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The interaction between gravitational and electromagnetic waves in the presence of a static magnetic

field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such

that the QED effects of vacuum polarization and magnetization are significant. Equations governing the

interaction are derived and analyzed. It turns out that the energy conversion from gravitational to

electromagnetic waves can be significantly altered due to the QED effects. The consequences of our

results are discussed.
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I. INTRODUCTION

As studied by many authors [1–19] there exist numerous
mechanisms for the conversion between gravitational
waves (GWs) and electromagnetic (EM) waves. In particu-
lar, the propagation of GWs across an external static mag-
netic field gives rise to a linear coupling to the
electromagnetic field (see e.g. Refs. [1–3]), which may
lead to the GW excitation of ordinary EM waves in vac-
uum, or of magnetohydrodynamic (MHD) waves in a
plasma [3–5]. Many nonlinear coupling mechanisms are
also possible [4,6–10]. Cosmological aspects of GW-EM
couplings have been reviewed by Ref. [11], and also
studied recently by e.g. Refs. [12,13]. Conversion of en-
ergy from gravitational to electromagentic degrees of free-
dom has been pointed out as a means to indirect detection
of gravitational waves by several authors (see e.g.
Refs. [3,6,14]), since the latter is so much easier to detect.
For astrophysical application (see e.g.
Refs. [1,3,6,9,18,19]), naturally this requires well-
developed theories to recognize the signature of the gravi-
tational origin. Furthermore, there must be a sufficient
amount of energy conversion taking place. Specifically,
considering the coupling due to a static magnetic field, it
has been noted that more energy can be converted from
gravitational to electromagnetic degrees of freedom if the
interaction region is larger, and if the magnitude B0 of the
static magnetic field is larger [3]. In the case that the
interaction region is magnetized vacuum, with a size
smaller than the background curvature radius, it has been
found that the energy converted is linear in the background
field energy density [2,3]. This result, however, does not
account for QED vacuum polarization effects [20–23],
which become significant when B0 approaches the value
Ecr=c, where Ecr � m2

ec
3=@e ’ 1018 V=m is the

Schwinger critical field, me is the electron mass, e is the
elementary charge, c is the speed of light in vacuum, and
h ¼ 2�@ is the Planck constant.

In the present paper we will investigate the QED influ-
ence on gravitational-electromagnetic interaction in a

static field B0 that may be stronger than the characteristic
QED scale Ecr=c. It should be noted that such intense field
do occur in nature, specifically close to magnetars where
close to the surface the magnetic field strength may reach
1010–1011 T [24]. Starting from Einstein’s equations, to-
gether with the Heisenberg-Euler Lagrangian to describe
vacuum polarization and magnetization in the electromag-
netic theory, the basic equations for small amplitude wave
propagation on a background with a strong static magnetic
field B0 is derived. In order to simplify the calculation, the
size of the interaction region is assumed to be much
smaller than the background curvature. It is found that
the vacuum polarization effects lead to a saturation, such
that the energy conversion (almost) stops to grow with B0

beyond a certain value Bsat. This value depend on the
length L of the interaction region. For a large L, the
saturation value is much smaller than the QED scale, i.e.
Bsat � Ecr=c (in which case the weak field QED correc-
tions [20] of the Heisenberg-Euler theory would have
sufficed), but for shorter interaction regions we may have
Ecr=c � Bsat in which case the full theory is required. The
relevance of our model calculation to astrophysical prob-
lems is discussed at the end of the paper.

II. BASIC EQUATIONS

According to classical electrodynamics, photons does
not interact, and Maxwell’s equations are linear (in the
absence of current and charge density sources that may
depend on the field) and can be derived from the simple
Lagrangian density Lc ¼ �ð1=4�0ÞF��F��, where F��

is the electromagnetic field tensor, by varying the four-
potential. When QED enters the picture, photons may
interact also in the absence of real charged sources, due
to the ubiquitous virtual electron-positron pairs. As a con-
sequence, Maxwell’s equations get new types of source
terms that are nonlinear in the field strengths, and can be
interpreted as vacuum polarization and vacuum magneti-
zation, see e.g. Ref. [20]. An effective field theory captur-
ing these effects within a Lagrangian was first put forward
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by Ref. [25] and was subsequently rigorously derived from
QED by Ref. [26]. The Lagrangian for soft photon (i.e.
photon energy much smaller than electron rest mass en-
ergy) light propagation, taking one loop corrections into
account, is given by [22,23,26]

L¼� 1

�0

F � �

2��0e
2

Z i1

0

ds

s3
e�eEcrs=c

�
�
ðesÞ2abcothðeasÞcotðebsÞ � ðesÞ2

3
ða2 � b2Þ � 1

�

�A�j
�; (1)

where a ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF 2 þG2Þp þF �1=2, b ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF 2 þ G2Þp �
F �1=2, F ¼ ð1=4ÞF��F

��, G ¼ ð1=4ÞF��F̂
��, F̂�� ¼

����� F��

2 , ����� the totally antisymmetric tensor, A� the

four-potential, j� the four-current and � the fine structure
constant. The Euler-Lagrange equations of motion for the
Lagrangian (1) becomes

�FF
��
;� þ �GF̂

��
;� þ 1

2½�FFF
��F�� þ �GGF̂

��F̂���F��
;�

þ �FG½F��F̂�� þ F̂��F���F��
;� ¼ �j�; (2)

where we have applied the Eq. (2) of Ref. [22] to a curved
background, and introduced the quantities

�F ¼ @L
@F

; �G ¼ @L
@G

; �FF ¼ @2L
@F 2

;

�GG ¼ @2L
@G2

; �FG ¼ @2L
@F @G

:

(3)

The physics of strong field vacuum polarization and vac-
uum magnetization is thus encoded in the parameters in-
troduced in Eq. (3). For the case of interest to us, i.e. no
external electric field, the scalars,�F , �G, �FF , �GG and

�FG can be computed analytically as functions of the

external constant magnetic field strength B0. This proce-
dure which involves the solution of numerous integrals is
described in Ref. [22], and the explicit expressions of the
scalars can be found in Appendix A.

In the paper we will study the influence of a GW on a
strong magnetic field. The metric of a linearized GW
propagating in the z-direction can be written

ds2 ¼ �c2dt2 þ ð1þ hþÞdx2 þ ð1� hþÞdy2
þ 2h�dxdyþ dz2; (4)

where the two independent polarizations hþ and h� de-
pend on the coordinates as hþ;� ¼ hþ;�ðz� ctÞ.
Furthermore, we define an orthonormal tetrad by

e 0 ¼ 1

c
@t; e1 ¼

�
1� 1

2
hþ

�
@x � 1

2
h�@y;

e2 ¼
�
1þ 1

2
hþ

�
@y � 1

2
h�@x; e3 ¼ @z:

(5)

In linearized theory of gravity, the relevant components of

the Einstein equations read:

ðe20 � @2zÞhþ ¼ �ð	T11 � 	T22Þ;
ðe20 � @2zÞh� ¼ 2�ð	T12Þ;

(6)

where � ¼ 8�G=c4, and G is the gravitational constant.
The energy-momentum tensor associated with the
Lagrangian (1) is written T�� ¼ ��FF

�
�F�� þ ðG�G �

LÞg��, see [27], and expressions for 	T11, 	T22 and 	T12,

linearized around the strong magnetic field B0, is worked
out in Appendix A.
Next we follow the covariant approach presented in

Ref. [28] for splitting the EM and material fields in a 1þ
3 fashion. Suppose an observer moves with 4-velocity u�.
This observer will measure the electric and magnetic fields
E� � F��u

� and B� � ����F
��=2, respectively, where

F�� is the EM field tensor and ���� is the volume element

on hyper-surfaces orthogonal to u�. We also define the
spatial gradient operator as r ¼ ðe1; e2; e3Þ. Using the 1þ
3 split we write the Maxwell equations in the tetrad basis
(5). From Eq. (2) and the Faraday equation, F½ij;k� ¼ 0, we

obtain

cr � B ¼ 
B

�0
; (7)

r �E ¼ 1

�0

�



�F

þ 
E

�
; (8)

e0Bþr� E

c
¼ ��0jB; (9)

1

c
e0E�r�B ¼ ��0

�
jQ þ j

�F

þ jE

�
; (10)

where jQ is the combined vacuum polarization and vac-

uum magnetization current density, which from Eq. (2) can
be seen to take the form

j�Q � � 1

2�0

�
�GG

�F

F̂klF̂i� þ �FF

�F

FklFi�

�
eiFkl; (11)

and the effective (i.e. gravity induced) charge densities and
current densities are


E � ��0½��
��E

� þ �����0
��cB��;


B � ��0½��
��cB

� � �����0
��E��;

j�E � 1

�0

�
�ð��

0� � ��
�0Þ

E�

c
þ ��

0�

E�

c

� ����ð�0
0�B� þ �	

��B	Þ
�
;

j�B � 1

�0

�
�ð��

0� � ��
�0ÞB� þ ��

0�B
�

þ ����
�
�0
0�

E�

c
þ �	

��

E	

c

��
; (12)
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where the Greek indices takes values between 1 and 3, and
the Latin indices between 0 and 3. From here on we will be
concerned with a GW wave propagating across a magnetic
field. Explicit expressions of the source terms for this case
is obtained by substituting the QED parameters from
Appendix A into Eq. (11), and the rotation coefficients
for a linearized GW presented in Appendix B into Eq. (12).

III. WAVE INTERACTION

The most efficient interaction of a GW with a static
magnetic field occurs if the GW propagates perpendicular
to the magnetic field. As has been found by e.g. Refs. [2,3],
the fact that the GW fulfills the same dispersion relation as
EM waves, makes the energy conversion resonant. As a
consequence, the energy conversion from a GW to copro-
pagating EM waves is directly proportional to the back-
ground field energy density as well as the length of the
interaction region, defined as the region occupied by the
static magnetic field B0. This conclusion holds as long as
QED effects is negligible, and the length of the interaction
region is smaller than the radius of curvature associated
with the magnetic field energy density. Our aim here is to
investigate to what extent the QED effects, associated with
fields strengths approaching the Schwinger limit, modifies
the energy conversion between GWs and EM waves. For
this purpose we will still assume that the interaction region
is smaller than the radius of curvature due to B0, such that
the interaction can be considered as taking place on a
Minkowski background.

As wewill see, in addition to an EMwave copropagating
with the monochromatic GW, with metric perturbation

h�;þ ¼ ~h�;þ exp½iðkz�!tÞ� and ! ¼ kc, a counter-

propagating wave with the same frequency will also be
induced. We thus make the ansatz B ¼ B0e1 þ 	BðzÞ�
exp½�i!t� and E ¼ 	EðzÞ exp½�i!t�, where 	B and 	E
includes both positive (along z) and negative propagating
waves. Taking the curl of Eq. (10) and using (9) one
obtains,

� e20B�r� ðr� BÞ þ�0r� jQ

¼ ��0r� jE þ�0e0jB; (13)

to linear order, with the components of the polarization
current Eq. (11) given by

j1Q ¼ ��GG

�F

B2
0

1

c�0

e0	E1;

j2Q ¼ ��FF

�F

B2
0

1

�0

@z	B1; j3Q ¼ 0:

(14)

From Eq. (12) and Eqs. (B1) the gravitational contribution
is found to be:


E ¼ 
B ¼ 0; j1E ¼ B0

2�0

@h�
@z

;

j2E ¼ � B0

2�0

@hþ
@z

; j3E ¼ 0;

j1B ¼ � B0

2c�0

_hþ; j2B ¼ � B0

2c�0

_h�; j3B ¼ 0:

(15)

Using Eqs. (9) and (13)–(15) we will next demonstrate that
different EM wave polarizations couple to different GW
polarizations. The result is most easily expressed in terms
of the magnetic field components, and can then be written:

½kþ2
E þ @2z�	B1 ¼ kþ2

E B0
~hþ exp½ikz�

½k�2
E þ @2z�	B2 ¼ 1

2

�
!2

c2
þ k�2

E

�
B0

~h� exp½ikz�;
(16)

where kþ2
E ¼ !2=ðc2ð1þ B2

0�FF=�FÞÞ and k�2
E ¼ !2ð1�

B2
0�GG=�FÞ=c2. As can be seen, all effects of the QED-

vacuum polarization and magnetization is encoded in the
effective wave numbers kþE and k�E , that approach !=c for
cB0=Ecr � 1. Note that Eq. (16) agrees with Ref. [22],
when the GW-coupling terms on the right hand sides are
dropped [29]. The backreaction on the GW can be obtained
by combining Eqs. (6) and (A11). Whether or not this
effect is important depends on the ratio of the excited
wave energy density compared to the (pseudo) wave en-
ergy density of the GW. Roughly the scaling is as follows:
For weak background magnetic fields (i.e. negligible QED
effects), the excited wave energy density is limited by

Wem � B2
1=�0 � ðkLÞ2j~hþ;�j2B2

0=�0, where k is the inci-

dent wave number and L is the length of the interaction
region. As we will see in the next section, whenever QED
effects are important, the excited wave energy is reduced
compared to this scaling. Thus at most the ratio of the
excited wave energy to the GW (pseudo) wave energy
density becomes Wem=WGW ¼ L2ðG=8�c2ÞB2

0=�0.

Whenever the interaction region is smaller than the back-
ground curvature due to the unperturbed magnetic field (as
we have assumed above), this ratio is much smaller than
unity, and hence the backreaction on the GW can be
neglected. As a consequence, the approximation of ‘‘no
GW backreaction’’ will be employed in the next section.

IV. A SPECIFIC EXAMPLE

As a specific example we will now consider a boundary
value problem, where the GW propagating in the
e3-direction, enters the interaction region, given by
�L=2< z < L=2, which is the region where the external
magnetic field B0e1 is taken to be nonzero. The general
solution to Eq. (16), for the interaction region�L=2< z <
L=2, is

	B1;2 ¼ T1;2e
ikþ;�

E z þ R1;2e
�ikþ;�

E z þ C1;2e
ikz;
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where C1 ¼ kþ2
E B0

~hþ=ðkþ2
E � k2Þ, C2 ¼ ðk�2

E þ
k2ÞB0

~h�=2ðk�2
E � k2Þ, and R1;2 and T1;2 are constants de-

termined by the boundary conditions. This must be
matched with the EM wave solutions with constant ampli-
tudes outside the interaction region

	B1;2 ¼ fR1;2e
�ikz; z 2 ð�1;�L=2Þ;

	B1;2 ¼ fT1;2e
ikz; z 2 ðL=2;1Þ;

at z ¼ �L=2. Furthermore, the electric fields must be
matched as well. The relevant Maxwell equations are

	E2 ¼ i

!

�
!2

kþ2
E

@z	B1 þ B0

2
@zhþ

�
; (17)

	E1 ¼ � i!

k�2
E

�
@z	B2 þ B0

2
@zh�

�
; (18)

The matching of the electric field is done in the same way
as that of the magnetic field to give four equations for four
quantities, for each set of coupled polarizations. Solving
these equations, the resulting amplitudes of the ‘‘reflected’’
and ‘‘transmitted’’ (or strictly speaking counterpropagat-
ing and copropagating) EM waves becomes

fR1 ¼
B0

~hþ
2

�þe�i� ð1þ�þÞei�þ�þð1��þÞe�i�þ��2ei�

ð1þ�þÞ2e�i��þ �ð�þ�1Þ2ei��þ
;

(19)

and

fT1 ¼ B0
~hþ
2

�þ
ð1� �þÞ2ei�þ� � ð1þ �þÞ2e�i�þ�

�
�ð1� �þÞ2

1þ �þ
ei�þ� þ ð1þ �þÞ2

ð1� �þÞ e
�i�þ�

þ 2
3�2þ þ 1

�2þ � 1
e�i�

�
; (20)

for the mode that couples to the plus-polarization. For the
mode that couples to the cross-polarization we similarly
obtain

fR2 ¼
~h�B0

2
ð�2� þ 1Þ

� e�i�½ei��� � e�i����
ð�� � 1Þ2ei��� � ð�� þ 1Þ2e�i���

; (21)

and

fT2 ¼
~h�B0

2

�
�2� þ 1

�2� � 1

�

� ð�� � 1Þ2ei��� � ð�� þ 1Þ2e�i��� þ 4��e�i�

ð�� þ 1Þ2e�i��� � ð�� � 1Þ2ei���
:

(22)

Here we have introduced the notation �þ;� � kþ;�
E =k and

� ¼ kL. An example of the magnetic profile (containing
both the transmitted and reflected wave) is given in Fig. 1

for kL ¼ 40 and cB0=Ecr ¼ 100. The expressions (19)–
(22) contains all information about the energy conversion
to the different EM-modes. However, to appreciate these
results and the effects due to QED, we must first evaluate
some results for the low-field limit when �þ;� ! 1. The
squared coefficient jfT1 j2, proportional to the energy den-
sity of the transmitted wave excited by theþ-polarization,
then becomes

jfT1 j2 ¼ 1
4j~hþj2B2

0k
2L2; (23)

and similarly for the mode excited by the opposite polar-
ization,

jfT2 j2 ¼ 1
4j~h�j2B2

0k
2L2: (24)

Thus we see that the transmitted energy density is directly
proportional to the background energy density. However,
this behavior is dramatically changed when QED effects
are taken into account. The main reason is that the EM
wave dispersion relation is changed in the interaction
region (that makes �þ;� deviate from unity) which in

turn detunes the excited wave with the GW. The conse-
quence for the transmitted wave excited by the
�-polarization is depicted in Fig. 2, for kL ¼ 20 and kL ¼
100. The steady increase in the absence of QED is replaced
by an oscillatory behavior, mainly due to the detuning of
the GW and EM wave dispersion relation. Note that we
here have normalized the transmission coefficient with

j~hþ;�j2B2
0k

2L2, such that the coefficient without QED

effects is represented by a straight line. For a longer
interaction region, a smaller mismatch of dispersion rela-
tions are needed for the phase difference to accumulate,
and hence the curve with the lower value of kL (kL ¼ 20)

z
-20 -10 0 10 20

 -15

 -10

 -5

5

10

15

FIG. 1. The wave profile for kL ¼ 40 and cB0=Ecr ¼ 100. The
magnetized region lies between z ¼ �10 and z ¼ 10.
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needs a much higher field strength before significant QED
effects are seen. A similar point is illustrated by Fig. 3 that
depicts the energy density for the copropagating mode
excited by the þ-polarization. Note that the energy con-
version to this EM-mode is much less affected by the QED
effects. The reason is that the QED modification of the EM

dispersion relation effectively saturates at a value
cB0=Ecr � 10. Accordingly we have chosen higher values
of kL, namely kL ¼ 2000 and kL ¼ 20 000, which is
needed in order to see the deviation from the classical
behavior induced by QED. In addition to the copropagating
EM modes there are also counter-propagating EM waves.
From a practical point of view, these are much less signifi-
cant, since the counter-propagating modes are always non-
resonant with the source GW, and hence the energy density
of these modes does not systematically increase with a
larger interaction region, i.e. increasing kL. From a more
theoretical point of view, an interesting effect can be seen
in the coefficients (19) and (21), however. Without QED
effects, theþ-polarization does not cause a back-scattered
wave, independent of the value of kL, as seen by (19) when
letting �þ ! 1. However, the situation for the
�-polarization is different, as we find a finite but small
counter-propagating mode from (21) also in the limit
�� ! 1.

V. SUMMARYAND CONCLUSION

In this paper we have studied the interaction between
GWs and EM waves in the presence of a strong static
magnetic field B0, using the Heisenberg-Euler
Lagrangian in order to take QED vacuum polarization
and magnetization into account. The high-frequency ap-
proximation has been applied to zeroth order, i.e. all effects
of the background curvature has been neglected, which is
permissible if the spatial extension of the interaction region
is much smaller than the radius of curvature. The specific
boundary conditions considered is an incoming GW inci-
dent on a static magnetic field with a given extent L, which
give raise to an excited EM wave in the same direction as
the GW, as well as one propagating in the opposite direc-
tion. The role of the QED effects is twofold: First, the
coupling strength between the GWs and the electromag-
netic waves are modified [as described by the coefficients
of the right-hand side in Eq. (16)]. Second, the change in
phase velocity (< c) of the EM waves induced by the
vacuum polarization, as described by the expressions k�E
and kþE , destroys the perfect resonance with the gravita-
tional source wave, which gives a saturation of the possible
energy conservation at a finite value of L. These effects are
similar in principle for the h�- and hþ-polarizations
(which couples to different EM polarizations), and the
dimensionless parameter ðcB0=EcrÞ2kL need to reach
ðcB0=EcrÞ2kL� 105 in order for QED effects to be impor-
tant in both cases. However, since the QEDmodification of
the EM mode excited by the hþ-polarization saturates at a
value cB0=Ecr � 10, a much higher value of kL is needed
for the QED effects to be significant in this case.
The problem considered here has been highly idealized

and has mainly been motivated by a theoretical interest to
study GW and EM wave interaction in a strong field
environment, allowing for field strengths larger than the

100 200 300 400 500
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 2. Normalized energy density of the copropagating EM
wave, excited by a cross-polarized GW, as a function of back-
ground magnetic field strength for � ¼ 20 (dashed line) and � ¼
100 (solid line) compared to the non-QED case (dotted line).

10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 3. Normalized energy density of the copropagating EM
wave, excited by a plus-polarized GW, as a function of back-
ground magnetic field strength for � ¼ 2000 (dashed line) and
� ¼ 20000 (solid line) compared to the non-QED case (dotted
line).
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Schwinger critical field Ecr. However, we would like to
point out that there is a certain astrophysical relevance of
the problem, as the effect of QED detuning is found to be
of significance for field strengths B0 ’ 3Ecr=c 	 1010 T
(see e.g. Fig. 3), a value that has been observed at magnetar
surfaces [24], although a high GW frequency would be
required. Interesting generalizations of the present work
includes the study of the back-scattering on the GW, and
the possible existence of an energy conservation law.
Furthermore, some of the restrictions of the present study
can likely be removed, e.g. by considering propagation at
an arbitrary angle to the magnetic field, and/or by relaxing
the short wave approximation, i.e. including the back-
ground curvature effects.
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APPENDIX A: STRONG FIELD VACUUM
POLARIZATION AND MAGNETIZATION

PARAMETERS

With only a strong magnetic field present the quantities
�F , �G, �FF , �GG, and �FG can be determined analyti-

cally, see Ref. [22]. The resulting expressions for these
QED parameters are

�G¼0; �FG¼0;

�F ¼� 1

�0

� �

2��0

�
1

3
þ2h2�8 0ð�1;hÞþ4hlnð�ðhÞÞ

�2hlnhþ2

3
lnh�2hln2�

�
;

�FF ¼ �

2��0B
2

�
2

3
þ4h2c ð1þhÞ�2h�4h2�4h ln�ðhÞ

þ2hln2��2hlnh

�
;

�GG¼ �

2��0B
2

�
�1

3
�2

3
c ð1þhÞ�2h2þ 1

3h
þ8 0ð�1;hÞ

�4hln�ðhÞþ2hln2�þ2hlnh

�
; (A1)

where � ¼ e2

4��0@c
is the fine structure constant, h ¼ Ecr

2cB ,

�ðhÞ the gamma function, c ðhÞ the digamma function and

 0ð�1; hÞ the first derivative of the Hurwitz zeta function
with respect to its first argument.
Furthermore, in the absence of a strong electric field we

can calculate the integral in the Lagrangian (1) analyti-
cally. Since there is only a strong magnetic field present we
have b ¼ 0. Thus, to compute the integral in Eq. (1), we
expand the integrand and take the limit as b ! 0, thereby
obtaining

I ¼
Z i1

0

ds

s3
e�eEcrs=c

�
ðeasÞ cothðeasÞ � ðeasÞ2

3
� 1

�
:

(A2)

By changing the variables such that eas ¼ z, dividing the
integral into three parts, altering the integration path and
using the regulator z� we obtain

I ¼ ðeaÞ2
�Z 1

0
dze�Ecrz=caz��2 cothðzÞ

�
Z 1

0
dze�Ecrz=ca

z��1

3
�

Z 1

0
dze�Ecrz=caz��3

�
(A3)

Since Ecr=ca ¼ 2h we find the first, second and third part
of the integral to be

I1 �
Z 1

0
dze�2hzz��2 cothðzÞ

¼ 1

�

�
2h2 þ 1

3

�
þ ð1� C� ln2Þ

�
2h2 þ 1

3

�

� 4 0ð�1; hÞ � 2h lnðhÞ; (A4)

I2 �
Z 1

0
dze�2hz z

��1

3
¼ � 1

3�
þ 1

3
Cþ lnð2hÞ

3
; (A5)

and

I3 �
Z 1

0
dze�2hzz��3

¼ �
�
2h2

�
þ h2 � 2h2 lnhþ ð1� C� ln2Þ2h2

�
;

(A6)

respectively, where C is Euler’s constant. With Eqs. (A4)–
(A6) we can now rewrite Eq. (A2) as

I ¼ ðeaÞ2
�
1

3
½1� ln2� lnð2hÞ� þ h2½2 lnh� 1�

� 2h lnh� 4 0ð�1; hÞ
�
; (A7)

and thus the Lagrangian (1) becomes

L ¼ � 1

�0

F � �B2

2��0

�
1

3
½1� ln2� lnð2hÞ�

þ h2½2 lnh� 1� � 2h lnh� 4 0ð�1; hÞ
�
� A�j

�:

(A8)
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Since we have only a magnetic field, G ¼ 0 holds, and the
energy-momentum tensor associated with the Lagrangian
(A8) becomes

T�� ¼ ��FF
�
�F�� �Lg��: (A9)

Next we proceed by expanding the energy-momentum
tensor (A9). The first order contribution becomes

	T�� ¼ 	�FF
�
�F�� � �F ½	F�

�F�� þ F�
�	F���

� 	Lg��; (A10)

where

	�F ¼ �

2��0

�
4h0 þ 4 ln�ðh0Þ þ 2 lnh0 � 2 ln2�� 2

� 2

3h0
� 4h0�ðh0Þ

��
�h0

	B1

B0

�
;

and h0 ¼ Ecr=2cB0, so the relevant energy-momentum
tensor terms in Eq. (6) becomes

	T11 � 	T22 ¼ B2
0	�F � 2�FB0	B1;

	T12 ¼ �FB0	B2: (A11)

APPENDIX B: RICCI-ROTATION COEFFICIENTS

The Ricci-rotation coefficients of a Minkowski space-
time perturbed by a GW propagating in the e3-direction
expressed in the tetrad (5) is given by

�0
11 ¼ ��0

22 ¼ �1
01 ¼ ��2

02 ¼
1

2c
_hþ;

�0
12 ¼ �0

21 ¼ �1
02 ¼ �2

01 ¼
1

2c
_h�;

�1
31 ¼ ��2

32 ¼ ��3
11 ¼ �3

22 ¼
1

2

@hþ
@z

;

�1
32 ¼ �2

31 ¼ ��3
12 ¼ ��3

21 ¼
1

2

@h�
@z

;

(B1)

to first order in hþ;�.
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