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We consider extensions of Lemaitre-Tolman-Bondi (LTB) spacetimes to the dissipative case. We have

previously carried out a systematic study on LTB. This study is based on two different aspects of LTB. On

the one hand, a symmetry property of LTB will be presented. On the other hand, the description of LTB in

terms of some fundamental scalar functions (structure scalars) appearing in the orthogonal splitting of

Riemann tensor will be provided. We shall consider as natural generalizations of LTB (hereafter referred

to as GLTB) either those metrics admitting some similar kind of symmetry as LTB, or those sharing

structure scalars with similar dependence on the metric.
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I. INTRODUCTION

Lemaitre-Tolman-Bondi (LTB) dust models [1–3] are
among the oldest and most interesting solutions to Einstein
equations. They describe spherically symmetric distribu-
tion of inhomogeneous nondissipative dust (see [4,5] for a
detailed description of these spacetimes).

They have been used as cosmological models (see [6–9]
and references therein), in the study of gravitational col-
lapse and the problem of the cosmic censorship [10–16],
and in quantum gravity [17,18].

A renewed interest in LTB has appeared, in relation with
recent observations of type Ia supernovae, indicating that
the expansion of the universe is accelerating. Indeed, even
if it is true that there is a general consensus to invoke dark
energy as a source of antigravity for understanding the
cosmic acceleration, it is also true that a growing number
of researchers consider that inhomogeneities can account
for the observed cosmic acceleration, without invoking
dark energy (see [19–25] and references therein).

Now, in spite of all their interest, LTB spacetimes
present an important limitation, namely: they do not admit
dissipative fluxes. This is a serious shortcoming since it is
already an established fact that gravitational collapse is a
highly dissipative process (see [26–28] and references
therein). This dissipation is required to account for the
very large (negative) binding energy of the resulting com-
pact object (of the order of �1053 erg).

Indeed, it appears that the only plausible mechanism to
carry away the bulk of the binding energy of the collapsing
star, leading to a neutron star or black hole is neutrino
emission [29].
Dissipation processes are usually treated invoking two

possible (opposite) approximations: diffusion and stream-
ing out.
In the diffusion approximation, it is assumed that the

energy flux of radiation (as that of thermal conduction) is
proportional to the gradient of temperature. In this regime,
an equation of transport should be assumed in order to
obtain the temperature distribution for each model.
The diffusion approximation is in general very sensible,

since it applies whenever the mean free path of particles
responsible for the propagation of energy is very small as
compared with the typical length of the object, a circum-
stance found very often in astrophysical scenarios.
In fact, for a main sequence star such as the sun, the

mean free path of photons at the center, is of the order of
2 cm. Also, the mean free path of trapped neutrinos in
compact cores of densities about 1012 g:cm�3: becomes
smaller than the size of the stellar core [30,31].
Furthermore, the observational data collected from

supernovae 1987A indicate that the regime of radiation
transport prevailing during the emission process is closer to
the diffusion approximation than to the streaming out limit
[32].
However, in many other circumstances, the mean free

path of particles transporting energy may be large enough
to justify the free streaming approximation. Therefore, we
shall include simultaneously both limiting cases of radia-
tive transport (diffusion and streaming out), allowing us to
describe a wide range of situations.
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On the other hand, at cosmological scales, even if it is
true that cold dark matter is noncollisional and strongly
dominated by rest mass, so that pressure and heat flux
terms (of kinetic nature) are negligible, it could be inter-
esting to test the stability of conclusions and results based
on the assumptions above, with respect to small deviations
from those assumptions. In this sense, GLTB’s with arbi-
trarily small (but nonvanishing) dissipative fluxes could be
very helpful.

From all of the above, the motivations to generalize LTB
spacetimes to admit dissipative fluxes are clearly justified.

Therefore, it is our goal in this manuscript to consider
possible generalizations of LTB spacetimes to the dissipa-
tive case. As it should be obvious, such generalizations are
not unique. As a ‘‘qualitative’’ guide in our endeavor we
shall look for GLTB’s ‘‘as similar’’ as possible to LTB’s.
More precise definitions of what we mean by qualitative
guide and ‘‘as similar as possible,’’ will be provided later.

Thus, for example, exact solutions to Einstein equations
describing dissipative geodesic fluids have been found in
[33–37], however all of them are shear-free and we know
that a distinct property of LTB is its shear, accordingly we
shall search for shearing GLTB. Shearing dissipative geo-
desic fluids may be found in [38,39], though they do not
become LTB in the nondissipative case.

Our search will be based on two different types of
arguments. On the one hand, symmetry arguments. We
shall find a symmetry property of LTB spacetimes and
we shall assume that the corresponding generalizations
(GLTB) describing dissipative dust, share the same kind
of symmetry. On the other hand, we shall describe LTB in
terms of some scalar functions which emerge from the
orthogonal splitting of the Riemann tensor. We shall as-
sume that two of these scalar functions share the same form
(with respect to metric functions) in both LTB and GLTB.

In the specific case of localized configurations we have
to assume that our fluid distribution is bounded by a
spherical surface. In order to avoid thin shells on such a
boundary surface, Darmois [40] conditions should be
imposed.

We would like to emphasize that, even though some
specific examples are exhibited, our main goal in this
work consists of providing different techniques to obtain
exact solutions representing geodesic radiating fluids
whose properties are in some respect similar to LTB.

II. FLUID DISTRIBUTION, KINEMATICAL
VARIABLES, AND BASIC EQUATIONS

We consider a spherically symmetric distribution of
geodesic fluid, which may be bounded by a spherical
surface �, or not. The fluid is assumed to be pure dust
undergoing dissipation in the form of heat flow (diffusion
approximation) and outgoing null fluid (streaming out
limit).

Choosing comoving coordinates, the general metric can
be written (in the case of bounded configurations such a
line element applies to the fluid inside �) as

ds2 ¼ �dt2 þ B2dr2 þ R2ðd�2 þ sin2�d�2Þ; (1)

where B and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼
�, and x3 ¼ �. Observe that B is dimensionless, whereas R
has the same dimension as r. Also observe that t is the
proper time.
The energy-momentum T�� (inside � if the system is

bounded) is assumed to have the form

T�� ¼ �V�V� þ q�V� þ V�q� þ �l�l�; (2)

where � is the energy density, q� the heat flux, � the
radiation density, V� the four-velocity of the fluid, and l�

a null four-vector. These quantities satisfy

V�V� ¼�1; V�q� ¼ 0; l�V� ¼�1; l�l� ¼ 0:

(3)

Since we have chosen a comoving coordinate system,
we have

V� ¼ A�1��
0 ; q� ¼ qB�1��

1 ;

l� ¼ A�1��
0 þ B�1��

1 ;
(4)

where q is a function of t and r, q� ¼ q�� and �� a unit
four-vector along the radial direction, satisfying

���� ¼ 1; ��V� ¼ 0; �� ¼ B�1��
1 : (5)

It may be more convenient to write (2) in the form

T�� ¼ ~�V�V� þ ~qðV��� þ ��V�Þ þ �����; (6)

with

~� ¼ �þ �; ~q ¼ qþ �:

A. Einstein equations

For (1) and (6), Einstein equations

G�� ¼ 8	T��; (7)

read:

8	T00 ¼ 8	 ~�

¼
�
2

_B

B
þ _R

R

� _R

R
�

�
1

B

�
2
�
2
R00

R
þ

�
R0

R

�
2

� 2
B0

B

R0

R
�

�
B

R

�
2
�
; (8)

8	T01 ¼ �8	~qB ¼ �2

� _R0

R
� _B

B

R0

R

�
; (9)
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8	T11 ¼ 8	�B2 ¼ �B2

�
2
€R

R
þ

� _R

R

�
2
�
þ

�
R0

R

�
2 �

�
B

R

�
2
;

(10)

8	T22 ¼ 0 ¼ �R2

� €B

B
þ €R

R
þ _B

B

_R

R

�
þ

�
R

B

�
2
�
R00

R
� B0

B

R0

R

�
;

(11)

where dots and primes denote derivatives with respect to t
and r, respectively. Observe that if � � 0, the dissipative
dust behaves as an anisotropic fluid with vanishing tangen-
tial stresses [41].

B. Kinematical variables and the mass function

The expansion � is given by

� ¼ V�
;� ¼

� _B

B
þ 2

_R

R

�
; (12)

and for the shear we have (remember that the four-
acceleration vanishes)


�� ¼ Vð�;�Þ � 1
3�h��; (13)

where h�� ¼ g�� þ V�V�.

Using (4) we obtain the nonvanishing components of
(13)


11 ¼ 2

3
B2
; 
22 ¼ 
33

sin2�
¼ � 1

3
R2
; (14)

with


��
�� ¼ 2
3


2; (15)

being


 ¼
� _B

B
� _R

R

�
: (16)


�� may be also written as


�� ¼ 
ð���� � 1
3h��Þ: (17)

Next, the mass function mðt; rÞ introduced by Misner
and Sharp [42] (see also [43]) is given by

m ¼ ðRÞ3
2

R23
23 ¼ R

2

�
_R2 �

�
R0

B

�
2 þ 1

�
: (18)

We can define the velocity U of the collapsing fluid as
the variation of the areal radius (R) with respect to proper
time, i.e.

U ¼ _R: (19)

Then (18) can be rewritten as

E � R0

B
¼

�
1þU2 � 2mðt; rÞ

R

�
1=2

: (20)

With the above we can express (9) as

4	~q ¼ E

�
1

3R0 ð�� 
Þ0 � 


R

�
: (21)

From (18)

_m ¼ �4	ð�Uþ ~qEÞR2; (22)

and

m0 ¼ 4	

�
~�þ ~q

U

E

�
R0R2: (23)

Equation (23) may be integrated to obtain

m ¼
Z r

0
4	R2

�
~�þ ~q

U

E

�
R0dr (24)

(assuming a regular center to the distribution, so mð0Þ ¼
0). We may partially integrate (24) to obtain

3m

R3
¼ 4	 ~�� 4	

R3

Z r

0
R3

�
~�0 � 3~q

R0U
RE

�
dr: (25)

C. The exterior spacetime and junction conditions

In the case of bounded configurations, we assume that
outside�we have the Vaidya spacetime (i.e. we assume all
outgoing radiation is massless), or in the dissipationless
case the Schwarzschild spacetime, described by

ds2¼�
�
1�2MðvÞ

�

�
dv2�2d�dvþ�2ðd�2þsin2�d�2Þ;

(26)

where MðvÞ denotes the total mass (which is constant in
the Schwarzschild case) and v is the retarded time.
The matching of the full nonadiabatic sphere (including

viscosity) to the Vaidya spacetime, on the surface r ¼
r� ¼ const, was discussed in [44] (for the discussion of
the shear-free case see [45,46]). However, observe that we
are now including a null fluid within the star configuration.
Now, from the continuity of the first differential form it

follows (see [44] for details),

dt¼� dv

�
1� 2MðvÞ

�

�
; (27)

R¼� �ðvÞ; (28)

and

�
dv

dt

��2 ¼�
�
1� 2MðvÞ

�
þ 2

d�

dv

�
: (29)

Whereas the continuity of the second differential form
produces

mðt; rÞ¼� MðvÞ; (30)

and
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2

� _R0

R
� _B

B

R0

R

�
¼� �B

�
2
€R

R
þ

� _R

R

�
2
�
þ 1

B

��
R0

R

�
2 �

�
B

R

�
2
�
;

(31)

where ¼� means that both sides of the equation are eval-
uated on � (observe a misprint in eq. (40) in [44] and a
slight difference in notation).

Comparing (31) with (9) and (10) one obtains

q¼� 0: (32)

Thus the matching of (1) and (26) on � implies (30) and
(32).

Also, we have

�¼� L

4	�2
; (33)

where (32) has been used and L� denotes the total lumi-
nosity of the sphere as measured on its surface, which is
given by

L¼� L1
�
1� 2m

�
þ 2

d�

dv

��1
; (34)

and where

L1 ¼ dM

dv
¼� �

�
dm

dt

�
dv

dt

��1
�
; (35)

is the total luminosity measured by an observer at rest at
infinity.

The boundary redshift z� is given by

dv

dt
¼� 1þ z; (36)

with

dv

dt
¼�
�
R0

B
þ _R

��1
: (37)

Therefore, the time of formation of the black hole is given
by

�
R0

B
þ _R

�
¼� EþU¼� 0: (38)

Also observe that from (29), (34), and (37) it follows

L¼� L1
ðEþUÞ2 ; (39)

and from (19), (20), (29), and (37)

d�

dv
¼� UðUþ EÞ: (40)

Finally, it is worth noticing that in the diffussion ap-
proximation (� ¼ 0, q � 0) it follows at once from (33)
that the total luminosity (L�) vanishes, even though there
are nonvanishing dissipative fluxes (q) within the sphere.

This result is an obvious consequence of the dust condition
(vanishing hydrodynamic pressure).

D. Weyl tensor

The Weyl tensor is defined through the Riemann tensor
R�
���, the Ricci tensor R�� and the curvature scalarR, as:

C
�
��� ¼ R

�
��� � 1

2R
�
�g�� þ 1

2R���
�
� � 1

2R���
�
�

þ 1
2R

�
�g�� þ 1

6Rð��
�g�� � g���

�
�Þ: (41)

The electric part of Weyl tensor is defined by

E�� ¼ C����V
�V�; (42)

with the following nonvanishing components

E11 ¼ 2
3B

2E; E22 ¼ �1
3R

2E; E33 ¼ E22sin
2�;

(43)

where

E ¼ 1

2

� €R

R
� €B

B
�

� _R

R
� _B

B

� _R

R

�

þ 1

2B2

�
�R00

R
þ

�
B0

B
þ R0

R

�
R0

R

�
� 1

2R2
: (44)

Observe that we may also write E�� as

E�� ¼ Eð���� � 1
3h��Þ: (45)

Finally, using (8), (10), and (11) with (18) and (44) we
obtain

3m

R3
¼ 4	ð ~�� �Þ � E: (46)

E. Evolution equations for the expansion and the shear,
Bianchi identities, and a constraint equation for the

Weyl tensor

For the system under consideration two equations de-
scribing the evolution of the expansion (Raychaudhury)
and the shear (Ellis [47,48], respectively, can be easily
derived (see [49] for details), they read:

_�þ 1
3�

2 þ 2
3


2 ¼ �4	ð ~�þ �Þ; (47)

_
þ 1
3


2 þ 2
3�
 ¼ 4	�� E: (48)

The two independent components of Bianchi identities
for the system under consideration read (see [50] for de-
tails):

_~�þ ð ~�þ �Þ _B

B
þ 2

~� _R

R
þ ~q0

B
þ 2

~qR0

BR
¼ 0; (49)

_~qþ �0

B
þ 2~q

� _B

B
þ _R

R

�
þ 2

R0�
RB

¼ 0: (50)
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Finally, the following constraint equation for the Weyl
tensor may be derived from the Bianchi identities (e.g. see
[27] for details)

½E � 4	ð ~�� �Þ�0 þ ðE þ 4	�Þ 3R
0

R
¼ �12	~qB

_R

R
: (51)

III. STRUCTURE SCALARS

As wementioned in the Introduction, part of our analysis
will be based on a set of scalar functions which appear in a
natural way in the orthogonal splitting of the Riemann
tensor (see [51] for details).

Thus, let us introduce the tensors Y�� and X�� (which

are elements of that splitting [52,53]), defined by:

Y�� ¼ R���V
V�; (52)

and

X�� ¼ �R�
���V

V� ¼ 1
2��

��R�
����V

V�; (53)

where R�
��� ¼ 1

2����R��
�� and ���� denotes the Levi-

Civita tensor.
Tensors Y�� and X�� may also be expressed through

their traces and their trace-free parts, as

Y�� ¼ 1
3YTh�� þ YTFð���� � 1

3h��Þ; (54)

X�� ¼ 1
3XTh�� þ XTFð���� � 1

3h��Þ: (55)

Then from (52)–(55) and using (6), (7), (41), and (45) we
obtain

YT ¼ 4	ð ~�þ �Þ; YTF ¼ E � 4	�; (56)

XT ¼ 8	 ~�; XTF ¼ �E � 4	�: (57)

Also, combining (25) and (46) with (56) we may write

YTF ¼ �8	�þ 4	

R3

Z r

0
R3

�
~�0 � 3~q

UR0

RE

�
dr: (58)

Thus the scalar YTF may be expressed through the Weyl
tensor and the outgoing null fluid or in terms of the null
radiation, the density inhomogeneity and the dissipative
variables. It is worth recalling that a link between YTF and
the Tolman mass has been established in [51]. Also, it has
been shown that in the geodesic case, YTF controls the
stability of the shear-free condition [49].

Scalars (56) and (57) for the line element (1) are

YT ¼ �2
€R

R
� €B

B
; YTF ¼

€R

R
� €B

B
; (59)

XT ¼
�
2

_B

B
þ _R

R

� _R

R
� 1

B2

�
2
R00

R
þ

�
R0

R

�
2 � 2

B0

B

R0

R

�
þ 1

R2
;

(60)

XTF ¼
� _R

R
� _B

B

� _R

R
þ 1

B2

�
R00

R
�

�
B0

B
þ R0

R

�
R0

R

�
þ 1

R2
:

(61)

In terms of these scalar functions, Eqs. (47), (48), and
(51), become

_�þ 1
3�

2 þ 2
3


2 ¼ �YT; (62)

_
þ 1
3


2 þ 2
3�
 ¼ �YTF; (63)

ð4	 ~�þ XTFÞ0 ¼ � 3R0

R
XTF þ 4	~qð�� 
ÞB: (64)

Now, from (64) in the nondissipative case we have

ð4	�þ XTFÞ0 ¼ � 3R0

R
XTF; (65)

implying that if XTF ¼ 0 then�0 ¼ 0. On the other hand if
�0 ¼ 0 then

ðXTFÞ0 ¼ � 3R0

R
XTF; (66)

producing

XTF ¼ fðtÞ
R3

: (67)

Since XTF must be regular everywhere within the sphere,
we must put fðtÞ ¼ 0, therefore we have�0 ¼ 0()XTF ¼
0. In other words, in absence of dissipation, energy density
inhomogeneity is controlled by the scalar XTF. This last
result is also valid for an anisotropic fluid [51].
In the case of nondissipative dust, it can be shown that


 ¼ 0 implies XTF ¼ 0. Indeed, in this particular case it
follows from (63) that YTF ¼ 0, which because of (56) and
(57) produces XTF ¼ 0.
We shall next analyze in some detail some properties of

LTB spacetimes.

IV. LEMAITRE-TOLMAN-BONDI METRIC

In order to obtain the general form of LTB, we assume a
geodesic, dissipationless fluid (q ¼ � ¼ 0). Then we find
after integration of (9),

Bðt; rÞ ¼ R0

ð1þ �ðrÞÞ1=2 ; (68)

where � is an arbitrary function of r.
Feeding back (68) in (1) we obtain the Lemaitre-

Tolman-Bondi metric (LTB):

ds2 ¼ �dt2 þ ðR0Þ2
1þ �ðrÞdr

2 þ R2ðd�2 þ sin2�d�2Þ:
(69)

The metric (69) is usually associated with an inhomoge-
neous dust source (and so we shall do here), however it is
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worth mentioning that the most general source compatible
with LTB spacetimes is an anisotropic fluid [4,54].

Next, the ‘‘Euclidean’’ condition at the center requires
that the perimeter of an infinitesimally small circle around
the center be given by 2	l where l is the proper radius of
the circle, given in turn by

l ¼
Z r

0
Bdr: (70)

On the other hand, the perimeter of any circle, as it follows
from (1), is given by 2	R implying that in the neighbor-
hood of the center we must impose the condition:

R0 ¼r¼0

B; (71)

or, using (68)

� ¼r¼0
0: (72)

Now from (18) and (68) we obtain

_R 2 ¼ 2m

R
þ �ðrÞ; (73)

and from (22) and (23)

m ¼ mðrÞ; (74)

m0 ¼ 4	�R2R0: (75)

Also, the Bianchi identity (49) in this case reads

_�þ�

� _B

B
þ 2

_R

R

�
¼ 0; (76)

producing

� ¼ hðrÞ
BR2

; (77)

or, using (68)

� ¼ 3hðrÞð1þ �ðrÞÞ1=2
ðR3Þ0 ; (78)

where hðrÞ is a function of integration.
Depending on � there are three possible solutions of (73):
(1) � ¼ 0 (Parabolic case)

R3=2 ¼ ð2mÞ1=2�3; 2
3�

3 ¼ t� tbbðrÞ: (79)

(2) � > 0 (Hyperbolic case)

R ¼ m

�
ðcosh�� 1Þ;

m

�3=2
ðsinh�� �Þ ¼ t� tbbðrÞ: (80)

(3) � < 0 (Elliptic case)

R ¼ m

j�j ð1� cos�Þ;
m

j�j3=2 ð�� sin�Þ ¼ t� tbbðrÞ: (81)

Where tbbðrÞ is an integration function of r giving the value
of time for which Rðt; rÞ ¼ 0, not to be confused with the
center of symmetry Rðt; 0Þ.
In order to prescribe an explicit model, we have to

provide the three functions �ðrÞ, mðrÞ, and tbbðrÞ.
However, since (69) is invariant under transformations of
the form r ¼ rð~rÞ, we only need two functions of r.
Scalars YT , YTF, XTF, and XT for (69) are

YTF ¼
€R

R
� €R0

R0 ; YT ¼ �2
€R

R
� €R0

R0 ; (82)

and

XTF ¼ _R2

R2
� _R

R

_R0

R0 �
�

R2
þ �0

2RR0 ; (83)

XT ¼ 2 _R _R0

RR0 þ _R2

R2
� �

R2
� �0

RR0 : (84)

A. Symmetry properties of LTB spacetimes

It is a simple matter to check that besides the Killing
vectors associated with spherical symmetry, LTB space-
times admit no further Killing vectors. Also, it is not
difficult to verify that they do not admit conformal
Killing vectors either. It should be clear that such non-
admittance refers to the general form of LTB, not to any
specific solution belonging to LTB spacetime.
However, as we shall see below, a specific kind of

symmetry may be ascribed to LTB spacetimes.

Proper matter collineation

It can be shown [55] that in the pure dust case, there
exists a vector field � such that for any LTB spacetime

L �T�� ¼ 0; (85)

where L� denotes the Lie derivative with respect to the

vector field �, which can be shown to be of the form

�� ¼ �0�
�
t þ �1�

�
r : (86)

whose components are given by

�0 ¼ FðtÞ; (87)

�1 ¼ �
�
2 _FðtÞ þ FðtÞ _�

�

��
�

�0

�
; (88)

where FðtÞ is an arbitrary function. Thus for any LTB
spacetime, we can always find a vector field � satisfying
(85).
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It should be stressed that � is not a Killing vector field,
i.e. it defines a proper matter collineation.

V. GENERALIZING LTB TO THE DISSIPATIVE
CASE

From the previous section it should be clear that LTB
spacetimes explicitly exclude dissipative fluxes (either in
the diffusion approximation or in the streaming out limit).

We shall now approach the problem of extending LTB so
as to include dissipative fluxes (such spacetimes will be
referred to as GLTB). As a necessary condition we shall
require that all GLTB’s become LTB in the limit when
dissipative fluxes vanish.

Since we are searching for spacetimes as ‘‘close’’ as
possible to LTB, we shall consider geodesic, shearing dust
with ~q � 0. It is worth recalling that the pure dust (without
dissipation) condition implies that the fluid is geodesic,
however this is no longer true for the dissipative case.
Therefore the geodesic condition here is nonredundant.

Then integration of (9), produces now:

Bðt; rÞ ¼ R0

ð1þ Kðt; rÞÞ1=2 ; (89)

with

1þ Kðt; rÞ ¼
�Z

4	~qRdtþ CðrÞ
�
2
: (90)

Since in the nondissipative case (89) should become (68), it
follows

CðrÞ ¼ ð1þ �ðrÞÞ1=2; (91)

and the Euclidean condition at the center, implies

CðrÞ ¼r¼0
1: (92)

Feeding back (89) into (1) and using (90), we obtain for
the line element

ds2 ¼ �dt2 þ ðR0Þ2
½R 4	~qRdtþ CðrÞ�2 dr

2

þ R2ðd�2 þ sin2�d�2Þ; (93)

or, using (91)

ds2 ¼ �dt2 þ ðR0Þ2
½R 4	~qRdtþ ð1þ �ðrÞÞ1=2�2 dr

2

þ R2ðd�2 þ sin2�d�2Þ: (94)

Scalars YT , YTF, XT , and XTF for (93) are

YTF ¼ €R

R
� €R0

R0 þ
_K

1þ K

� _R0

R0 �
3

4

_K

1þ K

�
þ €K

2ð1þ KÞ ;
(95)

YT ¼ �2
€R

R
� €R0

R0 þ
_K

1þ K

� _R0

R0 �
3

4

_K

1þ K

�
þ €K

2ð1þ KÞ ;
(96)

XT ¼ 2 _R _R0

RR0 þ _R2

R2
� K

R2
� K0

RR0 �
_R _K

Rð1þ KÞ ; (97)

XTF ¼
_R2

R2
� _R

R

_R0

R0 �
K

R2
þ K0

2RR0 þ
_R _K

2Rð1þ KÞ : (98)

In order to proceed further and to obtain specific families
of solutions, we need to impose additional conditions. As
mentioned before, the criteria to select such conditions will
be dictated by the requirement that the obtained solution
represents the ‘‘closest’’ possible situation to LTB space-
time, including dissipative fluxes.
Of course, this last requirement is still vague enough and

allows a great deal of possibilities. In this work we shall
focus on two possible extensions. On the one hand, we
shall consider extensions based on the characterization of
LTB spacetimes in terms of the structure scalars. On the
other hand, we shall propose extensions of LTB to the
dissipative case, based on the symmetry property discussed
above. However, before considering that, let us describe
the treatment of the transport equation in the pure diffusive
case.

VI. THE TRANSPORT EQUATION

In the diffusion approximation (� ¼ 0, ~q ¼ q), we shall
use a transport equation derived from the Müller-Israel-
Stewart second order phenomenological theory for dissi-
pative fluids [56–59].
Indeed, it is well known that the Maxwell-Fourier law

for radiation flux leads to a parabolic equation (diffusion
equation) which predicts propagation of perturbations with
infinite speed (see [60–63] and references therein). This
simple fact is at the origin of the pathologies [64] found in
the approaches of Eckart [65] and Landau [66] for relativ-
istic dissipative processes. To overcome such difficulties,
various relativistic theories with nonvanishing relaxation
times have been proposed in the past [56–59,67,68]. The
important point is that all these theories provide a heat
transport equation which is not of Maxwell-Fourier type
but of Cattaneo type [69], leading thereby to a hyperbolic
equation for the propagation of thermal perturbations.
The corresponding transport equation for the heat flux

reads

�h��Vq�; þ q� ¼ �Kh��ðT ;� þT a�Þ

� 1

2
�T 2

�
�V�

K
T 2

�
;�
q�; (99)

where K denotes the thermal conductivity, and T and �
denote temperature and relaxation time, respectively. In the
case � ¼ 0 we recover the Eckart-Landau equation.
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Observe that, due to the symmetry of the problem, Eq.
(99) only has one independent component, which may be
written as

� _qþ q ¼ �K

B
T 0 � 1

2
�q�þ �

_T

T
q: (100)

In the truncated version of the theory, the last term in (99)
is absent (see for example [70]), and (100) becomes

� _qþ q ¼ �K

B
T 0: (101)

Finally, observe that if � ¼ 0 we obtain from (50)

q ¼ gðrÞ
B2R2

; (102)

where gðrÞ is an arbitrary function. Then using (102) in
(100) or (101) we obtain (up to the function gðrÞ) the
temperature distribution of the fluid in terms of metric
functions.

VII. EXTENSIONS OF LTB BASED ON
STRUCTURE SCALARS

From an inspection of (62), (63), (82)–(84), and (95)–
(98), the following remarks are in order:

(i) For any geodesic fluid (dissipative or not), the evo-
lution of � and 
 is fully controlled by YTF and YT

(ii) In LTB, scalars YT and YTF do not contain �.
(iii) In GLTB, scalars YT and YTF differ from their ex-

pressions in LTB, by the same term.
Based on the comments above and on the requirement of

‘‘maximal’’ similarity between a LTB and its correspond-
ing GLTB, let us assume that scalars YT and YTF share the
same expression (in terms of R) in both cases.

Then it follows at once from (82) and (95) [or (96)],

_K

1þ K

� _R0

R0 �
3

4

_K

ð1þ KÞ
�
þ €K

2ð1þ KÞ ¼ 0: (103)

Integrating (103) we obtain

R0 _K1=2

ð1þ KÞ3=4 ¼ C1ðrÞ; (104)

or using (90) and (91)

C1ðrÞ ¼ ð8	~qRÞ1=2R0

ð1þ �ðrÞÞ1=2 þ R
4	~qRdt

; (105)

where C1ðrÞ is an arbitrary integration function.
Next, integrating (104) we obtain

K þ 1 ¼ 4

½C1ðrÞ2
R

dt
ðR0Þ2 þ C2ðrÞ�2

; (106)

where C2ðrÞ is another integration function, which may be
related to CðrÞ as follows. Taking the t derivative of (106)
we have

_K ¼ � 8C2
1ðrÞ

ðR0Þ2½C2
1ðrÞ

R
dt

ðR0Þ2 þ C2ðrÞ�3
; (107)

then, combining (90) with (107) it follows

2	~q ¼ C2
1ðrÞ

RðR0Þ2½C2
1ðrÞ

R
dt

ðR0Þ2 þ C2ðrÞ�2
; (108)

finally, comparing (105) and (108) we also find

C2ðrÞ ¼ 2ð1� 4	~qRR02Þ
CðrÞ þ R

4	~qRdt
: (109)

Thus, the assumption above on YT and YTF allows us to
obtain a GLTB from any given LTB. Indeed, from (108),
taking the time and radial dependence of R from any given
LTB, we obtain the dissipative flux of the corresponding
GLTB, up to the two functions of r, C1 and C2. The former
must satisfy the regularity condition C1ð0Þ ¼ 0, and its
vanishing brings back to the starting ‘‘seed’’ LTB solution.
The remaining physical variables follow from the field
equations.
Let us now illustrate the method above, with an example

inspired in the parabolic subclass of LTB.
Thus, we choose

Rðt; rÞ ¼ fðrÞðTðrÞ � tÞ2=3: (110)

where fðrÞ and TðrÞ correspond to any specific parabolic
LTB solution. However, care must be exercised in not
identifying fðrÞ with the mass function as it happens in
LTB.
Using (110) we may write the integral

R
dt

ðR0Þ2 as

I ¼
Z dt

ðR0Þ2 ¼
Z ðTðrÞ � tÞ2=3dt

½f0ðrÞðTðrÞ � tÞ þ 2
3 fðrÞT0ðrÞ�2 ; (111)

introducing the variable TðrÞ � t ¼ �3 in (111) and inte-
grating we obtain

I ¼ �3
Z �4d�

ða�3 þ bÞ2

¼ �2

ða2�3 þ abÞ þ
1

3
ffiffiffiffiffiffiffiffi
ba5

3
p

�
2

ffiffiffi
3

p
arctan

�
1� 2

ffiffi
a
b

3
p

�ffiffiffi
3

p
�

� ln

�
a�3 þ b

ð ffiffiffiffiffiffi
a�3

p þ ffiffiffi
b3

p Þ3
��

; (112)

where a ¼ f0ðrÞ and b ¼ 2
3 fðrÞT0ðrÞ.

Feeding back (112) into (108), using (110), we find
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2	~q ¼ C2
1ðrÞfðrÞ�1

fC2
1ðrÞ½�2a þ a�3þb

3
ffiffiffiffiffiffi
ba5
3
p ½2 ffiffiffi

3
p

arctanð1�2
ffiffi
a
b

3
p

�ffiffi
3

p Þ � lnð a�3þb
ð ffiffiffiffi

a�3
p þ ffiffi

b3
p Þ3Þ�� þ C2ðrÞða�3 þ bÞg2

: (113)

Thus, the function C1 controls the magnitude of the
dissipation and can be chosen as small as desired in the
case when perturbations of LTB are required. From the
above it is evident that these GLTB become LTB when
dissipative fluxes vanish. Also, it should be clear that if the
physical properties of the seed LTB are reasonable, so will
be the properties of the corresponding GLTB, at least for a
sufficiently small value of the function C1ðrÞ. Finally, in
the particular case (� ¼ 0) the temperature profile of the
model can be obtained from (100) [or (101) and (113)].

VIII. EXTENSIONS OF LTB BASED ON
SYMMETRY PROPERTIES

In this section we shall propose another approach to
obtain GLTB spacetimes. It consists in assuming that any
GLTB spacetime shares the same symmetry property de-
scribed in Sec. IV for the corresponding LTB.

Thus, let us assume now that our GLTB admits a proper
matter collineation.

Then, from the energy-momentum tensor for dust with
dissipation (6), we obtain, using (85), the three equations:

�0 _~�þ �1 ~�0 þ 2 ~��0
;0 � 2~qB�1

;0 ¼ 0; (114)

��0 _~q� �1~q0 þ ~�
�0
;1

B
� ~q

�
�0
;0 þ �0

_B

B
þ �1 B

0

B
þ �1

;1

�

þ �B�1
;0 ¼ 0; (115)

�0 _�þ �1�0 � 2~q
�0
;1

B
þ 2�

�
�0

_B

B
þ �1 B

0

B
þ �1

;1

�
¼ 0:

(116)

We shall consider two separated subcases, namely:
(i) Dissipation in purely diffusion approximation (q �

0, � ¼ 0, ~q ¼ q).
(ii) Dissipation in the streaming out limit (� � 0, q ¼ 0,

~q ¼ �).

A. Diffusion approximation

From (87) and (89), we can write

8	qB ¼ _K

1þ K

R0

R
: (117)

Combining (89), (102), and (117) produces

8	gðrÞ ¼ RR02 _K

ð1þ KÞ3=2 : (118)

Next, from (116) we obtain �0 ¼ FðtÞ, as in LTB, and
(114) and (115) take the form

FðtÞ _�þ �1�0 þ 2� _FðtÞ � 2qB�1
;0 ¼ 0; (119)

FðtÞ _qþ �1q0 þ q

�
_FðtÞ þ FðtÞ _B

B
þ �1 B

0

B
þ �1

;1

�
¼ 0:

(120)

This last equation can be rewritten in the form

�1½lnðqB�1Þ�0 þ FðtÞ½lnðqBFðtÞÞ�_ ¼ 0: (121)

Multiplying (121) by qB, it becomes:

ðqB�1Þ0 þ ðqBF _Þ ¼ 0; (122)

a partial solution of which may be written as

qB�1 ¼ � _c ðt; rÞ; (123)

qBFðtÞ ¼ c 0ðt; rÞ: (124)

From (117) and (124) we have

c 0ðt; rÞ ¼ FðtÞ
8	

_K

1þ K

R0

R
: (125)

Then, using (102) in (124) with (125), and taking (89)
into account, we get

8	gðrÞ ¼ RR02 _K

ð1þ KÞ3=2 ; (126)

which is exactly (118).
More generally, it can be shown that integrability con-

ditions for (119) and (122) can always be satisfied. In the
particular case FðtÞ ¼ 1, we obtain

�1 ¼ � ðlnqBÞ€þ 1
2 ð�

0
qBÞ_

ðlnqBÞ_0 þ 1
2 ð�

0
qBÞ0

:

In other words the existence of a proper matter collinea-
tion is consistent with the general form of GLTB in the
diffusion limit.
We can integrate (118) to obtain

1

ð1þ KÞ1=2 ¼ �4	gðrÞ
Z dt

RR02 þ cðrÞ; (127)

where cðrÞ is an arbitrary function.
As a specific example, let us choose for Rðt; rÞ the form

for the parabolic subclass of LTB given by (110), then we
obtain

1

ð1þ KÞ1=2 ¼ � 4	gðrÞ
fðrÞf0ðrÞ½f0ðrÞðTðrÞ � tÞ þ 2

3 fðrÞT0ðrÞ�
þ cðrÞ; (128)

and introducing this last expression into (102) we have
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q ¼ gðrÞ
f2ðrÞðTðrÞ � tÞ2=3

�
� 4	gðrÞ

fðrÞf0ðrÞ þ cðrÞ

�
�
f0ðrÞðTðrÞ � tÞ þ 2

3
fðrÞT0ðrÞ

���2
: (129)

where we have used (89).
So far the GLTB thus obtained, is defined up to four

functions of r, which by the invariance with respect to the
transformation of the radial coordinate reduces to three.
Two of them can be taken exactly as the corresponding in
the LTB seed model, and the remaining one is obtained via
Eqs. (122)–(124), from the assumption that �1 has the same
radial dependence as in the LTB case. Observe that due to

the junction condition (32) we have to impose gðrÞ¼� 0.
Finally, the temperature profile can be easily obtained from
(100) [or (101) and (129)].

B. Streaming out approximation

In the case q ¼ 0 and � � 0, we obtain from Bianchi
identities (49) and (50)

_�þ�

� _B

B
þ 2

_R

R

�
¼ 0; (130)

producing

� ¼ jðrÞ
BR2

; (131)

exactly as in the LTB case. However, using (89)–(91) we
get in this case

� ¼ 3jðrÞ½R 4	�Rdtþ ð1þ �ðrÞÞ1=2�
ðR3Þ0 ; (132)

where jðrÞ is a function of integration.
Next, in this approximation (114)–(116) take the form

�0ð�þ �Þ_ þ �1ð�þ �Þ0 þ 2ð�þ �Þ�0
;0 � 2�B�1

;0 ¼ 0;

(133)

�0 _�þ �1�0 � ð�þ �Þ�
0
;1

B

þ �

�
�0
;0 þ �0

_B

B
þ �1 B

0

B
þ �1

;1

�
� �B�1

;0 ¼ 0; (134)

�0 _�þ �1�0 � 2�
�0
;1

B
þ 2�

�
�0

_B

B
þ �1 B

0

B
þ �1

;1

�
¼ 0:

(135)

From (133)–(135) we find

�0 _�þ �1�0 þ 2��0
;0 þ 2�

�0
;1

B
¼ 0; (136)

producing

�1 ¼ � �

�0

�
2 _Fðr; tÞ þ Fðr; tÞ _�

�
þ 2F0ðr; tÞ

B

�
; (137)

with �0 ¼ Fðr; tÞ.
Following the requirement of maximal similarity be-

tween a LTB and its corresponding GLTB, let us assume
�0 ¼ FðtÞ, in which case (137), becomes (88).
Under that condition, we have from (133)–(135)

FðtÞð�þ �Þ_þ �1ð�þ �Þ0 þ 2ð�þ �Þ _FðtÞ � 2�B�1
;0 ¼ 0;

(138)

FðtÞ _�þ �1�0 þ �

�
_FðtÞ þ FðtÞ _B

B
þ �1 B

0

B
þ �1

;1

�

� �B�1
;0 ¼ 0; (139)

FðtÞ _�þ �1�0 þ 2�

�
FðtÞ _B

B
þ �1 B

0

B
þ �1

;1

�
¼ 0: (140)

This last equation can be written as

FðtÞ½lnð�B2Þ� _ þ �1½lnð�ðB�1Þ2Þ�0 ¼ 0; (141)

or in the form

FðtÞð�B2Þ_ þ 1

�1
ð�ðB�1Þ2Þ0 ¼ 0: (142)

Also, in this case, we can write (50) in the form

½lnð�ðBRÞ2Þ� _ þ 1

B
½lnð�R2Þ�0 ¼ 0; (143)

or,

½�ðBRÞ2� _ þ Bð�R2Þ0 ¼ 0: (144)

The method to obtain GLTB from any given LTB (in the
streaming out approximation) may now be sketched as
follows:
(i) Take any specific seed LTB with a given vector field

� defining a proper matter collineation (since FðtÞ is
arbitrary we put it equal to one).

(ii) Replace the term ð�B2Þ_ in (142) by its expression
obtained from (144).

(iii) Assume that the radial dependence of �1 is the same
as the corresponding to the LTB seed solution.

(iv) From the form of R corresponding to the seed LTB,
integrate (142) with respect to r to obtain �. Any
remaining arbitrary function of t may be found from
junction conditions.

IX. CONCLUSIONS

We have presented different alternatives for obtaining
spherically symmetric, geodesic, dissipative dust solutions
to Einstein equations (GLTB). All these alternatives are
oriented to produce solutions with specific similarities to
the nondissipative case (LTB). For doing so we have first
carried out a study on LTB spacetimes based, on the one
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hand on some symmetry properties of LTB, and on the
other on their characterization in terms of the structure
scalars.

The generalizations based on structure scalars produce a
dissipative model for each seed LTB, such that dissipative
variables are arbitrary only up to a single function of r.

However, the generalizations based on symmetry prop-
erties have more degrees of freedom, which may be speci-
fied depending on the specific problem under
consideration.

For the purely diffusion case the temperature profile may
be obtained from the transport equation considered in
Sec. IV.

At the present time we foresee two interesting applica-
tions of GLTB’s: One, the testing of any result obtained
from any specific LTB against the presence of small but
nonvanishing dissipative fluxes, such dissipative perturba-

tions being represented by exact solutions to the Einstein
equations; and two, the study of relaxational effects on
different aspects of collapse via the transport equation.
Finally, as already stressed in the Introduction, let us

recall that our intention here is not to produce specific
solutions with a distinct physical interpretation, but rather
to pave the way for finding such solutions.
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