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Extreme and very-near-extreme spin J Kerr black holes have been conjectured to be holographically

dual to two-dimensional (2D) conformal field theories (CFTs) with left and right central charges cL ¼
cR ¼ 12J. In this paper it is observed that the 2D conformal symmetry of the scalar wave equation at low

frequencies persists for generic nonextreme values of the mass M �
ffiffiffi
J

p
. Interestingly, this conformal

symmetry is not derived from a conformal symmetry of the spacetime geometry except in the extreme

limit. The 2� periodic identification of the azimuthal angle � is shown to correspond to a spontaneous

breaking of the conformal symmetry by left and right temperatures TL ¼ M2=2�J and TR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2

p
=2�J. The well-known low-frequency scalar-Kerr scattering amplitudes coincide with corre-

lators of a 2D CFT at these temperatures. Moreover, the CFT microstate degeneracy inferred from the

Cardy formula agrees exactly with the Bekenstein-Hawking area law for all M and J. These observations

provide evidence for the conjecture that the Kerr black hole is dual to a cL ¼ cR ¼ 12J 2D CFT at

temperatures (TL; TR) for every value of M and J.

DOI: 10.1103/PhysRevD.82.024008 PACS numbers: 04.70.Dy, 04.70.Bw

I. INTRODUCTION

An extreme Kerr black hole with mass M and angular
momentum J ¼ M2 has a near-horizon scaling region,
known as the Near-Horizon Extreme Kerr (NHEK) geome-
try, which has an enhanced SLð2; RÞ �Uð1Þ isometry
group [1]. Recently, it has been shown [2–4] from an
analysis of the NHEK boundary conditions that the canoni-
cally conserved charges associated with the nontrivial
diffeomorphisms of the NHEK region form two copies of
the two-dimensional Virasoro algebra. The central charges
were computed to be cL ¼ cR ¼ 12J. This motivated the
conjecture [2] that the extreme Kerr black hole is dual to a
two-dimensional conformal field theory (CFT). The con-
jecture was supported by the facts that, at and very near
extremality, the Cardy CFT microstate degeneracy pre-
cisely matches the Bekenstein-Hawking entropy and the
finite temperature CFT correlators precisely match the
Kerr scattering amplitudes. Other tests of the Kerr/CFT
conjecture and its generalizations, all successful, appear in
[5–8].

If the conjecture is correct, finite excitations of the CFT
are expected to correspond to generic nonextremal Kerr
black holes. However, all attempts so far to understand
Kerr black holes in this manner a finite distance from the
extreme limit have run into obstacles. The problem is that
away from the extreme limit, the NHEK geometry disap-
pears and the near-horizon geometry is just Rindler space.
We know of no clear way to associate a conformal field
theory to Rindler space. Put another way, the backreaction
of a finite energy excitation on the geometry appears to
destroy the conformal symmetry. This is closely related to
the AdS2 fragmentation problem discussed in [9].

The key observation of the present paper, which enables
us to circumvent this obstacle, is that a near-horizon ge-
ometry (such as NHEK or AdS3) with a conformal sym-
metry group is not a necessary condition for the
interactions to exhibit conformal invariance. For scattering
amplitudes, a sufficient condition is that the solution space
of the wave equation for the propagating field has a con-
formal symmetry. Such a symmetry is guaranteed if the
space on which the field propagates has the symmetry.
However, we will see that it can and does happen that the
solution space has the requisite conformal symmetry even
when the space on which the field propagates does not.
While we will see this conformal symmetry emerge in

detail in the text, it is possible to understand heuristically
why this occurs. At low frequencies ! � 1

M , the wave

equation can be solved with a matching procedure which
divides the geometry into a near region r � 1

! and a far

region r � M which have a large overlap. The solution of
the full wave equation is obtained by matching the inner
part of the far region solution with the outer part of the
near-region solution along a matching surface rMðt; �Þ. In
order for the matching procedure to be consistent, the final
result cannot depend on the arbitrary choice of the match-
ing surface rM. This requires that the amplitudes in each
region have a symmetry under arbitrary local changes of
rM. Changing rM changes the redshift factor at the match-
ing surface, and so is a local change in scale. It is thus
perhaps not surprising that this system has a local two-
dimensional (2D) conformal symmetry. For the case
of extreme Kerr, or for the Bogomol’nyi-Prasad-
Sommerfeld black holes studied in string theory, the near
region turns out—for special reasons—to be equivalent to
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the near-horizon region and the conformal symmetry of the
wave equation is lifted from the conformal symmetry of
the geometry. In the generic case, this is not so. The near
region goes out to values of r � 1

! with r � M and so

essentially includes the entire asymptotically flat
spacetime.

The conformal symmetry we find acts locally on the
solution space, but is globally obstructed by periodic iden-
tification of the azimuthal angle �. We argue that this
spontaneous breaking of the conformal group is precisely
of the form produced by finite left and right temperatures

TL ¼ M2=2�J and TR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2

p
=2�J in a 2D CFT.

This suggestion is corroborated by the demonstration that
the known [10] near-region scattering amplitudes com-
puted in the 1970s are indeed of the form required by
conformal invariance for a finite temperature 2D CFT.
Moreover, using the temperatures (TL; TR) and the values
of the central charge cL ¼ cR ¼ 12J previously computed
at extremality one can apply the Cardy formula to count the
number of states. This precisely reproduces Bekenstein-
Hawking Area law for the black hole entropy:

Smicro

�2

3
ðcLTL þ cRTRÞ ¼ 2�ðM2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2

p
Þ

¼ Area

4
: (1)

These results all support the Kerr/CFT conjecture for
general J and M.1

We wish to warn the reader that we have not, in this
paper, provided a systematic derivation or even argument
from some set of assumptions that a generic Kerr black
hole is dual to a 2D CFT. In past examples such derivations
have proceeded from an analysis of the asymptotic sym-
metry group of the geometry [2–4,12,13], or from a scaling
limit of string theory [14]. Since the conformal symmetries
here are not symmetries of the spacetime geometry, and we
are not embedding in string theory, these approaches can
not work.2 In the absence of a systematic approach we have
patched together, and provided evidence for, a picture with
what strikes us as a remarkable cohesiveness. However,
holes in the picture remain and we hope to have inspired
the reader to fill them in.

This paper is organized as follows. In Sec. II we review
the massless scalar wave equation in the Kerr background.
In Sec. III we describe the near region where the behavior
of this wave equations simplifies. In Sec. IV we locally
construct six vector fields with an SLð2; RÞ � SLð2; RÞ Lie
bracket algebra, show that their Casimir is precisely the
near-region scalar wave equation, and identify them as
generators of a conformal symmetry spontaneously broken
down to Uð1Þ �Uð1Þ by the 2� identification of the azi-
muthal angle. A dual CFT interpretation is proposed in
Sec. V, which allows us to compute the left and right CFT
temperatures and hence the microscopic entropy using a
Cardy formula. In Sec. VI we provide further evidence for
the proposed generalized Kerr/CFT correspondence by
showing that the scattering amplitudes in the near region
agree with those of a finite temperature 2D CFT.

II. MASSLESS SCALAR WAVE EQUATION

In this section we describe the classical wave equation
for a massless scalar on the geometry of a Kerr black hole
with generic massM and angular momentum J ¼ Ma. We
use the familiar Boyer-Lindquist coordinates

ds2 ¼ �2

�
dr2 � �

�2
ðdt� asin2�d�Þ2 þ �2d�2

þ sin2�

�2
ððr2 þ a2Þd�� adtÞ2; (2)

where � and �2 are given by

� ¼ r2 þ a2 � 2Mr; �2 ¼ r2 þ a2cos2�: (3)

The inner and outer horizons are located at

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (4)

The Klein-Gordon equation for a massless scalar is

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 0: (5)

Expanding in eigenmodes

�ðt; r; �; �Þ ¼ e�i!tþim��ðr; �Þ; (6)

and using (2), Eq. (5) becomes

@rð�@r�Þ þ ð2Mrþ!� amÞ2
ðr� rþÞðrþ � r�Þ�

� ð2Mr�!� amÞ2
ðr� r�Þðrþ � r�Þ�

þ ðr2 þ a2cos2�þ 2Mðrþ 2MÞÞ!2�þrS2� ¼ 0:

(7)

Famously [15], this equation (as well as its higher spin and
fermionic cousins [16–18]) can be separated. Writing

�ðr; �Þ ¼ RðrÞSð�Þ; (8)

1As mentioned in [2] for extreme Kerr, there may be an
underlying ‘‘long string’’ interpretation [11] involving the
J-fold cover of the CFT circle. The long string has cR ¼ cL ¼
12 and the temperatures and charges are rescaled by a factor of J.
We will not reiterate here the issues surrounding the long string
picture but wish to note that it also has appealing features for the
case of general M and J considered here.

2Clearly, a new approach is needed. Perhaps there is a general-
ization of the notion of an asymptotic symmetry group of a
dynamical system which does not insist that the symmetries are
purely geometric and allows for the more general realization of
conformal symmetry discussed here.
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we have�
1

sin�
@�ðsin�@�Þ � m2

sin2�
þ!2a2cos2�

�
Sð�Þ

¼ �K‘Sð�Þ; (9)

and�
@r�@r þ ð2Mrþ!� amÞ2

ðr� rþÞðrþ � r�Þ �
ð2Mr�!� amÞ2
ðr� r�Þðrþ � r�Þ

þ ðr2 þ 2Mðrþ 2MÞÞ!2

�
RðrÞ ¼ K‘RðrÞ: (10)

Both equations are solved by Heun functions and the
separation constants K‘ are the eigenvalues on a sphere.
The Heun functions are not among the usual special func-
tions and the K‘ are known only numerically.

III. THE NEAR REGION

We start by asking whether it is possible to find a range
of parameters where the order !2 terms in the last line of
(7) can be neglected; in this case, as we will see below, the
wave equation simplifies considerably. We see from (7)
that this occurs when the wavelength of the scalar excita-
tion is large compared to the radius of curvature

!M � 1: (11)

In this case the geometry can be divided into two regions

r � 1

!
“NEAR; ” (12)

r � M “FAR; ” (13)

which have significant overlap in the matching region

M � r � 1

!
“MATCHING:” (14)

The wave equations in the near and far regions can be
solved in terms of familiar special functions, and a full
solution is obtained by matching near and far solutions
together along a surface in the matching region.

We note that the near region defined above is not the
same as the oft-discussed ‘‘near-horizon’’ region of the
geometry defined by r� rþ � M. Indeed, for sufficiently
small !, the value of r in the near region defined by (12)
can be arbitrarily large. For a generic nonextreme Kerr, the
near-horizon geometry is just Rindler space, while the
structure of the near region is more complicated.

We view the far region as an asymptotic region where
the scattering experiments are set up. The black hole is
thought of as encompassing the whole ‘‘near’’ region.
Waves are sent from the far region into the matching
region, which is the interface for interactions with the
black hole. We will see that the behavior of these incident
waves in the near region has conformal symmetry. This
conformal invariance results form the freedom to locally

choose the radius of the matching surface within the
matching region.
In the near region, the angular Eq. (11) reduces to the

standard Laplacian on the 2-sphere�
1

sin�
@�ðsin�@�Þ � m2

sin2�

�
Sð�Þ ¼ �K‘Sð�Þ; (15)

with ‘ ¼ �m; . . . ; m. The solutions eim�Sð�Þ are spherical
harmonics, and the separation constants are K‘ ¼ ‘ð‘þ
1Þ. The radial wave equation in the limit (11) becomes3�
@r�@r þ ð2Mrþ!� amÞ2

ðr� rþÞðrþ � r�Þ �
ð2Mr�!� amÞ2
ðr� r�Þðrþ � r�Þ

�
RðrÞ

¼ ‘ð‘þ 1ÞRðrÞ: (16)

The above equation is solved by hypergeometric functions.
As hypergeometric functions transform in representations
of SLð2; RÞ, this suggests the existence of a hidden confor-
mal symmetry. This is the subject of the next section.

IV. SLð2; RÞL � SLð2; RÞR
In this section we will describe the SLð2; RÞL �

SLð2; RÞR symmetry of the near-region scalar field equa-
tion. For this purpose it is convenient to adapt ‘‘conformal’’
coordinates (w�; y) defined in terms of (t; r; �) by

wþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ
r� r�

s
e2�TR�; w� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ
r� r�

s
e2�TL��ðt=2MÞ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ � r�
r� r�

s
e�ðTLþTRÞ��ðt=4MÞ; (17)

where

TR � rþ � r�
4�a

; TL � rþ þ r�
4�a

: (18)

Next, we define locally the vector fields

H1 ¼ i@þ; H0 ¼ iðwþ@þ þ 1
2y@yÞ;

H�1 ¼ iðwþ2@þ þ wþy@y � y2@�Þ;
(19)

and

�H 1 ¼ i@�; �H0 ¼ iðw�@� þ 1
2y@yÞ;

�H�1 ¼ iðw�2@� þ w�y@y � y2@þÞ:
(20)

These obey the SLð2; RÞ Lie bracket algebra,
½H0; H�1� ¼ �iH�1; ½H�1; H1� ¼ �2iH0; (21)

and similarly for ( �H0; �H�1). The SLð2; RÞ quadratic
Casimir is

3When m � 0 in certain regions of r and/or in the black hole
parameter space (M; J), it is possible to drop in addition the !
terms in the numerators of the poles in this expression. See
Sec. VIB for further discussion.
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H 2 ¼ �H 2 ¼ �H2
0 þ 1

2ðH1H�1 þH�1H1Þ
¼ 1

4ðy2@2y � y@yÞ þ y2@þ@�: (22)

In terms of the (t; r; �) coordinates, the vector fields are

H1 ¼ ie�2�TR�

�
�1=2@r þ 1

2�TR

r�M

�1=2
@�

þ 2TL

TR

Mr� a2

�1=2
@t

�
;

H0 ¼ i

2�TR

@� þ 2iM
TL

TR

@t;

H�1 ¼ ie2�TR�

�
��1=2@r þ 1

2�TR

r�M

�1=2
@�

þ 2TL

TR

Mr� a2

�1=2
@t

�
; (23)

and

�H1 ¼ ie�2�TL�þðt=2MÞ
�
�1=2@r � a

�1=2
@� � 2M

r

�1=2
@t

�
;

�H0 ¼ �2iM@t;

�H�1 ¼ ie2�TL��ðt=2MÞ
�
��1=2@r � a

�1=2
@� � 2M

r

�1=2
@t

�
;

(24)

and the Casimir becomes

H 2 ¼ @r�@r �
ð2Mrþ@t þ a@�Þ2
ðr� rþÞðrþ � r�Þ

þ ð2Mr�@t þ a@�Þ2
ðr� r�Þðrþ � r�Þ : (25)

The near region wave Eq. (16) can be written as

�H 2� ¼ H 2� ¼ ‘ð‘þ 1Þ�: (26)

We see that the scalar Laplacian has reduced to the
SLð2; RÞ Casimir. The SLð2; RÞL � SLð2; RÞR weights of
the field � are4

ðhL; hRÞ ¼ ð‘; ‘Þ: (27)

From this result, one might think that the solutions of the
Kerr wave equation in the near region form SLð2; RÞ
representations. In fact, this is not the case, because the
vectors fields (23) and (24) which generate the SLð2; RÞ
symmetries are not globally defined. They are not periodic
under the angular identification

�	�þ 2�: (28)

Thus, these symmetries cannot be used to generate new
global solutions from old ones. This can be interpreted as
the statement that the SLð2; RÞL � SLð2; RÞR symmetry is
spontaneously broken by the periodic identification of the
angular coordinate �. Indeed, under the identification (28)
the conformal coordinates are identified as

wþ 	 e4�
2TRwþ; w� 	 e4�

2TLw�; y	 e2�
2ðTLþTRÞy:

(29)

This identification is generated by the SLð2; RÞL �
SLð2; RÞR group element

e�i4�2TRH0�i4�2TL
�H0 : (30)

Hence, the SLð2; RÞL � SLð2; RÞR symmetry is broken
down to the Uð1ÞL �Uð1ÞR subgroup generated by
ð �H0; H0Þ.
The situation is somewhat similar to the Banados-

Teitelboim-Zanelli (BTZ) [19] black hole in 2þ 1 gravity,
which has a local SLð2; RÞL � SLð2; RÞR isometry which is
spontaneously broken by the identification of the angular
coordinate �. In that case the symmetry, even though it is
broken by the BTZ geometry, is still usefully present in the
theory. In particular, the conformal symmetry still fixes the
form of scattering amplitudes and constrains the asymp-
totic density of states via Cardy’s formula. The Kerr case is
similar, except that the broken SLð2; RÞL � SLð2; RÞR acts
on the solution space but not on the geometry itself.
Nevertheless, we shall see that powerful constraints from
symmetry considerations still apply.

V. CFT INTERPRETATION

A. Temperature

The SLð2; RÞL � SLð2; RÞR symmetries described above
generate rigid conformal transformations in the
ðwþ; w�Þ 	 ð�; tÞ plane. Accordingly, let us now assume
that the dynamics of the near region is described by a dual
2D CFT, which possesses a ground state that is invariant
under the full SLð2; RÞL � SLð2; RÞR symmetry. What then
is the effect of the identification (29)?5 At fixed r, the
relation between conformal (wþ; w�) and Boyer-
Lindquist (�; t) coordinates is, up to an r-dependent re-
scaling,

w� ¼ e�t� ; (31)

with

tþ ¼ 2�TR�; (32)

t� ¼ t

2M
� 2�TL�: (33)

4For massless particles with higher spin, the existence of a
conformal symmetry should follow the discussion here. The
definition of near region and the symmetries of the wave equa-
tion are analogous to those for the scalar field. The minor
differences will arise in the representation of the SLð2; RÞ gen-
erators and the weights of the field. In particular, we expect
jhL � hRj ¼ s, with s the spin of the field.

5The analysis here follows that of [20] for the BTZ black hole.
Although the discussion of [20] was in the context of string
theory, the discussion did not actually require string theory.
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This is precisely the relation between Minkowski (w�) and
Rindler (t�) coordinates. In the SLð2; RÞL � SLð2; RÞR
invariant Minkowski vacuum, observers at fixed position
in Rindler coordinates will observe a thermal bath of
Unruh radiation. The periodic identification of � requires
that we restrict our observations to a fundamental domain
of the identification

tþ 	 tþ þ 4�2TR; t� 	 t� � 4�2TL: (34)

The quantum state describing physics in this accelerating
strip of Minkowski space is obtained from the Minkowski
vacuum by tracing over the quantum state in the region
outside the strip. The well-known result is that we get a
thermal density matrix at temperature (TL; TR). Hence, the
Kerr black hole should be dual to a finite temperature
(TL; TR) mixed state in the dual CFT.

B. Entropy

We would now like to microscopically reproduce the
Kerr entropy by assuming the Cardy formula for the dual
2D CFT. This requires a formula for the central charges cL
and cR. In some cases, such central charges can be derived
from an analysis of the asymptotic symmetry group
[12,21–23]. This derivation has been completed for ex-
treme Kerr, giving [2–4]

cR ¼ cL ¼ 12J: (35)

So far, as mentioned in the introduction, no one has under-
stood how to extend this calculation beyond linear order
away from extremality. In this paper we have adopted an
alternate approach which does not lead to a formula for
cL;R. Therefore, we will simply assume that the conformal

symmetry found here connects smoothly to that of the
extreme limit and that the central charge is therefore still
given by (35). The Cardy formula for the microstate de-
generacy is

S ¼ �2

3
ðcLTL þ cRTRÞ: (36)

Using the central charges (35) and temperatures (18), we
get

S ¼ 2�Mrþ ¼ Area

4
: (37)

This agrees on the nose with the macroscopic Bekenstein-
Hawking area law for the entropy.6,7

VI. SCATTERING

If the near region of Kerr is dual to a 2D CFT, then near-
region contributions to scattering amplitudes or absorption
probabilities should be given by 2D CFT two-point func-
tions. Wewill see in this section that this is indeed the case.
The derivation here is essentially identical to that given
many times before starting with [24] and we will accord-
ingly be brief. The only difference is that in the present
context the near region is not geometrically a near-horizon
region, but this does not affect the discussion.

A. Absorption probabilities

The absorption probability for a massless scalar � at
frequencies !M � 1 and arbitrary m, ‘ was computed
long ago [10] (see also [25]) and reanalyzed in
[24,26,27]. In the near region !r � 1 the solution to the
radial wave Eq. (10) with ingoing boundary conditions at
the horizon is

RðrÞ ¼
�
r� rþ
r� r�

��ið2Mrþ=rþ�r�Þð!�m�Þðr� r�Þ�1�‘

� F

�
1þ ‘� i

4M

rþ � r�
ðM!� rþm�Þ; 1þ ‘

� i2M!; 1� i
4Mrþ
rþ � r�

ð!�m�Þ; r� rþ
r� r�

�
;

(38)

where Fða; b; c; zÞ is the hypergeometric function and

� ¼ a

2Mrþ
(39)

is the angular velocity at the horizon. At the outer boundary
of the matching region r � M (but still r � 1

! ) (38)

behaves as

Rðr � MÞ 	 Ar‘ þ Br�1�‘ 	 Ar‘; (40)

with

A ¼ �ð1� i 4Mrþ
rþ�r�

ð!�m�ÞÞ�ð1þ 2‘Þ
�ð1þ ‘� i2M!Þ�ð1þ ‘� i 4M2

rþ�r�
!þ i 4Mrþ�

rþ�r�
mÞ ;

(41)

up to an overall constant independent of ! and m. A
similar expression for B—which is not needed here—can
be found in [7]. The absorption cross section is then
proportional to

Pabs 	 jAj�2

	 sinh

�
4�Mrþ
rþ � r�

ð!�m�Þ
�
j�ð1þ ‘� i2M!Þj2

�
���������

�
1þ ‘� i

4M2

rþ � r�
!þ i

4Mrþ�
rþ � r�

m

���������
2

:

(42)

6A similar derivation was attempted in [6] but was missing an
overall mutliplicative factor.

7A sufficient condition for validity of the Cardy formula (36)
(in a unitary theory) is that the temperatures (TL; TR) are large
compared to the central charge. For suitable choices of parame-
ters, this indeed holds. This includes the near-Schwarzschild
case where M � J � 0. Outside this parameter range, the
applicability of the Cardy formula may still follow, as in stringy
examples [11], in the long string picture.
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To compare with the dual CFT, we rewrite Pabs in terms
of the CFT temperatures (TR; TL), the linearization of their
conjugate charges, and the conformal weights (‘; ‘). To
determine the linearized conjugate charges, we begin with
the first law of thermodynamics

TH�S ¼ �M���J; (43)

where

TH ¼ 1

8�

rþ � r�
Mrþ

; (44)

S ¼ 2�Mrþ, and we identify ! ¼ �M and m ¼ �J. We
then look for the conjugate charges �ER and �EL such that

�S ¼ �EL

TL

þ �ER

TR

(45)

with TL;R given by (18). The solution is

�EL ¼ 2M3

J
�M; �ER ¼ 2M3

J
�M� �J; (46)

hence we identify the left and right moving frequencies as

!L � �EL ¼ 2M3

J
!; !R � �ER ¼ 2M3

J
!�m:

(47)

Using these formula as well as (18) and (27), one then finds
that the gravity result (42) can be expressed as

Pabs 	 T2hL�1
L T2hR�1

R sinh

�
!L

2TL

þ !R

2TR

����������
�
hL þ i

!L

2�TL

���������
2

�
���������

�
hR þ i

!R

2�TR

���������
2

; (48)

which is precisely the well-known finite temperature ab-
sorption cross section for a 2D CFT.

B. Parameter ranges

The nature of the agreement between the CFT and
gravity results for !M � 1 depends on the values of the
parameters under consideration. While (48) is the correct
gravity answer whenever !M � 1, in some cases the

expression (48) can be organized into leading and sublead-
ing terms. In these cases only the leading term can obvi-
ously be trusted and a more detailed analysis is required to
see if corrections to the matching procedure effect the
result. For this reason, although the gravity and CFT do
agree insofar as they have been tested, the test is not as
strong as it may first appear from (48). For example, for

generic values of M which differ from
ffiffiffi
J

p
by a multi-

plicative factor of order unity, TL and TR are themselves
of order unity. It follows that !L

TL
� 1while!R 	�m. The

leading term in (48) is then

Pabs 	�T2hL�1
L T2hR�1

R sinh

�
m

2TR

�
j�ðhLÞj2

�
���������

�
hR � i

m

2�TR

���������
2þOð!MÞ; (49)

which does not involve !. The fact that a (variant of) this
expression has a CFT interpretation was already noted in
[6,24]. Another interesting case is whenm ¼ 0 and TR is of
orderM!, from which it follows that !R

TR
is of order one. In

this case the leading order answer does depend on ! and
we overlap the parameter range considered in [7]. In this
overlap range, the agreement here is equivalent to what was
found there.
Hence, the results of this paper lend further credence to

the idea that there is a general conformal symmetry gov-
erning the dynamics of Kerr black holes of which the
discussions of [2–4,6,7,24] comprise various aspects and
special cases. We hope to understand this more completely.
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