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We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying

the Snyder geometry is deformed at the co-algebraic level only, while its Poincaré algebra is undeformed.

The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for

momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincaré group is

described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a

nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time

picture based on the concept of the realization of a noncommutative geometry. The two main results we

obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying

the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this

space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The

possibility to derive Noether charges for the Snyder space-time is also discussed.
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I. INTRODUCTION

Snyder space-time has been the first proposal of non-
commutative geometry to tame the UV divergences of
quantum field theory [1,2]. The preliminary idea to solve
this problem was to use a lattice structure instead of the
space-time continuum [3]. However, a lattice breaks the
Lorentz invariance, posing serious doubts for accepting the
theory. A Lorentz invariant discrete space-time has been
formulated only by Snyder. The price to pay is a non-
commutative structure of space-time. Because of the suc-
cess of the renormalization theory, the Snyder program has
been abandoned since its rediscovery 40 years later by
mathematicians [4,5]. Now, the analysis of field theories
on noncommutative space-times has become a fundamen-
tal area in theoretical physics (for reviews see [6,7]).

A quantum field theory on the Snyder space-time has
however not yet been constructed and thus the removal of
divergences by means of noncommutativity effects has not
yet been proved. In this paper we construct a self-
interacting classical scalar field theory on this space-
time. This model can be considered as the starting point
for the quantum analysis.

The noncommutativity of the Snyder space-time is en-
coded in the commutator between the coordinates, which is
proportional to the (undeformed) Lorentz generators. The
Poincaré symmetry underlying this space-time is unde-
formed at the algebraic level, while the co-algebraic sector
is (highly) nontrivial. In a previous paper [8] we have
shown that, by using the concept of realizations, there
exists infinitely many deformed Heisenberg algebras all
compatible with this geometry. This freedom can be under-
stood as the freedom in choosing momentum coordinates.

We here complete the previous analysis by studying the
coproduct and star-product structures underlying the
model. Equipped with this technology, we construct a
scalar field theory on this noncommutative space-time.
Our main goal is to define the theory without ambiguities
and without needing supplementary structures (as a de-
formed measure) necessary in extra dimensional ap-
proaches. The momentum space of the Snyder-deformed
Poincaré group does not have a Lie group structure since it
is given by the coset SOð4; 1Þ=SOð3; 1Þ, i.e. the de Sitter
space. The coproduct and the induced star product turn out
to be nonassociative. This feature represents the main
obstacle in studying field theories on the Snyder space-
time. Such a kind of deformation of the Poincaré group
cannot be recovered within the classification [9], because
only deformations preserving the co-associativity are con-
sidered. The language of Hopf algebras [10] does not apply
straightforwardly to the Snyder space-time geometry.
The nonassociativity propriety obstructed the analysis of

the Snyder geometry with respect to other noncommutative
space-times. For example � Minkowski, a particular case
of Lie algebra-type space-time, has been developed at
different levels specifying star products [11,12], differen-
tial calculus [13,14], scalar field theory [15–18], and con-
served charges [19–21]. The key difference between
Snyder and �Minkowski is that in the latter the momentum
space has the structure of a non-Abelian Lie group and thus
the coproduct is noncommutative, but still associative. In
particular, the Snyder space-time is not a special case of �
Minkowski [22,23]. In fact, as clarified in [24], � spaces
are based on Lie algebra while Snyder space is grounded
on trilinear commutations relations.
Our approach is based on the framework of realizations

by which we bypass the nonassociativity and clearly define
the self-interacting theory. The theory we construct lives
on the noncommutative space-time and its dual has the
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momentum space given by a coset. Our analysis deals with
the four-dimensional Lorentzian model and no extra di-
mensional structures are invoked. Moreover, our theory is
general as we consider all realizations of the geometry,
differently to the previous approaches (for other attempts
to define a scalar field theory on Snyder space-time see
[25–28]). The frameworks usually adopted are recovered
as particular cases of our construction.

The Snyder space-time is linked to doubly special rela-
tivity models [29,30], loop quantum gravity [31], and two-
time physics [32]. In particular in [33], we have shown that
a Snyder-deformed quantum cosmology predicts a big-
bounce phenomenology as in loop quantum cosmology
[34] (for other comparisons between deformed and loop
cosmologies see [35–37]).

The paper is organized as follows: In Sec. II, we describe
the algebraic structure of the Snyder space-time. In Sec. III
the co-algebraic sector underlying the noncommutative
geometry is analyzed in detail. Section IV is devoted to
the formulation of the scalar field theory on this space-
time. Finally, in Sec. V the first-order corrections are
computed. Concluding remarks follow.

We adopt units such that @ ¼ c ¼ 1, the signature given
by ��� ¼ diagð�;þ; . . . ;þÞ and the index convention

f�; �; . . .g 2 f0; . . . ; ng.

II. SNYDER SPACE-TIME

In this section we describe the noncommutative Snyder
space-time geometry. We discuss the realizations of such a
geometry as well as the dispersion relation underlying the
model.

A. Deformed Heisenberg algebras

Let us consider a (nþ 1)-dimensional Minkowski
space-time such that the commutator between the coordi-
nates has the nontrivial structure

½~x�; ~x�� ¼ sM��; (1)

where ~x� denote the noncommutative coordinates, and s 2
R is the deformation parameter with dimension of a
squared length. We demand that the symmetries of such
a space are described by an undeformed Poincaré algebra.
This means that both Lorentz generatorsM�� ¼ �M�� ¼
iðx�p� � x�p�Þ and translation generators p� satisfy the

standard commutation relations

½M��;M��� ¼���M������M������M��þ���M��

½p�;p�� ¼ 0: (2)

We also assume that momenta and noncommutative coor-
dinates transform as undeformed vectors under the Lorentz
algebra, i.e. the commutators

½M��; p�� ¼ ���p� � ���p�; (3)

½M��; ~x�� ¼ ���~x� � ���~x�; (4)

hold. The quantity p2 ¼ ���p�p� is then a Lorentz

invariant.
Relations (1)–(4) define the Snyder space-time geome-

try. However, they do not fix the commutator between ~x�
and p�. In particular, as it was shown in [8], there exists
infinitely many possible commutators that are all compat-
ible, in the sense that the algebra closes in virtue of the
Jacobi identities, with the above requirements. This feature
is understood by means of the concept of realization
[11,18,38–41] (for a similar framework see [42,43]). A
realization on a noncommutative space is defined as a
rescaling of the deformed coordinates ~x� in terms of

ordinary phase space variables ðx�; p�Þ as
~x � ¼ ���ðpÞx�: (5)

The most general SOðn; 1Þ-covariant realization of the
Snyder geometry reads [8]

~x � ¼ x�’1ðAÞ þ sðxpÞp�’2ðAÞ; (6)

in which ’1 and ’2 are two (dependent) functions of the
dimensionless quantity A ¼ sp2 (hereafter, the convention
ðabÞ ¼ ���a�b� is adopted). The function ’2 depends on

’1 by the relation

’2 ¼ 1þ 2 _’1’1

’1 � 2A _’1

; (7)

where the dot denotes differentiation with respect to A. The
generic realization (6) is completely specified by the func-
tion’1. There are thus infinitely many ways to express, via
’1, the noncommutative coordinates (1) in terms of the
ordinary ones without deforming the original symmetry.
The boundary condition ’1ð0Þ ¼ 1 ensures that the ordi-
nary commutative framework is recovered as soon as s ¼
0. The commutator between ~x� and p� immediately fol-

lows from (6) and reads

½~x�; p�� ¼ ið���’1 þ sp�p�’2Þ: (8)

This relation describes a deformed Heisenberg algebra.
It is also interesting to give the inverse of the realization

(6), which reads

x� ¼ 1

’1

�
~x� � 1

’1 þ A’2

sð~xpÞp�’2

�
: (9)

This relation allows us to construct invariants for the non-
commutative framework from those arising in the commu-
tative one. We only have to demand that the invariants in
ðx�; p�Þ coordinates will be sent into the invariants in

ð~x�; p�Þ coordinates by means of (9).

The use of realizations allow us to give a phase space
interpretation of the Snyder space-time. Consider the non-
canonical transformation x� ! ���ðpÞx�, p� ! p� in an

ordinary phase space coordinatized by ðx�; p�Þ. The
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Snyder noncommutative geometry results from such a
map. This transformation can be a generic function of
momenta, but linear in coordinates (for discussions on
noncommutative classical mechanics see e.g. [44]).

B. Particular realizations

The noncommutative Snyder geometry has been ana-
lyzed in the literature from different points of view [25–
33,45,46], but only two particular realizations of its algebra
are usually adopted. These are the Snyder [1] and the
Maggiore [47,48] types of realizations, which are particu-
lar cases of (6).

The first realization is the one originally suggested by
Snyder. It is recovered from (6) if

’1 ¼ 1; (10)

which, because of (7), implies that ’2 ¼ 1. The second
realization has been proposed by Maggiore, and it appears
as soon as

’1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sp2

q
; (11)

and thus, from (7), ’2 ¼ 0. The momentum p� is bounded

or unbounded, depending on the sign of s. If s > 0, the
constraint jpj< 1=

ffiffiffi
s

p
holds.

Beside these types of realization, the one that realizes
the Weyl symmetric ordering is the third interesting one.
The Weyl ordering is obtained by the condition

���p� ¼ ð’1��� þ sp�p�’2Þp� ¼ p�; (12)

which, considering the relation (7), implies that

’1 ¼
ffiffiffiffiffiffiffiffi
sp2

q
cot

ffiffiffiffiffiffiffiffi
sp2

q
: (13)

As we said, there are however infinitely many possible
realizations of the Snyder space-time geometry.

C. Dispersion relation

Let us discuss the fate of the standard dispersion relation
p2 ¼ m2 in the Snyder space-time. In particular, we are
interested in how different realizations modify this con-
straint. Consider two momenta ~p� and p� in two distinct

realizations. Since momenta transform as vectors under the
Lorentz symmetry, see (3), the relation

~p� ¼ p�fðAÞ (14)

holds. The function fðAÞ, such that fð0Þ ¼ 1, depends on
the realization ’1 and can be obtained as follows. Let for
example ~p� be a momentum in the Maggiore realization

(11), i.e. the commutator ½~x�; ~p�� ¼ i���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s~p2

p
holds.

The function f is obtained by inserting (6) and (14) in this
relation and reads

f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’2

1 þ A
q : (15)

Notice that f ¼ 1 as the realization (11) is taken into
account and that, because of (10), the Maggiore momen-
tum pM

� is related to the Snyder one pS
� by

pS
� ¼ pM

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sðpSÞ2

q
: (16)

As expected from (3), the dispersion relation for ~p2 is
undeformed, but an effective mass me ¼ meðmÞ has to be
taken into account. From (14) and (15), the Snyder-
dispersion relation reads

~p 2 ¼ m2

’2
1ðsm2Þ þ sm2

� m2
e: (17)

Let us discuss such a formula in the Snyder realization
(’1 ¼ 1). In the low-deformed case (m2 � 1=s) the effec-
tive mass is given by m2

e ’ m2ð1� sm2Þ. On the other
hand, in the ultradeformed case (m2 � 1=s with s > 0)
we havem2

e ’ 1=s (for s < 0,m is bounded asm2 < 1=jsj).

III. CO-ALGEBRAIC SECTOR

The co-algebraic sector of the Snyder geometry is here
analyzed. We first focus on a generic framework, i.e. by
considering the arbitrary realization (6). The two particular
realizations (10) and (11) are investigated below. A dis-
cussion about the nonassociativity follows.

A. General framework

Deformations of symmetries underlying Snyder space-
time (1) are contained in the co-algebraic sector of a (non-
trivial) quantum group. Generators ð~x�; p�;M��Þ form an

algebra defined by the commutators (1)–(4) and (8). This is
not a Hopf algebra. However, ðp�;M��Þ generate the

Snyder-deformed Poincaré group P S whose algebra is a
generalization of the Hopf algebra.
As understood from commutators (2) and (3), the Snyder

algebraic sector is the one of an undeformed Poincaré
algebra. On the other hand, the co-algebraic sector, defined
by the action of Poincaré generators on the Snyder coor-
dinates ~x�, is deformed. The action of Lorentz generators

is still the standard one because of (4), but the action of
momenta is modified as in (8). The Leibniz rule is thus
deformed and depends on realizations. As we will see, the
coproduct for momenta is no longer commutative and
neither associative.
The coproduct and star-product structures can obtained

from realizations as follows: Let I be the unit element of
the space of commutative functions c ðxÞ. By means of (6)

the action of a noncommutative function ~c ð~xÞ on I gives
[24,49]

~c ð~xÞxI ¼ c 0ðxÞ: (18)
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This relation provides a map from the noncommutative
space of functions to the commutative one. Notice that the
commutative function c 0ðxÞ will be in general different
from c ðxÞ. Consider now a noncommutative plane wave

eiðk~xÞ, in which ~x� refers to a given realization (6), and k�
are the eigenvalues of p� ¼ �i@=@x�. It is then possible

to show that [24,49]

eiðk~xÞxI ¼ eiðKxÞ; (19)

where K� ¼ K�ðkÞ is a deformed momentum (defined

below) depending on realizations. The commutative limit
s ! 0 leads to the standard framework in which K� ¼ k�.

Consequently, given the inverse transformation K�1
� ¼

K�1
� ðkÞ, we have

eiðK�1~xÞxI ¼ eiðkxÞ: (20)

It is worth noting that, in theWeyl realization (13), we have

eiðk~xÞxI ¼ eiðkxÞ and the plane waves are undeformed.
Let us now consider two plane waves labeled by mo-

menta k� and q�, respectively. Their action on the unit

element I gives

eiðk~xÞðeiðqxÞÞ ¼ eiðFðk;qÞxÞ: (21)

The deformed momentum K� is thus determined by K� ¼
F�ðk; 0Þ, where the function F�ðk; qÞ specifies the copro-

duct as well as the star product. It can be obtained by a
straightforward implementation of the Campbell-Baker-
Hausdorff formula or by the more elegant method devel-
oped in [24,49].

The star product between two plane waves is defined by
F�ðk; qÞ as
eiðkxÞ ? eiðqxÞ � eiðK�1ðkÞ~xÞeiðK�1ðqÞ~xÞxI ¼ eiðK�1ðkÞ~xÞðeiðqxÞÞ

¼ eiðDðk;qÞxÞ; (22)

in which

D �ðk; qÞ ¼ F�ðK�1ðkÞ; qÞ: (23)

The star product defines, by means of (19) and (20), a Weyl
mapping from the commutative to the noncommutative
spaces provided by a one-to-one correspondence between

eiðk~xÞ and eiðKxÞ. The coproduct for momenta �p� (and the

corresponding Leibniz rule) is obtained from D�ðk; qÞ as
�p� ¼ D�ðp � 1; 1 � pÞ: (24)

In particular, the function D� describes the non-Abelian

sum of momenta in the Snyder noncommutative space-
time, i.e.

D �ðk; qÞ ¼ k� � q� � k� þ q�: (25)

As soon as the noncommutativity effects (in our case the
parameter s) are switched off, the ordinary Abelian rule
D�ðk; qÞ ¼ k� þ q� is recovered. By means of (22), it is

possible to obtain the star product between two generic
functions f and g of commuting coordinates (see, for
example [11,39,49]). Adopting the plane waves relation
(22), the general result for the star product stands as

ðf ? gÞðxÞ ¼ lim
y!x
z!x

eix�ðD�ðpy;pzÞ�p�
y �p�

z ÞfðyÞgðzÞ: (26)

Star product is a binary operation acting on the algebra of
functions defined on the ordinary commutative space, and
it encodes features reflecting the noncommutative nature of
Snyder space-time (1). The star product is uniquely de-
fined, but its concrete form is related to a particular real-
ization and vice versa. For any realization the star product
(22), and then (26), is nonassociative. The corresponding
coproduct (24) is non-coassociative. Such a result has been
confirmed by the recent analysis [28] also.
This construction is well defined and allows us to obtain,

from realizations (6), both the coproduct and star-product
structures underlying the Snyder space-time. The inverse
path is also meaningful: starting from a star product (or a
coproduct) it is always possible to recover information
about the realization we are working in. However, as we
shall see, to construct a scalar field theory on Snyder space-
time it is more suitable to deal with realizations instead of
star products. The nonassociativity of the star product in
fact poses severe challenges in defining interaction terms.
Let us now compute the coproduct�p�, at the first order

in s, for a generic realization (6). Expanding the realization
function ’1 as ’1 ¼ 1þ c1sp

2 þOðs2Þ and considering
(15), we obtain

�p� ¼ �0p� þ s�1p� þOðs2Þ;
�0p� ¼ p� � 1þ 1 � p�;

�1p� ¼ ðc� 1
2Þp� � p2 þ ð2c� 1

2Þp�p� � p�

þ cðp2 � p� þ 2p� � p�p�Þ; (27)

where c ¼ ð2c1 þ 1Þ=2. Here �0p� and �1p� denote the

coproduct at the zero and first order is s, respectively. The
Maggiore type of realization (11) is defined by c1 ¼ �1=2
and thus it is recovered as c ¼ 0. The Snyder one (10)
appears for c1 ¼ 0 and thus c ¼ 1=2, while the Weyl one
(13) for c ¼ 1=6. The coproduct (27) defines the Snyder
non-Abelian sum in a generic realization. The star product
is obtained from (22).
To complete the analysis of the co-algebraic sector we

need to specify the coproduct �M�� of the Lorentz gen-

erators, as well as the antipode SðgÞ and the co-unit "ðgÞ for
any element g of P S. Because of relations (2)–(4), the
coproduct �M�� is trivial, i.e.

�M�� ¼ M�� � 1þ 1 �M��: (28)

The antipode SðgÞ is defined by the equation

D ðg; SðgÞÞ ¼ g � SðgÞ ¼ 0: (29)
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From (27) and (28), we immediately realize that the anti-
pode is not deformed for any g ¼ ðp�;M��Þ, that is

Sðp�Þ ¼ �p� SðM��Þ ¼ �M��: (30)

Because different momenta are related by (14), the anti-
pode Sðp�Þ is exactly (not only at the first order) trivial in

all realizations. On the other hand, the co-unit "ðgÞ is also
trivial for any g 2 P S. Finally, we observe that coproduct
for momenta (24) is covariant because of (28), i.e. the
relation

½�M��;�p�� ¼ ����p� � ����p� (31)

holds. This expression is the co-algebraic counter term of
(3).

Summarizing, the Snyder-deformed Poincaré group P S

is characterized as follows. The Lorentz symmetry is un-
deformed at both algebraic and co-algebraic level. The
deformations are encoded in the coproduct (24) only,
which, in particular, is non-coassociative. The correspond-
ing star product (22) is nonassociative and a homomor-
phism relates these structures. The algebraic sector is then
compatible with the co-algebraic one. Therefore, the gen-
erators ðp�;M��Þ of P S form a generalized Hopf algebra,

which we shall denote as a non-coassociative Hopf
algebra.

B. Particular realizations

We now study the coproduct structure underlying the
two particular realizations (10) and (11). In both cases a
closed form of the coproduct arises.

Let us first consider the Maggiore realization (11). The
basic function F�ðk; qÞ in (21) is given by

F� ¼ q� þ k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Aq

q sin
ffiffiffiffiffiffi
Ak

pffiffiffiffiffiffi
Ak

p � sk�ðkqÞ 1� cos
ffiffiffiffiffiffi
Ak

pffiffiffiffiffiffi
Ak

p ;

(32)

where Ap ¼ sp2. The ordinary function F� ¼ k� þ q� is

recovered in the s ¼ 0 case. From (32) one immediately
obtains the deformed momentum K�ðkÞ, which reads

K� ¼ F�ðk; 0Þ ¼ k�
sin

ffiffiffiffiffiffi
Ak

pffiffiffiffiffiffi
Ak

p : (33)

The coproduct �p� follows from (23), and it is given, in

terms of the realization function ’1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sp2

p
, by

�p� ¼ p� � ’1 � s

1þ ’1

p�p� � p� þ 1 � p�: (34)

Such a coproduct [namely, the addition rule (25)] is non-
co-associative. The order by which we sum the momenta
becomes important. As s ¼ 0, we have ’1 ¼ 1, and the
trivial coproduct �0p� ¼ p� � 1þ 1 � p� is recovered.

The first-order term coincides with (27) for c ¼ 0.

Let us now analyze the Snyder realization (10). In this
case the function F�ðk; qÞ in (21) reads

F� ¼ gðhk� þ q�Þg¼
�
cos

ffiffiffiffiffiffi
Ak

p �
ffiffiffiffi
s
k2

q
ðkqÞ sin ffiffiffiffiffiffi

Ak

p ��1
h

¼ 1

k2

� ffiffiffiffiffi
k2

s

s
sin

ffiffiffiffiffiffi
Ak

p þ ðkqÞðcos ffiffiffiffiffiffi
Ak

p � 1Þ
�
: (35)

The deformed momentum K�ðkÞ is then given by

K� ¼ F�ðk; 0Þ ¼ k�
tan

ffiffiffiffiffiffi
Ak

pffiffiffiffiffiffi
Ak

p : (36)

The ordinary framework is restored as s ¼ 0. The copro-
duct directly follows from (23) and reads

�p� ¼ 1

1� sp� � p�

�
p� � 1� s

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ap

p p�p� � p�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ap

q
� p�

�
: (37)

Also in this case the coproduct is non-coassociative. The
first-order term coincides with the c ¼ 1=2 case of (27).

C. On the nonassociativity

The relation between special relativity and the Snyder
geometry allows us to better understand the physical mean-
ing of the nonassociativity.
Special relativity can be analyzed (and derived) from a

noncommutative point of view [50]. Consider the Galileo
group ISOð3Þ ¼ SOð3Þ � R3. Speeds generate translations
and the speed space R3 can be identified as R3 	
ISOð3Þ=SOð3Þ. A manifold of this type is a coset space.
In this case it has the (Lie) group structure. Special rela-
tivity can be viewed as arising from the deformation of R3

into the curved space C ¼ SOð3; 1Þ=SOð3Þ. This operation
sends the Galileo group into the Lorentz one SOð3; 1Þ ¼
SOð3Þ � C (this is the Cartan decomposition of the Lorentz
group [51]). The coset SOð3; 1Þ=SOð3Þ is nothing but the
(hyperbolic) boosts space, but it is not a Lie group. In fact
the product between two boosts is not longer a boost, but an
element of the full Lorentz group SOð3; 1Þ. The composi-
tion of speeds can be extracted from a coproduct structure.
It turns out that the composition of (noncollinear) speeds is
no longer commutative and neither associative. A physical
manifestation of nonassociativity is the well-known
Thomas precession [52]. From a mathematical point of
view, the nonassociativity is a consequence of the fact
that the coset space is not a group manifold.
The Snyder space-time geometry can be viewed from

the same perspective. Consider the Poincaré group P ¼
SOð3; 1Þ � R4. As above, the momentum space R4 can be
viewed as the coset R4 	 P=SOð3; 1Þ and of course it is a
group manifold. Deforming the momentum space into the
de Sitter space dS ¼ SOð4; 1Þ=SOð3; 1Þ, we recover the
Snyder noncommutative geometry. This is the original
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formulation made by Snyder himself [1]. The Snyder-
deformed Poincaré group P S is then factorized as

P S ¼ SOð3; 1Þ � dS; (38)

showing that the Lorentz symmetry is undeformed. On the
other hand, the translation sector of this (quantum) group is
deformed consistently to (1). As in the previous case, the
coset dS is not a Lie group. The non-coassociativity of
Snyder coproduct can be traced back to this feature.

IV. SCALAR FIELD THEORY

In this section we construct the scalar field theory on the
four-dimensional Snyder noncommutative space-time. We
first consider the Fourier transformation and define the
Snyder scalar field and then we write down the action for
the theory. A comparison with other approaches follows.

A. Preliminaries

We define a scalar field ~�ð~xÞ on the Snyder noncommu-
tative space-time by means of the Fourier transformation as

~�ð~xÞ ¼
Z
½dk��̂ðkÞeiðK�1~xÞ: (39)

The integration measure ½dk� is a priori deformed, depend-
ing on the antipode Sðk�Þ. However, as we have previously
seen, it is trivial in any realizations. The measure in (39) is
thus the ordinary one

½dk� ¼ d4k

ð2�Þ4 : (40)

Let us now consider the action of the Snyder scalar field
(39) on the identity I. By means of (20), this operation
gives

~�ð~xÞxI ¼ �ðxÞ; (41)

which ensures the Lorentz scalar behavior of the model. As

a further step we consider the quadratic term ~�2ð~xÞxI.
Given the definition (39) and remembering (21)–(23), we
obtain

~� 2ð~xÞxI ¼ ð� ? �ÞðxÞ: (42)

We have thus recovered the star-product structure.
Let us now discuss the notion of a real and complex

Snyder scalar field. First, because of the triviality of the
antipode, the conjugation is also an ordinary one. Second,
the noncommutative coordinates ~x� have to be Hermitian

operators in any given realization. All the commutators
given above are invariant under the formal antilinear in-
volution ‘‘y’’

~x y
� ¼ ~x�; py

� ¼ p�; My
�� ¼ �M��; (43)

where the order of elements is inverted under the involu-
tion. On the other hand, the realization (6) is in general not

Hermitian. The Hermiticity condition can be immediately
implemented as soon as the expression

~x � ¼ 1
2ðx�’1 þ sðxpÞp�’2 þ ’y

1x
y
� þ s’y

2p
y
�ðxpÞyÞ

(44)

is taken into account. However, the physical results do not
depend on the choice of the representation as long as there
exists a smooth limit ~x� ! x� as s ! 0. We can thus

restrict our attention to non-Hermitian realization only.
Consequently, we focus on the real Snyder scalar field
theory, while the complex one can be straightforwardly
defined.

B. Action for scalar field theory

We are now able to construct a Lagrangian for the non-
commutative scalar field (39). Let us start by analyzing
how the ordinary kinematic term ð@��Þð@��Þ is changed
in the Snyder space-time. Following the previous reason-
ing, the corresponding term in the noncommutative frame-

work is given by ð@� ~�Þð@� ~�ÞxI (notice that the derivative
is still with respect to the commutative coordinates, i.e.
@� ¼ @=@x�). Such a term, expressed by means of the

Fourier transformation (39), is uniquely defined. In fact,
in order for the differentiation to make sense, we have to
first project the plane waves on I and then act on these by
differentiation. By using (21) and (30), the relation

ð@�eiðK�1~xÞÞeiðqxÞ ¼ iðD� � q�ÞeiðDðk;qÞxÞ ¼ ik�e
iðDðk;qÞxÞ

(45)

follows. The kinematic part, considering (20) and (45), is
then given by

ð@� ~�Þð@� ~�ÞxI

¼
Z
½d2k��̂k1�̂k2ð@�eiðK

�1
1

~xÞÞ@�ðeiðK�1
2

~xÞxIÞ

¼ �
Z
½d2k��̂k1�̂k2ðk1k2ÞeiðDðk1;k2ÞxÞ; (46)

where ½dnk� ¼ ½dk1� . . . ½dkn� and �k ¼ �ðkÞ. This ex-
pression leads to the correct ordinary result as s ¼ 0. As in
(42), the star-product prescription leads to the same result
with respect to our construction:

ð@� ~�Þð@� ~�ÞxI ¼ ð@��Þ ? ð@��Þ: (47)

The action for a noninteracting massive scalar field on
Snyder space-time then reads

I ¼
Z

d4xð@� ~�@� ~�þm2 ~�2ÞxI

¼
Z

d4x½ð@��Þ ? ð@��Þ þm2ð� ? �Þ�: (48)

Because of the antipode (30), the action in the momentum
space can be trivially written.
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The noncommutativity effects are thus summarized
within the coproduct (27), i.e. within the non-Abelian
sum D�ðk1; k2Þ. The noncommutative corrections to the

ordinary theory depend on realizations. For each type of
realization different actions appear.

Finally, we investigate the role of self-interactions. In

particular, we consider the cubic ~�3ð~xÞxI and quartic
~�4ð~xÞxI interaction terms. These terms can be immedi-
ately obtained. The generalization of (21) to three plane
waves, considering also (22), reads

eiðK�1
3

~xÞðeiðK�1
2

~xÞðeiðK�1
1

~xÞxIÞÞ ¼ eiðD3ðk3;k2;k1ÞxÞ; (49)

in which ðD3Þ�ðk3; k2; k1Þ ¼ D�ðk3;Dðk2; k1ÞÞ. This de-
fines the cubic term

~� 3ð~xÞxI ¼ ð� ? ð� ? �ÞÞðxÞ: (50)

The quartic term ~�4ð~xÞxI is determined in the same way.
Given four plane waves we have

eiðK�1
4

~xÞðeiðK�1
3

~xÞðeiðK�1
2

~xÞðeiðK�1
1

~xÞxIÞÞÞ ¼ eiðD4xÞ; (51)

and therefore

~� 4ð~xÞxI ¼ ð� ? ð� ? ð� ? �ÞÞÞðxÞ; (52)

where ðD4Þ� ¼ D�ðk4;D3ðk3; k2; k1ÞÞ.
Summarizing, we have defined a Lagrangian density for

a self-interacting scalar field on the Snyder noncommuta-
tive space-time geometry. Our framework, which is based
on realizations, uniquely fixes the theory. This is relevant
because the coproduct is non-coassociative (the corre-
sponding star product is nonassociative). This feature
would lead, a priori, to a nonunique definition of the
model. Such a shortcoming is bypassed in our construction.

C. Relation with other approaches

Our construction differs with respect to the usual ones on
two main points: the dimensions of the structure under-
lying the theory and the adopted algebra.

The scalar field theory on Snyder space-time is usually
formulated by considering a five-dimensional structure
[25–28]. The same happens for the field theories on �
Minkowski [15–17]. In particular, the momentum space
is the de Sitter section in a five-dimensional flat space, and
a deformed Fourier measure is thus needed to ensure the
Lorentz invariance [25–28]. In � Minkowski, a five-
dimensional differential structure predicts some unphysi-
cal ghost modes [15] (to overcome this feature a twist
deformation of the symmetry has been proposed [53,54]).
On the other hand, our theory is defined on a four-
dimensional space-time. No extra measures are needed,
and the theory has the same field structure of the commu-
tative framework. The Snyder-deformed symmetry algebra
is the original undeformed one, and only the coproduct
structure changes. Interesting, this is exactly the frame-

work arising from the twist formulation of noncommuta-
tive field theories [18,53,54].
The second difference with respect to other approaches

is that our theory is generic. All the possible realizations of
the algebra are taken into account. The other attempts to
construct a scalar field theory on the Snyder space-time are
in fact based on a particular realization only. Our theory in
the Snyder type of realization (10) corresponds, up to the
momentum-space duality, to the previous proposals [25–
28].

V. FIRST-ORDER CORRECTIONS

In this section we explicitly compute the generic non-
commutative corrections, up to the first order in s, to the
commutative theory.
As we have seen, all the noncommutative information is

summarized in the non-Abelian sum (25), namely, in the
coproduct (27). We are thus interested in the function
ðD4Þ� ¼ ðD4Þ�ðk4; k3; k2; k1Þ defined in (51). The func-

tions ðD3Þ�ðk3; k2; k1Þ and D�ðk2; k1Þ, which define the

cubic and quadratic terms, are clearly recovered from this
one as soon as k4 ¼ 0 and k4 ¼ k3 ¼ 0, respectively. The
ðD4Þ� function can be expanded in the deformation pa-

rameter s as

ðD4Þ� ¼ ðD4Þ0� þ sðD4Þ1� þOðs2Þ;
ðD4Þ0� ¼ ðk1Þ� þ ðk2Þ� þ ðk3Þ� þ ðk4Þ�;
ðD4Þ1� ¼ 	ðk1Þ� þ 
ðk2Þ� þ �ðk3Þ� þ �ðk4Þ�;

(53)

where the superscript denotes the order in s.
The correction term ðD4Þ1� depends on realizations

through 	 ¼ 	ð’1Þ, 
 ¼ 
ð’1Þ, � ¼ �ð’1Þ and � ¼
�ð’1Þ. These functions are given by

	 ¼ c½k22 þ k23 þ k24 þ 2ðk1k2 þ k3k2 þ k3k1 þ k4k3

þ k4k2 þ k4k1Þ�; (54)


 ¼ ðc� 1
2Þk21 þ ð2c� 1

2Þðk1k2Þ þ c½k23 þ k24

þ 2ðk3k2 þ k3k1 þ k4k3 þ k4k2 þ k4k1Þ�; (55)

� ¼ ðc� 1
2Þðk1 þ k2Þ2 þ ð2c� 1

2Þðk3k2 þ k3k1Þ
þ c½k24 þ 2ðk4k3 þ k4k2 þ k4k1Þ�; (56)

� ¼ ðc� 1
2Þðk1 þ k2 þ k3Þ2

þ ð2c� 1
2Þðk4k3 þ k4k2 þ k4k1Þ: (57)

The value of the constant c determines the realization in
which we are working. The Snyder (10), the Maggiore
(11), and the Weyl (13) types of realization are, respec-
tively, recovered for c ¼ 1=2, 0, 1=6.
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VI. CONCLUDING REMARKS

In this paper we have constructed a scalar field theory on
the Snyder noncommutative space-time. The next step will
be the quantization of the model in order to investigate the
fate of UV divergences and thus fully analyze the Snyder
proposal.

We have shown that the deformations of symmetries are
all contained in the co-algebraic sector and that the cop-
roduct is non-coassociative. By using the realizations of
the Snyder algebra we have constructed a well-defined
(namely, nonambiguous) self-interacting scalar field the-
ory. The ambiguities carried out by the nonassociative sum
of momenta (and thus the nonassociative star product) have
been overcome by the use of realizations. By means of a
map between the noncommutative functions and the com-
mutative ones, a scalar field action has been constructed.
This theory has been directly defined on the space-time
and, since the Fourier space has been identified with the
de Sitter space, it is dual to a field theory over the coset
SOð4; 1Þ=SOð3; 1Þ. Finally, we have computed the first-
order corrections in a generic realization.

As a last point, it is interesting to mention that we can
construct Noether charges for the Snyder space-time. As
was shown in [20,21], the key ingredient to build Noether
charges in a noncommutative theory is a Poisson map
between the deformed and the undeformed spaces of solu-
tions of the Klein-Gordon equation. In our framework this
kind of map is given by the projection of noncommutative
functions on the ‘‘vacuum,’’ as in (18). By using this map it
is possible to induce a symplectic structure on the space of
the noncommutative functions and thus obtain a conserved
symplectic product defining charges. This analysis will be
reported elsewhere [55].
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