenter, py, is obtained from J ¼ pyr, where J is com-

puted as a PN expansion in n and e. We solve iteratively for
the base mass parameters to ensure that the irreducible
masses of the black holes are m1 ¼ m2 ¼ 0:5M, where
M is a mass scale. As such, the mass scale M is the sum
of the irreducible masses of the black holes. This pro-
cedure results in initial coordinate locations xi� ¼
ð�7:1570737463; 0; 0ÞM, initial linear momenta Pi� ¼
ð0;�0:07191137095; 0ÞM, and initial bare masses m�

bare ¼
0:4903157830M. The resulting spacetime has Arnowitt-
Deser-Misner (ADM) mass MADM ¼ 0:991413M.
This choice of initial data parameters has the following

limitations. First, only the conservative PN expressions
have been used, which means that there is no consideration
of the inspiral velocity. Second, there will be an error in the
parameters due to the truncation of the PN series. Third,
the use of PN parameters (in this case in harmonic coor-
dinates) directly substituted into the Bowen-York extrinsic
curvature, assumes that the differences in the coordinate
systems are small. We will see later that these initial data
parameters agree reasonably well with the subsequent
evolution.

C. Fitting the post-Newtonian model to numerical
relativity data

We now discuss our method for determining a PN model
which corresponds to our numerical simulation results. The
PN approximation is very accurate when the binary system
is far separated, becomes less accurate in the later stages of
inspiral, and is no longer valid during some period leading
up to merger. Using NR, we can simulate the late inspiral
and merger. Ultimately, we would like to construct a
waveform which most closely resembles one that would
be observed in nature from early inspiral all the way
through to merger. We will assume that the NR result gives
the final part of this hypothetical full waveform, and use a
PN waveform to approximate the full waveform before the
start of the NR one. In this paper, we will not construct a
hybrid waveform from the PN and NR results.
In this work, we will look for agreement in the gravita-

tional wave frequency of the ‘ ¼ 2, m ¼ 2 mode of �4,

!gw � _�gw ¼ d

dt
arg�22

4 ; (16)

as is common in the circular case. We will use the suffix
‘‘gw’’ to indicate that the quantity we are considering is
related to the gravitational wave, and not the coordinate
motion. We choose a time interval [t1; t2] in the numerical

COMPARISONS OF ECCENTRIC BINARY BLACK HOLE . . . PHYSICAL REVIEW D 82, 024033 (2010)

024033-5



simulation and use least squares fitting to determine the
parameters of the PN model that best fits the numerical
data in that interval. Wewill find in Sec. III A that the black
hole masses in the numerical simulations are essentially
constant at m1 ¼ m2 ¼ 0:5M for the inspiral part of the
simulation, so we do not fit for the masses when matching
to PN. Thus, the eccentric PN model is determined
uniquely by a choice of the functions X, et, l, and � at a
given time t0, where X ¼ x or n depending on the PN
model being constructed. We define initial conditions

y0 � ½X0; e0; l0; �0�; (17)

and the residual

Qðy0Þ � 1

N

X
t2I

½!PNðt; y0Þ �!NRðtÞ�2; (18)

using points t from the numerical simulation in the interval
[t1; t2].Q is then minimized numerically over y0, where for
each y0, the PN equations must be solved to construct the
waveform. The minimization requires an initial estimate of
y0. We find that using a local minimization method (for
example, the principal axis method) can lead to inconsis-
tent results. Specifically, the final fitted parameters show a
dependence on the initial estimate due to the existence of
local minima in the residual. Instead, we use a global mini-
mization method, requiring an order of magnitude more
iterations (typically around 5000), and hence increased
computational resources. We find that minimization by
the method of differential evolution, as implemented in
MATHEMATICA’S NMinimize function, works well. A typi-

cal minimization for a given fitting window takes about 20
minutes on a laptop. Note that since the wave frequency
!gw is independent of�0, in practice we determine�0 by a

separate least squares fit between the PN and NRwaveform
phases.

So, given a fitting interval, we can determine a PN
model, identified by the parameters y0. If the model and
data matched exactly, the fitted parameters y0 would be
independent of the fitting interval. However, the errors in
the PN approximation cause the fit to be imperfect. If these
errors are large, the dependence on the fitting interval will
be significant.

Once the parameters y0 have been obtained, we can use
these parameters to construct a final PN model, which will
be the model that best approximates the full solution in the
fitting interval.

III. RESULTS

A. Numerical relativity simulation results

In this section, we describe the results of our NR simu-
lations, and analyze the numerical errors. The PN model
gives the limiting form of the waveform at large distances
from the source, whereas in the numerical code we com-
pute the waveform on coordinate spheres of finite radii

rext=M ¼ f30; 40; . . . ; 150g. We therefore extrapolate the
waveform to infinite radius using the method described in
Ref. [15]. To extrapolate the waveform, we first shift the
waveform measured at each extraction radius in time by
the estimated light propagation time to the extraction
sphere, given by the Schwarzschild tortoise coordinate
[67],

r? ¼ rareal þ 2MADM log

�
rareal

2MADM

� 1

�
; (19)

where we approximate rareal � rþMADM (see Ref. [15]
for further details; even if this relation does not hold
exactly, the deviation will be included in our extrapolation
error estimates). The amplitude and phase are then sepa-
rately extrapolated by a least squares fit to an nth degree
polynomial in 1=r, fnðrÞ � f1 þP

n
i¼1 ai=r

i at each time
t� r?. We estimate the error in the nth order extrapolation
as en � fnþ1 � fn. We find that using extraction radii
rext ¼ f70; 80; . . . ; 150g in combination with first order
extrapolation gives the best results. Using higher order
extrapolation does decrease the error, but the extrapolant
contains more noise.
We ran three simulations at different resolutions in order

to assess the finite differencing error. The finest refinement
boxes were coordinate cubes of side 1:24M and consisted
of 483, 643, 803 points in the three runs. This leads to finest
grid spacings of hf ¼ M=38:7, M=51:6, M=64:5. To in-

vestigate the finite differencing error, we consider the
convergence properties of the gravitational wave phase,

�gwðt� r?Þ � arg½�22
4 ðt� r?Þ�; (20)

extrapolated to infinite radius. In Fig. 1, we plot the con-
vergence order of �. For t� r? < 500, we see no clear
convergence order, but the differences between the phases
at the three resolutions are less than 0.01 radians. For
500< t� r? < 2000, we see a convergence order which
drops from 6 to 5, after which the order drops to about 1 for
a small period around the merger. The fact that the con-
vergence order is not clearly 6 may be explained by the fact
that we have second, fourth and sixth order components in
the simulation. Since we do not have clean sixth order
convergence, we cannot reliably use Richardson extrapo-
lation to obtain a more accurate result. However, we can
use extrapolation of the highest two resolutions using the
observed approximate convergence order of 5 to provide an
estimate of the error in the solution. Note that for the time
region we will use for matching with PN (t < 1000), the
convergence order of 5 is a good approximation. Figure 2
shows the finite differencing error estimate compared with
the estimate of the error in the extrapolation to infinite
radius. The dotted line represents the time of the peak in
j�22

4 j, which is a good indicator of the merger time. Note
the sudden increase in the extrapolation error shortly after
the merger. Also note that any significant effects arising
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from numerical reflections of the waves from refinement
boundaries are expected to be covered by the finite differ-
encing error bars, as these effects should diminish with
increased resolution.

When comparing with PN later, we will add the errors
from finite differencing and from extrapolation in quad-
rature to provide an estimate of the overall error in the
numerical waveform. Note that the approximately expo-
nential growth of the finite differencing error in Fig. 2 has
been previously observed in the circular case [65].

When comparing NR and PNmodels, we wish to use the
gravitational wave frequency !gw. However, as seen be-

fore for both finite differencing [13] and pseudospectral
[15] codes in the circular case, !gw has noticeable high

frequency error at early times when the amplitude of the
radiation is low. In our case, this comes from numerical
reflections of the initial spurious radiation, present in the

initial data, from mesh refinement boundaries. Since this is
precisely the regime in which we would like to match with
PN, this high frequency error must be removed. We find
that this can be achieved very effectively by filtering the
noisy region of !gw in the Fourier domain. We first tried

using a moving averages filter, but this tended to system-
atically reduce the amplitude of the oscillations in !gw,

which we found unacceptable. We also chose not to fit a
polynomial to !gw as has been done in the circular case

[13], due to the naturally oscillatory nature of the eccentric
signal. To perform the filtering, we proceeded as follows.
We first chose an interval of time, [t1; t2], in which to
perform the filtering. We chose ½t1; t2� ¼ ½80M; 1680M�,
excluding the late inspiral and merger as well as the initial
spurious radiation from the filtering region. We then per-
formed a discrete Fourier transform of the data, removed
all but the lowest 30 modes, and then inverse transformed.
We found that 30 modes were sufficient to represent the
signal; this was judged by subtracting the filtered from the
unfiltered signal, and observing essentially only noise.
Taking only the first 30 modes corresponds to a frequency
cutoff of !max ¼ 30� 2�=ðt2 � t1Þ � 0:1M�1, or modes
with a period of Tmin � 50M. Note that this is not compa-
rable to filtering the evolved variables or even�4

2;2; it is the

frequency of �4
2;2 that is being filtered. Since the original

signal is not periodic, Gibbs phenomena were observed as
oscillations near the endpoints of the filtered region. We
therefore removed a segment of length 80M from the
beginning and end of the filtered region before reinserting
the filtered region into the full signal. Figure 3 shows the
result of the filtering.
We have monitored the irreducible masses Mirr of the

apparent horizons in the lowest resolution simulation. The
computed mass of each black hole drops from its initial
value of 0.5 by only 2� 10�4M by the time of the merger,
and we ascribe this effect to finite differencing error. We
have not computed horizons at higher resolutions due to
computational expense. Thus, within our numerical errors,
we do not detect any physical growth of the horizons
during the inspiral, which potentially could have occurred
due to absorption of gravitational wave energy in the initial
part of the simulation, as has been studied in detail in
previous work [68].
The spins of the black holes, as measured using an

approximate technique derived from the isolated horizon
formalism [69,70], increase during the simulation to only
Sz ¼ 10�4=M2 before the merger. This is independent of
finite differencing resolution, but we expect this tiny spin
to be of little consequence to the PN comparison, which
does not contain the effects of spin.
The outer boundary in the simulations is at xi ¼

�384M, and as mentioned in Sec. II B, the boundary
condition is a source of error in the simulation. To measure
the effect of this error, we have repeated the low resolution
simulation, which has only modest computational cost,
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FIG. 2. Errors in the NR gravitational wave phase �gw from
the effects of finite resolution and extrapolation to infinite radius.
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with the outer boundary moved to xi ¼ �768M by enlarg-
ing the coarsest grid. We find that the effect on the wave-
form phase is much smaller than the estimated errors in the
high resolution simulation due to finite differencing and
extrapolation to infinite radius, and we conclude that the
outer boundary is not a significant source of error in the
simulation. In future, with more accurate simulations, this
will need to be addressed further.

The simulations at the three different resolutions con-
sumed approximately 5000, 11000, and 16000 CPU hours,
respectively, each one running on 32 cores of the LoneStar
supercomputer.

B. Comparing numerical relativity simulations with
post-Newtonian models

We now discuss the results of applying the fitting pro-
cedure described in Sec. II C to the numerical simulation
results.

Figures 4 and 5 show the parameters [x0; e0; l0; �0] (for
the x model) and [n0; e0; l0; �0] (for the n model) deter-
mined by fits of the NR data to the PN model in fitting
intervals I ¼ ½t1; t2�. These parameters are the values of the
functions x, n, e, l, and � at t� r? ¼ 0. In Fig. 4, t1 has
been kept fixed to a value at the start of the usable wave-
form and t2 has been varied. We see that the parameters
obtained from fits using the x model vary much less with
the fitting window length than those using the n model.
Specifically, we see that for both models the fitted parame-
ters oscillate significantly for intervals of less than
�400M, but for the x model these variations die away as
the interval is increased beyond this. From the initial data
parameters, the orbital period is P ¼ 403M. It may be that
over time scales smaller then the orbital period, there are
unmodeled nonadiabatic oscillations in the NR result
which are averaged out when larger fitting intervals are

used. These oscillations may cause the fit to become worse
for small intervals. For the n model, we see strong oscil-
lations of a period �400M roughly corresponding to the
period of the oscillations in !gw itself. In order to deter-

mine the effect on the parameters of the interval location,
we choose an interval width of 400M and vary t1 in Fig. 5.
Here again, we see that the x model shows much more
consistent behavior than the n model.
In order to choose a unique set of PN parameters, we

choose the earliest possible fitting interval, and take the
size of the interval to approximately correspond to the
initial orbital period, �400M, giving a fitting interval
t=M 2 ½210; 610�. The parameters for this fitting interval
are given in Table I. It is interesting to compare these
parameters with the approximate parameters used to con-
struct the Bowen-York initial data; these are also given in
the table. x0 and n0 agree to within 1% and 2%, respec-
tively, with the initial data values. e0 agrees within 0.3%
between the two PNmodels, and to 3% with the initial data
value. l0 agrees to within 0.1 radians between the two
models and the initial data value. �0 agrees to within
0.02 radians between the two models, but is of the order
of �=2 different from the initial data value. This large
discrepancy is probably related to the adjustment of the
coordinate system that happens at the start of the numerical
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FIG. 3. Filtering of NR gravitational wave frequency in the
Fourier domain. The solution in the region containing noise is
truncated to the lowest 30 Fourier modes.
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simulation. Recall that the method for constructing the
initial data parameters was approximate, due to the differ-
ent coordinate systems used, so perfect agreement is not
expected.

Now that we have estimated the PN model which
matches the NR solution in the fitting interval, we can
compare the PN waveform for the x and n models with
the NR result. In Fig. 6, we plot the PN and NR gravita-
tional wave frequencies !gw and see that there is good

agreement with the xmodel from the start of the simulation
to t � 1800M. That there is such a high level of agreement
with a model which contains so much structure is a strong
validation of both the PN model and the NR simulation.

We also see on the same plot the much worse agreement
obtained using the n model.
We now quantify the agreement with the x and nmodels

by considering the waveform phase differences. Figure 7
shows the difference between the NR and PN gravitational
wave phases as a function of t. The error bars represent the
uncertainty in the NR phase from extrapolation to infinite
radius and finite differencing truncation error. We see that
the phase difference between NR and PN is within 0.1
radians for approximately 1330M, or 11 gravitational
wave cycles. At t ¼ 1882M, corresponding to M!gw ¼
0:1, the phase difference between NR and PN is � 0:7
radians.
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FIG. 5. PN parameters for the x and n models as determined
from fitting windows [t1; t2] for various values of t1 and t2 ¼
t1 þ 400M.

TABLE I. Eccentric PN (x model and n model) parameters
computed by fitting in an interval [210, 610] as well as the
parameters estimated from the initial data. The parameters
correspond to the values of the functions x, n, e, l, and � at t�
r? ¼ 0. Note that the agreement is not expected to be exact.

Parameter x-model fit n-model fit Initial data value

x0 0.0747729 	 	 	 0.0740853

n0 	 	 	 0.0158959 0.0156

e0 0.103291 0.10299 0.1

l0 3.06358 2.9529 � ¼ 3:1416
�0 �1:47386 �1:45652 0
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FIG. 6. Gravitational wave frequency as a function of time
from the NR simulation and two PN models. The PN x model
agrees very well up to � 1800M, whereas the agreement with
the n model is significantly worse.
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FIG. 7. Difference in gravitational wave phase between the NR
simulation and the PN x model. The error bars represent the
estimated errors in the NR simulation.

COMPARISONS OF ECCENTRIC BINARY BLACK HOLE . . . PHYSICAL REVIEW D 82, 024033 (2010)

024033-9



To put the phase difference of 0.7 radians at M!gw ¼
0:1 into context, we note that the TaylorT4 circular PN
model, which is very similar to our eccentric model with
e ¼ 0, has been shown to have a phase difference at
M!gw ¼ 0:1 of �0:3 radians for 2 PN radiation reaction

(see Fig. 22 in Ref. [15]). We should be cautious about
drawing the conclusion that the agreement in the circular
case is better, however, asM!gw ¼ 0:1may not be directly

comparable in the two cases, particularly because !gw

oscillates in the eccentric case, but is monotonic in the
circular case. The steepness of the phase difference in
Fig. 22 in Ref. [15] at that point makes the comparison
very sensitive to the exact point chosen.

C. Choice of post-Newtonian variables

Throughout this work, we have presented the results of
fitting two PN models with NR data. The two models differ
only in the choice of variable used: the frequency-related
variable x or the mean motion n. Our first attempts at
matching the NR simulation with an eccentric PN model
used n. We studied this case extensively, but found signifi-
cant disagreement, as has been shown. Faced with this
disagreement, we studied the (much simpler) circular
case using a simulation [25] with low-eccentricity initial
data [71] and a circular PN model formed by taking our
eccentric n model and setting e ¼ 0. This model is sub-
optimal as it only has 2 PN radiation reaction, and 3.5 PN
expressions are available for the circular case. The agree-
ment between NR and PN is very poor even in the circular
case using n; the gravitational wave phase difference at
M!gw ¼ 0:1 is �20 radians. (Note that one should be

careful about making direct detailed comparisons between
the circular and eccentric cases, due to the ambiguity in the
choice of reference pointM!gw ¼ 0:1 due to the eccentric

oscillations in!gw.) However, expressing the PN equations

in terms of the coordinate angular velocity of the black
holes, !, as is common in the literature, gives a significant
improvement over using n; at M!gw ¼ 0:1, the phase

difference is 0.8 radians. This is in broad agreement with
the difference of�0:3 radians in Fig. 22 of Ref. [15] for the
TaylorT4 model at 2 PN, accounting for the uncertainty in
the choice of comparison time. This motivated us to search
for a frequency-related variable applicable in the eccentric

case, and we chose to use x ¼ ðM!Þ2=3, for compatibility

with Ref. [49] [recall that in the eccentric case,! � ð2�þ
��Þ=P � _�], leading to the 0.7 rad phase difference at
M!gw ¼ 0:1 we report here.

IV. CONCLUSIONS

We have presented NR results for an inspiraling eccen-
tric black hole binary system with initial eccentricity e �
0:1 and compared them with two adiabatic eccentric PN
models (x and n) with 2 PN radiation reaction. For the x
model, the gravitational wave phase agrees to within �0:1

radians between 21 and 11 cycles before merger. The
difference grows to 0.7 radians at� 5 cycles before merger
(M!gw ¼ 0:1), in broad agreement with the circular case

at 2 PN order. One cycle before the merger, the solution to
the PN ordinary differential equation diverges, indicating a
breakdown of the model.
We found that it was necessary to express the PN model

in terms of the frequency-related variable x rather than the
mean motion n to get this level of agreement. We con-
jecture that, when expressed in terms of n, certain higher
order PN terms are non-negligible, whereas when ex-
pressed in terms of x, they are small, leading to a smaller
error in the PN solution. This can be likened to studies
[13,15] where different circular PN approximants of the
same order have been shown to have different errors in the
NR regime. In particular, the TaylorT4 circular model
showed a remarkable agreement in the waveform phase,
but there was a noticeable disagreement in the energy flux
[17]. It has also been shown that this remarkable agreement
is lost when spinning systems are considered [13]. Our
eccentric PN model based on x is very similar to TaylorT4
as e ! 0, so we would expect the same conclusions to
apply.
Now that it is possible to match NR and PN eccentric

waveforms, we plan to start to construct hybrid templates
and begin to assess the implications for the interferometric
detection of gravitational wave signals from eccentric
binaries close to and including merger. Since complete 3
PN radiation reaction terms for the angular momentum flux
have now also been computed, we will be able to compare
with a fully 3 PNmodel, and expect the agreement with NR
to get better closer to the merger.
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APPENDIX: PN EXPRESSIONS

We now present, for reference, the full PN expressions
used in this work. The expressions for the 3 PN conserva-

tive dynamics (i.e. r, _�, l, n) can be derived in two ways
from the existing literature. They are given directly in
Ref. [47] in terms of n and et, so all that remains is to
express them in terms of x and et. Recall that x is defined as

x � ðM!Þ2=3, where ! � ð2�þ��Þ=P and P ¼ 2�=n.
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In Ref. [48], � is used in place of ��, where � ¼ 2�þ
��. This reference gives expressions for n, et and � in
terms of E and J; these can be used to obtain n in terms of x
and et,

Mn ¼ x3=2 þ n1PNx
5=2 þ n2PNx

7=2 þ n3PNx
9=2 þOðx11=2Þ;

(A1)

n1PN ¼ 3

e2 � 1
; (A2)

n2PN ¼ ð26�� 51Þe2 þ 28�� 18

4ðe2 � 1Þ2 ; (A3)

n3PN ¼ �1

128ð1� e2Þ7=2 ½ð1536�� 3840Þe4

þ ð1920� 768�Þe2 � 768�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðð1040�2 � 1760�þ 2496Þe4

þ ð5120�2 þ 123�2�� 17856�þ 8544Þe2
þ 896�2 � 14624�þ 492��2 � 192Þ þ 1920�;

(A4)

where, for brevity, we have written e � et. This expression
for n is then substituted into the conservative expressions
in Ref. [47] to obtain the conservative expressions in terms
of x and et, dropping any resulting terms which are higher
than 3 PN. Alternatively, we can derive these expressions
by taking the expressions for the orbital elements in

Ref. [48], along with the expressions for r and _�, all in
terms of E and J. By both methods, we obtain for the
separation r,

r=M ¼ r0PNx
�1 þ r1PN þ r2PNxþ r3PNx

2 þOðx3Þ;
(A5)

r0PN ¼ 1� e cosðuÞ; (A6)

r1PN ¼ 2ðe cosðuÞ � 1Þ
e2 � 1

þ 1

6
ð2ð�� 9Þ þ eð7�� 6Þ cosðuÞÞ;

(A7)

r2PN ¼ 1

ð1� e2Þ2
�
1

72
ð8�2 þ 30�þ 72Þe4 þ 1

72
ð�16�2 � 876�þ 756Þe2 þ 1

72
ð8�2 þ 198�þ 360Þ

þ
�
1

72
ð�35�2 þ 231�� 72Þe5 þ 1

72
ð70�2 � 150�� 468Þe3 þ 1

72
ð�35�2 þ 567�� 648Þe

�
cosðuÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p �
1

72
ð360� 144�Þe2 þ 1

72
ð144�� 360Þ þ

�
1

72
ð180� 72�Þe3 þ 1

72
ð72�� 180Þe

�
cosðuÞ

��
; (A8)

r3PN ¼ 1

181440ð1� e2Þ7=2 ½ð�665280�2 þ 1753920�� 1814400Þe6

þð725760�2 � 77490�2�þ 5523840�� 3628800Þe4 þð544320�2 þ 154980�2�� 14132160�þ 7257600Þe2
� 604800�2 þ 6854400�þðð302400�2 � 1254960�þ 453600Þe7 þð�1542240�2 � 38745�2�

þ 6980400�� 453600Þe5 þð2177280�2 þ 77490�2�� 12373200�þ 4989600Þe3
þð�937440�2 � 38745�2�þ 6647760�� 4989600ÞeÞcosðuÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðð�4480�3 � 25200�2 þ 22680�� 120960Þe6 þð13440�3 þ 4404960�2 þ 116235�2�

� 12718296�þ 5261760Þe4 þð�13440�3 þ 2242800�2 þ 348705�2�� 19225080�þ 16148160Þe2
þ 4480�3 þ 45360�2 � 8600904�þðð�6860�3 þ 550620�2 � 986580�þ 120960Þe7
þð20580�3 � 2458260�2 þ 3458700�� 2358720Þe5 þð�20580�3 � 3539340�2 � 116235�2�

þ 20173860�� 16148160Þe3 þð6860�3 � 1220940�2 � 464940�2�þ 17875620�� 4717440ÞeÞcosðuÞ
þ 116235��2 þ 1814400Þ� 77490��2 � 1814400�: (A9)

The relative angular velocity _� is found to be

M _� ¼ _�0PNx
3=2 þ _�1PNx

5=2 þ _�2PNx
7=2 þ _�3PNx

9=2 þOðx11=2Þ; (A10)
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_� 0PN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

ðe cosðuÞ � 1Þ2 ; (A11)

_� 1PN ¼ � eð�� 4Þðe� cosðuÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðe cosðuÞ � 1Þ3 ; (A12)

_�2PN ¼ 1

12ð1� e2Þ3=2ðe cosðuÞ � 1Þ5 ½ð�12�2 � 18�Þe6 þ ð20�2 � 26�� 60Þe4 þ ð�2�2 þ 50�þ 75Þe2

þ ½ð�14�2 þ 8�� 147Þe5 þ ð8�2 þ 22�þ 42Þe3�cos3ðuÞ þ ½ð17�2 � 17�þ 48Þe6 þ ð�4�2 � 38�þ 153Þe4
þ ð5�2 � 35�þ 114Þe2�cos2ðuÞ � 36�þ ½ð��2 þ 97�þ 12Þe5 þ ð�16�2 � 74�� 81Þe3

þ ð��2 þ 67�� 246Þe� cosðuÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
½e3ð36�� 90Þcos3ðuÞ þ ðð180� 72�Þe4 þ ð90� 36�Þe2Þcos2ðuÞ

þ ðð144�� 360Þe3 þ ð90� 36�ÞeÞ cosðuÞ þ e2ð180� 72�Þ þ 36�� 90� þ 90�; (A13)

_�3PN ¼ 1

13440ð1� e2Þ5=2ðe cosðuÞ � 1Þ7 ½ð10080�
3 þ 40320�2 � 15120�Þe10 þ ð�52640�3 � 13440�2 þ 483280�Þe8

þ ð84000�3 � 190400�2 � 17220�2�� 50048�� 241920Þe6 þ ð�52640�3 þ 516880�2 þ 68880�2�

� 1916048�þ 262080Þe4 þ ð4480�3 � 412160�2 � 30135�2�þ 553008�þ 342720Þe2
þ ðð13440�3 þ 94640�2 � 113680�� 221760Þe9 þ ð�11200�3 � 112000�2 þ 12915�2�þ 692928�

� 194880Þe7 þ ð4480�3 þ 8960�2 � 43050�2�þ 1127280�� 147840Þe5Þcos5ðuÞ þ ðð�16240�3 þ 12880�2

þ 18480�Þe10 þ ð16240�3 � 91840�2 þ 17220�2�� 652192�þ 100800Þe8 þ ð�55440�3 þ 34160�2

� 30135�2�� 2185040�þ 2493120Þe6 þ ð21840�3 þ 86800�2 þ 163590�2�� 5713888�þ 228480Þe4Þ
� cos4ðuÞ þ ðð560�3 � 137200�2 þ 388640�þ 241920Þe9 þ ð30800�3 � 264880�2 � 68880�2�þ 624128�

þ 766080Þe7 þ ð66640�3 þ 612080�2 � 8610�2�þ 6666080�� 6652800Þe5 þ ð�30800�3 � 294000�2

� 223860�2�þ 9386432�Þe3Þcos3ðuÞ þ 67200�2 þ ðð4480�3 � 20160�2 þ 16800�Þe10
þ ð3920�3 þ 475440�2 � 17220�2�þ 831952�� 725760Þe8 þ ð�75600�3 þ 96880�2 þ 154980�2�

� 3249488�� 685440Þe6 þ ð5040�3 � 659120�2 þ 25830�2�� 7356624�þ 6948480Þe4
þ ð�5040�3 þ 190960�2 þ 137760�2�� 7307920�þ 107520Þe2Þcos2ðuÞ � 761600�

þ ðð�2240�3 � 168000�2 � 424480�Þe9 þ ð28560�3 þ 242480�2 þ 34440�2�� 1340224�þ 725760Þe7
þ ð�33040�3 � 754880�2 � 172200�2�þ 5458480�� 221760Þe5 þ ð40880�3 þ 738640�2 þ 30135�2�

þ 1554048�� 2936640Þe3 þ ð�560�3 � 100240�2 � 43050�2�þ 3284816�� 389760ÞeÞ cosðuÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ððð�127680�2 þ 544320�� 739200Þe7 þ ð�53760�2 � 8610�2�þ 674240�� 67200Þe5Þcos5ðuÞ

þ ðð161280�2 � 477120�þ 537600Þe8 þ ð477120�2 þ 17220�2�� 2894080�þ 2217600Þe6
þ ð268800�2 þ 25830�2�� 2721600�þ 1276800Þe4Þcos4ðuÞ þ ðð�524160�2 þ 1122240�� 940800Þe7
þ ð�873600�2 � 68880�2�þ 7705600�� 3897600Þe5 þ ð�416640�2 � 17220�2�

þ 3357760�� 3225600Þe3Þcos3ðuÞ þ ðð604800�2 � 504000�� 403200Þe6 þ ð1034880�2 þ 103320�2�

� 11195520�þ 5779200Þe4 þ ð174720�2 � 17220�2�� 486080�þ 2688000Þe2Þcos2ðuÞ
þ ðð�282240�2 � 450240�þ 1478400Þe5 þ ð�719040�2 � 68880�2�þ 8128960�� 5040000Þe3
þ ð94080�2 þ 25830�2�� 1585920�� 470400ÞeÞ cosðuÞ � 67200�2 þ 761600�

þ e4ð40320�2 þ 309120�� 672000Þ þ e2ð208320�2 þ 17220�2�� 2289280�þ 1680000Þ
� 8610��2 � 201600Þ þ 8610��2 þ 201600�: (A14)
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The 3 PN Kepler equation is

l ¼ l0PN þ l2PNx
2 þ l3PNx

3 þOðx4Þ; (A15)

l0PN ¼ u� e sinu; (A16)

l2PN ¼ 1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð1� e cosðuÞÞ ½�12ð2�� 5Þðu� vÞðe cosðuÞ � 1Þ � e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð�� 15Þ� sinðuÞ�; (A17)

l3PN ¼ 1

6720ð1� e2Þ3=2ð1� e cosðuÞÞ3 ½35ð96ð11�
2 � 29�þ 30Þe2 þ 960�2

þ �ð�13184þ 123�2Þ þ 8640Þðu� vÞðe cosðuÞ � 1Þ3 þ 3360ð�12ð2�� 5Þðu� vÞ
þ 12eð2�� 5Þ cosðuÞðu� vÞ þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð�� 15Þ� sinðuÞÞðe cosðuÞ � 1Þ2

þ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð140ð13e4 � 11e2 � 2Þ�3 � 140ð73e4 � 325e2 þ 444Þ�2 þ ð3220e4 � 148960e2 � 4305�2

þ 143868Þ�þ e2ð1820ðe2 � 1Þ�3 � 140ð83e2 þ 109Þ�2 � ð1120e2 þ 4305�2 þ 752Þ�þ 67200Þcos2ðuÞ
� 2eð1960ðe2 � 1Þ�3 þ 6720ðe2 � 5Þ�2 þ ð�71820e2 � 4305�2 þ 69948Þ�þ 67200Þ cosðuÞ þ 67200Þ sinðuÞ�;

(A18)

where, as in Ref. [47], we use

v� u ¼ 2tan�1

�
sinðuÞ��

1� cosðuÞ��

�
; (A19)

and

�� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2�

q
e�

: (A20)

e� is given by

e� ¼ eþ e�1PNxþ e�2PNx
2 þ e�3PNx

3 þOðx4Þ; (A21)

e�1PN ¼ �eð�� 4Þ; (A22)

e�2PN ¼ e

96ðe2 � 1Þ ½ð41�
2 � 659�þ 1152Þe2 þ 4�2

þ 68�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð288�� 720Þ � 1248�;

(A23)

e�3PN ¼� e

26880ð1� e2Þ5=2 ½ð13440�
2 þ 483840�� 940800Þe4 þð255360�2 þ 17220�2�� 2880640�þ 2688000Þe2

� 268800�2 þ 2396800�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðð1050�3 � 134050�2 þ 786310�� 860160Þe4

þð�18900�3 þ 553980�2 þ 4305�2�� 1246368�þ 2042880Þe2 þ 276640�2 þ 2674480�� 17220��2

� 1451520Þ� 17220��2 � 1747200�: (A24)

This completes the expressions used in the conservative
dynamics. The radiation reaction is given to 2 PN order in
Ref. [47] in terms of n and et. We again substitute for n in
terms of x, and obtain

M _x ¼ _x0PNx
5 þ _x1PNx

6 þ _x1:5PNx
13=2 þ _x2PNx

7 þOðx15=2Þ;
(A25)

_x 0PN ¼ 2ð37e4 þ 292e2 þ 96Þ�
15ð1� e2Þ7=2 ; (A26)

_x1PN ¼ �

420ð1� e2Þ9=2 ½�ð8288�� 11717Þe6

� 14ð10122�� 12217Þe4 � 120ð1330�� 731Þe2
� 16ð924�þ 743Þ�; (A27)

_x 1:5PN ¼ 256

5
���EðeÞ; (A28)
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_x2PN ¼ �

45360ð1� e2Þ11=2 ½ð1964256�
2 � 3259980�þ 3523113Þe8 þ ð64828848�2 � 123108426�þ 83424402Þe6

þ ð16650606060�2 � 207204264�þ 783768Þe4 þ ð61282032�2 þ 15464736�� 92846560Þe2 þ 1903104�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðð2646000� 1058400�Þe6 þ ð64532160� 25812864�Þe2 � 580608�þ 1451520Þ

þ 4514976�� 360224�; (A29)

for _x, and

M _e ¼ _e0PNx
4 þ _e1PNx

5 þ _e1:5PNx
11=2 þ _e2PNx

6 þOðx13=2Þ; (A30)

_e 0PN ¼ � eð121e2 þ 304Þ�
15ð1� e2Þ5=2 ; (A31)

_e 1PN ¼ e�

2520ð1� e2Þ7=2 ½ð93184�� 125361Þe4 þ 12ð54271�� 59834Þe2 þ 8ð28588�þ 8451Þ�; (A32)

_e 1:5PN ¼ 128��

5e
½ðe2 � 1Þ�EðeÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
�JðeÞ�; (A33)

_e2PN ¼ � e�

30240ð1� e2Þ9=2 ½ð2758560�
2 � 4344852�þ 3786543Þe6 þ ð42810096�2 � 78112266�þ 46579718Þe4

þ ð48711348�2 � 35583228�� 36993396Þe2 þ 4548096�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ðð2847600� 1139040�Þe4

þ ð35093520� 14037408�Þe2 � 5386752�þ 13466880Þ þ 13509360�� 15198032�; (A34)

for _e. These equations are written in terms of the functions �E and �J, given in Ref. [46] in terms of infinite sums of Bessel
functions. We reproduce them here for completeness:

�E ¼ X1
p¼1

1

4
p3

���
�e2 � 3

e2
þ 1

e4
þ 3

�
p2 þ 1

3
� 1

e2
þ 1

e4

�
JpðpeÞ2 þ

�
�3e� 4

e3
þ 7

e

�
pJ0pðpeÞJpðpeÞ

þ
��

e2 þ 1

e2
� 2

�
p2 þ 1

e2
� 1

�
J0pðpeÞ2

�
; (A35)

�J ¼
X1
p¼1

1

2
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ��
� 2

e4
� 1þ 3

e2

�
pJpðpeÞ2 þ

�
2

�
eþ 1

e3
� 2

e

�
p2 � 1

e
þ 2

e3

�
J0pðpeÞJpðpeÞ þ 2

�
1� 1

e2

�
pJ0pðpeÞ2

�
:

(A36)

These are functions of e only, and are computed numerically using a sufficient number of terms in the summation that the
result converges to within machine precision (10�15). For computational efficiency, the resulting function is converted into
an interpolating polynomial, and the interpolation error is estimated to be �10�12 in the range 0< e 
 0:4.
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[40] R. Rieth and G. Schäfer, Classical Quantum Gravity 14,

2357 (1997).
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