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Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum
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The classification of a certain class of static solutions for the Einstein-Gauss-Bonnet theory in vacuum
is performed in d = 5 dimensions. The class of metrics under consideration is such that the spacelike
section is a warped product of the real line and an arbitrary base manifold. It is shown that for a generic
value of the Gauss-Bonnet coupling, the base manifold must be necessarily Einstein, with an additional
restriction on its Weyl tensor for d > 5. The boundary admits a wider class of geometries only in the
special case when the Gauss-Bonnet coupling is such that the theory admits a unique maximally
symmetric solution. The additional freedom in the boundary metric enlarges the class of allowed
geometries in the bulk, which are classified within three main branches, containing new black holes

and wormholes in vacuum.
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I. INTRODUCTION

The asymptotic properties of spacetime play a crucial
role for a suitable definition of energy in gravitation, which
has been a subtle issue since the early days of general
relativity (see, e.g. [1]). Nowadays, understanding the
asymptotic structure of spacetime becomes a fundamental
problem by itself. In the case of a negative cosmological
constant, the asymptotic behavior of gravity is particularly
interesting, and a renewed interest has been raised in view
of the AdS/CFT correspondence, which is a conjectured
duality between gravity on asymptotically AdS spacetimes
and conformal field theory (for a review see e.g., [2]). In
this context, it is natural wondering about the possible
freedom in the choice of the metric at the boundary, where
the dual theory is defined. As a simple example, one can
consider the following class of d-dimensional static met-
rics in bulk

dr?
ds?> = —f2(r)di* + 207 +r2dxy, (LD
where
d33, 5 = gi(x)dx'dx (1.2)

is the line element' of the “base” manifold 2y—pofd—2
dimensions.

The Einstein equations with cosmological constant A in
vacuum are then solved for
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"Here x' correspond to local ‘“‘angular’ coordinates, and here-
after a tilde is used on geometrical objects intrinsically defined

on E(dfz) .
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provided the geometry of X ,_,) is restricted to be that of
an Einstein manifold, fulfilling

Rij =(d - 3)')’5i-,

f2:g2:,y_

(1.3)

(1.4)

where the constant y can be normalized to =1 or zero [3—
5]. Thus, if the cosmological constant is non-negative,
solutions of the form (1.1), with (1.3) and (1.4), describe
black holes only for y =1 and w > 0; otherwise they
possess naked singularities. Remarkably, for the asymp-
totically AdS case, the solution describes black holes for
any value of vy provided u is bounded from below [6-8],
widening the possibilities in order to define a dual theory at
the boundary, whose metric is of the form R X X ;).

In dimensions greater than four, general relativity (GR)
is not the only option to describe gravity. Indeed, a natural
and conservative generalization of GR, being the most
general theory of gravity leading to second order field
equations for the metric is described by the Lovelock
action, which possesses nonlinear terms in the curvature
in a precise combination [9]. The simplest case corre-
sponds to the so-called Einstein-Gauss-Bonnet (EGB) the-
ory, whose action is quadratic in the curvature, and it is
given by

1= f1/—gddx[c1R — 2¢yp

+ % (RaﬁMVRozﬁ,uV

— 4RMVR,,, + Rz):l, (1.5)

so that apart from the Newton and cosmological constants,
the theory possesses an additional coupling ¢, associated
with the quadratic terms. The field equations read
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cHy, + Gyt coguy =0, (1.6)

where G, is the Einstein tensor, and

— _ —7pd B

H,, = RR,, —2R,,R?, — 2R oR? 50 T Ryupsy R
1

with

: (4-4d
H:=H*, 6 = 1 (R“BWRQBW —4R*'R,,, + R?),

(1.8)

identically vanishes in d <5 dimensions.
In terms of the vielbein ¢4 = el dx* and the curvature 2-
form R* = LR, dx*dx", the field equations read

ga = fabl...bd,l[asz'bsz3b4 + 2611Rb1b2€b3€b4

+ agelrelelseli]els .. b1 =, (1.9
where the wedge product between forms is understood.
The relation between the constants «; in (1.9) and c¢; in
(1.6) is

ao

Cozf(d_ 1)', c| = —2(d—3)'a1,

2 (1.10)

Cyr = _2(d - 5)!612.

Generically, the field equations of the EGB theory admit
two different maximally symmetric solutions—(A)dS or
Minkowski—fulfilling?

R 5= 1855, (1.11)
with two different radii, determined by
A =ﬂ<—1 + 1—6’2—‘2”’). (1.12)
a, Cll

In the limit of vanishing Gauss-Bonnet coupling, a, — 0,
the branch with negative sign in (1.12) diverges, whereas
the other gives the expected GR limit, i.e., A, = — 2“—;1

If the Gauss-Bonnet coupling is such that the square root
in (1.12) vanishes, i.e.,

ai
a, = —,
<)

(1.13)

the EGB theory admits a unique maximally symmetric
vacuum. This case is naturally singled out as ‘“‘special,”
since the theory admits solutions with a relaxed asymptotic
behavior as compared with the standard one of GR [10].
Concerning the possible freedom in the choice of bound-
ary metrics for the class of static spacetimes of the form

“Here 855 = 8364 — 536%.
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(1.1), it can be seen that the presence of quadratic terms in
the action generically leads to strong restrictions on ge-
ometry of the boundary, determined by 2., »,, since it has to
be Einstein with supplementary conditions involving its
Weyl tensor [11-13]. Nevertheless, in the special case
(1.13), the EGB theory admits a wider class of boundary
metrics, such that X, , is not necessarily Einstein. The
additional freedom in the boundary metric enlarges the
class of allowed geometries in the bulk, which are classi-
fied within three main branches, containing new black
holes and wormbholes in vacuum.

The class of static metrics of the form (1.1) with (1.2),
solves the field equations of the EGB theory in d dimen-
sions according to the following scheme.

A. d = 5 dimensions

(1) Generic class: For an arbitrary value of the Gauss-
Bonnet coupling a,, the metric (1.1) solves the EGB
field equations provided the base manifold 25 is
necessarily of constant curvature y (normalized to

+1,0),ie.,
iéijkl = 75;‘(];’ (1.14)
and
fP=gn=y+ ﬂrz[l * (1 —02—30) + %]
as Cll r
(1.15)

where u is an integration constant.

(i1) Special class: In the special case where the Gauss-
Bonnet coupling is given by (1.13), The bulk ge-
ometries split into three main branches according to
the geometry of 2;:

(ii.a) Black holes: For an arbitrary base manifold, i.e.,

3.5: arbitrary, (1.16)

the metric (1.1) solves the field equations provided
._ 9
oi=—,
a

fP=g=0r—p (1.17)
where u is an integration constant.

(ii.b.1) Wormholes: For base manifolds X of constant
nonvanishing Ricci scalar,

R = 67, (1.18)

the metric (1.1) with
() = (Jor + aﬂa'r2 + ), (1.19)
gi(r)=or’ +v, (1.20)

is a solution of the field equations, where a is an integration
constant.
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(ii.b.2) Spacetime horns: If the base manifold X; has
vanishing Ricci scalar, i.e.,

R=0, 1.21)
the solution is given by
1 \2
A = (aﬁr + —ﬁr) , (1.22)
g*(r) = or?, (1.23)

with a an integration constant.
(iii) Degeneracy: If 2 is of constant curvature, i.e.,

R, =&, (1.24)

then
g =or +y, (1.25)
f2(r): an arbitrary function. (1.26)

B. d = 6 dimensions

(1) Generic class: For arbitrary values of the Gauss-
Bonnet coupling the metric (1.1) solves the EGB
field equations provided the base manifold 3, is
Einstein, i.e.,

R'; = 3y$§; 1.27)

(with y normalized to *1, 0) with the following

(scalar) condition:

RUGRY; — ARyRY + R? —24£ =0, (1.28)
and
f2(r) = g*(r)
=y + ﬂ 2
a
2 2 _
X [1 * \/(1 - —azgo) +£+4 vk T g)]’
aj r aj r
(1.29)

where ¢ and p are integration constants.

20 (aVor* —1+ 1 —+or?* — Itan” ' (=
r) = ,
(aVor* + 1+ 1 —or* + 1tanh‘1(7====-m'2+l))2: y=1

with a an integration constant.
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(i1) Special class: In the special case in which the
Gauss-Bonnet coupling is given by (1.13), the solu-
tion splits into three main branches according to the
geometry of 2,:

(ii.a.1) Black holes: The base manifold X, has the same

restrictions as in the generic case, i.e.,
R'; = 3y$§;, (1.30)

and
R RM, — 4R, RV + R* — 24¢ =0, (1.31)

with f2 and g? given by

a po,a (v’ = ¢
) =g*r) =y + a—;rz[l * \/ﬁ + a—% r4 ]
(1.32)

possessing a slower falloff at infinity as compared with
(1.29).

For the remaining branches, the base manifold 2, is no
longer restricted to be Einstein, but instead fulfills the
following scalar condition:

RU RN, — 4R, RV + R* — 4yR + 24y* = 0, (1.33)
and g2 is given by

ap
Cll.

gr)=or*+y, o= (1.34)

The form of the remaining function f2(r) is then precisely
determined according to the following cases:

(ii.a.2) Special black holes: The base manifold is such
that

>.,: no additional restriction besides (1.33),
and

A =g*r)=or* + . (1.35)

(ii.b.1) Wormholes: The base manifold X,, besides
(1.33), has a nonvanishing constant Ricci scalar,

R =12y,
where v is rescaled to =1, and the metric is given by
g(r)=or’ +vy,

and

2y =—1
)Y (1.36)
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(ii.b.2)Spacetime horns: If the base manifold 3, has
vanishing Ricci scalar,

R=0, (1.37)
the solution is given by
1 2
() = (a\/Er + \/Er2) , (1.38)
g (r)=ar?, (1.39)

where « is an integration constant.
(iii) Degeneracy: The base manifold 2, is of constant

curvature,
Rii, = y&Y, (1.40)
and
g2(r)=or*+ vy, (1.41)
f*(r): an arbitrary function. (1.42)

The purpose of this paper is extending this classification
to higher dimensions. The class of static metrics in
Eq. (1.1) with a base manifold X ,_, solves the EGB field
equations d > 6 dimensions according to the following.

C. d = 7 dimensions

(1) Generic class: For a generic value of the Gauss-
Bonnet coupling a,, the most general solution of
the EGB field equations (1.6) within the class of
metrics under consideration, given by (1.1), is such
that the following is the case.

The base manifold %,_, must be Einstein,
Rij =(d - 3)76} (1.43)

(with vy normalized to *1, 0), and simultaneously

fulfills the following (tensorial) condition on its

Weyl tensor,

ik Alm _(d_3)! A 2\Si
C lmC /k_(d_6),(§ ’)/)5, (144)
with
f2:g2
='y+ﬂr2
ar
2 (A2
axay “ as (y _f)]
X141 ——“"F++——+—= """
[ \/ a% pd=1 a% r
(1.45)

where ¢ and p are integration constants.

PHYSICAL REVIEW D 82, 024002 (2010)

(i1) Special class: If the Gauss-Bonnet coupling is given
by (1.13), there are three main branches of solutions
in the bulk according to the geometry of X, ,:

(ii.a.1) Black holes: The base manifold 2 ,_, has the

same restrictions as in the generic case, i.e.,

R, = (d—3)yé, (1.46)
and also fulfills
ik Alm _(d_3)! A2\ Si

with f2 and g? given by

33
a woas (y"—§)
f2=g2=7+a—’2[1i‘/d—1+_§ 4 ]
2 r Cll r

(1.48)

where ¢ and p are integration constants. Note that the
asymptotic behavior of (1.48) is slower than that of the
generic case in (1.45).

For the remaining branches, the base manifold 3, _, is no
longer restricted to be Einstein, but instead fulfills a scalar
condition:

~ oy d=D'[5 v B
Hraa- 7)z[R —pld=2d- 3>] =0, (149

where H is proportional to the Gauss-Bonnet invariant of
240, as defined in Eq. (1.8), i.e.,

(6 —d)

H:=H = — (RVMR; iy — 4RUR,;; + R?),
and g2 is given by
g(ry=oar’ +vy, o= @, (1.50)
ap

where vy is a constant normalized to *1, 0.
The function f?(r) becomes determined according to the
following cases.

(ii.a.2) Special black holes: The base manifold 3, ,,
satisfies the Euclidean EGB equation for the special case
(1.13) in d — 2 dimensions, i.e.,

vX(d —3)! .

oL =0, (1.51)

Flij—y(d—5)(d_6)éif_m !

admitting a unique maximally symmetric solution of cur-
vature y, whose trace reduces to (1.49), and

A =g*r) =or + 7.
(ii.b.1) Wormholes: The base manifold %, , has con-
stant nonvanishing Ricci scalar
R=(d—2)(d—3)y, (1.52)

and also satisfies the generic Euclidean EGB equation
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A —(d—5)d~ 6)<y - %)Gij

yYJ—y)d—=3)_
Ty (d—7)!5j_0’

(1.53)

where J is an integration constant. Note that, by virtue of
(1.52) the trace of (1.53) reduces to (1.51) giving no addi-
tional constraints on the geometry of X, ,. The bulk
geometry is then determined by

g2(r)=or’ +vy,

and f2(r) fulfills the generalized Legendre equation, given
by

rlor +y)f" +[(d=4)or’ +(d = 5)ylf

_<(d_4)o_r_(d—5)(d—6)J

- ) =0, (1.54)

The general solution then reads
() = r(’*d[aP,,”(\fl + yor?) + bQ, (1 + yor)P,
(1.55)

where P,*(x) and Q,*(x) are the generalized Legendre
functions of first and second kind, respectively, with

= 1J(d—6)2 Ta-su-6,  as6)
2 Y

-2 (1.57)

vi=

NSHIESW

and a, b are integration constants.
(ii.b.2) Spacetime horns: The base manifold %, , has
vanishing Ricci scalar

R =0, (1.58)

and also satisfies the Euclidean EGB equation devoid of
the volume term

gi‘j+WG’} =0, (1.59)

with J an integration constant. As in the previous case, the
vanishing of the Ricci scalar of 3, , makes the trace of
(1.59) reduce to (1.51) (with vy = 0), without additional
conditions on X, ,. The bulk geometry is given by

£ =or+y,
and f2(r) fulfills Eq. (1.54) with y = 0, i.e.,
or’f!" +(d — 4)or*f

d=35)d -6

- ((d —4)or ™

) F() =0, (1.60)

whose general solution is

PHYSICAL REVIEW D 82, 024002 (2010)

0= w—?ﬂ)
r o
+bYa<% W)]z.

Here J,(x) and Y, (x) are the Bessel functions of the first
and second kind, respectively, with
. d—73
al=——,
2
and a, b are integration constants.
(iii) Degeneracy: The base manifold 2, is of constant

(1.61)

(1.62)

curvature,
RU,, = yéY, (1.63)
and
g2(r)=or* + v, (1.64)
f*(r): an arbitrary function. (1.65)

This concludes the classification.

II. DERIVATION OF THE CLASSIFICATION
SCHEME

In order to prove the previous classification, it is conve-
nient to work with differential forms. The field equations
for the EGB theory (1.5) are given by (1.9), and in the case
a, = 0 Eq. (1.9) reduces to the Einstein equations with
cosmological constant.

For the metric given in (1.1) the vielbein can be chosen
as

d
&= f(d, e = (—V) o = ram
g(r
where &™ is the vielbein of the base manifold X ,_,, so that
m=12,3,...,d — 1, and the curvature 2-form is then given
by
/ f//
ROl = —(gg’ji + g2—>eoe', 2.1
f f
f/
RO = —<g2 f—)eoem, (2.2)
r
1 2\/
RI" =~ @) 1 gm, 2.3)
r
2
RMn = Rmn — g—ze’”e", 2.4)
r

where R™" stands for the curvature of 3 ,_,.
To proceed with the classification, we first solve the
constraint £, = 0. One then finds that the analysis natu-
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rally splits into two cases, one involving generic theories
and the other restricted to the special class of theories
defined by (1.13). Solving the remaining field equations
in each branch completes the classification.

A. Solving the constraint

The equation &, = 0 reads

€y Lar(d — SYRMM R + B R gns gns

+ Agemmgmigmilgms | gt =0, (2.5)
where n = d — 2 is the dimension of the base manifold,
and Ay(r), By(r) are functions constructed out from g2(r)
and its derivative (see Appendix A). Taking a derivative of
this equation with respect to r, one obtains the following
consistency condition:

eml_”mn[B{)R’”'mZ + Ajemem]ems ...em =0, (2.6)
and since R”" and &” depend only on the coordinates of

3., one obtains that

Aj = —VB|, 2.7)
where vy is a constant. Equation (2.7) implies that
Ay = —yBy — (d = 5)a¢, (2.3)

where ¢ is a new integration constant that has been con-
veniently rescaled.

Inserting (2.7) in (2.6) then gives the following condi-
tion:

Bl (R™M72 =y gm)gms . g = 0,

2.9)

which means that the analysis splits into two cases: B, # 0
and Bj, = 0.

1. The constraint £y = 0 in the generic case (B{, # 0)

If B, is nonvanishing, the condition (2.9) reduces to

€, [R™™ — y@mem]ems . gm = (), (2.10)

my...m

which means that the Ricci scalar of the base manifold R is
a constant, i.e.,

R=n(n—1)y. (2.11)

Inserting (2.8) and (2.10) in the constraint (2.5) gives an
additional condition being quadratic in the curvature of the
base manifold:

(d - 5)a2 €m,..m, (Rm,mQRm3m4

— ggmegmegmigna)egms g™ = (0. (2.12)
Equations (2.11) and (2.12) restrict the geometry of X,
whereas (2.8) is a first order equation for g?(r) whose
solution is

PHYSICAL REVIEW D 82, 024002 (2010)

2 (a2 —
gz(r)=y+ﬂr2[1t\/1—a2“°+ noaly f)],
as

O Y R

(2.13)

with p an integration constant.

Note that we have not assumed any relation between the
coupling constants of the theory, and this is why these
conditions apply in the generic case.

2. The constraint £y = 0 in the special case (B, = 0)

If Bj, vanishes, Eq. (2.9) is trivially solved. On the other
hand, Eq. (2.7) implies

Al =B} =0, (2.14)

and it is easy to see, from the expressions for A, and B in
the Appendix A, that this equation can be fulfilled only if
the Gauss-Bonnet coupling is fixed as

ai
a, = —,
ap

(2.15)

which corresponds to the special class of theories (1.13). In
this case g2(r) is given by

g(r)=oar’ +vy, (2.16)
where we have defined
o=% 2.17)
a

Therefore, since the functions A, and B, reduce to

Ag = (d = Sayy?, (2.18)

By = —2(d — 5)ayy. (2.19)

Equation (2.5) gives the following scalar restriction on the
base manifold:
(d - S)aZGml.,.m”[lemz - yémlémz]

X [RMms — ygmsgmalems . &m = (. (2.20)

Note that this last condition on X, is weaker than the ones
obtained in the generic case (2.11) and (2.12). One should
keep in mind that Eq. (2.20) applies only for the special
theories fulfilling (2.15).

B. Solving the remaining equations
The equation £, = 0 reduces to
€m,.m, [ (d — 5)a,R™™m2 RMs™s 4 By R™"™ g g

+ Ajemememigmalens ... eMn = (),

(2.21)

where A; and B, are functions of r, f, g, and their deriva-
tives (see Appendix A). Subtracting (2.21) from (2.5), the
quadratic terms cancel out, and we obtain
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Eml...mn[(BO - Bl)lemz + (Ao - A])Em]émz]ém3 ..

(2.22)

The projection of the EGB field equations (1.9) on %,
En = 0, reads

€pmy..m, [(d — 5)(d — 6)as R"™™s R™™Ms + CR™2M3 g™Ms g™s
+ Demgmigmaghs]es . "™ =0, (2.23)

where again C and D are functions of r, f, g, and their
derivatives, given in Appendix A.

We will solve (2.22) and (2.23) for the generic and
special cases separately.

1. Radial and angular equations: Generic case
Introducing (2.10) in (2.22) we obtain

(By —By)y + (Ag — A) =0, (2.24)
which reduces to
g(r) )
= 2.2
s e =0 e2s)

Note that since in the generic case the function g? is
given by (2.13), the second factor in (2.25) does not vanish
in general. This implies that f%(r) is proportional to g*(r),
and the constant of proportionality can be reabsorbed by a
time rescaling, so that

J(r) = g*(r), (2.26)
where g2(r) is given in (2.13).
Let us now solve the remaining equations &,, = 0. By

virtue of (2.26), the functions C and D fulfill the following
relation:

D= —yC—(d—5)(d— 6)aé¢. (2.27)

Taking a derivative of (2.23) with respect to r we obtain

C' €y, LR — y&memlems ... &™ =0, (2.28)

and since it is straightforward to check that C’ # 0 for the
generic case, this equation is solved provided

Epms. m LR — y@M2gmsgma | @M = (),
n

(2.29)

mm...

which means that the base manifold must be Einstein.
Furthermore, if we use the latter equation and (2.27),
then Eq. (2.23) reads

(= 5)(d B 6)a26mm2...m,, [Rm2m3Rm4m5

— gemgmgmigms|gms | gmn = (. (2.30)

It is simple to verify (see Appendix B) that for an
Einstein manifold (2.29), this last equation reduces to
(1.47).

This concludes the proof of the classification in the
generic case (i), which includes the case (ii.a.1) when the
condition (1.13) is further fulfilled.

e = 0.

PHYSICAL REVIEW D 82, 024002 (2010)

2. Radial and angular equations: Special case
Using (2.16) in (2.22) gives

i i e

which means that the analysis splits in the following two
cases.

(ii.a.2): This is the case where the first factor in (2.31)
vanishes. Hence, after a rescaling of time, one obtains

o LR — ygmigm]ems g = ),

(2.31)

fA(r)=g*r)=or* +v, (2.32)
with o given by (2.17). Replacing (2.32) in £,, = 0 implies
that the metric of the base manifold fulfills the following
equation:

(d - 5)(d - 6)Cl2emmz...m,,|:Rmzm3 - 75m25m3]
X [Rmams — ygmagms]eme . &"n = 0. (2.33)

It is worth pointing out that Eq. (2.33) is the same
(Euclidean) EGB equation for the special case (2.15), but
in n =d — 2 dimensions. Once expressed in terms of
tensors in d > 6 dimensions, Eq. (2.33) reads

ikl"z"s’%(ﬁl,lzk o~ 1 1l )(Rl‘l“
1ka

_ I3y
Jhiblly klkz 75/@"4) =0,

(2.34)

which reduces to (1.51). This corresponds to the case
(i1.a.2) of the classification.

(ii.b) and (iii): In the case when the first factor of (2.31)
does not vanish, i.e., when f(r) is not proportional to g(r),
Eq. (2.31) reduces to

€ [Rmim — ygmgmlems . &™ =0,  (2.35)

my...my

which means that the Ricci scalar of 2, is a constant,

R =n(n—1)y. (2.36)

The angular Eq. (2.23) in this case reads

gm = €nmy..m, [Rmzm1 - 7€m2€m3]
X [R™ams — ygmsghs|g™s . &M

L Dl

(r) mmy...m,

[R™™Ms — y@magms]ghs M
=0, (2.37)

where D is the linear differential operator defined by
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4 1
m[_r2(0r2 +yf

—r((d—4or*+ (d—5)y)f
+ or*(d — 4)f(r)].

Dif(n]:=

(2.38)

Taking a derivative of Eq. (2.37) with respect to r leads
us to consider the following two subcases:

(ii.b): If D[f(r)] = Jf(r), where J is a constant, then
(2.37) reduces to

Epumy.,.m, [RTMS — Y@ gmJ[RMams — ygmaghs]gte . @M
2.y

+ Je [Rmms — ygmgmilems . gmes = 0. (2.39)

mmy...m,

This means that the base manifold also fulfills a Euclidean
EGB equation for a generic choice of the Gauss-Bonnet
coupling in n = d — 2 dimensions, where the constant J
measures the departure of (2.39) from the special case. The
function f(r) solves the following equation:

(o + )"+ r((d — 4)or* + (d — 5)y)f

(LTI )y =0 o)

whose integration depends on the value of y.
(1) (ii.b.1): For -y # 0 the solution of (2.40) is given by

f(r) =P~ ap,#(yor’ + 1)

+ bQ,,“(\/yarz +1)],

where P,*(x) and Q,*(x) are the generalized
Legendre functions of the first and second kind,
respectively, with

= 1\/(d —op—L@—-s)d—-6), @4
2 Y

d
2

and a, b are integration constants.
(1) (ii.b.2): For v = 0, Eq. (2.40) integrates as

PRPSS FY  CEECE)
r loa
+bY (l w)]
“\r 4o ’

where J,(x) and Y, (x) are the Bessel functions of
the first and second kind, respectively, with
) d—73
o= ——.
2
This concludes the proof corresponding to the cases
(ii.b.1) and (ii.b.2).
(iii): If D[f(r)]/f(r) is not a constant, then

v i=

-2, (2.42)

(2.43)

(2.44)
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Eq. (2.37) is solved provided the base manifold
simultaneously fulfills the Einstein and the EGB
equations in the special case with the same cosmo-
logical constant, i.e.,

€y, LR — Y@@ ]ems g = 0,

(2.45)

Emmnm [I'émzm3 _ yém2€m3][krn4m5 _ ,)/Em4'ém5]
2--+Mp

(2.46)

X e .. . "M =0

and f(r) becomes an arbitrary function.
For a Euclidean Einstein manifold fulfilling (2.45)
and (2.46) reduces to

Ci,,C"y =0, (2.47)
which implies that %, must be of constant curvature
v (see Appendix B), i.e.,

R, = y&]), (2.48)

This ends the proof of the classification.

I11. DISCUSSION

In this paper, the class of static metrics given by (1.1)
that solves the EGB field equations in vacuum for d = 5
dimensions has been classified. It was shown that for a
generic value of the Gauss-Bonnet coupling, the base
manifold must be necessarily Einstein, with an additional
restriction on its Weyl tensor if d > 5. The boundary
admits a wider class of geometries only in the special
case when the Gauss-Bonnet coupling is given by (1.13),
such that the theory admits a unique maximally symmetric
solution. The additional freedom in the boundary metric
enlarges the class of allowed geometries in the bulk, which
are classified within three main branches, containing new
black holes and wormholes in vacuum.

In the five-dimensional case, the classification was per-
formed in [12], including a thorough analysis of the geo-
metrically well-behaved solutions including black holes,
wormbholes, and spacetime horns. It was also shown that
these solutions have finite Euclidean action (regularized
through the boundary terms proposed in [14,15]), which
reduces to the free energy in the case of black holes and
vanishes in the remaining cases. The mass was also ob-
tained from the corresponding conserved charge written as
a surface integral. For a generic choice of the Gauss-
Bonnet coupling, the solution was obtained in [16] assum-
ing the base manifold to be of constant curvature, and in the
spherically symmetric case Eq. (1.15) reduces to the well-
known solution of Boulware and Deser [17]. In the special
case, in which the Gauss-Bonnet coupling is given by
(1.13), the Lagrangian can be written as a Chern-Simons
form [18] and its locally supersymmetric extension is
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known [19,20]. For the special case, when the cosmologi-
cal constant is negative (o > 0) this solution, correspond-
ing to the branch (ii.a), describes a black hole [21,22],
which for spherical symmetry, reduces to the one found
in [17,23]. It can also be seen that the black hole metric still
solves the field equations even in the presence of a non-
trivial fully antisymmetric torsion [24]. For the branch
(ii.b.1) with y = —1, the solution with |a| < 1 corresponds
to the wormhole in vacuum found in [25]. It has also been
shown that if the base manifold is given by the hyperbolic
space in three dimensions, i.e., 23 = H; with no identi-
fications, this metric describes a smooth gravitational soli-
ton [26]. If |a| = 1, the solution reduces to a different kind
of wormholes possessing inequivalent asymptotic regions.
For the branch (ii.b.2), if @ = 0 the solution describes a
“spacetime horn™ [12].

In the six-dimensional case, the classification was car-
ried out in [13]. For a generic choice of the Gauss-Bonnet
coupling, besides the mass parameter w, an independent
integration constant ¢ appears. The base manifold 3, has
to be Einstein with an additional scalar condition on its
geometry, given by (1.28), which means that the Euler
density of 3, must be constant. Therefore, if one assumes
that 2, is compact and without boundary, integration of
Eq. (1.28) on X, gives a topological restriction on the base

manifold, constraining the new parameter to be & =

%772%2“), where x(2,) is the Euler characteristic of the
4

base manifold and "V, stands for its volume. Note that the
term proportional to ~# inside the square root in the metric
(1.29) vanishes if and only if the base manifold is of
constant curvature. It is worth pointing out that this term
severely modifies the asymptotic behavior of the metric.
Depending on the value of the parameters, this spacetime
can describe black holes being asymptotically locally (A)
dS or flat. The asymptotic behavior of the metric is further
relaxed in the special case (1.13) [see (ii.a.1)], which for a
constant curvature base manifold X, reduces to the solu-
tion found in [22].

When (1.13) is fulfilled, it was shown that the restriction
that 2.4 be Einstein can be circumvented [case (ii)]. For the
case (ii.a.2), the geometry of the base manifold is as
relaxed as possible, since it has to fulfill just a single scalar
equation, given by (1.33). Remarkably, if the Ricci scalar is
further required to be a nonvanishing constant y = =1, for
negative cosmological constant, wormholes in vacuum
also exist in six dimensions, provided at < ”Tz [case
(ii.b.1) with y = —1], and the volume of the base manifold
turns out to be fixed in terms of the Euler characteristic,
according to (3y) = V,. In the case of y = 0, i.e., if
the base manifold X, has vanishing Ricci scalar, one
obtains that y(2,) = 0, and for a = 0 the metric looks
like a ““spacetime horn.” In the six-dimensional case this
classification has been further explored in [27] for the case
in which the functions f? and g2 are also time dependent.
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The classification of these solutions presents special
features in d =5 and 6 dimensions, and as explained
above, a common pattern arises in higher dimensions. In
the case of d = 7, for a generic choice of the Gauss-Bonnet
coupling [case (i)] it was found that the base manifold has
to be Einstein, fulfilling the additional condition (1.44), in
agreement with [11]. Apart from the mass parameter ., an
additional integration constant & appears. For spherical
symmetry, one recovers the result found by Boulware
and Deser [17]. The gravitational stability in the spheri-
cally symmetric case was analyzed in [28], where it was
found that, contrary to what happens for higher-
dimensional spherical black holes in GR, in the asymptoti-
cally flat five- and six-dimensional cases, there is a critical
mass below which the black holes become unstable
[29,30]. If the base manifold 2 ,_, is of constant curvature,
then the condition (1.44) implies that y*> — ¢ = 0, and one
recovers the results found by Cai [16]. The difference y> —
& parametrizes the deviation of the base manifold from
being of constant curvature, and it is worth pointing out
that if & # y?, the metric given by (1.45) acquires an
additional term of order r~* within the square root in
(1.45) regardless of the spacetime dimension, so that the
metric possesses a slower falloff at infinity as compared
with ones with base manifolds of constant curvature. In the
asymptotic region, the behavior of the metric is further
relaxed in the special case (1.13) [10] [see (ii.a.2)], and for
base manifolds 3, , of constant curvature, the solution
reduces to the one found in [22].

It was shown that for the special choice (1.13), the
restriction that 3, , be Einstein can be surmounted [case
(i1)]. In the case (ii.a.2), the geometry of the base manifold
turns out to be as relaxed as possible, since it has to fulfill
just Eq. (1.51), corresponding to the Euclidean EGB
equation for the special case (1.13) in d — 2 dimensions,
admitting a unique maximally symmetric solution of cur-
vature y.

For the choice (1.13), if the base manifold %,_, has
constant Ricci scalar and fulfills the Euclidean EGB equa-
tion in d — 2 dimensions in (1.53), which depends on an
integration constant .J, one recovers cases (ii.b) for which
the metric is expressed in terms of generalized Legendre
functions for y = =1 [Eq. (1.55) of case (ii.b.1)], and
Bessel functions for v = 0 [Eq. (1.61) of case (ii.b.1)]. In
the case of J =0 Eq. (1.53) reduces to (1.51), and the
metric explicitly acquires the following form:

b
f) =ar+ 2=, (3.1
for y = 0, and
[ ., h)
f(r)=a 0'}’2"")/"‘[7%, (32)

with
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201 + y:

3012 + y — 30r2yor? + Ttanh ! ((yor® + 1)71/2):

h(r) = { 802r* + 4oyr* — 1:

2 —50r*y — 1502 + 150r*yor’ + ltanh™ ! ((yor? + 1)~1/2);
160371 + 802 yr* — 20v%r* — y3:

for y = *1.

As explained in [12,13], in five and six dimensions,
respectively, and extended here to any dimension d = 7,
for the EGB theory with special choice of the Gauss-
Bonnet coupling (1.13), metrics of the form

2

d
72}’ + r2d3?
or-+vy

ds®> = —f*(r)dt* + -2y

(3.4)
with o = Z—?, and y = *1,0, may acquire degeneracy
[case (iii)]. Degeneracy occurs for the metric (3.4) when
the base manifold X ,_, is of constant curvature vy, since
the EGB equations turn out to be solved for an arbitrary
function f?(r). Thus, in particular, the Lifshitz spacetimes
in [31-33] fall within this class.

This kind of degeneracy is a known feature of a wide
class of theories [34]. A similar degeneracy has been found
in the context of Birkhoff’s theorem for the EGB theory in
vacuum [35,36], and also for theories containing dilaton
and an axion fields coupled with a Gauss-Bonnet term [37].

From the point of view of the AdS/CFT correspondence
[2], the dual CFT is expected to have a behavior that
strongly depends on the choice of the base manifold
3, ». Note that the existence of wormholes with AdS
asymptotics, as the ones reported here, raises some puzzles
within this context [38—40]. Nevertheless, in five dimen-
sions, some interesting results have been found in [41]. The
EGB theory also admits wormhole solutions in the pres-
ence of matter that fulfill the standard energy conditions
[42-45]. From the gravity side of the correspondence, the
addition of a Gauss-Bonnet term in the action has recently
attracted a lot of attention concerning the hydrodynamic
limit of the dual CFT [46-57].

The EGB theory also possesses rotating solutions with a
nontrivial geometry at the boundary [58]. Currently, a wide
spectrum of solutions in vacuum is known, including black
strings and black p-branes [59-63], spontaneous compac-
tifications [64—71], metrics with a nontrivial jump in the
extrinsic curvature [72-74], and even solutions with non-
trivial torsion [24,75,76].
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APPENDIX A: FUNCTIONS APPEARING IN THE
FIELD EQUATIONS

Here we present the expressions for the functions ap-
pearing in the EGB field equations. For the constraint £, =
0 in (2.5), the corresponding functions are defined by

Ay i=r"aordl — 2a,r973g% + a,ri g%, (Al

By i=2r 4" a,r43 — a,rig%], (A2)

and for the radial equation £; = 0 (2.21) those are
/
Ay(r) i= agld = Dr* — 2a1g2r2<(d -3)+ 277’)

+ a2g4<(a’ -5+ 471;’), (A3)

U

B\(r) :i= —2a2g2<(d -5+ 2fr) +2(d — 3)a,r*.
(A4)

For the projection of the EGB field equations along the
base manifold 3, £, =0 in (2.23), the corresponding
functions are given by

C:= —202r2|:(g2)’]; + 2g2f?//

+(d- 5)<2g2§ + rs_d(gzrd_6)’):|

+2(d — 3)(d — 4)a,r?, (AS)
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D= (d— 1)(d — Dagr* — 2a1r2|:(d — 3)5d(g2pdy
+ L= IR (Y 264"
+ azr[(d — 5)r%4(g*r46) + 4(d — 5)g4j;:

+ 2(g4)’1;r + (g4)’£ r+ 4g4j;ur:|. (A6)

f

APPENDIX B: SOME USEFUL GEOMETRICAL

IDENTITIES
An n-dimensional Einstein manifold X, fulfills
R'; = y(n—1)d" (B1)
In this case the Einstein tensor reads
i _ (I’l - 2)(” B 1) i
G = —fyéj. (B2)

and for n > 3 the Weyl tensor defined as the ‘“‘trace-free
part” of the Riemann tensor

Jo_ pi [i poi] R ij
Clly = Ry = =S 3R + o5y O (B3)
reduces to
Cil,, := R, — y&}. (B4)

Here antisymmetrization is normalized as Ty;;; := %(T,- i

PHYSICAL REVIEW D 82, 024002 (2010)

The Gauss-Bonnet tensor (1.7) can then be expressed as
Hij — Ciklm Clmjk
—C*+ ¥ (n— D(n —2)(n = 3)(n — 4)]8%, (B5)

where C? := C",C",;. Note that for Euclidean signature
C? = 0, and it vanishes only if C/,; = 0. Thus, by virtue of
(B4), Euclidean Einstein manifolds with C> = 0 are of
constant curvature.

The trace of Eq. (B5) implies that the difference of the
Gauss-Bonnet combination and the squared Weyl tensor is
a constant, i.e.,

RIRM — 4RIR, + B> — C> = — "2
ki*Nij ij Yo

(n —4)! (B6)

which is actually valid for n > 3. Note that since in four
dimensions the Gauss-Bonnet tensor identically vanishes,
H' ; = 0, Eq. (B5) means that Einstein manifolds fulfill the

following identity [77]
C2

Ciklmclmjk _ 51‘}

7o (B7)

Another useful identity allows writing Eq. (1.49) as
R i-kaRklij - 4R,-J-Ri-7 + R?2 =0, (B8)

with
Ry =

R, — 6}, (B9)
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