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Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of

the most important sources for ground-based gravitational wave detectors. The masses of the components

are determinable from the orbital and chirp frequencies during the early part of the evolution, and large

finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is

expected to be very complex at this time. Tidal effects during the early part of the evolution will form a

very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due

to tidal corrections is characterized by a single quantity related to a star’s tidal Love number. The Love

number is sensitive, in particular, to the compactness parameterM=R and the star’s internal structure, and

its determination could provide an important constraint to the neutron star radius. We show that Love

numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron

stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an

important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron

stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M� are substantially

smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive

than 1M� are probably not detectable with Advanced LIGO. For stars with masses in the range 1–2M�,
the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal

signatures.
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I. INTRODUCTION

Gravitational waves from the final stages of inspiraling
binary neutron stars are expected to be one of the most
important sources for ground-based gravitational wave
detectors [1]. To date, LIGO observations have only been
able to set an upper limit to the neutron star-neutron star
coalescence rate of 0:039 yr�1L�1

10 [2], where L10 is the

blue luminosity in units of 1010L�, which translates to
about 0.075 events per year in the Milky Way. This is a
thousand times larger than the predicted rates [3].
Nevertheless, the observed neutron star-neutron star inspi-
ral rate from the universe is expected to be about two per
day in LIGO II [3]. The masses of the components will be
determined to moderate accuracy, especially if the neutron
stars are slowly spinning, during the early part of the
evolution [4,5].

Mass measurements from inspiraling binaries will be
useful, especially in constraining the equation of state
through limits to the neutron star maximum and minimum
masses, but constraints to the radius would be much more
effective in constraining the nuclear equation of state [6].
Large finite-size effects, such as mass exchange and tidal

disruption, are measurable toward the end of inspiral [7],
but the gravitational wave signal is expected to be very
complex during this period. Flanagan and Hinderer [8]
have recently pointed out that tidal effects are also poten-
tially measurable during the early part of the evolution
when the waveform is relatively clean. The tidal fields
induce quadrupole moments on the neutron stars. This
response of each star to external disturbance is described
by the Love number k2 [9], which is a dimensionless
coefficient given by the ratio of the induced quadrupole
moment Qij and the applied tidal field Eij:

Qij ¼ �k2
2R5

3G
Eij � ��Eij; (1)

where R is the radius of the star and G is the gravitational
constant. The tidal Love number k2, which is dimension-
less, depends on the structure of the star and therefore on
the mass and the equation of state (EOS) of dense matter.
The quantity � is the induced quadrupole polarizability.
Tidal effects will form a very small correction in which

the accumulated phase shift can be characterized by a
single quantity �� which is a weighted average of the
induced quadrupole polarizabilities for the individual stars,
�1 and �2. Since both neutron stars have the same equation
of state, the weighted average ��ðMÞ, as a function of chirp
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mass M ¼ m3=5
1 m3=5

2 =ðm1 þm2Þ1=5, is relatively insensi-

tive to the mass ratiom1=m2, as is shown by Hinderer et al.
[10]. We therefore focus on the behavior of the quadrupole
polarizability � of individual stars. These are related to the
dimensionless tidal Love number k2 for each star by k2 ¼
ð3=2ÞG�R�5. The Love number k2 is sensitive to the
neutron star equation of state; in particular, to the compact-
ness parameter M=R as shown by Damour and Nagar [11]
and the overall compressibility of the equation of state. In
particular, the tidal Love numbers of strange quark matter
stars are qualitatively different from those of normal matter
stars. In a fashion similar to moment of inertia measure-
ments from relativistic binary pulsars [12], an important
constraint to the neutron star radius might become possible
from gravitational wave observations. Detection of the
tidal signature from coalescing compact binaries might
provide an important, and possibly unique, way to distin-
guish self-bound strange quark matter stars from normal
neutron stars.

Our paper is organized as follows. In Sec. I, a new
technique for the computation of tidal Love numbers is
described. The influence of density discontinuities and
phase transitions on Love numbers is discussed in
Sec. II. Results of Love numbers for polytropic equations
of state are presented in Sec. IV. Section V contains results
for select analytic solutions of Einstein’s equations in
spherical symmetry. Love numbers for proposed model
equations of state for normal stars with hadronic matter
and self-bound stars with strange quark matter with and
without crusts are given in Sec. VI, wherein a comparison
of results between these two distinct classes of stars is also
made. In Sec. VII, we discuss the role of a solid crust on
Love numbers. Our results and conclusions are summa-
rized in Sec. VIII. Appendix A contains technical details
concerning the calculation of Love numbers in the case of
polytropes. Relevant parameters required for the computa-
tion of Love numbers for analytic solutions of Einstein’s
equations (discussed in Sec. V) are to be found in
Appendix B.

II. COMPUTATION OF TIDAL LOVE NUMBERS

The computation of tidal Love numbers is described by
Thorne and Campolattaro [13], Hinderer [14], Damour and
Nagar [11]. We use units in which G ¼ c ¼ 1. In terms of
the dimensionless compactness parameter � ¼ M=R, the
Love number is given by

k2ð�; yRÞ ¼ 8
5�

5ð1� 2�Þ2½2� yR þ 2�ðyR � 1Þ�
� f2�ð6� 3yR þ 3�ð5yR � 8Þ
þ 2�2½13� 11yR þ �ð3yR � 2Þ
þ 2�2ð1þ yRÞ�Þ þ 3ð1� 2�Þ2½2� yR

þ 2�ðyR � 1Þg logð1� 2�Þ��1: (2)

Here, yR ¼ ½rH0ðrÞ=HðrÞ�r¼R, where the function HðrÞ is
the solution of the differential equation

H00ðrÞ þH0ðrÞ
�
2

r
þ e�ðrÞ

�
2mðrÞ
r2

þ 4�rðpðrÞ � �ðrÞÞ
��

þHðrÞQðrÞ ¼ 0; (3)

where the primes denote derivatives with respect to r, and

QðrÞ ¼ 4�e�ðrÞ
�
5�ðrÞ þ 9pðrÞ þ �ðrÞ þ pðrÞ

c2sðrÞ
�

� 6
e�ðrÞ

r2
� ð�0ðrÞÞ2: (4)

The metric functions �ðrÞ and �ðrÞ for the spherical star are

e�ðrÞ ¼
�
1� 2mðrÞ

r

��1
;

�0ðrÞ ¼ 2e�ðrÞ
mðrÞ þ 4�pðrÞr3

r2
;

(5)

and c2sðrÞ � dp=d� is the squared sound speed. Care has to
be taken in the event of a first-order phase transition or a
surface density discontinuity in the evaluation of Eq. (3)
because the speed of sound vanishes. We address this
situation in the next section.
We note that the calculation of the tidal Love number is

simplified by casting Eq. (3) as a first-order differential
equation for yðrÞ ¼ rH0ðrÞ=HðrÞ:

ry0ðrÞ þ yðrÞ2 þ yðrÞe�ðrÞ½1þ 4�r2ðpðrÞ � �ðrÞÞ�
þ r2QðrÞ ¼ 0; (6)

so that it is necessary only to determine yR � yðRÞ; the
value of HðRÞ is irrelevant. The boundary condition for
Eq. (6) is yð0Þ ¼ 2.
Damour and Nagar [11] have emphasized that the factor

ð1� 2�Þ2 multiplying Eq. (2) makes k2 decrease rapidly
with compactness �. Additionally, we note that for small
compactness parameter �, there are severe cancellations in
Eq. (2), and it is useful to expand it in a Taylor series for
�< 0:1:
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k2ð�; yRÞ ¼ ð1� 2�Þ2
2

�
2� yR
3þ yR

þ y2R � 6yR � 6

ðyR þ 3Þ2 �þ y3R þ 34y2R � 8yR þ 12

7ðyR þ 3Þ3 �2 þ y4R þ 62y3R þ 84y2R þ 48yR þ 36

7ðyR þ 3Þ4 �4

þ 5

294

5y5R þ 490y4R þ 1272y3R þ 1884y2R þ 1476yR þ 648

ðyR þ 3Þ5 �5 þ � � �
�
: (7)

Note that in the Newtonian limit, � ! 0, we have p �
�, �r2 � 1, and one finds

ry0ðrÞ þ yðrÞ2 þ yðrÞ � 6þ 4�r2
�ðrÞ
c2sðrÞ

¼ 0;

k2ðyRÞ ¼ 1

2

�
2� yR
3þ yR

�
: (8)

Equation (6) for ymust be integrated with the relativistic
stellar structure, or Tolman-Oppenheimer-Volkov (TOV),
equations [15,16]:

dpðrÞ
dr

¼ �½mðrÞ þ 4�r3pðrÞ�½�ðrÞ þ pðrÞ�
rðr� 2mðrÞÞ ;

dmðrÞ
dr

¼ 4��ðrÞr2:
(9)

We find it convenient to employ a thermodynamic variable
hðrÞ, defined by

dhðrÞ ¼ dpðrÞ
�ðrÞ þ pðrÞ ; (10)

as the independent variable in place of r. A stellar model
can be computed specifying the value of hð0Þ at the star’s
center and integrating equations for dr=dh and dm=dh.
However, since these equations are divergent at the origin
and at the stellar surface, we employed the radial variable
z ¼ r2 instead. One therefore has

dz

dh
¼ �2

zð ffiffiffi
z

p � 2mÞ
mþ 4�pz3=2

;

dm

dh
¼ 2��

ffiffiffi
z

p dz

dh
;

dy

dh
�0ðhÞ

ffiffiffiffiffiffiffiffiffi
zðhÞ

p
=2 ¼ y2 þ ye�ðhÞð1þ 4�zðhÞðpðhÞ � �ðhÞÞÞ

þ zðhÞQðhÞ; (11)

where Q is determined by Eq. (4). The behavior of y near
the star’s center is given by

yðhÞ ¼ 2� 6

7

5�c þ 9pc þ ðpc þ �cÞ=c2sc
3pc þ �c

ðhc � hÞ

þOððhc � hÞ2Þ: (12)

Also note that yR � yðh ¼ 0Þ.
In some cases, such as with polytropic equations of state,

we found it was better to use logh as the independent
variable. In addition, some care has to be taken in the event
that d�=dh diverges at the stellar surface, which is the case
for polytropes if the polytropic index n < 1. In this case,

the integration over the last zone near the surface can be
performed analytically, as we discuss in Appendix A.

III. THE ROLE OF DENSITY DISCONTINUITIES
AND PHASE TRANSITIONS

As Eq. (6) for y contains the squared adiabatic speed of
sound c2s ¼ dp=d�, the solution will be altered in the case
of phase transitions within the star, for example, between
the crust and the core, or in the case of a finite surface
density such as appears in models of strange quark stars or
for a uniform density stellar model. However, in the event
that multiple charges (e.g., electric charge and baryon
number) are conserved in a phase transition, the constraint
of global charge neutrality (two Gibb’s phase rules) results
in a continuous pressure versus energy density curve even
if the phase transition is of first order. The situation of a
density discontinuity was discussed in Damour and Nagar
[11], who showed that a large discontinuity in the energy
density will greatly change the value of k2.
Expressing the sound speed in the vicinity of a density

discontinuity as

d�

dp
¼ 1

c2s
¼ d�

dp

��������p�pd

þ���ðp� pdÞ; (13)

where pd is the pressure at the discontinuity and �� ¼
�ðpd þ 0Þ � �ðpd � 0Þ is the energy density jump across
the discontinuity. While solving Eqs. (11), this disconti-
nuity can be taken into account by properly matching
solutions at the point of discontinuity rd ¼ rðhdÞ:

yðrd þ �Þ ¼ yðrd � �Þ � �ðrd þ �Þ � �ðrd � �Þ
mðrdÞ=ð4�r3dÞ

¼ yðhd � �Þ � 3
��

~�
; (14)

where � ! 0 and ~� ¼ mðrdÞ=ð4�r3d=3Þ is the average en-

ergy density of the inner (r < rd) core.

IV. POLYTROPIC EQUATIONS OF STATE

It is useful to evaluate tidal Love numbers for polytropic

equations of state p ¼ K�1þ1=n. Love numbers in the
Newtonian limit for polytropes have been calculated by
Brooker and Olle [17] and Kokkotas and Schaefer [18]. In
the Newtonian limit, it is easily observed that the values for

y and k2 are independent of the polytropic constant K ¼
p=�1þ1=n, which scales out of Eq. (8). However, the quad-
rupole polarizability � ¼ ð2=3Þk2R5, and therefore the
gravitational wave signature, does depend on K. There
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exist analytic solutions for the Newtonian case for poly-
tropes of indices n ¼ 0 and 1. In the case n ¼ 0, an
incompressible fluid, c2s ¼ 1 and the solution inside the
star which satisfies the boundary condition at the center is
simply yðrÞ ¼ 2. However, the discontinuity in the sound
speed at the stellar surface must be taken into account.
According to Eq. (14), yR receives a boundary contribution
4�R3�=M ¼ 3, where � is the constant energy density
inside the star. Therefore, for an incompressible fluid, yR ¼
yðr�Þ � 3 ¼ �1 and k2 ¼ 3=4.

In the case n ¼ 1, one finds [14]

yðrÞ ¼ �r

R

J3=2ð�r=RÞ
J5=2ð�r=RÞ � 3; yR ¼ �2 � 9

3
;

k2 ¼ 15� �2

2�2
; n ¼ 1:

(15)

In the above, JiðxÞ is the standard Bessel function.
Damour and Nagar [11], Hinderer [14], and Binnington

and Poisson [19] have examined relativistic polytropic
equations of state in the case of finite compactness. We
have repeated these calculations. For each n, the polytropic
constantK was determined from the fiducial pressure p0 ¼
1:322� 10�6 km�2 and �0 ¼ 1:249� 10�4 km�2 using

K ¼ po�
�1�1=n
0 . These values are equivalent to the pres-

sure p0 ¼ 1 MeV fm�3 and mass-energy density �0 ¼
94:38 MeV fm�3 (or a baryon density n0 ¼ 0:1 fm�3 for
the case n ¼ 1). These values were chosen to produce
reasonable neutron star radii for solar mass neutron stars.
For soft EOSs, n > 1, the stellar radius decreases with
increasing mass up to the maximum mass and the maxi-
mum mass stars are relatively lighter than for stiff EOSs,
n < 1. For n < 1, the stellar radius generally increases with
increasing mass until the maximum mass is approached.

The case n ¼ 1 is intermediate and has a finite radius even
for a star with vanishing mass.
The results of integrating Eq. (6) for these polytropic

EOSs are summarized in Figs. 1 and 2 which show k2 as a
function of � and n. Generally, k2 decreases with increas-
ing n and �. The gravitational response is proportional to
� ¼ ð2G=3Þk2R5 and this is shown for relativistic poly-
tropes in Figs. 3 and 4. This quantity decreases rapidly with
increasing n, and for n � 0:5, it also decreases rapidly with
the compactness parameter �.
We have found that the results for k2 do not significantly

depend on the value K in the relativistic case by altering
our fiducial values of po or �o within reasonable ranges
resulting in configurations of similar dimensions to neutron

FIG. 1. Contours of the dimensionless tidal Love number k2 as
a function of compactness � ¼ M=R and polytropic index n (
labeled along curves) for polytropes. Contours are not shown for
configurations that are hydrostatically unstable (i.e., those with
central densities larger than that of the maximum mass).

FIG. 2. The dimensionless tidal Love number k2 as a function
of compactness � ¼ M=R and polytropic index n for polytropes.
The polytropic index n ¼ 0:001 for the topmost curve and in
multiples of 0.1 for each succeeding curve. The thickest curve
shows results for n ¼ 1.

FIG. 3. The quantity � ¼ ð2G=3Þk2R5, in units of km5, as a
function of compactness � ¼ M=R for polytropes of index n.
Contours are not shown for configurations that are hydrostati-
cally unstable.
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stars. Our results are the same as those of Damour and
Nagar [11], Hinderer [14], and Binnington and Poisson
[19] to within numerical accuracy.

V. LOVE NUMBERS FOR ANALYTIC SOLUTIONS
OF EINSTEIN’S EQUATIONS

It is also useful to compute the tidal response for some of
the known analytic solutions of Einstein’s equations in
spherical symmetry. All analytical solutions are scale
free; they contain essentially two parameters, the central
energy density �c and compactness parameter � ¼
GM=Rc2. Among the useful analytic solutions we will
study are (i) the uniform fluid sphere, (ii) the Tolman VII
solution [15], (iii) Buchdahl’s solution [20,21], and (iv) and
(v), two generalizations of the Tolman IV solution [22,23].
The Tolman VII and Buchdahl’s solutions have vanishing
surface energy densities and are useful approximations to
realistic neutron star models. The incompressible fluid and
the generalizations of the Tolman IV solution have finite
surface densities, and the latter are reasonable approxima-
tions of strange quark matter stars.

It is useful to recast Eq. (11) in the form

dw

dh
¼ �2

wð ffiffiffiffi
w

p � 2x�Þ
x�þ �ðp=�cÞw3=2

;

dx

dh
¼ dw

dh

�
�

2�

�

�c

ffiffiffiffi
w

p �
;

dy

dh
¼ dw

dh

�
� y2 þ ye� � 6e�

2w
þ �

2
e�
��

�

�c

� p

�c

�
y� 5

�

�c

� 9
p

�c

� �þ p

�cc
2
s

�
þ 2

w
e2�

�
1� e��

2
þ �w

p

�c

�
2
�
;

(16)

where � ¼ 4��cR
2, x ¼ m=M, � ¼ M=R, and w ¼

r2=R2. Therefore, we need the quantities �=�c, p=�c, c
2
s ,

�, and e� for each analytic equation of state. In addition,
for the Tolman IV solutions, which have a finite surface
density, the boundary contribution to yR is required. This
quantity, in the present notation, is �ð�=�Þð�s=�cÞ. The
quantity �s=�c together with the above quantities are
provided in Appendix B.
As shown in Fig. 5, the two analytic solutions that most

closely resemble normal neutron stars, the Buchdahl and
Tolman VII solutions, predict values of k2 that are similar
and which closely track the results for the n ¼ 1 polytrope
(of course, for � ¼ 0, Buchdahl’s solution and the n ¼ 1
polytrope are identical). In contrast, the incompressible
and Tolman IV solutions represent a significantly different
family, and, as we will see, are good approximations to
strange quark matter stars. It is clear that the two families
of analytic solutions have different behaviors, and this
foreshadows the results for the equation of state models
we discuss below. Because of the scale-free character of
these solutions, we have not shown results for �, which will
scale with the assumed �c (or, equivalently, M or R.)

VI. LOVENUMBERS FORMODELEQUATIONSOF
STATE

A. Hadronic equations of state

The hadronic EOSs were taken from a compilation by
Lattimer and Prakash [6] that describes their origins. There
are three generic families of equations of state: (i) normal
nucleonic equations of state, (ii) equations of state with
considerable softening above the nuclear saturation den-
sity, due to Bose condensation, hyperons, or a mixed
quark-hadronic phase, and (iii) strange quark matter stars.
We have used a selection in an attempt to span the extreme
range of models of each type. The mass-radius curves for
hadronic EOSs are shown in Fig. 6.

FIG. 4. The quantity � ¼ ð2G=3Þk2R5, in units of km5, as a
function of compactness � ¼ M=R for polytropes ranging from
n ¼ 0:001 (topmost curve) to 3.0 (leftmost curve) in increments
of 0.1. Results for the polytrope n ¼ 1 are shown as a thick
curve.

FIG. 5. The dimensionless tidal Love number k2 as a function
of compactness � ¼ M=R for analytic solutions (see
Appendix B) of Einstein’s equations in spherical symmetry.
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Love numbers as a function of compactness are shown in
Fig. 7 for hadronic models. There is a relatively narrow
spread of values of k2 for a given compactness, and for
each EOS, the value of k2 appears to be a maximum for
masses near 1M�. In contrast to the analytic Tolman VII
and Buchdahl solutions, for which k2ð� ! 0Þ ’ 0:3, k2
tends to zero for small � for realistic equations of state.
The fact that hadronic equations of state have a small range
of variations as a function of compactness is reminiscent of
the situation for the moment of inertia [12].

It is useful to examine k2 as a function of neutron star
radius, as shown in Fig. 8. Although the range of values
observed for k2 are common to all models, it is now clear
that the quadrupole response will vary more widely, due to
it being proportional to R5. In Figs. 9 and 10 the quadru-
pole response is shown. The maxima in � occur near 1M�,
as they did for k2, and there is a pronounced trend for � to
increase with R. Assuming the true neutron star equation of
state is hadronic, it therefore appears that a measurement of
� translates into an estimate of R relatively independently

FIG. 6. Mass-radius diagram for the hadronic equations of
state used in this paper. Filled (open) circles indicate configura-
tions with M ¼ 1:4M� ð1:0M�Þ. The EOS notation follows
Lattimer and Prakash [6] and Table I. The solid and dashed
curves are only intended for visual clarity.

FIG. 7. The dimensionless tidal Love number k2 as a function
of compactness � ¼ M=R for hadronic EOSs. Filled (open)
circles indicate configurations with M ¼ 1:4M� ð1:0M�Þ. The
EOS notation follows Lattimer and Prakash [6] and Table I. The
solid and dashed curves are only intended for visual clarity.

TABLE I. Approach refers to the underlying theoretical technique. Composition (Comp.) refers to strongly interacting components
(n ¼ neutron, p ¼ proton, Z ¼ nucleus, H ¼ hyperon, K ¼ kaon, Q ¼ quark); all models include leptonic contributions. This Table is
slightly expanded from the version found in Ref. [32] which contains references not noted here.

Equations of state

Symbol Reference Approach Comp.

FP Friedman and Pandharipande Variational np

WFF(1–3) Wiringa, Fiks, and Fabrocine Variational np

AP(1–4) Akmal and Pandharipande Variational np

MS(0–3) Müller and Serot Field theoretical np

MPA(1–2) Muther, Prakash, and Ainsworth Dirac-Brueckner HF np

ENG Engvik et al. Dirac-Brueckner HF np

PAL(1–6) Prakash, Ainsworth, and Lattimer Schematic potential np

GM(1–3) Glendenning and Moszkowski Field theoretical npH

GS(1–2) Glendenning and Schaffner-Bielich Field theoretical npK

PCL(1–2) Prakash, Cooke, and Lattimer [33] Field theoretical npHQ

SLY4 Douchin and Haensel [34] Field theoretical npe

SQM(1–3) Prakash, Cooke, and Lattimer [33] Quark matter Q ðu; d; sÞ
STE Jaikumar, Reddy, and Steiner [24] Quark matter Q ðu; d; sÞ
PAG Page [25] Quark matter Q ðu; d; sÞ
ALF Alford [26] Quark matter Q ðu; d; sÞ
HS Haensel, Salgado, and Bonazzola [35] Crust Z, e, n

BPS Baym, Pethick, and Sutherland [36] Crust Z, e, n
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of the details of the equation of state. In fact, compared to
the moment of inertia which scales as R2, the potential for a
radius constraint is enhanced due to the R5 behavior of �.

B. Self-bound strange quark matter stars

We turn now to examine results of Love numbers for
self-bound strange quark matter stars. It is uncertain
whether or not strange quark matter stars will have signifi-
cant crusts or not, so we examine models of both kinds.
Models without crusts are characterized by quark matter
extending up to a bare surface with a finite baryon density
of 2 to 3 times nuclear matter equilibrium density. Crusts of
normal matter on top of such stars might be supported by
strong electric fields at the surface. Figure 11 shows three

examples for both cases (STE from Ref. [24], PAG from
Ref. [25], and ALF from Ref. [26]). The crust and the core
regions are apparent from the large discontinuity in the
energy density. The existence of a crust results in large
radii for small stellar masses (of order 0:01M�), but do not
dramatically affect the radii of stars with masses larger
than 0:1M� (see Fig. 12). It therefore appears unlikely that
the existence of a crust has a pronounced effect on the Love
number or quadrupole properties of the star.
In Fig. 13, the dimensionless Love number k2 is shown

as a function of compactness. As was the case for hadronic
stars, there is a clustering of curves relatively independent
of the EOS for stars without crusts. The curves follow the
analytic results for the incompressible fluid and for the
Tolman IV solutions, and differ from hadronic cases by
having a large, finite value of k2 for small �. However, in
the case of an added crust, k2 is reduced at small values of
M=R, but this only occurs for ultralow mass stars. For
masses in excess of 1M�, the Love number approaches
the corresponding values for hadronic stars, and the effect
of the crust is negligible.
The quadrupole response � ¼ 2k2R

5=3 is shown in
Fig. 14 as a function of radius. The strong dependence on
radius follows the trend noted for hadronic stars. The effect
of the crust is unimportant.

C. Comparison of normal and self-bound stars

In order to elaborate the distinction between strange
quark matter and hadronic models, we show the quadru-
pole response � ¼ 2k2R

5=3 in Fig. 15 for a representative
sample of models of each type. The strong dependence of �
on R is common to all models. Where the radii of models
overlap, however, it appears that the strange quark matter
configurations have values of � about 50% larger. This

FIG. 10. The quantity � ¼ ð2=3Þk2R5 for hadronic equations
of state. Filled (open) circles indicate configurations with M ¼
1:4M� ð1:0M�Þ. The solid and dashed curves are only intended
for visual clarity.

FIG. 9. The quantity � ¼ ð2=3Þk2R5 for hadronic equations of
state. Filled (open) circles indicate configurations with M ¼
1:4M� ð1:0M�Þ. The solid and dashed curves are only intended
for visual clarity.

FIG. 8. The Love number k2 as a function of radius R. Filled
(open) circles indicate configurations withM ¼ 1:4M� ð1:0M�Þ.
The EOS notation follows Lattimer and Prakash [6] and Table I.
The solid and dashed curves are only intended for visual clarity.
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difference is probably too small to be observable, and it
appears doubtful that any quark matter configurations will
have a strong enough tidal signature to be observed.

VII. DISCUSSION

The combined tidal effects of two neutron stars in cir-
cular orbit can be found from a weighted average of the
quadrupole responses [8]:

~� ¼ 1

26

�
ð11m2 þMÞ �1

m1

þ ð11m1 þMÞ �2

m2

�
; (17)

whereM ¼ m1 þm2 is the total mass of the binary and �1

and �2 are the quadrupole responses of m1 and m2. Note

that if m1 ¼ m2, then �1 ¼ �2 ¼ ~�. If m2 ¼ 0:5m1, then
~� 	 ð40=26Þ�1. It is unlikely that the mass ratio would be
smaller than this amount, as the minimum neutron star
mass that can be formed in supernovae is not less than
1M� and the maximum neutron star mass is of order 2M�.
Therefore, the value of �� is similar to that of the largest
neutron star. In the case that the individual masses can be
found to reasonable accuracy from the gravitational wave
signal, the individual values of � for the two stars will be
determined to an accuracy constrained by the errors in ��
and the masses.
We have assumed in evaluating the Love numbers that

the crust behaves as a liquid. However, if the stress on the

FIG. 11. Pressure versus energy density for strange quark matter equations of state with and without crust. Equation of state STE is
taken from Ref. [24], PAG from Ref. [25], and ALF from Ref. [26] (see Table I). Density discontinuities are as indicated.

FIG. 13. Dimensionless Love numbers for the strange quark
matter stars. Filled (open) circles indicate configurations with
M ¼ 1:4M� ð1:0M�Þ. The solid and dashed curves are only
intended for visual clarity.

FIG. 12. Mass-radius curves for strange quark matter equa-
tions of state. The inset shows results on a logarithmic scale to
highlight the effects of a hadronic crust. The solid and dashed
curves are only intended for visual clarity.
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solid crust produced by the tidal field is large enough, then
the crust can be melted and our calculations become valid.
The strength required to melt the crust can be estimated
from the results of recent work on crust breaking. We
estimate the induced quadrupole moment to be

Q22 ¼ �E22 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EijE

ij
q

¼
ffiffiffi
3

2

s
�
M

D3
; (18)

where the tidal field strength Eij [27] depends on the

distance D between the stars and M is the total mass; we
assumed for simplicity an equal-mass binary. Assuming a
binary in circular orbit, we can calculate the orbital fre-
quency � from Kepler’s third law,

�2 	 M

D3
: (19)

EliminatingM=D3 using Eq. (18), and recognizing that the
frequency of the emitted gravitational waves f is twice the
orbital frequency [28], we have

f ¼ 2

2�
� 	 1

�

ffiffiffiffiffiffiffiffi
Q22

�

s �
2

3

�
1=4

; (20)

which has an implicit mass dependence throughQ22 and �.
For a 1M� neutron star using the EOS labeled SLY,
Horowitz [29] estimates that the maximum value of Q22

reached at the breaking point of the crust, where the strain
	 	 0:1 [30], is approximately Q22;max ¼ 1040 g cm2. The

breaking point is therefore reached during the inspiral of an
equal-mass binary at the moment when the frequency of
detected gravitational waves becomes

fbr 	 ð2=3Þ1=4
�

�
1040 g cm2

2� 1036 g cm2 s2

�
1=2 	 20 Hz; (21)

where we used the value for � for a 1M� star as determined
in Fig. 9. Note that this frequency implies a binary sepa-
ration distance Dbr 	 400 km from Eq. (19). Therefore,
when D 
 Dbr or f � fbr, the shear from the induced
quadrupole moment is strong enough to break the crust
and beyond this point a solid crust can no longer exist. This
frequency is below the observable region from 100 to
1000 Hz for current and proposed gravitational wave de-
tectors such as LIGO [5]. Consequently, during the last
stages of inspiral that are observed in gravitational waves,
effects stemming from the solid crust are probably irrele-
vant and our calculations assuming a liquid phase should
be valid.
Using the expressions provided by Owen [31], which are

supported by our results, we can approximate the maxi-
mum quadrupole moment for a solid crust through

Q22;max ¼ 	max

0:01
g cm2

8>>>>><
>>>>>:

2:4� 1038
�

R
10 km

�
6:26

�
1:4M�
M

�
1:2

neutron stars;

3:5� 1039
�

R
8 km

�
6
�
1:4M�
M

�
hybrid and meson-condensate stars;

2:8� 1041 

4�1032 erg=cm3

�
R

10 km

�
6
�
1:4M�
M

�
solid strange stars;

(22)

FIG. 15. Comparison of quadrupole polarizabilities � for nor-
mal and strange quark matter stars. Filled (open) circles indicate
configurations with M ¼ 1:4M� ð1:0M�Þ. The solid and dashed
curves are only intended for visual clarity.

FIG. 14. Quadrupole polarizabilities � for the strange quark
matter stars. Filled (open) circles indicate configurations with
M ¼ 1:4M� ð1:0M�Þ. The solid and dashed curves are only
intended for visual clarity.
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where 	max ¼ 0:1 is the breaking strain of the crust and

 	 4� 1032 erg=cm3 is a typical shear modulus of a
strange quark matter crust [30] which is a thousand times
the typical value in the crust of a normal neutron star. The
results are shown in Fig. 16. For stars with masses heavier
than 1M�, the maximum quadrupole moments are within
an order of magnitude of the typical value of 1040 g cm2.

Figure 17 shows results for the breaking frequency fbr
calculated utilizing Eq. (20) with the appropriate values for
Q22;max from Fig. 16. The breaking frequency for both

kinds of stars heavier than a few tenths of a solar mass is
well below the LIGO lower boundary of 100 Hz [5].

Therefore, the crust may be assumed to be melted during
the time it is observed, and the approximation of treating
the entire star as a liquid is justified.

VIII. SUMMARYAND CONCLUSIONS

The quadrupole polarizabilities of normal neutron stars
and self-bound quark matter stars have been calculated for
a wide class of proposed equations of state of dense matter
for both normal and strange quark matter stars. The quad-
rupole polarizabilities � ¼ 2R5k2=ð3GÞ are characterized
by the dimensionless Love number k2 and both are sensi-
tive to the equation of state; in particular, to the compact-
ness parameterM=R and the overall compressibility of the
equation of state. For normal neutron stars, k2 and � exhibit
pronounced maxima for configurations with masses close
to a solar mass for most equations of state. The maximum
value of k2 is not very sensitive to the EOS, lying in the
range 0.1–0.14. In each case, maximum mass configura-
tions have significantly lower values of k2 and � than their
solar mass counterparts.
Love numbers for self-bound strange quark matter stars

with or without crusts are qualitatively different than those
of normal neutron stars. The maxima in the values of k2 for
strange quark matter stars without crusts occur for masses
less than 0:1M�, and maximum values of order 0.8 are
achieved. As in the normal matter case, the maxima in
quadrupole polarizabilities occur for configurations near
1M�. In contrast, the magnitudes of quadrupole polariz-
abilities of strange quark matter stars are usually much less
than those of normal stars, owing to the larger radii of the
latter.
Our investigations also point the need to examine the

core-crust interface region of both normal and self-bound
quark matter stars more closely than has been so far. The
important issue that bears close scrutiny is the precise
nature (first or second order) of possible phase transitions.
In the case that strong discontinuities exist near the core-
crust interface of strange quark matter stars, dimensionless
Love numbers are suppressed for low mass stars relative to
the cases for which there is no crust. However, for stars of
order 1M� or larger, the presence or absence of a crust has
little influence on Love numbers.
The strength of the tidal signatures from coalescing

compact binaries is proportional to �, and is therefore quite
sensitive to the radii of the stars. For stellar configurations
with radii of order 11 km or less, the tidal response might
be too small to observe, implying that a positive detection
might be sufficient to rule out the presence of a self-bound
star, such as a strange quark matter star, in the observed
system.
The detectability of tidal signatures has been considered

in some depth by Hinderer et al. [10]. For example, assum-
ing a binary with equal 1M� stars at a distance of 100 Mpc,
they have estimated that Advanced LIGO could distinguish
tidal love numbers � > �meas � 6� 1036 g cm2 s2, which

FIG. 16. The maximum quadrupole moment Q22;max of a solid
crust as a function of mass for normal and strange matter stars.
Filled (open) circles indicate configurations with M ¼
1:4M� ð1:0M�Þ. The solid and dashed curves are only intended
for visual clarity.

FIG. 17. The frequency of gravitational waves from an in-
spiraling binary when tidal forces are expected to break the
crust for normal and strange quark matter stars. Filled (open)
circles indicate configurations with M ¼ 1:4M� ð1:0M�Þ. The
solid and dashed curves are only intended for visual clarity.
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in our units is equivalent to 4� 10�4 km5. In this case,
only normal matter stars would have detectable tidal sig-
natures. Stars with smaller masses or closer distances have
smaller �meas (�meas scales as DM2:5, where D is the
distance and M is the mass), but there is no stellar evolu-
tionary path for producing neutron or strange quark stars
with smaller masses. Also, the event rate decreases with
the cube of the distance, so it is unrealistic to appreciably
decrease the reference distance. In the more likely case that
the merging system contains 1:3–1:5M� stars, �meas ex-
ceeds 10�3 km5 and Advanced LIGO would be unable to
detect tidal signatures from any type of star. For the pro-
posed Einstein telescope, Ref. [10] quotes a factor of 12
improvement in detectability, so that 1:4M� stars with radii
greater than about 11 km might have detectable tidal
signatures assuming D ¼ 100 Mpc. Generally, strange
quark stars have smaller radii and their tidal signatures
would continue to remain undetectable.

It should also be noted that strange quark stars with the
largest radii, which have masses and radii similar to those
of normal neutron stars with relatively soft equations of
state, have tidal Love numbers similar to those of normal
stars. In the event that a binary containing at least one
strange quark star was close enough and had a mass large
enough to have a detectable tidal signature, our results
imply that it would be extremely difficult to distinguish
quark stars from normal neutron stars. This conclusion is
similar to that reached by Hinderer et al. [10].
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APPENDIX A: BEHAVIOR OF y NEAR THE
SURFACE FOR POLYTROPES

For polytropic equations of state with n < 1, the term
QðrÞ defined in Eq. (4) diverges at the surface. To treat this
divergence we first analyze the TOV equations, Eq. (9), in

this case. With pð�Þ ¼ K�1þ1=n, near the surface we have

Kð1þ 1=nÞ�1=n d�

dr
’ �ð�þ K�1þ1=nÞ M

rðr� 2MÞ ;
(A1)

where we have used the fact that 4�pr3 � m ’ M. The
solution is

�ðrÞ ’ 1

Kn

��
rðR� 2MÞ
Rðr� 2MÞ

�ð1=ð2ðnþ1ÞÞÞ � 1

�
n
; (A2)

using the boundary condition �ðRÞ ¼ 0. The squared adia-
batic speed of sound is then

c2s ’ nþ 1

n

��
rðR� 2MÞ
Rðr� 2MÞ

�ð1=ð2ðnþ1ÞÞÞ � 1

�
: (A3)

Now we change the radial variable to s ¼ R� r � R and
expand the divergent term in QðrÞ:

pþ �

c2s
’ n

Knð1þ nÞn
�

Ms

RðR� 2MÞ
�
n�1

; (A4)

where the divergence is evident from sn�1 when n < 1 and
s ! 0. Assuming y to be finite at the surface, we keep only
the divergent term in QðrÞ in Eq. (6); to lowest order in s,
one finds

dy

ds
’ 4�

R2

R� 2M

pþ �

c2sn
; (A5)

where we have used e� ’ ð1� 2M=RÞ�1. This has the
solution

yðsÞ ¼ yR þ 4�R3

M

�
Ms

Kð1þ nÞRðR� 2MÞ
�
n
: (A6)

The numerical integration for y is stopped near the surface
at s � R, and yR is computed from Eq. (A6).

APPENDIX B: PARAMETERS FOR ANALYTIC
SOLUTIONS OF EINSTEIN’S EQUATIONS

We use the notation � ¼ GM=Rc2, � ¼ 4��cR
2, and

x ¼ ðr=RÞ2.

1. Uniform density (� ¼ �c)

� ¼ 3�; e�� ¼ 1� 2�x;

p

�c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�x

p � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

p ;

c2s ¼ 1;
�s

�c

¼ 1:

(B1)

2. Tolman VII (� ¼ �c½1� x�) [15]

�¼ 15

2
�; e�� ¼ 1��xð5� 3xÞ; p

�c

¼ 2

15

ffiffiffiffiffiffiffiffiffi
3

�e�

s
tan�� 1

3
þ x

5
; �¼w1�w

2
þ�1; �1 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3ð1� 2�Þ

s
;

w¼ ln

�
x� 5

6
þ

ffiffiffiffiffiffiffiffi
e��

3�

s �
; w1 ¼ ln

�
1

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

3�

s �
; c2s ¼ tan�

5

�
tan�þ

ffiffiffiffiffiffiffiffi
�

3e�

s
ð5� 6xÞ

�
: (B2)
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3. Buchdahl’s solution (� ¼ 12
ffiffiffiffiffiffiffiffiffi
p�p

p � 5p) [20,21]

� ¼ �2�ð1� �Þ2 1� 5�=2

1� 2�
; z ¼ 1� �

1� �þ u
�

ffiffiffi
x

p
; u ¼ �

sinz

z
; e� ¼ ð1� 2�Þð1� �þ uÞ

ð1� �� uÞð1� �þ � coszÞ2 ;

c2s ¼ u

1� �� 4u
;

�

�c

¼ ð1� 2�Þð2� 2�� 3uÞ
ð2� 5�Þð1� �þ uÞ2

u

�
;

p

�c

¼ �ð1� 2�Þ
ð1� �þ uÞ2ð2� 5�Þ

�
u

�

�
2
: (B3)

4. Generalized Tolman IV (N ¼ 1) [22,23]

� ¼ 3�

2

2� 3�

1� 3�
; e� ¼ 1� 3�þ 2�x

ð1� 3�þ �xÞð1� �xÞ ;
�

�c

¼ 1� 3�

2� 3�

ð2� 3�Þð1� 3�Þ þ �ð3� 7�Þxþ 2�2x2

ð1� 3�þ 2�xÞ2 ;

�s

�c

¼ ð1� 2�Þð1� 3�Þ
ð1� 3�=2Þð1� �Þ ;

p

�c

¼ 1� 3�

2� 3�
�

1� x

1� 3�þ 2�x
; c2s ¼ 1� 3�þ 2�x

5� 15�þ 2�x
: (B4)

5. Generalized Tolman IV (N ¼ 2) [22,23]

� ¼ 3�

�
2� 2�

2� 5�

�
2=3

; e�� ¼ 1� 2

�
2� 2�

2� 5�þ 3�x

�
2=3

�x;
�

�c

¼
�
1þ 5�x

3ð2� 5�Þ
��
1þ 3�x

2� 5�

��5=3
;

�s

�c

¼ ð1� 5�=3Þð1� 5�=2Þ2=3
ð1� �Þ5=3 ;

p

�c

¼
�
2� 5�

2� 2�

�
2=3 1

3ð2� 5�þ �xÞ
�
2�

�
2� 2�

2� 5�þ 3�x

�
2=3ð2� 5�þ 5�xÞ

�
;

c2s ¼ 2� 5�þ 3�x

5ð2� 5�þ �xÞ3
�ð2� 5�þ 3�xÞ5=3

ð2� 2�Þ2=3 þ ð2� 5�Þ2 � 5�2x2
�
: (B5)
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