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The Ernst method of removing nodal singularities from the charged C-metric representing a uniformly

accelerated black hole with mass m, charge q and acceleration A by ‘‘adding’’ an electric field E is

generalized. Utilizing the new form of the C-metric found recently, Ernst’s simple ‘‘equilibrium

condition’’ mA ¼ qE valid for small accelerations is generalized for arbitrary A. The nodal singularity

is removed also in the case of accelerating and rotating charged black holes, and the corresponding

equilibrium condition is determined.
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I. INTRODUCTION

The only explicitly known solutions of the Einstein field
equations describing moving finite objects are spacetimes
with the boost and axial Killing vectors. They represent the
exterior fields of ‘‘uniformly accelerated particles’’ which
can be accelerated black holes like in the well-known C-
metric [1], or accelerated ‘‘point singularities’’ of various
types like the Curzon-Chazy particles in the solution of
Bonnor-Swaminarayan [2]. For reviews of the boost-
rotation symmetric spacetimes, including their radiative
properties, see, e.g., [3,4] and references therein.
Recently, we analyzed the Newtonian limit of these space-
times using the rigorous Ehlers frame theory [5]. The
analysis corroborated their physical significance: the
Newtonian limit describes the fields of classical point
masses accelerated uniformly in classical mechanics.

In all cases other than those in which pairs of uniformly
accelerated masses with one mass being negative occur, the
particles do not move freely—conical (‘‘nodal’’) singular-
ities are present: They are interpreted as ‘‘struts’’ or
‘‘strings’’ necessary to produce the ‘‘force’’ accelerating
the particles.

The conical singularities can be removed by introducing
external fields. By employing the Harrison-type transfor-
mation to the charged C-metric, Ernst [6] obtained the
solutions to the Einstein-Maxwell equations describing a
pair of oppositely charged black holes uniformly acceler-
ated in a ‘‘background’’ electric field. If its strength char-
acterized by parameter E is properly chosen—in the limit
of the small acceleration parameter A by the ‘‘classical’’
relation qE ¼ mA—then the axis outside the black holes is
regular.

The external electric field is not compatible with asymp-
totical flatness. Independently, Bičák [7] calculated the
motion of a charged black hole in an external electric field
by means of the perturbative approach. These two results

coincide to the degree of achieved precision. The advan-
tage of the perturbative approach lies in the fact that the
region filled with the appended electromagnetic field can
be spatially bounded and thus the asymptotical flatness can
be preserved.
Ernst also removed the nodal singularity from the vac-

uum nonrotating C-metric by immersing it to external
gravitational field [8]. The asymptotical flatness is, again,
lost.
In [9] Ernst’s procedure was applied to the Bonnor-

Swaminarayan solutions and a new solution with two
independent Curzon-Chazy particles falling freely in op-
posite directions in an external gravitational field was
constructed. The same solution was then shown to follow
from the Bonnor-Swaminarayan solution for two indepen-
dent pairs of accelerating particles if a limiting procedure
is performed in which one particle in each pair is removed
to infinity and its mass is simultaneously increased. This
gives a clear physical interpretation also to the generalized
C-metric solution of Ernst [8].
More recently, Emparan [10] considered extremal black

hole solutions with charges associated with various gauge
fields of different ‘‘stringy origin’’ coupled to an external
field. The effects of such fields can compensate and a black
hole can stay at rest, or one finds accelerating solutions of
the Ernst type. Both static and accelerating nonextremal
black holes coupled to different Uð1Þ gauge fields were
also studied in [10].
None of the previous work considered a free accelerat-

ing and simultaneously rotating particle in an external
field. In fact, no general theory similar to that given in
[11] is available for the boost-rotation symmetric space-
times with Killing vectors which are not hypersurface
orthogonal. However, there is one explicitly known
metric available—the spinning C-metric—representing
two charged, rotating black holes that are causally sepa-
rated and accelerating in opposite directions.
The spinning/rotating C-metric has a fairly long history.

Discovered by Plebański and Demiański [12] as a subclass
of their more general metrics (cf. [13]), later studied, for
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example, in [14–16], it was brought into a new form and
slightly reinterpreted by Hong and Teo in 2005 [17]. This
new form has been inspired by bringing the ‘‘structure
function’’ Gð�Þ (see Eq. (3) in Sec. II) into an explicitly
factorizable expression which is not the case with the
original form given in [12]. The first factorizable structure
function for the nonrotating C-metric appeared, in fact, in
the work of Emparan [10] mentioned above.1 In this non-
rotating case, the new form can be obtained by a coordinate
transformation from the original one. It is not only more
useful for calculations but also makes easier the interpre-
tation of the parameters entering the C-metric.

In 2005 Hong and Teo [17] turned to the rotating C-
metric. The ‘‘traditional’’ charged rotating C-metric con-
tains regions near the rotation axis where the axial Killing
vector is timelike, the causality in these regions is violated
[16] and closed timelike curves can occur. This was inter-
preted as torsion singularities [19]. In [17] it is shown that a
new form with explicitly factorizable structure function
exists in which conical singularities causing the accelera-
tion of the rotating, charged black holes are such that no
closed timelike curves—no torsion singularities—arise.
Unlike with the nonrotating C-metric, the new form cannot
be derived from the original one by a coordinate trans-
formation. In [20] we used this ‘‘new’’ C-metric to con-
struct the field of an accelerated electromagnetic ‘‘magic
field’’ in flat-space (possibly describing the classical model
of a uniformly accelerated spinning electron); as a by-
product we have shown that this metric possesses a natural
flat-space limit. In the present work we start out from this
new form of the rotating C-metric.

The properties of the C-metric are rich even if the holes
are nonrotating. The structure of conformal infinity of the
whole class of the boost-rotation symmetric spacetimes is
analyzed in [11]. The analytic extensions through the
horizons and the corresponding Carter-Penrose diagrams
are constructed in [21] by employing a new form of the C-
metric. In our Fig. 1 we plot only a schematic spacetime
diagram in the weak field limit of two—possibly rotating—
black holes uniformly accelerated in opposite directions.
(In the Weyl coordinates a black hole is represented by a
rod; in Fig. 1 we plot them as accelerated rods.)

In the present work we use new parametrization of the
C-metric to generalize Ernst’s results on removing nodal
singularities by adding an external field to the case of
arbitrary values of acceleration and to black holes which
are rotating.

In Sec. II we review the basic properties of the charged
rotating C-metric. The form of the metric of Hong and Teo

[17] is slightly modified by introducing a constant parame-
ter scaling the azimutal coordinate. This makes the flat-
space limit of the metric completely regular in the sense
that no deficit angle around the symmetry axis arises in the
limit. In Sec. III the projection formalism and Harrison
transformation are explained and the Ernst potentials for
the charged rotating C-metric are found. Finally, in Sec. IV
the results are applied to discover ‘‘the equilibrium condi-
tion’’ which renders the rotating charged black hole falling
freely in the external field. The original Ernst result mA ¼
qE valid for small acceleration A and nonspinning black
holes is generalized to the formula (29b). With just the first
term in the expansion in gravitational constant G included,
this formula reads as follows:

mA ¼ Eq

�
1þ q2A2

ð1þ a2A2Þ2 G
�
; (1)

where a is the parameter characterizing the black hole
rotation.

II. THE CHARGED ROTATING C-METRIC

The charged rotating C-metric2 in the slightly modified
[20] form of Hong and Teo [17] reads

FIG. 1 (color online). The spacetime diagram of the C-metric
in global coordinates.

1Putting all charges qi in the formula (6.7) in [10] equal to zero
we obtain the metric of an accelerating, uncharged and non-
rotating black hole in the same form as later presented by Hong
and Teo [18] for the accelerating, nonrotating black hole. Even in
the case with all qi ¼ q, Eq. (6.7) gives the metric in the
factorizable form though not identical to that presented in [18].

2Thourough this paper we use the convention of the Exact
Solutions book [22], i.e., Gab ¼ �Tab, where � ¼ 8�Gc�4 and
Tab ¼ FacFb

c � 1
4 gabFcdF

cd.
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ds2 ¼ 1

A2ðx� yÞ2
�

GðyÞ
1þ ðaAxyÞ2 ½ð1þ a2A2x2ÞKdt

þ aAð1� x2ÞKd’�2 � 1þ ðaAxyÞ2
GðyÞ dy2

þ 1þ ðaAxyÞ2
GðxÞ dx2 þ GðxÞ

1þ ðaAxyÞ2

� ½ð1þ a2A2y2ÞKd’þ aAðy2 � 1ÞKdt�2
�
; (2)

where the structure function Gð�Þ is
G ð�Þ ¼ ð1� �2Þð1þ rþA�Þð1þ r�A�Þ; (3)

with

r� ¼ Gm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2m2 � a2 �Gq2

q
: (4)

Here m, a, q and A are, respectively, the mass, rotation,
charge and acceleration parameter; we also keep the
Newtonian constant G in the metric which will turn out
to be useful later. The metric (2) slightly differs from that
given in [17]—it is modified just by introduction of a
constant K ¼ Kðm;A; a; q; GÞ scaling the angular coordi-
nate ’, followed by a simple rotation.3 It can be shown that
if we put G ! 0 in (2) we find the Minkowski space in
accelerated spheroidal coordinates (see [20]) but with a
deficit angle in general. By choosing K ¼ ð1þ a2A2Þ�1 þ
OðGÞ we obtain the regular Minkowski spacetime in the
limit G ! 0.

The structure function Gð�Þ is constructed in such a way
that four simple real roots are

�1 ¼ � 1

r�A
; �2 ¼ � 1

rþA
;

�3 ¼ �1; �4 ¼ 1:
(5)

(Compare with the original Demiański-Plebański form
[12] where G has very complicated roots.) The roots
obey �1 � �2 < �3 < �4. They determine several relevant
regions: x ¼ y ¼ �3 is infinity; the black hole event hori-
zon corresponds to y ¼ �2; the acceleration horizon is at
y ¼ �3; the line x ¼ �4 is the part of the symmetry axis
extending from the black hole event horizon to the accel-
eration horizon and x ¼ �3 connects the event horizon with
infinity. The roots determine the allowed ranges of x and y
coordinates in (3) as follows: y 2 h�2; �3i for quadrant I
(see Fig. 1), y 2 h�3; �4i for quadrant II and x 2 h�3; �4i.

The black hole is located in the quadrant I where the
boost Killing vector field is timelike. Nevertheless, the
metric (2) describes also the quadrant II where no black
holes are present. This regime is dynamical and radiative
(the boost Killing vector is spacelike).

The 4-potential of the electromagnetic field is

A ¼ Kqy½ð1þ a2A2x2Þdtþ aAð1� x2Þd’�ffiffiffiffiffiffiffi
4�

p ½1þ ðaAxyÞ2� : (6)

The axial Killing vector field is � ¼ @’; let us denote

F ¼ �a�a. The axis of symmetry is regular if at the axis
F;aF;a=4F ! 1 (see, e.g., [22], Eq. (19.3)). Calculating

this invariant for the C-metric we get

� ¼ F;aF;a

4F
¼ A2ðx� yÞ2

1þ ðaAxyÞ2
ðGðxÞF2

;x � GðyÞF2
;yÞ

4F
: (7)

The parametrization of the C-metric is chosen such that the
axis is given by x ¼ �1 or x ¼ 1. The regularity condition
for the metric (2) becomes

lim
x!�1

� ¼ K2½1þ a2A2 þGðA2q2 � 2AmÞ�2 ¼ 1: (8)

Clearly, this is not valid in general; it can be satisfied either
at x ¼ þ1 or at x ¼ �1 by a suitable choice of K; but it
cannot be satisfied at both parts of the axis x ¼ �1. (An
accelerating black hole must be attached to a string at ‘‘one
side’’ at least.)
The net physical charge of the whole spacetime is zero;

the physical charge Q of one of the black holes is

Q ¼ 1ffiffiffiffiffiffiffi
4�

p
Z
S
?F ¼ Kq (9)

(here S is any closed 2-surface surrounding the black hole).
The total angular momentum is zero as the black holes are
counterrotating. The total angular momentum of one of the
black holes is simple in the vacuum case:

J ¼ � 1

8�

Z
S
?d�ð’Þ ¼ K2Gam: (10)

Possible contributions due to the charge are of orderOðq2Þ.
From (9) and (10) it can be seen that parameter K enters
physical quantities.

III. REMOVAL OF THE NODAL SINGULARITY OF
THE CHARGED ROTATING C-METRIC

In order to remove nodal singularities we shall employ
the Harrison transformation in which the quantities enter-
ing so-called projection formalism [22–24] and the Ernst
equations [25,26] for complex potentials E and � appear.
The method employs the existence of the Killing vector
field � over a spacetime manifold; this gives rise to a
uniquely defined quotient 3-manifold.

A. Projection formalism and the Harrison
transformation

Let there exist the Killing vector field �. The projection
is usually made with respect to a timelike Killing vector

3The same as in Eqs. (10) and (11) in [20], i.e., t ! Kð1þ
a2A2Þt and ’ ! ’� aAK�1ð1þ a2A2Þt.
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field but the formalism is easily modified to a spacelike
one. In Sec. IV we specialize to the axial Killing vector
�ð’Þ.

Define the scalar field F and the twist vector ! by

F ¼ �a�a; � ¼ sgnF; !a ¼ ��abcd�
brc�d:

(11)

Then the metric induced on the quotient manifold after the
conformal transformation (given by F) is (see, e.g., [22])

�ab ¼ �Fðgab � �a�b=FÞ: (12)

The Einstein-Maxwell system can be reduced to Ernst
equations

�F ~hE ¼ ð~raE þ 2 ��~ra�Þ~raE; (13a)

�F ~h� ¼ ð~raE þ 2 ��~ra�Þ~ra�; (13b)

where ~r is the covariant derivative associated with �ab and
~h ¼ �ab ~ra

~rb. The electromagnetic Ernst potential � is
defined by

ffiffiffiffiffiffi
2�

p
2

�aF�
ab ¼ �;b; �;a�

a ¼ 0; F�ab
;b ¼ 0;

(14)

and the gravitational Ernst potential E is given by

E ;a ¼ �F;a þ i!a � 2 ���;a; (15)

� F ¼ 1

2
ðE þ �EÞ þ ���: (16)

The existence of E is guaranteed by (see [22])

�aK�
ab ¼ E;b; E;a�

a ¼ 0; (17a)

K�ab
;b ¼ 0; K�

ab ¼ �2��
a;b �

ffiffiffiffiffiffi
2�

p
��F�

ab; (17b)

where X�
ab ¼ Xab þ i

2 �abcdX
cd is the complex self-dual

bivector.
The form of the Ernst equations is preserved under 8-

parameter group G8 of transformations of the potentials.
We shall employ just the Harrison transformation belong-
ing to G8. Introducing � by

� ¼ 1� 2 ���� ���E; (18)

the Harrison transformation reads

Ê ¼ E��1; �̂ ¼ ð�þ �EÞ��1: (19)

The norm of the Killing vector transforms as

F̂ ¼ �
1
2 ðE þ �EÞ þ� ��

���
¼ F

���
: (20)

The new metric can be reconstructed in the form ĝab ¼
jF̂�1j�ab þ F̂�1�̂a�̂b following [22]; nevertheless, it will
not be needed to investigate the properties of the axis.4

B. Ernst potentials for the charged rotating C-metric

To generate a singularity-free solution from the charged,
rotating C-metric (2) with the help of the Harrison trans-
formation (19) we need to know its generating complex
potentials associated with the axial Killing vector field
�ð’Þ.
We know the full solution and thus we can find the norm

of �ð’Þ explicitly

F ¼ K2 a
2A2ð1� x2ÞGðyÞ þ ð1þ a2A2y2ÞGðxÞ

A2ðx� yÞ2½1þ ðaAxyÞ2� : (21)

The complex electromagnetic potential� follows from the
integration of (14) in which the field Fab can be determined
from the 4-potential (6). Rather lengthy calculations lead
to a surprisingly simple result:

� ¼ � ffiffiffiffi
G

p
Kq

aAy� ix

1þ iaAxy
: (22)

The gravitational Ernst potential E can be obtained by
integrating (17b). Its form is more complicated:

" ¼ �F� ���þ i2aK2Gðx� yÞ�1ð1þ ðaAxyÞ2Þ�1

� ½yAðx2 � aÞð1� xyÞ þ ya2mð1� 3x2 þ yx3

þ yxÞ �mðx2 þ 1� 3xyþ yx3�; (23)

where F is given by (21) and � by (22).
The potential E can also be written in the form analogous

to the potential �,

E ¼ Pðx; yÞ
A2ðx� yÞ2ð1þ iaAxyÞ ;

but we have not yet found a compact expression for the
complex polynomial Pðx; yÞ. However, it is merely a poly-
nomial of order 3 in variables x, y.

IV. REMOVAL OF THE NODAL SINGULARITY OF
THE CHARGED C-METRIC: ROTATING CASE

With E and� known we employ the transformation (19).
Let us choose parameter � as

� ¼ � 1

2
i

ffiffiffiffi
G

p
E: (24)

In fact, up to the factor
ffiffiffiffi
G

p
this form of � follows that of

[8] but the parameter leading to the regular axis will now

4To evaluate F̂;aF̂;a=F̂ in our coordinate system, we need to
know just the metric on surfaces of constant ’ and t because
function F̂ depends on x and y only, i.e., F̂ ¼ F̂ðx; yÞ. The
necessary metric components can be read off directly from the
conformal metric.
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be different. In the special-relativistic limit the parameterE
can be interpreted as the strength of the (added) external
homogeneous electromagnetic field.

The norm of the Killing vector transforms as in (20), i.e.,

F̂ ¼ F= ��� where F follows from (21) and � from (18)
with � and E given by (22) and (23). The invariant to be
evaluated at the axis turns out to be

�̂ ¼ F̂;aF̂
;a

4F̂
¼ A2ðx� yÞ2

1þ ðaAxyÞ2
½GðxÞF̂2

;x �GðyÞF̂2
;y�

4F
: (25)

Evaluating the limits at the symmetry axis, i.e. at x ! �1,
leads to

lim
x!�1

�̂ ¼ K2ð1þ a2A2 þGðq2A2 � 2mAÞÞ2
½ð1� 1

2GKEqÞ4 þG4K4E4a2m2�2 : (26)

The equilibrium conditions guaranteeing the equality of
conical singularities from both sides read:

lim
x!1

�̂ ¼ lim
x!�1

�̂ ¼ 1; (27)

which is a system of two equations for two unknown
parameters, say, K and m. This system can be explicit
but the final result is formidable. However, when expanded
in G the result becomes nicely simple and intuitive.
Denoting

� ¼ 1þ a2A2; (28)

we get

�K ¼ 1� q2A2

�
Gþ ð2q2A4 þ 3E2Þq2

2�2
G2 þ . . . ; (29a)

m ¼ qE

A

�
1þ E2q2

4�2
G2 � E2q4A2

2�3
G3 þ . . .

�
: (29b)

Equation (29b) resembles the classical relation for mo-
tion of a particle with charge q in electric field E plus
G-dependent corrections. The interpretation is modified by
the fact that the net physical charge is given by (9)—
Q ¼ Kq—and thus the last equation in terms of the net
charge Q reads

m

�
¼ EQ

A

�
1þ 1

4
E2Q2G2 � 1

2
�E2Q4A2G3 þ . . .

�
: (30)

Notice that for small accelerations jmAj � 1, factor K ’
1þOððaAÞ2Þ, so that (29b) and (30) coincide in this limit.
Equation (30) indicates what appears to play the role of

mass, namely M ¼ Km. It should be emphasized that our
source becomes pointlike in the limit G ! 0 only if simul-
taneously a ! 0. Then A is acceleration with respect to the
flat background. For a � 0, the source is a rotating disc
with complicated structure (see [20] for details).
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