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A quasiblack hole is an object in which its boundary is situated at a surface called the quasihorizon,

defined by its own gravitational radius. We elucidate under which conditions a quasiblack hole can form

under the presence of matter with nonzero pressure. It is supposed that in the outer region an extremal

quasihorizon forms, whereas inside, the quasihorizon can be either nonextremal or extremal. It is shown

that in both cases, nonextremal or extremal inside, a well-defined quasiblack hole always admits a

continuous pressure at its own quasihorizon. Both the nonextremal and extremal cases inside can be

divided into two situations, one in which there is no electromagnetic field, and the other in which there is

an electromagnetic field. The situation with no electromagnetic field requires a negative matter pressure

(tension) on the boundary. On the other hand, the situation with an electromagnetic field demands zero

matter pressure on the boundary. So in this situation an electrified quasiblack hole can be obtained by the

gradual compactification of a relativistic star with the usual zero pressure boundary condition. For the

nonextremal case inside the density necessarily acquires a jump on the boundary, a fact with no harmful

consequences whatsoever, whereas for the extremal case the density is continuous at the boundary. For the

extremal case inside we also state and prove the proposition that such a quasiblack hole cannot be made

from phantom matter at the quasihorizon. The regularity condition for the extremal case, but not for the

nonextremal one, can be obtained from the known regularity condition for usual black holes.
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I. INTRODUCTION

In recent years, the taxonomy of relativistic objects has
increased to include the so-called quasiblack holes. The
general definition and description of the general properties
of these objects can be found in [1]. Here, we recall that a
quasiblack hole is, roughly speaking, an object on the verge
of forming a horizon but without collapsing, so the system
remains static even when the boundary approaches its own
gravitational radius surface, or the quasihorizon, as nearly
as one likes. It turns out that nonextremal quasiblack holes
are connected with the appearance of diverging surface
stresses when the boundary approaches the quasihorizon,
so only extremal quasiblack holes are free from infinite
surface stresses.

The significance of quasiblack holes is twofold. First, it
is a useful methodical tool for better understanding the
general features of black holes such like the relation to
black hole mimickers [2], the mass formula [3,4], and
entropy [5,6]. In doing so, one should not bother about
the physical realization of such construction and even

admit infinite surface stresses to obtain finite final formulas
for physical quantities (see [3]). Second, quasiblack holes
can be of interest by themselves, as real physical objects.
There are several examples of objects that exhibit quasi-
black hole behavior. Simple systems, which can be treated
analytically, like Bonnor stars, made of Majumdar-
Papapetrou matter, i.e., extremal dust where the density
of matter is equal to that of the charge so that the matter
pressure is zero, matched to an extreme Reissner-
Nordström vacuum, admit quasiblack holes [7–9].
Continuous Majumdar-Papapetrou systems made purely
from extremal dust also admit quasiblack holes [10].
More complex structures like self-gravitating Yang-
Mills–Higgs magnetic monopoles also possess quasiblack
holes, as found previously in [11,12].
In [13] exact relativistic charged sphere solutions with

pressure were found. Drawing upon this work on exact
solutions [13] and upon previous work on charged systems
with pressure [14], it was shown in [15] that there are
electrically charged quasiblack holes with pressure which
are obtained as limiting cases of the relativistic charged
spheres of [13], namely, these quasiblack holes can be
thought of as being formed when a star made of charged
matter with pressure is sufficiently compressed. In the
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study [15], the corresponding models have the attractive
feature that in some range of parameters the speed of sound
is real and less than that of light. In [16,17], numerical
work was performed on a different but similar type of
relativistic charged spheres which degenerates into quasi-
black holes with pressure when the spheres are sufficiently
compact. The study of pressure charged systems not only
extends the class of electrically charged quasiblack holes
but also brings an important feature connected with the
issue of stability to those systems. The point is that quasi-
black holes made purely from extremal dust, are unstable
with respect to a dynamic perturbation having kinetic
energy. With the presence of pressure, there is the possi-
bility of finding stable configurations. Indeed, in [17] it was
found that there were instances in which the systems are
stable against radial perturbations, and this might indicate
that the quasiblack holes found in [15] are also stable. The
self-gravitating Yang-Mills–Higgs magnetic monopole
quasiblack holes studied in [11,12] can be considered as
quasiblack holes with pressure since an intrinsic inbuilt
effective pressure is present in the Yang-Mills–Higgs equa-
tions, and thus, might also be stable systems.

Following our previous works [1–6], we want to put
forward a general model-independent approach and find
the conditions under which quasiblack holes, extremal to
the outside, with pressure are possible. We work with
quasiblack holes that are extremal from the outside be-
cause only these are regular and free from infinite surface
stresses, nonextremal quasiblack holes having diverging
surface stresses [3]. The study is quite general, in the sense
that the outside extremality condition can be of any type, it
can be due to a specific mass to charge relation, or to a
specific mass to cosmological constant relation, to name
two cases among others. If, for instance, the external region
is described by the Reissner-Nordström metric, its charge q
is equal to mass m, q ¼ m. On the other hand, from inside
we allow that the quasihorizon can be either nonextremal
or extremal. Nonextremal quasihorizons from the inside
with matter pressure were found in [15]. Extremal quasi-
horizons with pressure for self-gravitating magnetic mono-
poles were studied in [11,12]. Our analysis includes all
these systems and extends to pressure systems the pressur-
eless cases treated in [1]. Moreover, we treat the cases in
which from the outside the quasihorizon is always extremal
whereas from the inside the quasihorizon can be either
nonextremal or extremal.

This paper is organized as follows: In Sec. II, we write
the basic formulas for a generic spherically symmetric
system and for the system when it is in a state of transition
to a quasiblack hole. In Sec. III, we make a deep analysis of
the conditions on the radial pressure the quasihorizon of a
quasiblack hole must obey in the cases where there is an
nonextremal quasihorizon from the inside and an extremal
quasihorizon from the inside. We also study the conditions
on the energy density and make some comments related to
the null energy condition. In Sec. IV, we conclude.

II. BASIC FORMULAS AND LIMITING
TRANSITION

A. Basic formulas

Consider a metric g�� with line element ds2 ¼
g��dx

�dx� for a spherically symmetric spacetime contain-

ing matter, i.e.,

ds2 ¼ �UðrÞdt2 þ VðrÞ�1dr2 þ r2ðd�2 þ sin2�d�2Þ:
(1)

The stress-energy tensor of the matter has the form

T�
� ¼ diagð��; pr; p?; p?Þ; (2)

where �, pr, and p? are the energy density, the radial
pressure, and the tangential pressure, respectively. The
Einstein equations are G�� ¼ 8�T��, where G�� is the

Einstein tensor and G ¼ 1, c ¼ 1 here. The two equations
of interest are the tt and rr components. If we put

UðrÞ ¼ VðrÞ expð2c ðrÞÞ; (3)

then it follows from the Einstein equations that

2c ðrÞ ¼
Z r

d�r
�ð �rÞ
Vð �rÞ ; (4)

where we have defined the quantity �ðrÞ as
�ðrÞ ¼ 8�rðprðrÞ þ �ðrÞÞ: (5)

And if we put

VðrÞ ¼ 1� 2mðrÞ
r

; (6)

then it follows that

mðrÞ ¼ 4�
Z r

0
d�r�r2�ð�rÞ: (7)

Here, we assume that the center r ¼ 0 is a regular one, and
there is no horizon a priori.
Let us consider a compact body situated in the inside

region such that r � r0. The radius r ¼ r0 defines the
boundary which divides the inside region from the outside
one. We do not specify the metric outside, for r > r0. In
particular, it can be the Reissner-Nordström metric. In
what follows we will use subscripts ‘‘in’’ and ‘‘out’’ to
distinguish quantities in each of the two regions. To match
the two metrics, i.e., the first quadratic forms, at the
boundary r ¼ r0, we need the condition

Uinðr0Þ ¼ Uoutðr0Þ: (8)

We assume that there is no massive shell on the boundary,
which entails the continuity of the metric potential V,

Vinðr0Þ ¼ Voutðr0Þ: (9)

In addition, without essential loss of generality, we deal
with metrics for which UoutðrÞ ¼ VoutðrÞ, since this sim-
plifies the formulas. In particular, the Reissner-Nordström
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metric belongs to this class, in which case UoutðrÞ ¼ 1�
2mðrÞ
r , with mðrÞ ¼ m� q2=2r, and in the extremal case

m ¼ q, we are interested in one that has mðrÞ ¼
m�m2=2r, so thatUoutðrÞ ¼ ð1�m=rÞ2. Then, after sim-
ple manipulations, we obtain that

UinðrÞ ¼ VinðrÞ expð2c ðr0; rÞÞ; (10)

with

2c ðr0; rÞ ¼
Z r

r0

d�r
�ð�rÞ
Vð�rÞ : (11)

We do not specify further properties beforehand, in par-
ticular, that the presence of transverse surface stresses is
allowed.

B. Limiting transition

Now we make the next assumption, namely, there is a
limiting transition in the course of which a horizon almost
forms. From (8), one can then write

Uinðr0Þ ¼ Uoutðr0Þ � Uðr0Þ ¼ "; (12)

where " is any number that can be made as small as one
wants, " � 1. Since we are interested in the limit " ! 0,
this means that the quantity Uðr0Þ ¼ " becomes a small
parameter and the areal radius r0 approaches the radius of a
would-be horizon rþ. We want to examine whether and
under which condition a quasiblack hole can appear. By
itself, the proximity of r0 to rþ is insufficient. It is also
required that in the whole inner region r � r0 the lapse
function UinðrÞ ! 0 in such a way that

UinðrÞ ¼ "fðrÞ; (13)

where fðrÞ is some bounded function. Furthermore,
fðrþÞ � 0. The latter condition is needed to distinguish a
quasiblack hole from a true black hole. More exactly, this
function must obey the condition fðrþÞ ¼ 1, as is seen
from (12) and (13). Formally, we can also admit a non-
monotonic fðrÞ which inside, in some subregion, is of the
order "�� with 0< �< 1. Then U ! 0 everywhere in-
side. However, for the most physically interesting cases of
quasiblack holes, UðrÞ is a monotonically decreasing func-
tion of r, see Appendix B of [1].

From an outside perspective, the supposed quasihorizon
can be, in principle, nonextremal or extremal. From a
physical viewpoint, the latter case is more important since
it is the extremal quasiblack hole case which is indeed
regular [1], whereas the nonextremal quasiblack hole case
leads to infinite surface stresses [3]. Thus, we assume that
to the outside the quasiblack hole is extremal. The study is
valid for any extremal type of outside horizon. In the
situation where there is an extremal electrically charged
horizon, then the charge equals the mass, q ¼ m.

Now, even being extremal to the outside, the quasiblack
hole can have a horizon which, from the inside, is either

nonextremal or extremal. Indeed, an extremal horizon for
outside observers implies that the metric potential VðrÞ has
in the limit a double root when considered from outside.
However, as shown in a concrete example in [15], from
inside, the horizon can be either nonextremal or extremal.
Therefore, we will consider the two cases separately, i.e.,
we will consider first quasiblack holes with a nonextremal
horizon from the inside, and second quasiblack holes with
an extremal horizon from the inside. Both are extremal
quasiblack holes from the outside.

III. QUASIBLACK HOLES WITH PRESSURE

A. Quasiblack holes with pressure, nonextremal from
the inside

1. General considerations

In the nonextremal from the inside case, near the gravi-
tational radius of the configuration, the asymptotic form of
the metric potential V inside should be

Vin ¼ "þ kðr0 � rÞ þ . . . ; (14)

with " � 1, k > 0, k being some quantity with units of
inverse length. See [15] for concrete examples of this case
of quasiblack holes with pressure, nonextremal from the
inside. We want to elucidate the conditions on the parame-
ters of the system, when the quantity U is uniformly
bounded everywhere inside, i.e., is of the form (13). We
analyze first the behavior of the functions in the bulk of the
matter r < r0, and second at the boundary r0, and in both
cases we assume that the quasiblack hole is being formed,
r0 ! rþ.
Region in the bulk of the matter, r < r0. To this end, let

us rewrite Eqs. (10) and (11) in the form

Uin ¼ VinP1P2: (15)

Here

P1 ¼ expð2c 1Þ; 2c 1 ¼
Z r

r0

d�r
�0

Vinð �rÞ ; (16)

P2 ¼ expð2c 2Þ; 2c 2 ¼
Z r

r0

d�r
�ð�rÞ � �0

Vinð �rÞ ; (17)

where �ðrÞ, defined in Eq. (5), is a quantity with units of
surface density (i.e., inverse length) and �0 � �ðr0Þ in an
obvious notation. It is also useful to define �þ � �ðrþÞ,
i.e.,

�þ ¼ 8�rþðprðrþÞ þ �ðrþÞÞ: (18)

Taking into account (14), we see that lim"!0P2 is a well-
defined nonzero quantity that remains everywhere
bounded, including the boundary r ¼ r0 ¼ rþ. Let us
focus attention on P1. Then, one can write c 1 in the form

2c 1ðrÞ ¼ �þ
k

ðln"þ 2c 1	ðrÞÞ þ 2c 11ðrÞ; (19)
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where 2c 1	ðrÞ ¼ � lnð"þ kðr0 � rÞÞ. It follows from
(18) and the asymptotic behavior (14) that in the limit
when r0 ! rþ (that entails " ! 0) the quantity 2c 11ðrÞ
is finite everywhere inside, including the limit " ¼ 0,
2c 11ðr0Þ ¼ 0. Making the rescaling of time according to

T ¼ tð"kÞð�þ=2kÞ, we obtain inside the metric

ds2 ¼ � VðrÞ
ð"þ kðr0 � rÞÞ�þ=k

gðrÞdT2 þ dr2

VðrÞ
þ r2ðd�2 þ sin2�d�2Þ; (20)

where gðrÞ � expð2c 11 þ 2c 2Þ is everywhere finite and
does not vanish.

Now, we want to impose that the metric (20) be free of
curvature singularities by requiring that in an orthonormal
frame the components of the Riemann tensor be finite.
There is only one such potentially divergent term for the
metric (20). It is the component

R0r
0r ¼ �1

4V
0ðlnUÞ0 � 1

4Vð2ðlnUÞ00 þ ðlnUÞ02Þ; (21)

where U is the potential of dT2 in (20), and a 0 denotes a
derivative with respect to the argument, in this case r. A
simple, but nontrivial, analysis shows that there are only
two ways to achieve finiteness of (21). Indeed, using
Eqs. (6), (10), and (11) in (21) one finds,

R0r
0r ¼ K �Q; (22)

where

K ¼ �
�
m

r2
þ 4�rpr

�0
; (23)

and

Q ¼ �ð�þ V 0Þ
4V

: (24)

We want to exclude the presence of a shell, so we want that
the pressure be continuous. Then, p0

r is finite and so is the
quantity K. The potential divergences can be connected
with the term Q only. It follows from Eq. (14) that in the
limit under discussion

Q � �þð�þ � kÞ
4V

: (25)

There are thus two possibilities: either �þ ¼ 0, which as
we will see yields the regular black hole, or�þ ¼ k, which
yields the quasiblack hole.

The first way is to put �þ ¼ 0. Then, we get from (19)
2c 1ðrÞ ¼ 2c 11ðrÞ, so that, as P2 (see above), P1 is finite.
Since U ¼ VP1P2, it follows from (14) that U� r0 � r,
and thus U� V. So, instead of a quasihorizon, in the limit
of " ! 0, r0 ! rþ, we obtain a regular event horizon (see,
e.g., [18]), of the type found in the Schwarzschild,
Reissner-Nordström or generic regular black holes dis-
cussed in [19] (see also [20,21]). In doing so, the metric
coefficient UinðrÞ does not have the form (13). Thus, as we

want to ensure the existence of a quasiblack hole, we reject
the choice �þ ¼ 0.
The second way to achieve finiteness is to put �þ ¼ k.

Then, in the limit " ! 0 one has 2c 1ðrÞ ¼ ln"þ
finite terms, so that P1 � ", and so also U� ", i.e., we
obtain the metric function U in the form (13), the form
appropriate for a quasiblack hole. Thus, we choose �þ ¼
k. Using the expressions (6) and (7), the equality rþ ¼
2mðrþÞ, and neglecting the difference between r0 and
rþ, one obtains V 0ðrþÞ ¼ �ð8��inðrþÞrþ � 1

rþ
Þ. From

Eq. (14) one has k ¼ �V 0ðrþÞ, i.e., k ¼ 8��inðrþÞrþ �
1
rþ
. Then, since we are considering the case �þ ¼ k, we

finally get from Eq. (18) that

pin
r ðrþÞ ¼ � 1

8�r2þ
; (26)

the desired condition. The inside pressure of a quasiblack
hole with pressure has to obey this condition. It cannot be
obtained by the straightforward limit " ! 0 from the regu-
larity condition on the horizon of a true black hole, which
as we have seen above demands �þ ¼ 0 (i.e., pout

r ðrþÞ ¼
��outðrþÞ), see [18]. This represents a remarkable result
which clearly demonstrates that, although for an outside
remote observer a true black hole and a quasiblack hole are
undistinguishable, in the inner region the properties of a
quasiblack hole can be very different from those of a black
hole. Our general statement that �þ � 0 on a quasihorizon
nonextremal from inside, can be checked in the particular
examples given in [7,8] (see also [9]) of quasiblack holes
made from pressureless matter, i.e., charged dust. Indeed,
for such systems �þ ¼ 8�rþ�ðrþÞ where �ðrþÞ is the
density of matter and its matter pressure obeys pr ¼ 0
(see also [1]). Trivially, in these examples, �ðrþÞ is clearly
different from zero, so �þ � 0, as it must. It is worth
noting that the limit discussed while checking the regular-
ity condition can be characterized as limr!r0 lim"!0 .

Region at the boundary, r ¼ r0. We can also consider
the immediate vicinity of the boundary by taking the
opposite limit: lim"!0 limr!r0 . Then, it follows from (11)

that for any " � 0 we have that c ðr; r0Þ ! 0when r ! r0.
Thus, Uinðr0Þ ¼ Vinðr0Þ ¼ " and the procedure is self-
consistent.

2. Discussion: Conditions on the pressure and energy
density at the boundary and more on the regularity

requirement

(i) Conditions on the pressure and energy density at the
boundary. We divide this discussion into two situations,
when there is no electromagnetic field and when there is
one.
(a) No electromagnetic field. Suppose that there is no

electromagnetic field. Then, since from Eq. (26) the radial
pressure pr on the boundary is negative, we deduce that
quasiblack holes with no electromagnetic field are con-
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nected with tension on the boundary. To proceed in the
analysis, note that at a outside sphere with radius r, from
Eq. (7) the mass mðrÞ can be written as mðrÞ ¼ mðrþÞ þ
4�

R
r
rþ d�r�r

2�. Thus, since rþ ¼ 2mðrþÞ, from Eq. (7) one

can write for the outside

VoutðrÞ ¼ 1� rþ
r
� 2mout

r
;

mout ¼ 4�
Z r

rþ
d�r�r2�outð�rÞ;

(27)

where the difference between a horizon and a quasihorizon
has been neglected. So, V0

outðrÞ at rþ is given by

V 0
outðrþÞ ¼ 1

rþ
ð1� 8��outðrþÞr2þÞ: (28)

We recall that we are dealing with extremal quasiblack
holes from outside, since it is this kind of quasiblack holes
which is free of curvature singularities or infinite surface
stresses [1,3]. Therefore, V 0

outðrþÞ ¼ 0, and from Eq. (28)
we find

�outðrþÞ ¼ 1

8�r2þ
: (29)

From the regularity condition on the horizon of a black
hole (see, e.g., a detailed discussion in [18]) it also follows
that

pout
r ðrþÞ ¼ ��outðrþÞ; (30)

and so

pout
r ðrþÞ ¼ � 1

8�r2þ
: (31)

Thus, from Eq. (26) one always has

pinðrþÞ ¼ poutðrþÞ: (32)

This means we automatically have obtained a quasiblack
hole with continuous pressure on the boundary. So there is
no need for a shell, certainly an elegant result, since thin
shells always imply in some type of primary, albeit mild,
discontinuity in the metric fields. On the other hand, we are
considering the case in which the matter inside is not
extremal in the sense that V 0

inðrþÞ � 0 by construction.

This means that a jump in density is mandatory. Jumps in
density are well handled in gravitational systems, so this
means that there is no problem. It is also important to pay
attention to the following point. In principle, quasiblack
holes which are extremal from outside, admit nonzero
surface stresses and hence jumps in the radial pressure.
This conclusion was obtained in [1,3] from a general form
of the metric of extremal quasiblack holes. However, if,
additionally, we take into account Einstein equations, it
turns out that for configurations which are extremal outside
and nonextremal inside, these surface stresses vanish.

(b) Electromagnetic field. Suppose now that there is an
electromagnetic field. Now, the pressure receives contribu-
tion from two fields, the electromagnetic field and the
matter field, so that the radial pressure can be written as
pr ¼ pmatter

r þ pem
r . The electromagnetic pressure has the

form pem
r ¼ � q2ðrÞ

8�r4
where qðrÞ is the charge enclosed in-

side a sphere of radius r. Bearing in mind that we are
interested in configurations which are (or tend to) extremal
when viewed from outside, we have in the limit under
discussion, qðrþÞ ¼ rþ, in accordance with the properties
of an extremal Reissner-Nordström metric. Thus, pem

r ¼
� 1

8�r2þ
. Then, it follows from Eq. (26) that

pmatter
r ðrþÞ ¼ 0: (33)

This situation, of existence of an electromagnetic field, is
physically preferable since it means that we can build a
quasiblack hole by considering a relativistic star with
pressure obeying pmatter

r ðr0Þ ¼ 0 on the boundary and
then taking the quasihorizon limit, as was done in [15].
In doing so, the configuration outside either represents an
extremal Reissner-Nordström quasiblack hole or tends to it
as shown in [1].
(ii) More on the regularity requirement.We now want to

emphasize the role of the regularity requirement, i.e.,
regularity in the components of the Riemann tensor and
so a spacetime free of curvature singularities. In principle,
a metric in which Eq. (13) holds can occur without this
requirement. For example, if we take pr ¼ 0 and � ¼
�0 ¼ const everywhere for r � r0, and vacuum outside,

an exact solution can be obtained [22,23] for which V ¼
1� 8��0r

2

3 andU ¼ ð1� 8��0r
2
0

3 Þ3=2ð1� 8��0r
2

3 Þ�1=2. Here r0
is the surface at which this solution matches the outer
Schwarzschild solution. One can try to obtain a quasiblack

hole from this solution by taking the limit r0 !
ffiffiffiffiffiffiffiffiffi
3

8��0

q
.

Then, the metric potential U does indeed acquire the
form given in Eq. (13). However, in this limit the surface
r ¼ r0 becomes singular. By construction, condition (26)
is not satisfied, so the absence of a regular quasiblack hole
is justified. This, being an example in which the outside
metric is Schwarzschild rather than extremal Reissner-
Nordström, also shows that it is much harder to find non-
extremal regular quasiblack holes than extremal ones.

B. Quasiblack holes with pressure, extremal from the
inside

1. General considerations

In [1] we have analyzed the properties of quasiblack
holes in which the matter in the inside region is extremal,
i.e., matter for which the energy density is equal to the
charge density. These quasiblack holes of [1] are thus
quasiblack holes without pressure, with extremal matter
in the inside region. Here we generalize those results by
analyzing the properties of quasiblack holes with pressure
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extremal from the inside. Extremal from the inside means
that the horizon from the inside is extremal (this is obliga-
tory for quasiblack holes without pressure, but not for
quasiblack holes with pressure). The horizon from the
outside is always extremal for us.

In the case we have an extremal horizon from the inside,
instead of (11) we have the asymptotic form

V ¼ "þ 
2ðr0 � rÞ2 þ . . . ; (34)

with " � 1, and 
 being some positive quantity with units
of inverse length. See [11,12] for concrete examples of this
case of quasiblack holes with nonzero pressure which
represent dispersed systems and have quasihorizons which
are extremal both from inside and outside. Note that in (34)
we can neglect the difference between r0 and rþ. Inside we
can distinguish two regions, the region in the bulk of the
matter r < r0, and the region at the boundary r ¼ r0. We
consider now both regions separately.

Region in the bulk of the matter, r < r0. In this region,
r < r0, the proper distance l, given by l ¼

R
r0
r

d�rffiffiffi
V

p , from any

point to the boundary diverges in the limit " ! 0 as it is
clear from (34). Indeed, defining dl as the infinitesimal
proper distance, one obtains in the limit " ! 0, l � � 1

2
 �
ln". It is useful to proceed along the same lines as in
Sec. III A but now, because of the different asymptotic
form of V, it is more convenient to rewrite c in another
form,

Uin ¼ VinP1P2P3: (35)

Using the definition (5), we can rewrite the function c in
(11), in this limit, as

P1 ¼ expð2c 1Þ; 2c 1 ¼
Z r

r0

d�r
�0

Vinð �rÞ ; (36)

P2 ¼ expð2c 2Þ;

2c 2 ¼
Z r

r0

d�r
�ð �rÞ � �0 � ��0

0ð �r� r0Þ
Vinð �rÞ ;

(37)

P3 ¼ expð2c 3Þ; 2c 3 ¼
Z r

r0

d�r
�0

0ð �r� r0Þ
Vinð �rÞ ; (38)

where again a 0 denotes a derivative with respect to the
argument. Consider each term on (35) separately in the
limit " ! 0. In the first term, the integral is of the order

"�1=2. To make the whole expression finite, we must con-
clude that �0 � �þ is also of the same order to compen-
sate these divergences, namely, �þ & Oð ffiffiffi

"
p Þ, i.e.,

pr þ � & Oð ffiffiffi
"

p Þ, see [1] (Sec. II.A.d) for the analogous
result for extremal charged dust. The second term remains
finite since near r0 both the numerator and denominator are
proportional to ð�r� r0Þ2 in the limit under discussion.
Consider now the third term. We are discussing the region
r < r0. Thus, if �

0þ > 0, it is seen that in the region under
discussion c 3 ! þ1, P3 ! þ1, Uin ! þ1. Such a be-

havior has nothing to do with a quasiblack hole and should
be rejected. Therefore, we must have �0þ � 0. Because of
the logarithmic behavior of the integral, we can represent
c 3 in the form

2c 3 ¼ �0þ
2
2

�
ln

�
ðr� r0Þ2 þ "


2

�
� ln

�
"


2

��
þ 2c 33;

(39)

where 2c 33 is finite in the limit under discussion [cf.
Eq. (19)]. Then, we can write the metric as [cf. Eq. (20)],

ds2 ¼ �VðrÞ
�
ðr� r0Þ2 þ "


2

�ð�0
þ=2


2Þ
gðrÞdT2 þ dr2

VðrÞ
þ r2ðd�2 þ sin2�d�2Þ; (40)

where T ¼ tð "

2Þ�ð�0

þ=4

2Þ, and g ¼ expð2c 33 þ 2c 1 þ

2c 2Þ is finite. The concrete form of the metric potentials
in the interior region is model dependent, see examples in
[1] (see also [11,12] for extremal pressure systems, and
[9,10] for extremal pressureless systems). We can also
discuss the regularity of the Riemann tensor as we did in
the nonextremal case. Using (40) and (34) in (21) and (24)
gives in the limit r ! r0 that

Q � �2þ
4V

; (41)

so the only possible choice is indeed

�þ ¼ Oð ffiffiffi
"

p Þ ! 0; (42)

as already found.
Region at the boundary, r ¼ r0. This region is in the

immediate vicinity of the boundary (which tends to the
quasihorizon in the limit under discussion). In this region,
by definition, the proper distance l remains finite since,
although the double root of V is being approached, the limit
of integration shrinks. We assume that the metric is well-
defined, with 2c being finite in the vicinity of r0. Then,
bearing in mind that�þ & Oð ffiffiffi

"
p Þ as found above, neglect-

ing a weak dependence of �=r on r, so that �r � a
2
ffiffiffi
"

p
for

some constant a, we can write near the quasihorizon rþ,

�þ � a
2rþ
ffiffiffi
"

p
: (43)

Here, a � 0 since, as discussed above, near the quasihor-
izon we want to have �0 < 0 and �> 0. In the limit " ¼ 0
we obtain from (43) the regularity condition for the quasi-
horizon, the condition being �þ ¼ 0, which by Eq. (18)
means

prðrþÞ ¼ ��ðrþÞ: (44)

This regularity condition is the same as for usual, i.e., true,
horizons, see, e.g., [18]. Thus, if a quasihorizon is extremal
from inside, the regularity condition (44) similar to that for
black hole (30) is reproduced, in contrast to the situation
with the quasihorizon nonextremal from inside. To obtain
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the metric in this limit we make the substitution r ¼ r0�ffiffiffiffi
"

2

q
y. Then the metric is

ds2 ¼ �ð1þ y2Þe�ða
rþ arctanyÞdT2 þ 1


2

1

1þ y2
dy2

þ r20ðd�2 þ sin2�d�2Þ: (45)

We have used t ¼ Tffiffi
"

p to absorb the factor " into g00, a

procedure that is typical of quasiblack holes [1]. The
metric (45) is a slight generalization of the Bertotti-
Robinson metric. To see it, we note that for a pure electro-
magnetic situation one has 
2 ¼ 1

r2þ
and a ¼ 0, so that (45)

coincides with the Bertotti-Robinson metric. The proper

distance l ¼ 1



Ry
0

d �yffiffiffiffiffiffiffiffi
1þy2

p is finite for any y but it diverges in

the limit y ! 1, so we obtain an infinitely long tube.

2. Discussion: conditions on the pressure and energy
density at the boundary and a proposition

(i) Conditions on the pressure and energy density at the
boundary. Since the value of �ðrþÞ is fixed by the condition
V 0ðrþÞ ¼ 0 both from outside and inside, both radial pres-
sure and density are continuous, in contrast to the nonex-
tremal case from inside where the density is discontinuous.
In the situation (a) there is no electromagnetic field then the
quasihorizon is supported by matter tension, in the situ-
ation (b) there is an electromagnetic field the matter pres-
sure is equal to zero at the quasihorizon, both results can be
deduced as before.

(ii) A proposition. From the above considerations an
interesting result follows. In order to have a well-defined
U, and thus a well-defined metric, we need to have �
defined in Eq. (5) obeying �> 0 in some vicinity of the
quasihorizon. Since on the quasihorizon itself � ¼ �0 ¼
�þ ! 0, we must have �0

0 � 0 as is explained above. But

from (5), � ¼ 8�rðprðrÞ þ �ðrÞÞ. Thus, we can state the
following proposition: (i) One cannot build an extremal
quasiblack hole entirely from phantom matter, i.e., matter
with the null energy condition violated everywhere inside,
pr þ � < 0. (ii) In case there is phantom matter, it cannot
border the quasihorizon but must lie inside the inner region
only. Thus, at least in some vicinity of the quasihorizon the

null energy condition is satisfied everywhere, so that pr þ
� � 0.
For a discussion of the energy conditions within the

related context of regular black holes see [24].
Alternation of regions with normal and phantom matter
is discussed in [25] in another context.

IV. CONCLUSION

We have studied extremal quasiblack holes, as seen from
the outside, with nonzero pressure and have shown how
these objects are attainable on general grounds. From the
inside these quasiblack holes can have nonextremal and
extremal quasihorizons. The total pressure at the matter
boundary is less or equal to zero and it is always continu-
ous there. In the situation where there is an electric field the
matter pressure is zero at that boundary. The density be-
haves as expected, either showing a jump at the boundary
in the nonextremal case or being continuous in the ex-
tremal case. The regularity conditions for the nonextremal
inside case is completely different from the regularity
condition for the usual regular black holes, whereas the
regularity conditions for the extremal inside case can be
obtained from the known regularity conditions for the
usual regular black holes. For the extremal inside case
we show that the quasiblack holes cannot be made from
phantom matter at the quasihorizon. Further properties that
one can envisage depend on the particular model under
study, see [15–17] for the nonextremal inside case and
[11,12] for the extremal inside case. In our previous studies
[1–6] we have shown that quasiblack holes with nonextre-
mal and extremal quasihorizons for the outside are distinct
entities and must be considered as such when one studies
them. Here we have shown that the same holds for quasi-
black holes with nonextremal and extremal quasihorizons
for the inside. They have to be carefully considered as
separate entities with distinct properties.
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