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We present two results on the recently proposed new spin foam models. First, we show how a (slightly

modified) restriction on representations in the Engle-Pereira-Rovelli-Livine model leads to the appearance

of the Ashtekar-Barbero connection, thus bringing this model even closer to loop quantum gravity.

Second, we however argue that the quantization procedure used to derive the new models is inconsistent

since it relies on the symplectic structure of the unconstrained BF theory.
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I. INTRODUCTION

Path integral and canonical quantizations are two alter-
native ways to arrive at quantum theory. They are known to
be closely related to each other, each with its own pre-
requisites and disadvantages. In the context of background
independent quantum gravity they are represented by the
spin foam (SF) approach [1,2] and loop quantum gravity
(LQG) [3,4]. Although a qualitative relation between these
two approaches has been understood long ago [5], at the
quantitative level there was a striking disagreement.

The situation has improved thanks to the appearance of
the new SF models [6,7], which replaced the Barrett-Crane
model [8] that was the leading proposal for ten years. In
particular, it was claimed that the state space of the Engle-
Pereira-Rovelli-Livine (EPRL) model [7] is identical to the
kinematical Hilbert space of LQG, namely, that the spin
foam boundary states resulting from imposing constraints
of general relativity are given by SUð2Þ spin networks. This
claim was however based just on a formal coincidence of
the set of labels coloring the states in the spin foam model
and LQG. It was also supported by comparison of the
spectra of geometric operators, area and volume [9]. But
the quantum operators in the EPRL model are not uniquely
defined and this ambiguity was essentially used to make
the spectra to reproduce the LQG results.

On the other hand, the states in both approaches can be
seen as functionals of a connection variable and, if the state
spaces are the same, the functionals representing the same
state must also be identical. Such identification was miss-
ing so far. The situation is complicated by the fact that the
spin foam quantization is performed in terms of the spin
connection !IJ, whereas the LQG states are constructed
using the so-called Ashtekar-Barbero (AB) connection Aa

[10,11], requiring moreover the imposition of a partial
gauge fixing. As a result, the actual relation between the
states of the EPRL model and LQG is not so evident.

One of the goals of this paper is to elucidate this issue.
To this end, we remark that the spin connection projected
to the subspace defined by the EPRL intertwiner with a
slightly modified restriction on representations naturally

gives rise to the AB connection. This follows from the
simple fact

�ðjÞKð�Þ
a �ðjÞ ¼ ��;jL

ðjÞ
a ; (1)

where Kð�Þ
a are boost generators in representation �, �ðjÞ is

the projector on representation j of the SUð2Þ subgroup,
LðjÞ
a are rotation generators in this representation, and ��;j

is a number depending on both � and j. The EPRL con-
straints ensure that ��;j � �, i.e., for large spins the pro-

portionality coefficient approaches the Immirzi parameter.
We propose a simple refinement of the constraints, which
amounts to choosing a different ordering for Casimir op-
erators thereby fixing this ambiguity, so that ��;j ¼ �.

Then one has

�ðjÞð!IJ
i J

ð�Þ
IJ Þ�ðjÞ ¼ Aa

i L
ðjÞ
a ; (2)

where JIJ is the full set of generators of the gauge group.
Thus, it is possible to recover the LQG connection variable
and this works for both Lorentzian and Riemannian
signatures.
Unfortunately, this is not the end of the story because we

actually do not have the combination (2) in the EPRL
model. In this model the states are projected spin networks
[12,13] which are constructed from the projected holono-
mies of the spin connection

U ð�;jÞ
� ¼ �ðjÞUð�Þ

� ½!��ðjÞ;

U�½!� ¼ P exp

�Z
�
!IJJIJ

�
:

(3)

Thus, to get the AB connection as in (2), one needs to bring
the projectors up to the exponential. This can be achieved
by their insertion into every point of the integration path
which gives rise to fully projected holonomies introduced
in [14]. It is not clear what this procedure means from the
SF point of view, but this seems to be the only way to get
the LQG Hilbert space from the EPRL model.
The second goal of this work is to reconsider the im-

position of the simplicity constraints in the new SF models.
This is the crucial step which is supposed to turn a SF
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model of BF theory into a theory of quantum gravity. It is
usually done by promoting the B field of BF theory to a
quantum operator identified with the generators of the
gauge algebra and then imposing the resulting quantum
constraints on the state space of the BF SF model.

However, this procedure disagrees with the Dirac rules
of quantization of constraint systems. The reason is that,
following this strategy, one quantizes the symplectic struc-
ture of BF theory which is not the same as the symplectic
structure of general relativity. The problem occurs already
at the level of imposing the diagonal simplicity constraint
so that the improved treatment of the cross simplicity in the
new models does not solve this problem. We illustrate
some unphysical features resulting from the above-
mentioned strategy on a simple example encoding the
basic kinematics of general relativity. As a result, we arrive
at the disappointing conclusion that despite promising
results both models [6,7] are quantum mechanically incon-
sistent, with the only exception of the Freidel-Krasnov
(FK) model without the Immirzi parameter by reasons to
be explained below.

The organization of the paper is as follows. In the next
section we show how the EPRL restriction on representa-
tions gives rise to the AB connection. We perform the
analysis both in the Lorentzian and in the Riemannian
cases. In Sec. II B we present the construction necessary
to get the projection leading to the LQG states. Moreover,
we generalize it to avoid the partial gauge fixing with
important consequences for the closure constraint in SF
models. Section III is devoted to the analysis of the con-
straint imposition in the SF models. We start with a very
simple model demonstrating all characteristic features of
the SF approach and discuss its implications in Sec. III B.
The main conclusions can be found in Sec. IV.

II. EPRLVS LQG

A. EPRL constraints and AB connection

The states of the EPRL model are described by a subset
of projected spin network states. In general, a projected
spin network can be viewed as a graph with the following
coloring (see Fig. 1):

(i) edges carry representations �e of the gauge groupG;
(ii) every end of an edge [or the pair (ve) with the vertex

v � e] gets representation jve of a subgroup H
appearing in the decomposition of �e on H;

(iii) vertices are colored by H-invariant intertwiners Iv

coupling jve.

In our case G ¼ SLð2;CÞ or Spin(4) depending on the
signature and H ¼ SUð2Þ. Besides, the representations
�e and jve are not arbitrary but they are restricted to satisfy
certain constraints representing a quantized version of the
simplicity constraints of Plebanski formulation of general
relativity. The constraints can be split into two classes: the
diagonal and cross simplicity. The former gives restrictions

on representations �e, whereas the latter produces condi-
tions on jve [7]:

�
1þ �

�2

�
Cð2Þ
G ð�eÞ � 2�

�
Cð1Þ
G ð�eÞ ¼ 0;

Cð2Þ
G ð�eÞ ¼ 2�CHðjveÞ;

(4)

where � ¼ �1 for Riemannian (respectively Lorentzian)
signature and the Casimir operators are defined as

Cð1Þ
G ¼ 1

2J � J; Cð2Þ
G ¼ 1

2 ? J � J; CH ¼ L � L: (5)

Nowadays there are three known ways to get the con-
straints (4), all of them leading to the same result [15].
Note that in the Lorentzian case it is possible also to take
the subgroup H ¼ SUð1; 1Þ which would describe a trian-
gulation with tetrahedra having spacelike normals [16].
The EPRL model has been extended to this situation in
[17] and the resulting constraints have been shown to have
the same form (4).
A concrete solution of the conditions (4) on the Casimir

operators depends on the signature and the value of the
Immirzi parameter �, which we assume to be positive in
the following. The general feature is however that these
conditions do not have any solutions in terms of unitary
representations. Therefore, the usual strategy [7] is to
adjust the values of the Casimir operators by linear and
constant terms in representation labels in such a way that
solutions do exist. The adjustment is then interpreted to be
due to the ordering ambiguity at quantum level. As we will
see however, this does not fix the ambiguity in a unique
way and we will argue, in particular, that the standard
EPRL solution should be slightly modified. In other words,
both constraints (4) are solved usually only approximately
for large j.
At this point it is useful to note also that the generators of

G in any representation � satisfy the relation (1) [18].
Moreover, one can check that the coefficient ��;j can be

expressed through Casimirs as follows:

FIG. 1 (color online). Projected spin network and the structure
of its intertwiners.
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��;j ¼ Cð2Þ
G ð�Þ

2CHðjÞ : (6)

Then the second condition in (4) implies that ��;j ¼ �,

exactly or approximately according to how the constraint
was solved. Assuming that the solution is exact, one im-
mediately gets the relation (2) where

Aa ¼ 1
2"

a
bc!

bc � �!0a (7)

is the AB connection. Thus, one does have a possibility to
extract the LQG connection from the EPRL constraints.
But this requires the exact solution of one of the con-
straints. Since (6) is just a fact of representation theory
and the relation (2) is linear in generators, there does not
exist any ordering ambiguity which could be used to relax
this condition. On the other hand, as we mentioned, the
EPRL model suggests only an approximate solution.
Below we show how this can be cured by appropriately
modifying the resulting relations between representation
labels.

1. Lorentzian theory

For the Lorentz group the principle series irreducible
representations are labeled by two numbers � ¼ ðn; �Þ
with n 2 N=2, � 2 R. In our normalization1 the Casimir
operators read

Cð1Þ
G ¼ n2 � �2 � 1; Cð2Þ

G ¼ 2n�;

CSUð2Þ ¼ jðjþ 1Þ
(8)

and reducing to the SUð2Þ subgroup one finds only repre-
sentations with j� n 2 N. Plugging the Casimirs (8) into
(4), one indeed finds that there are no solutions with half
integers j and n. The proposal of [7] is to take

� ¼ �n; j ¼ n (9)

which solves (4) up to linear terms in j. However, this gives

��;j ¼ �j
jþ1 which does not allow one to get the AB con-

nection. Therefore we need a different solution. It can be
fixed uniquely if one requires that ��;j ¼ � and j is given

by the lowest weight representation. Thus, we propose to
replace (9) by

� ¼ �ðnþ 1Þ; j ¼ n: (10)

2. Euclidean theory

In this case the gauge group is Spinð4Þ ¼ SUð2Þ �
SUð2Þ so that the irreducible representations are labeled
by two half integers � ¼ ðjþ; j�Þ. The Casimir operators
are

Cð1Þ
G ¼ 2jþðjþ þ 1Þ þ 2j�ðj� þ 1Þ;

Cð2Þ
G ¼ 2jþðjþ þ 1Þ � 2j�ðj� þ 1Þ;

(11)

and the representations of the diagonal subgroup satisfy
jjþ � j�j � j � jþ þ j�. The solution of the EPRL con-
straints now splits into two classes according to whether �
is larger or less than 1 and is given by [7]

j� ¼
��������
�� 1

�þ 1

��������jþ; j ¼
�
jþ þ j� � < 1
jþ � j� � > 1;

(12)

or can also be written as

jþ ¼ 1
2ð1þ �Þj; j� ¼ 1

2j1� �jj: (13)

Note that it implies that the Immirzi parameter � is quan-
tized to be a rational number.
It is easy to check that whereas for � < 1 one has ��;j ¼

�, for � > 1 one finds ��;j ¼ �jþ1
jþ1 . Thus, in the latter case,

if one wants to get the AB connection, the solution must be
modified. At the same time, it is natural to keep the
property that it selects the lowest weight representation
of SUð2Þ. This fixes it to be given by

� > 1: j� ¼ �� 1

�þ 1
ðjþ þ 1Þ; or

jþ ¼ 1

2
ð�þ 1Þðjþ 1Þ � 1;

j� ¼ 1

2
ð�� 1Þðjþ 1Þ: (14)

The same exercise can be repeated for the subgroupH ¼
SUð1; 1Þ permitting triangulations with timelike surfaces
[16,17]. We recapitulate all results in the following table,
which gives the restrictions on representations leading to
the AB connection for all possible choices of groups:2

Gauge group G Spin(4) SLð2;CÞ
Subgroup H,

irreducible representations, �
SUð2Þ,
� < 1

SUð2Þ,
� > 1

SUð2Þ SUð1; 1Þ,
Discrete series

SUð1; 1Þ,
Continuous series

Constraint on � j� ¼ 1��
1þ� j

þ j� ¼ ��1
�þ1 ðjþ þ 1Þ � ¼ �ðnþ 1Þ � ¼ �ðn� 1Þ � ¼ �n=�

Constraint on j j ¼ jþ þ j� j ¼ jþ � j� j ¼ n j ¼ n� 1 s2 þ 1=4 ¼ �2

1Our normalization is related to the one of [7] as follows: being expressed in terms of generators C1;there ¼ 2Cð1Þ
G;here, C2;there ¼

2Cð2Þ
G;here and �there ¼ 2�here, nthere ¼ 2nhere.
2In the case H ¼ SUð1; 1Þ the label j of the discrete series differs from j in [17]. Its range is from 0 to n� 1 so that the constraints

select the highest weight representation. For the continuous series j ¼ �1=2þ is. With these conventions in all cases CH ¼ jðjþ 1Þ.
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3. Casimir operators

As we mentioned above, all our restrictions on repre-
sentations solve the initial constraints (4), where the
Casimir operators are given by the usual expressions (8)
and (11), only up to linear and constant terms in the
representation labels. This is attributed to the ordering
ambiguity in the Casimir operators which can be used to
cancel the remaining terms [7]. However, this is a non-
trivial fact that such a cancellation is indeed possible given
that the adjusted operators should be independent of the
Immirzi parameter �. Essentially, this is what allows one to
fix the ordering ambiguity in a unique way. Here we give
expressions for the Casimir operators, corresponding to the
different cases considered above, such that our restrictions
on the representations solve the constraints (4) exactly.

(i) Lorentzian theory:

Cð1Þ
G ¼ ðnþ 1Þ2 � �2;

Cð2Þ
G ¼ 2ðnþ 1Þ�;

CSUð2Þ ¼ ðjþ 1Þ2:
(15)

(ii) Euclidean theory, � < 1:

Cð1Þ
G ¼ 2ðjþÞ2 þ 2ðj�Þ2;

Cð2Þ
G ¼ 2ðjþÞ2 � 2ðj�Þ2;

CSUð2Þ ¼ j2:

(16)

(iii) Euclidean theory, � > 1:

Cð1Þ
G ¼ 2ðjþ þ 1Þ2 þ 2ðj�Þ2;

Cð2Þ
G ¼ 2ðjþ þ 1Þ2 � 2ðj�Þ2;

CSUð2Þ ¼ ðjþ 1Þ2:
(17)

The cases with the subgroup SUð1; 1Þ can also be consid-
ered and lead to similar expressions.

It is interesting to note two observations. First, the area
spectrum following from the adjusted SUð2Þ Casimir op-
erator is always equally spaced. Second, the ordering
seems to change discontinuously at � ¼ 1 in the
Euclidean theory. Whether these observations have a sig-
nificant meaning deserves further investigation.

B. Projected holonomies and projected connections

Although we showed how the AB connection can be
obtained from the spin connection by using the constraints
of the EPRL model on representations, so far this is just a
curious mathematical observation which does not allow
one to conclude that the EPRL states are functionals of Aa.

The problem is that in projected spin networks the projec-

tors �ðjÞ are inserted only at vertices. As a result, one finds
only combinations (3) given by projected holonomies,
whereas we need ‘‘holonomies of a projected connection.’’
However, if one takes seriously the above results, one

could ask whether there is a natural way to get such objects
from the state space of the EPRL model. It turns out it does
exist and can be found in the work [14] where the covariant
projection, crucial for the definition of projected spin net-
works, has been introduced for the first time. In that work it
was suggested to consider fully projected holonomies ob-

tained by inserting the projectors �ðjÞ along the whole
integration path,

U ð�;jÞ
� ¼ lim

N!1P
�YN
n¼1

�ðjÞUð�Þ
�n
�ðjÞ

�
; (18)

where one takes the limit of infinitely fine partition � ¼S
N
n¼1 �n. It is easy to see that the projectors can be ex-

ponentiated and the resulting object is equivalent to the
holonomy of the projected connection [14],

U ð�;jÞ
� ½!� ¼ ��ðUðjÞ

� ½A�Þ; (19)

where �� denotes the embedding of an operator in a repre-
sentation of H into representation � of G. Coupling these
holonomies by intertwiners Iv, one recovers the usual spin
networks of LQG.
In fact, one can get even a stronger result. So far we

considered a gauge fixed version of our story where, in the
language of spin foams, all normals to tetrahedra (dual to
the vertices of the boundary spin network) were time
directed, xIv ¼ ð1; 0; 0; 0Þ. What does change if one relaxes
this condition? First, a fixed unit-vector xI defines a sub-
group Hx � G which is the isotropy subgroup of this
vector in 4D. In particular, in the Lorentzian case it can
be SUð2Þ if xI is timelike or SUð1; 1Þ if xI is spacelike. The
relation (2) is then easily generalized to [13]

�ðjÞ
x ð!IJ

i J
ð�Þ
IJ Þ�ðjÞ

x ¼ Aa
i L

ðjÞ
x;a; (20)

where the index x indicates that these objects are defined
with respect to the rotated subgroup Hx. This allows one
immediately to extend the above results to the case where
all normals xv are equal. The general case can be obtained
by applying a G transformation and gives rise to holono-
mies of the covariant generalization AIJ of the AB con-
nection introduced in [19] and used in [13] to formulate
LQG in a Lorentz covariant form. It is given by

A IJ
i ¼ IIJðQÞKLð1� �?Þ!KL

i þ 2ð1þ �?Þx½J@ixI�; (21)

where

IIJ;KLðQÞ ðxÞ ¼ 	I½K	L�J � 2�x½J	I�½KxL� (22)

is the projector on the Lie subalgebra of Hx, and has only
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nine independent components coinciding for constant xI

with Aa
i . Its appearance is guaranteed by the Lorentz

invariance of projected spin networks, but we also give a
direct proof in the Appendix.

Note that the projection (18) is incompatible with how
the gauge invariance is incorporated into the EPRL model.
Usually, it is represented as the closure constraint requiring
that at each vertex the generators associated to the adjacent
edges sum to zero, which is equivalent to the G invariance
of all intertwiners. The invariance is achieved by integrat-
ing over the normals xv. However, to be able to define the
fully projected holonomy (18) along an edge, one should
prescribe how the normal x changes along this edge since
all projectors are defined with respect to this normal. This
function then appears in the resulting connection (21) and
of course it must be smooth. This is possible only if x
remains an unintegrated free variable, playing the role of
an additional argument of the state functional. This corre-
sponds to a relaxed version of the closure constraint advo-
cated in [20,21]. It results in covariant intertwiners, but still
invariant spin network states.

Thus we conclude that by
(i) dropping integrals over the normals xv,
(ii) making the projection (18) along the edges,

one can convert the state space of the EPRL model into the
kinematical Hilbert space of (the Lorentz covariant version
of) LQG. Whereas the physical interpretation of the first
step is clear (it corresponds just to the gauge fixing in the
path integral), the second step is somewhat mysterious. In
[14] it was introduced to ensure that the resulting spin
networks are eigenfunctions of the area operator for sur-
faces which cross the graph at any point. Instead, the usual
projected spin networks are eigenfunctions only for those
surfaces which are infinitely close to the vertices. This
might be an undesirable feature. From this point of view,
the projection produces states with a more transparent
geometric interpretation. On the other hand, the projection
in (18) can be seen as the insertion of infinitely many
bivalent vertices in the original edge of the graph. This
hints that it might be related to some kind of continuum
limit of the model, although it is not clear why the limit
should affect the states in such a peculiar way.

III. SIMPLICITY CONSTRAINTS REVISITED

Although the results obtained in the framework of the
EPRL and FK spin foam models are very promising [22–
24], we would like now to reconsider their derivation.
There are several ways to get these models, but all of
them rely on the common strategy: ‘‘first quantize and
then constrain.’’ In our context this strategy is applied to
Plebanski formulation of general relativity in the presence
of the Immirzi parameter �. It implies that, first, one
quantizes the BF part of the theory and then imposes the
simplicity constraints,

BIJ ^ BKL ¼ �V"IJKL; (23)

withV ¼ 1
4! trðB ^ BÞ being the four-dimensional volume

form, restricting the bivectors to be given by a tetrad, B ¼
?ðe ^ eÞ, already at the quantum level. The last step re-
quires a map from the classical constraints to their quantum
version which is achieved by promoting the bivectors B to
quantum operators. Following the above strategy, all SF
models use the map provided by the first step, the quanti-
zation of BF theory, which implies that the bivectors can be
identified with a particular combination of generators of
the gauge algebra determined by the Immirzi parameter,

Bþ 1

�
? B � J ,�2�� B �

�2

�2 � �

�
J � 1

�
? J

�
: (24)

Then different models propose different ways to impose
the constraints (23). For example, in the EPRL approach
they are split into the diagonal and cross simplicity and
treated as being of first and second class, respectively. In
the FK model instead one requires the simplicity of expec-
tation values of the quantized bivectors between certain
coherent states.
Before discussing the weak points of this procedure, we

propose as a warm-up to consider a simple quantum me-
chanical model. Despite its simplicity, it is able to capture
the basic features of the SF quantization of 4D general
relativity and clearly identifies its loopholes.

A. A simple example

Let us consider a system described by the following
action:

S ¼
Z

dt

�
p1 _q1 þ p2 _q2 � 1

2
p2
1 � cosq2 þ �ðp2 � �p1Þ

�
:

(25)

Here the coordinates q1 and q2 are supposed to be compact,
so that we consider them as living in the interval ½0; 2�Þ,
and � is a numerical parameter.
The canonical analysis of this system is elementary. The

momenta conjugate to q1 and q2 are p1 and p2, respec-
tively, so that the only nonvanishing Poisson brackets are

fq1; p1g ¼ 1; fq2; p2g ¼ 1: (26)

The variable � is the Lagrange multiplier for the primary
constraint


 ¼ p2 � �p1 ¼ 0: (27)

Commuting this constraint with the Hamiltonian

H ¼ 1
2p

2
1 þ cosq2 � �
; (28)

one finds the secondary constraint

c ¼ sinq2 ¼ 0: (29)

The latter constraint has two possible solutions:
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q2 ¼ 0 or q2 ¼ �: (30)

Since the two constraints 
 and c do not commute, they
are of second class. A way to take this into account is to
construct the Dirac bracket. It is easy to find that the only
nonvanishing Dirac brackets between the original canoni-
cal variables are

fq1; p1gD ¼ 1; fq1; p2gD ¼ �: (31)

The second bracket here is actually a consequence of the
first one provided one uses p2 ¼ �p1. The Hamiltonian is
given (up to a constant) by

H ¼ 1
2p

2
1: (32)

Thus, it is clear that the system reduces to the very simple
system describing one free particle on a circle.

The quantization of this system is also trivial. All differ-
ent quantization methods such as reduced phase space
quantization, Dirac quantization, and canonical path inte-
gral lead to the same result that the q2 degree of freedom is
completely ‘‘frozen’’ and one has just a free particle with
quantized momentum. For example, following Dirac quan-
tization, since q2 is fixed, one represents the commutation
relations (31) on functions of only q1 as follows:

q̂ 1 ¼ q1; q̂2 ¼ 0; p̂1 ¼ �i@q1 ;

p̂2 ¼ �i�@q1 :
(33)

The Hilbert space consists from periodic functions and its
basis is provided by

�j1ðq1Þ ¼ eij1q1 : (34)

The Hamiltonian is represented simply as

Ĥ ¼ �@2q1 : (35)

It is easy to see that this quantization also agrees with the
path integral method, which starts from the phase space
path integral and gives for correlation functions the follow-
ing result:3

hOi ¼
Z

dq1dq2dp1dp2j detf
; c gj�ð
Þ�ðc Þ

� ei
R

dtðp1 _q1þp2 _q2�ð1=2Þp2
1
�cosq2ÞOðq1; p1; q2; p2Þ

¼
Z

dq1dp1e
i
R

dtðp1 _q1�ð1=2Þp2
1ÞOðq1; p1; 0; �p1Þ: (36)

Now we would like to consider what one obtains if one
follows the spin foam strategy to quantization. This ques-
tion is reasonable because the model (25) can be viewed as
a simplified version of Riemannian general relativity with a
finite Immirzi parameter. Indeed, q1 and q2 are analogous
to the right and left parts of the SOð4Þ spin connection

under chiral decomposition, p1 and p2 correspond to the
chiral parts of the B field, 
 is similar to the diagonal
simplicity constraint, and � plays the role of the Immirzi

parameter (or rather of its combination �þ1
��1 ).

Thus, proceeding as in the new SF models, one should
first drop the constraints generated by � and quantize the
remaining action. In the coordinate representation a basis
in the Hilbert space is then given by

�j1;j2ðq1; q2Þ ¼ eij1q1þij2q2 ; (37)

where due to the compactness of q1, q2 the labels j1, j2 are
integers, and the canonical variables are represented by
operators satisfying the Poisson commutation relations
(26), not the Dirac algebra:

q̂ 1 ¼ q1; q̂2 ¼ q2; p̂1 ¼ �i@q1 ;

p̂2 ¼ �i@q2 :
(38)

At the second step, one imposes the constraint 
 (27)
requiring that the states (37) should satisfy


̂�j1;j2 ¼ ðp̂2 � �p̂1Þ�j1;j2 ¼ 0: (39)

One immediately concludes that this gives a condition on
the basis labels

j2 ¼ �j1; (40)

so that the physical states are spanned by

�j1ðq1; q2Þ ¼ eij1ðq1þ�q2Þ: (41)

These states can be viewed as analogues of the LQG spin
networks with q1 þ �q2 being similar to the AB connec-
tion. Moreover, since j1, j2 are integers, the condition (40)
implies that the parameter � should be a rational number,
precisely as it happens in the Riemannian SF models for
the Immirzi parameter.
This fact clearly shows that the quantization à la spin

foam is not equivalent to all other quantization methods.
The difference can be noticed already in the form of the
physical states since the functions (34) and (41) depend on
different classical variables. Although it is tempting to
identify them since the difference vanishes due to the
constraint c , it is nevertheless important because it affects
the correlation functions involving q2.
A more drastic discrepancy is that the parameter � is

quantized in the SF approach and does not have any
restrictions in the usual quantization. This problem cannot
be avoided by any tricks and shows that the two quantiza-
tions are indeed inequivalent. Taking into account the
classical analysis and the fact that the first approach rep-
resents actually a result of several possible methods, which
all follow the standard quantization rules, it is clear that it
is the first quantization that is more favorable and the
quantization of � does not seem to have any physical
reason behind itself.

3Here we neglected the contribution from the second solution
in (30) which has essentially the same form.

SERGEI ALEXANDROV PHYSICAL REVIEW D 82, 024024 (2010)

024024-6



In fact, it is easy to trace out where the SF approach
diverges from the standard one: it takes too seriously the
symplectic structure given by the Poisson brackets. On the
other hand, it is the Dirac bracket that describes the sym-
plectic structure which has a physical relevance. In par-
ticular, in the presented example, the Poisson structure tells
us that p2 is the momentum conjugate to q2, whereas in
fact it is conjugate to q1.

This ignorance of the right symplectic structure has
serious consequences. Let us take a look not only at the
physical Hilbert space, but also at the Hamiltonian acting
on it. In the approach à la spin foam it reads

Ĥ ¼ �@2q1 þ cosq2: (42)

But this operator is simply not defined on the subspace
spanned by linear combinations of (41). The problem is
caused by the second term involving q2. It is impossible to

ignore this term by requiring in addition that ĉ vanishes on
the physical states since it would be in contradiction with
the commutation relations (38).

Moreover, let us assume that one succeeded somehow to
define the Hamiltonian operator on the physical subspace.
But then it would not have eigenstates there. Indeed, from


̂� ¼ 0, one gets

ð½Ĥ; 
̂� þ 
̂ ĤÞ� ¼ ðĉ þ 
̂ ĤÞ� ¼ 0; (43)

where we used the definition of the secondary constraint.

Assuming that � is an eigenstate of Ĥ would lead to the

condition ĉ� ¼ 0. But as we mentioned above, this is not
consistent with (38).

Thus, we have to conclude that the SF strategy applied to
the simple system (25) leads to a quantization which is not
simply different from the usual one, but intrinsically in-
consistent. This inconsistency is just a manifestation of the
fact that the rules of the Dirac quantization, and in particu-
lar the necessity to use the symplectic structure modified
by the second class constraints, cannot be avoided. In our
opinion, this is the only correct way to proceed leading to a
consistent quantum theory.

B. Simplicity constraints in spin foam models

These conclusions can be immediately translated to
most of the spin foam models since they all quantize the
symplectic structure provided by BF theory which ignores
constraints of general relativity. Indeed, in that theory, or
more precisely in its �-deformed version, the combination
Bþ 1

� ? B is the variable conjugate to the connection. This

fact is the underlying reason for the identification (24)
crucial for the implementation of the simplicity constraints
(23) at the quantum level. On the other hand, Plebanski
formulation, supposed to be the starting point of the SF
approach, contains second class constraints leading to
Dirac brackets and modifying the symplectic structure
[25,26]. The second class constraints come in pairs: a

half of them are the simplicity constraints (23) and the
second half appears as secondary constraints obtained by
commuting (23) with the Hamiltonian, precisely as in the
example above. In particular, the secondary constraints
include

�ij ¼ "mnði"jÞkl"IJKLBIJ
0nDmB

KL
kl ; (44)

where Dn is a covariant derivative defined by !IJ and ð� �Þ
denotes symmetrization. (The full list of constraints can be
found in [25].) The constraint (44) is in fact equivalent to a
similar constraint of the usual Hilbert-Palatini formulation
with the Immirzi parameter [27], so do the symplectic
structures of the two formulations [26]. (See also [28] for
a relation at the path integral level.) The modification of the
symplectic structure by second class constraints has im-
portant implications for us because it implies a completely
different identification between the B field and the gener-
ators of the gauge group [20]. In particular, the new iden-
tification ensures that the simplicity constraints are
satisfied automatically, as it should be for any second class
constraint quantized using Dirac brackets. However, this
fact as well as the necessity to take into account the
secondary constraints have been overlooked so far in the
SF approach.
Moreover, the ignorance of the secondary constraints

leads to another common confusion. The simplicity con-
straints in their covariant form (23) are certainly enough to
get general relativity from BF theory. However, to impose
them at the quantum level, one needs to understand which
of them are first and which are second class. Usually in the
SF approach, their class is determined by the commutation
algebra of these constraints after quantization according to
the map (24). As a result, one finds that their algebra
contains a center, the diagonal simplicity, which is inter-
preted as first class, whereas the remaining cross simplicity
constraints are considered as second class [7]. But such
analysis assumes that the simplicity constraints exhaust all
set of constraints of the theory. But this is not true. As we
saw, the classical theory contains also secondary con-
straints imposing some conditions on the connection vari-
able and similar to the constraint c (29) in the above
example. Taking them into account, all simplicity are al-
ways of second class and the proper way to incorporate
them is through the symplectic structure given by the Dirac
brackets.
These considerations show the incompatibility of the SF

strategy with the Dirac approach. Besides, we see that both
EPRL and FK models can be viewed as (very nontrivial)
generalizations of the example considered in the previous
subsection: it captures theUð1Þ �Uð1Þ sector of the theory
constrained by diagonal simplicity. The nondiagonal de-
grees of freedom are missed, but their presence cannot
solve problems caused by the incorrect treatment of the
diagonal simplicity and by the use of a wrong symplectic
structure. Therefore, it is natural to expect that these mod-
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els are supplied with inconsistencies of the kind presented
in the previous subsection. In particular, the quantization of
� in the Riemannian models is one of their manifestations.
One may think that this is a default of only Riemannian
models since there is no quantization condition on � in the
Lorentzian case. But it is clear that this is just a particular
consequence of the generic strategy employed by SF mod-
els and it is the strategy that is problematic, rather than the
choice of the signature, which can be viewed simply as a
condition of the compactness of some variables.

Other types of inconsistencies are expected to arise al-
ready at the dynamical level as follows from the discussion
around (42). More precisely, in the canonical picture cor-
responding to the new SF models, the existence of second-
ary constraints (44) implies that the Hamiltonian operator
would not be well defined on the subspace defined by the
quantum simplicity constraints (4). In particular, its kernel,
which should encode the physical state space of quantum
gravity, cannot belong to this subspace. These features
however do not prevent us from considering matrix ele-
ments of this Hamiltonian operator and defining a vertex
amplitude. But given the above properties and the fact that
it would differ from the one obtained following the Dirac
rules [cf. Hamiltonians in (35) and (42)], the physical
relevance of such vertex is quite suspicious.

Thus, all new SF models appear to suffer from applying
the strategy which is inconsistent with the rules of quantum
mechanics. There is however one special case which is
potentially free from the above problems. This is the FK
model without the Immirzi parameter (� ¼ 1) [6]. This
model is constructed as a path integral quantization of the
discretized Plebanski theory. Although the implementation
of the simplicity constraints in this model is also based on
the map (24), in the path integral the B field appears only
through its expectation values in coherent states [29]. It is
these expectation values that are required to satisfy the
simplicity and therefore some components of the B field
turn out to be projected out. For � ¼ 1 at each tetrahedron
(dual to a vertex of the boundary spin network), one obtains
the following effective quantization rule:

B � IðPÞðxvÞ � J; (45)

where IIJ;KLðPÞ ðxÞ ¼ 2�x½J	I�½KxL� is the projector on the

orthogonal completion of the isotropic subalgebra of the
vector xI. This identification is consistent with the sym-
plectic structure of Plebanski formulation written in terms
of a shifted connection [19,26]. Thus, this model seems to
be able to provide the right kinematics.

In this respect and for this particular parameter �, the FK
model differs crucially from the EPRL model. Taking into
account that for � ¼ 1 the EPRL model reduces to the
Barrett-Carne model [8], which is known to be incapable to
describe quantum gravity, it may be not surprising that the
FK model appears to be more favorable. However, as was
argued in [21], it still ignores the presence of the secondary

second class constraints which may affect the resulting
vertex amplitude. It seems that to get a complete model
one should really abandon the usual SF strategy and, start-
ing from the very beginning, to find a way leading to the SF
representation.

IV. CONCLUSIONS

In this paper we arrived at two opposite, but not contra-
dictory, conclusions. On one hand, we found that the
formal coincidence of the state space of the EPRL spin
foammodel with the kinematical Hilbert space of LQG can
be deepened in such a way that two corresponding states
are represented by the same functionals of the same con-
figuration variable, which is the AB connection or its
covariant generalization. This however requires three
things:
(i) an adjustment of the restrictions on representations,

which thereby fixes the ordering ambiguity of the
EPRL approach;

(ii) dropping the integral over the normals living at
vertices;

(iii) a certain projection along all edges of spin net-
works, which converts them to eigenstates of area
operators associated with any 2D surface.

The last point shows that the relation between SF and LQG
states is not so direct. Although the projection is a one-to-
one map (if one does not allow bivalent vertices on the SF
side), its physical meaning is obscure. Nevertheless, this
result can be considered as an additional indication in favor
of the potential convergence of the spin foam and loop
quantizations.
On the other hand, our second conclusion is that the

current spin foam strategy to quantization in four dimen-
sions, summarized as ‘‘first quantize and then constrain,’’
is not viable. In our opinion, it contradicts the quantization
rules for systems with second class constraints and leads to
various inconsistencies at the quantum level. In particular,
we believe that the new spin foam models [6,7] do not
provide a proper quantization of general relativity. This
conclusion has however one exception which is the FK
model for � ¼ 1, to which our analysis cannot be applied.
At present it can be considered as the best candidate for the
correct spin foam model, which avoids the basic problems
of other models and gives the right kinematics. But even in
this case, one expects that the dynamics is not captured in a
satisfactory way [21]. Thus, the quest for the right model is
to be continued.
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APPENDIX: COVARIANTAB CONNECTION

The aim of this Appendix is to show how the projection
(18) generalized to the normal xI varying along the inte-
gration path gives rise to the covariant AB connection (21).
Thus, we should consider

U ð�;jÞ
� ¼ lim

N!1P
�YN
n¼1

�ðjÞ
xnþ1

Uð�Þ
�n
�ðjÞ

xn

�
; (A1)

where xn denote values of x at the ends of segments�n. For
constant x, one can use (20) where the right-hand side can
be written as

ðIIJðQÞKLð1� �?Þ!KL
i Þð�ðjÞ

x Jð�ÞIJ �
ðjÞ
x Þ: (A2)

The first factor gives the contribution to the projected
connection and the second denotes the projected genera-
tors. To get the result for varying x, one can take one factor
in the product (A1), perform a gauge transformation which
does not affect xn but makes xnþ1 equal to xn, and then use

the result for constant x. If xnþ1 � xn ¼ �x, to the first
order in �x the inverse transformation is given by

gx ¼ expð2x½J�xI�JIJÞ; (A3)

where one should take into account that xI is a unit vector.
Then one finds

�ðjÞ
xnþ1

Uð�Þ
�n
½!��ðjÞ

xn ¼ gð�Þx �ðjÞ
xn U

ð�Þ
�n
½!g�1

x ��ðjÞ
xn

� ð1þ 2x½J�xI�Jð�ÞIJ Þ
� �ðjÞ

xn ½1þ �xið!IJ
i � 2x½J@ixI�ÞJð�ÞIJ �

� �ðjÞ
xn

� �ðjÞ
xnþ1

½1þ �xiðIIJðQÞKLð1� �?Þ!KL
i

þ 2ð1þ �?Þx½J@ixI�ÞJð�ÞIJ ��ðjÞ
xn

� �ðjÞ
xnþ1

Uð�Þ
�n
½A��ðjÞ

xn : (A4)

Thus, the effect of the projection is that one obtains a
holonomy of an effective connection which coincides
with the covariant generalization of the AB connection
from [19].
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