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We consider the covariant Galileon gravity taking into account the third order and fourth order scalar

field Lagrangians L3ð�Þ and L4ð�Þ, consisting of three and four �’s with four and five derivatives acting

on them, respectively. The background dynamical equations are set up for the system under consideration

and the stability of the self-accelerating solution is demonstrated in a general setting. We extended this

study to the general case of the fifth order theory. For the spherically symmetric static background, we

spell out conditions for the suppression of fifth force effects mediated by the Galileon field �. We study

field perturbations in the fixed background and investigate the conditions for their causal propagation. We

also briefly discuss metric fluctuations and derive an evolution equation for matter perturbations in

Galileon gravity.
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I. INTRODUCTION

The phenomenon of late time cosmic acceleration [1–4]
is as challenging theoretically as was the problem of black
body radiation whose resolution unveiled many secrets of
micro physics. At present, there is no definite clue to the
theoretical understanding of the nature of cosmic repul-
sion. In recent years, a variety of approaches have been
employed to attack the problem. According to the standard
lore, the late time acceleration can be accounted for by
supplementing the energy-momentum tensor by an exotic
fluid component with large negative pressure dubbed dark
energy [5,6]. The simplest candidate of dark energy is
provided by cosmological constant �. However, its small
numerical value leads to a fine-tuning problem, and we do
not understand why it becomes important today à la the
coincidence problem.

Scalar fields provide an interesting alternative to the
cosmological constant, though they do not address the
cosmological constant problem. To this effect, the cosmo-
logical dynamics of a variety of scalar fields has been
investigated in the literature (for a review, see [5] for de-
tails). They can mimic cosmological constant like the
behavior at late times and can provide a viable cosmologi-
cal dynamics at early epochs. Scalar field models with
generic features are capable of alleviating the fine-tuning
and coincidence problems. As for the observation, at
present, it is absolutely consistent with � but at the same
time, a large number of scalar field models are also per-
mitted. Future data should allow us to narrow down the
class of permissible models of dark energy.

It is quite possible that there is no dark energy, and the
late cosmic acceleration is an artifact of infrared modifi-
cation of gravity. We know that gravity is modified at short
distance, and there is no guarantee that it would not suffer
any correction at large scales where it is never verified
directly. Large scale modifications might arise from extra-

dimensional effects or can be inspired by fundamental
theories. They can also be motivated by phenomenological
considerations such as fðRÞ theories of gravity [7] or the
massive theories of gravity. However, any large scale
modification of gravity should reconcile with local physics
constraints and should have the potential of being distin-
guished from cosmological constant.
The infrared modified theories of gravity essentially

contain additional degrees of freedom. The fðRÞ theories
contain a scalar field that mediates the fifth force and might
contradict the local gravity constraints such as the Solar
System or laboratory tests. Broadly, two mechanisms for
hiding the scalar field effects locally have been employed
in the literature. In fðRÞ theories of gravity, the scalar field
is screened via the so-called chameleon mechanism [8], by
making scalar field mass dependent on the local matter
density. In generic models of fðRÞ gravity [9], the chame-
leon mechanism allows to satisfy the local gravity con-
straints but at the same time make these models vulnerable
to curvature singularity whose resolution requires the fine-
tuning worse than the one encountered in the �CDM
model. The problem can be alleviated by invoking the R2

correction but the scenario becomes problematic if ex-
tended to the early Universe [9].
An alternative possibility of large scale modification of

gravity is provided by an effective scalar field � dubbed
Galileon [10]. In particular, such a field appears in the
decoupling limit of Dvali-Gabadadze-Porratti (DGP).
The Lagrangian of the field respects the so-called shift
symmetry in a Minkowskian background: � ! �þ c
and @�� ! @��þ b�, where c and b� are constants.

Thanks to this symmetry, the equations of motion for the
field contain only second derivatives. In four spacetime
dimensions, there exist five Lagrangians Li, i ¼ 1, 5,
where L1 is linear in �, L2 contains the normal kinetic
term. L3 involves three �’s and four derivatives acting on
them. This Lagrangian is obtained in the decoupling limit
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of DGP. The fourth and the fifth order Lagrangians involve
four �’s and six derivatives, five �’s and seven derivatives
acting on the field, respectively. A general covariant form
of Galileon Lagrangian is obtained in Ref. [11] (see also
Ref. [12] on the related theme).

In DGP or its four-dimensional generalizations-Galileon
gravity, the effects of extra degree are suppressed using the
Vainshtein [13] mechanism, which allows us to recover
general relativity at small scales due to nonlinear interac-
tion. From this point of view, the DGP model is an attrac-
tive model, which has a self-accelerating solution, an
asymptotically de Sitter solution even in the absence of
vacuum energy. Unfortunately this solution suffers from
instabilities [14–19].

Galileon gravity can give rise to late time acceleration
and is interesting for the following reasons: (i) It is free
from negative energy instabilities. (ii) Unlike fðRÞ theo-
ries, Galileon modified gravity does not suffer from curva-
ture singularity. (iii) The chameleon mechanism in fðRÞ
might come into conflict with the equivalence principle if
the test bodies are considered as extended, whereas the
Vainshtein mechanism is free from this problem [20].

In this paper we study fourth order Galileon gravity,
including the L3 and L4 terms in the Lagrangian. We set
up Friedmann-Robertson-Walker (FRW) background dy-
namics and examine the self-accelerating solution. We
carry out detailed investigations on the stability of the
solutions and discuss the spherical symmetric solutions
to check the local suppression of the � effects. We also
investigate matter perturbations in the model under
consideration.

II. LOWEST ORDER GALILEON GRAVITYAND
ITS SELF-ACCELERATING FRW BACKGROUND

Recently, an interesting generalization of the DGP ac-
tion in four dimensions was proposed in Ref. [10]. The
authors considered a consistent general action with a self-
interacting scalar field (�) coupled. It is remarkable that
the action can be motivated by higher-dimensional consid-
erations [21]. In what follows we shall consider that the
action is invariant under Galileon transformation

�ðxÞ ! �ðxÞ þ b�x
� þ c: (1)

For the sake of simplicity, we first examine the Galileon
model in the lowest nontrivial order keeping up to third
order term L3 in the Lagrangian,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
þ c1�� c2

2
ðr�Þ2 � c3

2
ðr�Þ2h�

�

þ Sm½c m; e
2��g���: (2)

A similar expression occurs in the DGP model. The cor-
responding Einstein’s equations are

G�� ¼ TðmÞ
�� þ c1�g�� þ c2; ð�;��;� � 1

2g��ðr�Þ2Þ
þ c3ð�;��;�h�þ g���;��

;���;�

� �;�½�;��;�� þ �;��;���Þ; (3)

0 ¼ �TðmÞ þ c1 þ c2h�

þ c3ððh�Þ2 � �;���
;�� � R���;��;�Þ; (4)

where TðmÞ is the trace of the matter energy-momentum

tensor, TðmÞ
�� � �ð2= ffiffiffiffiffiffiffi�g

p Þ � �Sm=�g
��. In the spatially

flat FRW background, Eq. (4) gives rise to the following
Friedmann equation:

3H2 ¼ �m � c1�þ c2
2

_�2 � 3c3H _�3; (5)

2 _H þ 3H2 ¼ �c1�� c2
2

_�2 � c3 _�2 €�; (6)

��m ¼ c1 � c2ð3H _�þ €�Þ þ 3c3 _�ð3H2 _�þ _H _�þ2H €�Þ:
(7)

It is interesting to note that Eq. (7) exhibits a self-
accelerating solution given by

3H2 ¼ �c1�þ c2
2

_�2 � 3c3H _�3; (8)

¼ �c1�� c2
2

_�2; (9)

which means that c1 ¼ 0 (we assume _� � 0) and H4 ¼
�c32=54c

2
3. This last condition is impossible to satisfy as c2

should be positive for stability of the theory.
We therefore conclude that a stable self-accelerating

solution, in general, does not exist in third order Galileon
gravity with the ðr�Þ2h� term in the Einstein frame. It is
therefore necessary to invoke the higher order terms L4 and
L5. In the discussion, to follow, we shall demonstrate that
the desired solution can be obtained by adding the fourth
order term in the action (2). The analysis becomes cum-
bersome in the presence of the fifth order term, which
completes the Lagrangian of Galileon gravity. We have
included the corresponding discussion and results in the
Appendix.

III. GENERALIZATION TO THE NEXT HIGHER
ORDER

Let us consider the full covariant action of Galileon
gravity [10,11].

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
þ ciL

ðiÞ
�
þ Sm½c m; e

2��g���;
(10)

where fcig are constants, and the L0s
i are given by
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Lð1Þ ¼ �; (11)

Lð2Þ ¼ �1
2ðr�Þ2 � �1

2�;��
;�; (12)

Lð3Þ ¼ �1
2ðr�Þ2h�; (13)

Lð4Þ ¼ �1
2ðr�Þ2½ðh�Þ2 � �;���

;�� þ �;��;�G���
þ ðh�Þ�;��;��

;�� � �;��
;���;���

;�: (14)

Varying the action (10) with respect to � and the metric
g��, we obtained the field equation for � and Einstein

equations1

ciEðiÞ ¼ ��TðmÞ; (15)

G�� ¼ TðmÞ
�� þ ciT

ðiÞ
��; (16)

where EðiÞ ¼ ð1= ffiffiffiffiffiffiffi�g
p Þ � �SðiÞ

�� and TðiÞ
�� ¼ �ð2= ffiffiffiffiffiffiffi�g

p Þ �
�SðiÞ=�g�� with SðiÞ � R

d4x
ffiffiffiffiffiffiffi�g

p
LðiÞ, where E0s and

Tð1Þ0s
�� have the following form:

E ð1Þ ¼ 1; (17)

E ð2Þ ¼ h�; (18)

E ð3Þ ¼ ðh�Þ2 � �;���
;�� � R���;��;�; (19)

Eð4Þ ¼ 2ðh�Þ3 þ 4ð�;�
��;�

��;�
�Þ � 6ðh�Þð�;���

;��Þ
� ðh�Þð�;��

;�ÞR� 2ð�;��
;���;�ÞR

� 4ðh�Þð�;�R
���;�Þ þ 2ðr�Þ2ð�;��R

��Þ
þ 8ð�;��

;��R���
;�Þ þ 4ð�;��;��;��R

����Þ; (20)

Tð1Þ
�� ¼ �g��; (21)

Tð2Þ
�� ¼ �;��;� � 1

2g��ðr�Þ2; (22)

Tð3Þ
�� ¼ �;��;�h�þ g���;��

;���;�

� �;�½�;��;�� þ �;��;���; (23)

Tð4Þ
�� ¼ �4ðh�Þ�;�½�;��;�� þ �;��;��� þ 2ðh�Þ2ð�;��;�Þ � 2ðh�Þðr�Þ2ð�;��Þ � 4ð�;��

;���;�Þð�;��Þ
þ 4ð�;��;��Þð�;��;��Þ � 2ð�;���

;��Þð�;��;�Þ þ 2ðr�Þ2ð�;�
;��;��Þ þ 4�;��

;��½�;���;� þ �;���;��
þ ðh�Þ2ðr�Þ2g�� þ 4ðh�Þð�;��

;���;�Þg�� � 4ð�;��
;���;���

;�Þg�� � ðr�Þ2ð�;���
;��Þg��

� ðr�Þ2ð�;��;�ÞRþ 1
4ðr�Þ4g��Rþ 2ðr�Þ2�;�½R���;� þ R���;�� � 1

2ðr�Þ4R�� � 2ðr�Þ2ð�;�R
���;�Þg��

þ 2ðr�Þ2ð�;��;�R����Þ: (24)

It may be instructive to define the effective energy density and pressure for � matter. Indeed, for each ðiÞ,

r�TðiÞ
�� ¼ �;�EðiÞ; (25)

which allows us to write the equation of conservation

r�TðmÞ
�� ¼ �TðmÞ�;�: (26)

For each ðiÞ, assuming the perfect fluid form, we can express the field energy-momentum tensor as, TðiÞ
�� ¼ ð�ðiÞ þ

PðiÞÞu�u� þ PðiÞg�� with u� � ��
�;�ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr�Þ2

p and � ¼ signð�;0Þ. The corresponding expressions for �i and Pi have the

following form:

�ð1Þ ¼ ��; Pð1Þ ¼ �; �ð2Þ ¼ �1
2ðr�Þ2; Pð2Þ ¼ �1

2ðr�Þ2;
�ð3Þ ¼ �;��

;���;� � ðr�Þ2h�; Pð3Þ ¼ �;��
;���;�;

�ð4Þ ¼ 6h��;��
;���;� � 3ðh�Þ2ðr�Þ2 þ 3ðr�Þ2 þ 3

4Rðr�Þ4 � 3
4ðr�Þ2�;�R���

;� � 2�;��;��;��;�R����

� 6�;��
;�p�;���

;�;

Pð4Þ ¼ ðh�Þ2ðr�Þ2 þ 4h�;��
;���;� � 4�;��

;���;���
;� � ðr�Þ2�;���

;�� þ 1
4Rðr�Þ4 � 2ðr�Þ2�;�Rp��

;�:

1We have Tð4Þ
�� ¼ �T0ð4Þ

�� and Eð4Þ ¼ � 1
2 E

0ð4Þ compared to [11].
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In the following section, we shall analyze the back-
ground solution of the fourth order theory.

IV. BACKGROUND DYNAMICS

Assuming a spatially flat background, we obtain evolu-
tion equations of the fourth order Galileon cosmology,

3H2 ¼ �m þ c2
2

_�2 � 3c3H _�3 þ 45

2
c4H

2 _�4; (27)

2 _H þ 3H2 ¼ � c2
2

_�2 � c3 _�2 €�

þ 3

2
c4 _�3ð3H2 _�þ 2 _H _�þ8H €�Þ; (28)

��m ¼ �c2ð3H _�þ €�Þ þ 3c3 _�ð3H2 _�þ _H _�þ2H €�Þ
� 18c4H _�2ð3H2 _�þ 2 _H _�þ3H €�Þ; (29)

where we have assumed, c1 ¼ 0 as we do not want include
the cosmological constant explicitly. In this case, the con-
servation has standard form in presence of coupling �

_�m þ 3H�m ¼ ��m _�: (30)

We may also define the total energy density and pressure
for the scalar field �

�� ¼ c2
2

_�2 � 3c3H _�3 þ 45

2
c4H

2 _�4; (31)

P� ¼ c2
2

_�2 þ c3 _�2 €�� 3

2
c4 _�3ð3H2 _�þ 2 _H _�þ8H €�Þ;

(32)

which can be used to check for the total equation of state
parameter w� ¼ P�=��. In the next section, we discuss
the self-accelerating solution of Galileon cosmology.

V. SELF-ACCELERATING SOLUTION

A self-accelerating solution is characterized by �m ¼ 0
and H � H0 ¼ Cst.

In this case, using Eq. (27), we find that _� � _�0 ¼ Cst

and

H0 _��
0 ¼ c3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 � 8c2c4

q
12c4

; (33)

48H2
0 ¼ ð _��

0 Þ2A�; (34)

with A� ¼ c2
3
�12c2c4�c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
3
�8c2c4

p
c4

.

The existence of the self-accelerating solution then im-
plies the following conditions on constants c1, c2, c3, and
c4:

c23 � 8c2c4 > 0; (35)

Aþ > 0 or A� > 0: (36)

It is not difficult to check the stability of the solution. Let
us consider the perturbation of the two self-accelerating
solutions,

H ¼ H0 þ �H; _� ¼ _�0 þ � _�: (37)

It can easily be checked that _�H ¼ �3H0�H, which
means that the self-accelerating solutions are stable.

VI. SPHERICALLY SYMMETRIC SOLUTION

We shall now be interested in the spherically symmetric
static solution. We consider a static pointlike source of

mass M, located at the origin: TðmÞ ¼ �M�3ð ~xÞ and look
for a spherically symmetric static solution for the field�ðrÞ
described by the following differential equation:

c2
r2

d

dr
½r2�0ðrÞ� þ 2

c3
r2

d

dr
½r�0ðrÞ2� þ 4

c4
r2

d

dr
½�0ðrÞ3�

¼ �M�3ð ~xÞ: (38)

Integration of Eq. (38) gives the following relation:

c2

�
�0ðrÞ
r

�
þ 2c3

�
�0ðrÞ
r

�
2 þ 4c4

�
�0ðrÞ
r

�
3 ¼ �

rs
r3

; (39)

where rs is the Schwarzschild radius of the source.
The conditions of existence of the solution are derived

following Ref. [10]:
if �> 0 ) signðc2Þ ¼ signðc4Þ and c3 >� ffiffiffiffiffiffiffiffiffiffiffiffi

3c2c4
p

which means that c3 >
ffiffiffiffiffiffiffiffiffiffiffiffi
8c2c4

p
in case of the condition

(35) is considered.
if �< 0 ) signðc2Þ ¼ signðc4Þ and c3 <

ffiffiffiffiffiffiffiffiffiffiffiffi
3c2c4

p
which

means that c3 <� ffiffiffiffiffiffiffiffiffiffiffiffi
8c2c4

p
in case of the condition (35) is

considered.
In the case of �< 0, at short distances, the solution is

not analytic in the neighborhood of r ¼ 0, and we shall not
consider this case any further.
Whereas for �> 0,

�0ðrÞ ¼ ðc24rs�Þ1=3
22=3c4

: (40)

Then the Galileon-mediated force is suppressed com-
pared to the gravitational force:

F�

Fgrav
¼

�
r

r?

�
2 � 1; with r3? ¼

�jc4j
2�

�
1=2

rs: (41)

At large distances, we have

F�

Fgrav
¼ 2

�

c2
: (42)

If � ’ c2, the Galileon field can lead to the late time
acceleration of the Universe.
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VII. STABILITY

In order to study the stability of the aforesaid static
solutions, we perturb the scalar field �: � ! �þ	 in a
fixed metric g��. We have neglected the perturbations of

the metric induced by the perturbations of the scalar field
	; the method is referred to as the test field approximation.

In order to proceed with the test field approximation, let
us rewrite the quadratic term in 	 in the action

S 	 ¼
Z ffiffiffiffiffiffiffi�g

p
d4xciZ

��
ðiÞ 	;�	;�; (43)

with

Z��
ð1Þ ¼ 0; (44)

Z
��
ð2Þ ¼ �1

2g
��; (45)

Z��
ð3Þ ¼ �;�� � g��h�; (46)

Z��
ð4Þ ¼ �2�;�R���;� � 2�;�R���;� � R��ðr�Þ2

þ R�;��;� þ 6h��;�� � 6�;���;�
�

þ 2R�����;��;�; (47)

þg��ð3�;���
;�� � 3ðh�Þ2 þ 2R���

;��;� þ 1
2Rðr�Þ2Þ:

(48)

The equation of motion for perturbations that follow
from action (43) is

� 2ciZ
��
ðiÞ 	;�� � 2ciZ��

;�	;� þ 8�2	TðmÞ ¼ 0; (49)

which we shall use in the subsequent sections.

A. Cauchy problem

Following the theorem due to Leray [22], the scalar field
	 propagates causally in the effective metric G��

eff ¼
�2ciZ

��
ðiÞ if spacetime ðM; G

��
eff Þ is globally hyperbolic.

A necessary condition but not sufficient is the requirement
of the hyperbolicity of Eq. (49) that is a Lorentzian sig-
nature of the effective metric G

��
eff .

For the static spherical solution, the hyperbolicity is
defined by

c2 þ 2c3ð2�0=rþ �00Þ þ 12c4ð�0=rþ 2�00Þ�0=r > 0;

(50)

c2 þ 4c3�
0=rþ 12c4ð�0=rÞ2 > 0; (51)

c2 þ 2c3ð�0=rþ �00Þ þ 12c4�
00�0=r > 0: (52)

At large distances, we obtain the following conditions:

c2 � 36�2 c4
c22

r2s
r6

> 0; (53)

c2 þ 4�
c3
c2

rs
r3

> 0; (54)

c2 � 2�
c3
c2

rs
r3

> 0; (55)

which reduce to c2 > 0 at very large scales.
At small distances, we need to impose the conditions,

c4 > 0 and c3 > 0.
For the de Sitter phase, the hyperbolicity is defined by

G00
eff ¼ �1

4ðA� þ 4c2Þ< 0; (56)

a2G11
eff ¼ 1

36ðA� � 4c2Þ> 0; (57)

which implies that A� > 4c2.
We should however emphasize that this solution is de-

rived when the scalar field is dominant (de Sitter phase);
therefore, any small perturbation of the scalar field leads to
a perturbation of the metric, and the test field approxima-
tion is then no longer true.

B. Hamiltonian approach

An alternative way to study the stability is related to the
positive definiteness of Hamiltonian of the underlying
theory. In a locally inertial frame, the Hamiltonian is

H ¼ �1
2G

00
eff

_	2 þ 1
2G

kl
eff	;k	;l: (58)

The condition of hyperbolicity of Eq. (49) is sufficient
for the Hamiltonian to be bounded from below. The con-
dition of hyperbolicity imposes an important restriction on
sound speed, which we consider next.

C. Speed of sound

From Eq. (49), it is obvious to define the ‘‘sound of
speed’’ c2s ; the condition of hyperbolicity of the equation
restricts cs to real values c

2
s > 0. It is straightforward to see

that the condition of cs to be real, restricts the signature of
the effective metric to ð�;þ;þ;þÞ or ðþ;�;�;�Þ.
However, if we also impose the positivity of the

Hamiltonian, we have to consider the effective metric
with the same signature as that of the original metric
g��, which is ð�;þ;þ;þÞ, in our case. This condition

for non-superluminal behavior of the scalar field 	 is ex-
pressed by c2s < 1.
In the case of the de Sitter phase, it is trivial to see that

c2s ¼ A��4c2
9ðA�þ4c2Þ < 1 [because of the conditions of stability of

the theory (c2 > 0 and A� > 0)]. But the problem is more
delicate for the spherically symmetric solution. Indeed,
Eq. (49) can be rewritten as

G00
eff

€	þG11
eff@

2
r	þG22

effr
2@2�	þ first derivatives of	

þ . . . ¼ 0; (59)

where @2� is the angular part of the Laplacian.
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Therefore, we can define the speed of radial and angular
excitations as follows:

c2r ¼ �G11
eff

G00
eff

¼ c2 þ 4c3�
0=rþ 12c4�

02=r2

c2 þ 2c3ð2�0=rþ �00Þ þ 12c4ð�02=r2 þ 2�00�0=rÞ ;
(60)

c2� ¼ � r2G22
eff

G00
eff

¼ c2 þ 2c3ð�0=rþ �00Þ þ 12c4�
00�0=r

c2 þ 2c3ð2�0=rþ �00Þ þ 12c4ð�02=r2 þ 2�00�0=rÞ ;
(61)

which at large distances gives rise to

c2r � 1þ 4�
c3
c22

rs
r3

; (62)

c2� � 1� 2�
c3
c22

rs
r3

; (63)

whereas, for small distances, we find

c2r ¼ 1; (64)

c2� � c3
6c4

r

�0 : (65)

It is clear that at large distances, we have a superluminal
behavior (c2r > 1) of the scalar field 	 for the static spheri-
cally solution, but this behavior is physically possible if the
theory does not have closed causal curves (CCCs), which
leads to paradoxes [22,23]. It is known that if a spacetime is
stably causal, it does not possesses CCCs, which means
that a global time can be defined. This is the case if we can
define a global time for the two metrics g�� and G��.

For the static spherically symmetric solution, we will
consider the Minkowsky time 
��r�tr�t ¼ �1.

Then

G��
effr�tr�t ¼ �c2 � 2c3ð2�0=rþ �00Þ

� 12c4ð�0=rþ 2�00Þ�0=r: (66)

Equation (66), at large distances, reduces to

G
��
effr�tr�t ¼ �c2 þ 36�2 c4

c22

r2s
r6

; (67)

which is negative iff r6 > 36�2r2sc4=c
3
2.

If this condition is satisfied, then the spacetime ðM;Geff
��Þ

is stably causal, which means that no closed timelike
curves exist. We should emphasize that this condition is
satisfied if Eq. (49) is hyperbolic.

VIII. METRIC PERTURBATIONS

Let us consider the perturbed Friedmann-Lemaı̂tre-
Robertson-Walker spacetime with scalar metric perturba-
tions in the longitudinal gauge

ds2 ¼ �ð1þ 2	Þdt2 þ a2ð1� 2c Þdx2: (68)

The linear matter perturbations �m on super horizon
scales satisfy the evolution equation similar to the one in
Einstein gravity

€�m þ 2H _�m �Geff

2
�m�m ¼ 0; (69)

with the modified Newtonian constant,

Geff ¼ 1þ 2ðc3 _�2 þ 2�Þ2 þ c4N4

4c2 � 2c23 _�4 � 16c3H _�� 8c3 €�þ c4D4

;

(70)

where N4 and D4 are given by

N4 ¼ 14c2 _�4 þ c23 _�8 � 88c3H _�5 þ 4c3� _�6 þ 20c3 _�4 €�� 64H� _�3 � 24�2 _�4 þ 96� _�2 €�

þ c4ð�9c2 _�8 � 12c3H _�9 � 54c3 _�8 €�þ 492H2 _�6 � 96H� _�7 � 48H _�5 €�þ 168 _H _�6 þ 18�2 _�8 � 144� _�6 €�

þ 288 _�4 €�2Þ þ c24ð18ð11H2 � 6 _HÞ _�10 þ 648H _�9 €�Þ; (71)

D4 ¼ �12c2 _�4 � c23 _�8 þ 80c3H _�5 � 24c3 _�4 €�þ 8ð13H2 þ 6 _HÞ _�2 þ 96H _� €�

þ c4ð9c2 _�8 þ 12c3H _�9 þ 54c3 _�8 €�� 24ð17H2 þ 6 _HÞ _�6 þ 288H _�5 €�Þ þ c24ð18ð6 _H� 11H2Þ _�10 � 648H _�9 €�Þ:
(72)

The study of generic models of modified gravity shows that there is a characteristic signature in the growth function

f ¼ d ln�m

d lna , which can allow us to distinguish these models from �CDM and other dynamical dark energy models within

the framework of Einstein gravity. We expect similar features in Galileon gravity. We shall address this important issue in
our future work.
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IX. CONCLUSION

In this paper, we have investigated Galileon gravity in its
general form. The model consists of an effective field �
Lagrangian consisting of five terms

P
5
1 ciL

i added to the

Einstein-Hilbert action such that the field equations are of
second order. In spatially flat FRW background, we set up
the evolutions equations in the model and examine the
existence and stability of self-accelerating solutions. We
point out that these solutions, in general ( _� � 0), are not
stable in the third order Galileon theory. We extend the
analysis to the fourth and fifth order theory. In fourth order
theory, self-accelerating solutions exist provided that c23 �
8c2c4 > 0 and Aþ > 0 or A� > 0. We show that there is at
least one stable self-accelerating solution in this case. The
analysis is cumbersome in the case of the fifth order theory,
and we have included the corresponding results in the
Appendix. The conclusions reached in the fourth order
Galileon theory are shown to hold in general. In the case
of the spherically symmetric static solution, we find that
the solution exists provided that c3 >

ffiffiffiffiffiffiffiffiffiffiffiffi
8c2c4

p
. The solution

is stable, and the fifth force can lead to the acceleration of
the Universe if we assume � ’ c2 and c4 > 0. We find as
expected that the Galileon force mediated by the scalar
field � is negligibly small at small scales, because of the
nonlinear terms in the Lagrangian. However, the fifth force
is of the order of the gravitational force at large scales in
the case of, � ’ c2.

Subsequently, we investigated the stability issues asso-
ciated with the spherically symmetric solution. Using the

fixed background method, we found superluminal behavior
of perturbations as was noticed in [10]. It is really interest-
ing that despite the superluminal behavior, there exist static
solutions that do not possess any closed causal curve
allowing to avoid paradoxes related to microcausality and
making the solution physically acceptable. The model has
a well-posed Cauchy problem and no closed causal curves
exist in this model even if we have a superluminal behavior
of the perturbation of the scalar field in the static spheri-
cally symmetric situation at large distances.
We have included a brief discussion on the metric per-

turbations and have set up the evolution equation for linear
matter perturbation in the Galileon gravity. In our opinion,

it is important to study the growth function f ¼ d ln�m

d lna ,

which can provide a discriminating signature of Galileon
gravity; we defer this analysis to our future work.
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APPENDIX: THE FULL LAGRANGIAN OF
GALILEON GRAVITY—EXTENSION OF THE
MODEL TO THE FIFTH ORDER TERM, Lð5Þ

We consider the term Lð5Þ derived in [11]

Lð5Þ ¼ �1
2ðr�Þ2½ðh�Þ3 � 3ðh�Þð�;���

;��Þ þ 2ð�;�
��;�

��;�
�Þ � 3ð�;��;��;��R

����Þ � 18ð�;��
;��R���

;�Þ

þ 3ðh�Þð�;�R
���;�Þ þ 15

2 ðr�Þ2ð�;��
;���;�ÞR

�
þ 3½�;��

;���;���
;���;� � ðh�Þð�;��

;���;���
;�Þ�

þ 3
2½ðh�Þ2ð�;��

;���;�Þ � ð�;���
;��Þð�;��

;���;�Þ�; (A1)

then Eqs. (15) and (16) are modified by

Eð5Þ ¼ 5
2ðh�Þ4 � 15ðh�Þ2ð�;���

;��Þ� 15
4 ðh�Þ2ðr�Þ2R� 15

2 ðh�Þ2ð�;�R
���;�Þþ 20ðh�Þð�;�

��;�
��;�

�Þ
� 15

2 ðh�Þð�;��
;���;�ÞRþ 15ðh�Þðr�Þ2ð�;��R

��Þþ 30ðh�Þð�;��
;��R���

;�Þþ 15ðh�Þð�;��;��;��R
����Þ

þ 15
2 ð�;���

;��Þ2 � 15ð�;���
;���;���

;��Þþ 15
4 ðr�Þ2ð�;���

;��ÞRþ 15
2 ð�;��

;���;���
;�ÞR

þ 15
2 ð�;���

;��Þð�;�R
���;�Þþ 15ð�;��

;���;�Þð�;��R
��Þ� 15ðr�Þ2ð�;�

�R�
��;�

�Þ� 30ð�;��
;���;��R

���;�Þ
� 15ð�;��

;��R���
;���;�Þ� 15

2 ðr�Þ2ð�;���;��R
����Þ� 15ð�;��;��;���

;�
�R

����Þþ 30ð�;��
;�
��;���;�R

����Þ
þ 15

4 ðr�Þ2ð�;�R
���;�ÞR� 15

2 ðr�Þ2ð�;�R
��R���

;�Þ� 15
2 ðr�Þ2ð�;��;�R��R

����Þþ 15
4 ðr�Þ2ð�;��;�R

�
���R

����Þ;
(A2)
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Tð5Þ
�� ¼ 5

2ðh�Þ3ð�;��;�Þ þ 5
2ðh�Þ3ðr�Þ2g�� � 15

2 ðh�Þ2ðr�Þ2ð�;��Þ � 15
2 ðh�Þ2�;�½�;���;� þ �;���;��

þ 15
2 ðh�Þ2ð�;��

;���;�Þg�� þ 15ðh�Þðr�Þ2ð�;���
;�

�Þ � 15ðh�Þð�;��
;���;�Þð�;��Þ

� 15
2 ðh�Þð�;���

;��Þð�;��;�Þ þ 15ðh�Þð�;��;��Þð�;��;��Þ þ 15ðh�Þ�;��
;��½�;���;� þ �;���;��

� 15
2 ðh�Þðr�Þ2ð�;���

;��Þg�� � 15ðh�Þð�;��
;���;���

;�Þg�� � 15
4 ðh�Þðr�Þ2ð�;��;�ÞR

þ 15
2 ðh�Þðr�Þ2�;�½R���;� þ R���;�� � 15

2 ðh�Þðr�Þ2ð�;�R
���;�Þg�� þ 15

2 ðh�Þðr�Þ2ð�;��;�R����Þ
þ 15

2 ðr�Þ2ð�;���
;��Þð�;��Þ � 15ðr�Þ2ð�;���

;���;��Þ þ 15ð�;��
;���;�Þð�;���

;�
�Þ

þ 15ð�;��
;���;���

;�Þð�;��Þ þ 5ð�;�
��;�

��;�
�Þð�;��;�Þ þ 15

2 ð�;���
;��Þ�;�½�;���;� þ �;���;��

� 15�;��;���
;��½�;���;� þ �;���;�� � 15�;��

;���;�½�;���;�� þ �;���;��� þ 5ðr�Þ2ð�;�
��;�

��;�
�Þg��

� 15
2 ð�;��

;���;�Þð�;���
;��Þg�� þ 15ð�;��

;���;���
;���;�Þg�� þ 15

4 ðr�Þ2�;�½�;���;� þ �;���;��R
� 15

4 ðr�Þ2ð�;��
;���;�ÞRg�� þ 15

2 ðr�Þ2ð�;��
;���;�ÞR�� þ 15

2 ðr�Þ2ð�;�R
���;�Þð�;��Þ

þ 15
2 ðr�Þ2ð�;��R

��Þð�;��;�Þ � 15
2 ðr�Þ2�;��

;��½R���;� þ R���;�� � 15
2 ðr�Þ2�;��;�½R���;�� þ R���;���

� 15
2 ðr�Þ2�;�R

��½�;���;� þ �;���;�� þ 15ðr�Þ2ð�;��
;��R���

;�Þg��

� 15
2 ðr�Þ2�;��;��½R�����;� þ R�����;�� þ 15

2 ðr�Þ2�;��;�½R�����
;�
� þ R�����

;�
��

� 15
2 ðr�Þ2�;��

;���;�½R���� þ R����� þ 15
2 ðr�Þ2ð�;��;��;��R

����Þg��: (A3)

The Friedmann equations for this model are

3H2 ¼ �m þ c2
2

_�2 � 3c3H _�3 þ 45

2
c4H

2 _�4

� 105

2
c5H

3 _�5; (A4)

2 _H þ 3H2 ¼ � c2
2

_�2 � c3 _�2 €�

þ 3

2
c4 _�3ð3H2 _�þ 2 _H _�þ8H €�Þ

� 15

2
c5H _�4ð2H2 _�þ 2 _H _�þ5H €�Þ; (A5)

��m ¼ �c2ð3H _�þ €�Þ þ 3c3 _�ð3H2 _�þ _H _�þ2H €�Þ
� 18c4H _�2ð3H2 _�þ 2 _H _�þ3H €�Þ
þ 75

2 c5H
2 _�3ð3H2 _�þ 3 _H _�þ4H €�Þ : (A6)

Therefore, the self-accelerating solution exists if there is
a real solution of the equation

c2 � 3c3Xþ 18c4X
2 � 75

2 c5X
3 ¼ 0; (A7)

c2 � 9c4X
2 þ 30c5X

3 < 0; with X ¼ H0 _�0: (A8)

If we have a solution of this system, the self-accelerating
solution is therefore stable. In fact, if we consider a per-
turbation of the self-accelerating solution H ¼ H0 þ �H

and _� ¼ _�0 þ � _�, it is straightforward to see that, _�H ¼
�3H0�H.
We found that the spherical symmetric solution is not

modified by the fifth term as it was noticed in Ref. [10].
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