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We have investigated the necessary conditions that prevent phantom inflation from being eternal.

Allowing additionally for a nonminimal coupling between the phantom field and gravity, we present the

slow-climb requirements, perform an analysis of the fluctuations, and finally we extract the overall

conditions that are necessary in order to prevent eternality. Furthermore, we verify our results by solving

explicitly the cosmological equations in a simple example of an exponential potential, formulating the

classical motion plus the stochastic effect of the fluctuations through Langevin equations. Our analysis

shows that phantom inflation can be finite without the need of additional exotic mechanisms.
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I. INTRODUCTION

After almost three decades of extensive research, infla-
tion is now considered to be a crucial part of the cosmo-
logical history of the Universe [1], having affected
indelibly its observational features. Introducing a scalar
field, the inflaton, and a suitable potential, one can make
various scenarios of inflation realization in conventional, as
well as in higher-dimensional frameworks [2–4]. Ad-
ditionally, one could generalize the aforementioned para-
digm, allowing for a nonminimal interaction of the scalar
field with gravity [5], since nonminimal inflation could
improve the obtained perturbation spectrum [6,7].

One important subject that has to be addressed in this
paradigm is that of the exit from the inflationary epoch, that
is to examine whether inflation can be eternal or not. In
particular, in the new inflation scenario it was shown that
the procedure could be eternal since the ‘‘false’’ vacuum
(in which the field lies during inflation) is never dominated
by the ‘‘true’’ one (the approach of which causes the end of
inflation) [8,9]. Additionally, even in advanced scenarios,
such as the chaotic inflation, where there is no false vac-
uum state, slow-roll eternality is also possible [10] due to a
different mechanism. In particular, in this model-subclass
the inflaton is classically rolling down its potential slope,
however the quantum fluctuations can conditionally drive
it upwards and thus inflation will never end [11–13]. Thus,
one must in general examine the conditions for the real-
ization of eternality [14].

An interesting class of inflation scenarios [15–22] is
achieved through the use of phantom fields [23], inspired
by the wide use of such fields to explain the late-time
universe acceleration [24]. The simplest realization of
phantom fields is the use of a negative kinetic term in the

Lagrangian, but this could lead their quantum theory to be
problematic, due to the causality and stability problems
and the possible spontaneous breakdown of the vacuum
into phantoms and conventional particles [25,26]. How-
ever, one could consider that the phantom fields arise
through an effective description of a nonphantom funda-
mental (probably higher-dimensional) underlying theory,
consistently with the basic requirements of quantum field
theory [27]. Indeed actions with phantomlike behavior may
arise in supergravity [28], scalar tensor gravity [29], higher
derivative gravity [30], braneworld [31], k-field [32],
stringy [33] and others scenarios [34,35].
The peculiar nature of phantom fields requires the in-

flation paradigm to be suitably redesigned. In particular,
since phantoms behave inversely in potential slopes,
climbing up along them, in order to avoid an early-time
Big Rip singularity [36], one must use potentials with
maxima instead of minima, and the slow-roll parameters
are replaced by the ‘‘slow-climb’’ ones [37]. However,
even with potentials bounded from above, the problem
of eternal inflation still exists, and one should examine
in detail the possible exits from the inflationary epoch
[18–22].
In the present work we are interested in investigating the

necessary conditions that prevent phantom inflation from
being eternal, going beyond the basic requirements of
bounded-from-above potentials. In particular, we examine
whether the quantum fluctuations could affect the classical
motion towards the potential maximum, preventing infla-
tion to the end. Furthermore, in order to be general we
allow for a nonminimal coupling of the phantom field with
gravity, since this interaction could also affect the eternal-
ity conditions, similarly to the canonical case [38].
The plan of this work is the following: In Sec. II we

present the phantom-inflation scenario under the condi-
tions of slow-climb. In Sec. III we perform a fluctuation
analysis and we extract the conditions for preventing eter-
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nality, while in Sec. IV we verify our results by solving
explicitly the Langevin equations for the cosmological
evolution in a simple example. Finally, Sec. V is devoted
to the summary of the obtained results.

II. PHANTOM SLOW-CLIMB INFLATION

Let us present briefly the cosmological scenario of non-
minimal phantom inflation [20], focusing on the conditions
required for its longtime, efficient duration. The action of a
universe constituted by a phantom scalar field’ is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2
þ 1

2
g��@�’@�’� Vð’Þ � 1

2
fðRÞ’2

�
;

(1)

with Vð’Þ the corresponding potential, and where for
simplicity we have set 8�G ¼ M�2

p ¼ 1. As usual R is

the Ricci scalar, and fðRÞ is the function describing the
coupling of the phantom field to gravity. Throughout this
work we consider a flat Friedmann-Robertson-Walker ge-
ometry with the unperturbed metric

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (2)

with aðtÞ the scale factor and t the comoving time. Thus,
defining the Hubble parameter as H � _a=a the scalar
curvature reads:

R ¼ 6ð _Hþ 2H2Þ; (3)

where the dot denotes the derivative with respect to t.
Variation of the action (1) leads to the two Friedmann

equations

3H2 ¼ � 1

2
_’2 þ V þ 1

2
f’2 þ 3H2

�
d

dt

�
f0’2

H

�
� f0’2

�
(4)

� 2 _H ¼ � _’2 þH3 d

dt

�
f0’2

H2

�
� d2

dt2
ðf0’2Þ; (5)

where the prime denotes differentiation with respect to the
corresponding argument, that is f0 ¼ df=dR and V 0 ¼
dV=d’. Additionally, the evolution equation for the scalar
field writes

€’þ 3H _’� V0 � f’ ¼ 0: (6)

As we discussed in the Introduction, the phantom fields
require potentials bounded from above, since they climb
upwards the potential slopes. Therefore, in order to acquire
a longtime inflation in phantom cosmology we impose the
following slow-climb conditions [37],

j _Hj � H2; j €’j � 3Hj _’j; (7)

which corresponds to the slow-roll conditions of canonical
inflation [2]. After some algebra, and assuming potential

domination (j � _’2

2 j � V) to simplify the calculations, the

slow-climb conditions write as

jf0’2 _Hj � V;��������V00 þ f� 3Hf0 _R
f

f’

V 0 þ f’

�������� � 9H2:

(8)

Furthermore, in the usual case where f is a monomial of R,
for instance f� Rn, we obtain 3HðlogfÞ0 _R � 6n _H.
Therefore, if jf’j � jV 0j or jf’j � jV0j, the third term
on the left-hand side of the second equation in (8) can be
neglected. Thus, the aforementioned expressions are sim-
plified to

jf0’2 _Hj � V; jV 00 þ fj � 9H2: (9)

In summary, under these slow-climb conditions, the first
Friedmann equation (4) becomes

3H2 ¼ 1

2
ðf� 6f0H2Þ’2 þ V; (10)

while the phantom field equation of motion, for the two
examined limiting cases, is simplified as

3H _’ ¼ V 0; jf’j � jV 0j ðCase IÞ; (11)

3H _’ ¼ f’; jf’j � jV0j ðCase IIÞ: (12)

At this stage we introduce the standard dimensionless
slow-climb parameters as [21,22]

� ¼ � _H

H2
; � ¼ M2

p

V 00

V
; (13)

and following [38] we define a new dimensionless slow-
climb parameter

� � M2
p

f

V
(14)

to account for the nonminimal coupling, where we have
recovered the Planck mass to indicate that these parameters
are indeed dimensionless. Using these parameters, the
slow-climb conditions (9) become

��’2 � 1; �þ � � 1; (15)

having also used for simplicity f0 � f=R, although this is
not necessary. Therefore, if �, �, � � 1, the slow-climb
conditions (9) are indeed satisfied.
In order to continue, we consider explicitly the usual

ansatz for fðRÞ of the literature [5,7], namely f ¼ �R,
with � the coupling parameter. Thus, the Friedmann equa-
tion (10) becomes

3H2 ¼ V

1� �’2
; (16)

and the slow-climb parameter � reads

� ¼ 2�ð2� �Þ
ð1� �’2Þ : (17)
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As we see, � � 1 requires � � 1 in the model at hand, a
condition which is usually satisfied in all nonminimal
scenarios. Finally, differentiating the Friedmann equa-
tion (10), we deduce that in the case jf’j � jV 0j (Case
I), that is �’2 � 1, the slow-climb parameter � becomes

� ¼ � V 02

2V2

�
1�

�
1� 2V

V 0’

�
�’2

�
; (18)

while in the case of jf’j � jV 0j (Case II), i.e.�’2 � 1, it
becomes

� ¼ � f’V0

2V2

�
1�

�
1� 2V

V 0’

�
�’2

�
: (19)

Note that in the latter case the condition�’2 � 1 requires
the field values to be large and therefore, without loss of
generality, in the following we consider large-field
inflation.

III. FLUCTUATIONS AND CONDITIONS FOR
PREVENTING ETERNALITY

In the previous section we extracted the basic conditions
for an efficient longtime, but noneternal phantom inflation.
However, as we discussed in the Introduction, even if one
manages to stop inflation at the classical level using suit-
able potentials, the backreaction of the metric plus the
inflaton’s quantum fluctuations on the background space-
time could make the inflaton field follow a Brownian
motion in which half of the time the inflaton field in a
given domain will jump downwards, instead of drifting up
to the potential. Thus, the necessary conditions for pre-
venting eternality in phantom inflation will arise through
examination of the overall effects of the classical behavior
plus the fluctuations.

In order to calculate the quantum fluctuation of the
inflaton, we expand the action (1) to second order, since
the action approach guarantees the correct normalization
for the quantization of fluctuations. It is convenient to work
in the Arnowitt-Deser-Misner (ADM) formalism and write
the metric as

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (20)

where N is the lapse function and Ni is the shift vector.
Note that such perturbations have been studied in a differ-
ent framework, for the minimal case, in [21,22].

The action (1) becomes

S ¼ 1

2

Z
dtdx3

ffiffiffi
h

p ½NRð3Þ þ N�1ðEijE
ij � E2Þ

� N�1ð _’� Ni@i’Þ2 þ Nhij@i’@j’

� Nð2V þ f’2Þ�; (21)

where h ¼ dethij and the symmetric tensor Eij is defined

as

Eij ¼ 1

2
ð _hij �riNj �rjNiÞ; E ¼ Ei

i: (22)

In (21) Rð3Þ is the three-dimensional Ricci curvature, which
is computed from the metric hij, and Kij ¼ Eij=N is the

extrinsic curvature. In the following we work in the
spatially-flat gauge and we neglect the tensor perturba-
tions. Thus, we write

’ðt; xÞ ¼ �’ðtÞ þ �’ðt; xÞ; hij ¼ a2�ij; (23)

where �’ðtÞ is the background value of the scalar field and
�’ is a small fluctuation around the background value.
In the ADM formalism one can consider N and Ni as

Lagrange multipliers, and in order to obtain the action for �
one needs to solve the constraint equations for N and Ni

and substitute the result back in the action. The equations
of motion for Ni and N are the momentum and Hamil-
tonian constraints

ri½ð1� f0’2ÞN�1ðEi
j ��i

jEÞ�þN�1ð _’�Ni@i’Þ@j’¼ 0

(24)

and

Rð3Þ � ð1� 2f0’2ÞN�2ðEijE
ij � E2Þ þ N�2ð _’� Ni@i’Þ2

� 2V � f’2 þ hij@i’@j’ ¼ 0: (25)

We now decompose Ni into

Ni ¼ @ic þ Ni
T (26)

with @iN
i
T ¼ 0, and we define

N1 � N � 1; (27)

where N1, N
i
T , c �Oð�’Þ. Thus, inserting these expan-

sions into (24) and (25), we can obtain the solutions up to
the first order in �. In particular, in the usual case f ¼ �R,
we can derive the first-order solutions similarly to the
Appendix of [38]. Simplifying the notation using ’ to
denote the background value �’, we finally acquire:

N1 ¼ � �’

1� �’2

�
_’

2H
þ 2�’

�
; Ni

T ¼ 0; (28)

and

ð1� �’2Þ@2c ¼ �N1

_’2

2H
þ _’

2H
� _’

þ
�
3

2

_’

H
þ 6�’� V 0

2H2

�
H�’; (29)

with suitable boundary conditions. Furthermore, we obtain
the exact background dynamical equation

3H2ð1� �’2Þ ¼ � 1

2
_’2 þ V; (30)

which coincides with expression (16) in the slow-climb
limit.
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Now, in order to find the quadratic action for �’, we
need to insert relations (28) and (29) in the action (21) and
expand it up to second order. However, as we can see these
expressions for N and Ni are subleading in the slow-climb
limit ( _’2 � H2) and large-field inflation (’2 � 1), com-
paring to �’ (on the other hand, if the momentum of the
inflaton was comparable with its energy density, namely
j _’j �H, the quantum fluctuation of the background would
become significant and could cause instabilities on the
background). Therefore, it is adequate to consider just
the action (1) for �� in the de Sitter background, resulting
in the second-order action [38]

S2 ¼ 1

2

Z
d4xa3½�� _’2 þ ðr�’Þ2 � V 00�’2

� 12�H2�’2�: (31)

Moreover, introducing the Fourier transform of �’
through �’k, the perturbation equation writes

� €’k þ 3H� _’k þ k2

a2
�’k ¼ 0; (32)

where we have used � � 1 and � � 1. Therefore, as we
observe, the quantum fluctuations in a Hubble time have
the same value as in the canonical case [13,38]

�q’ � H

2�
: (33)

Expression (33) provides the quantum fluctuations of the
inflaton in one Hubble time. On the other hand, it is known
that usually the classical motion of the inflaton during one
Hubble time is given by [2,4]

j�c’j � j _’H�1j � jV 0j
3H2

ð1þ�’2Þ: (34)

Thus, we deduce that if the quantum fluctuations are larger
than the classical ones, namely �q’ > j�c’j, then inflation
will be eternal. Therefore, the necessary conditions for
exiting phantom inflation are to use the suitably defined
and bounded-from-above potentials of the phantom-
inflation literature [15–22], plus the condition �q’ <

j�c’j. Thus, since slow-climb always requires �’2 � 1
and the validity of (16), the condition that prevents eternal-
ity reads ��������dVð’Þd’

��������* jVð’Þj3=2
�
1þ 3�

2
’2

�
: (35)

This condition restricts the potential-forms that can give
rise to a finite inflation, or inversely, for a given potential it
determines the bounds inside which the field can move, in
order to avoid eternality. Finally, in the limit � ! 0 the
above relation provides the corresponding condition for the
minimal phantom inflation.

IV. LANGEVIN ANALYSIS FOR THE
NONMINIMAL SLOW-CLIMB PHANTOM

SCENARIO

In the previous section we extracted the general condi-
tion that prevents eternality in phantom inflation, estimat-
ing separately the effects of the classical motion and of the
quantum fluctuations. In this section we will try to verify
the aforementioned results, solving explicitly the cosmo-
logical equations, formulating the classical motion plus the
stochastic effect of the quantum fluctuations through a
Langevin analysis [39]. In order to be able to provide
analytical results we will use the toy example of the
exponential potential Vð’Þ ¼ V0e

	’, with 	 > 0, which
satisfies the basic requirements for phantom inflation.
The overall evolution of the phantom field, including

quantum fluctuations, is modeled through a random walk,
and therefore it can be described by the following
Langevin equation [39],

3H _’� V 0ð’Þ � 12�H2’ ¼ 3

2�
H5=2nðtÞ; (36)

where nðtÞ is a Gaussian white noise normalized as

hnðtÞi ¼ 0; hnðtÞnðt0Þi ¼ �ðt� t0Þ: (37)

As can be seen, nðtÞ has dimensions of mass to the power of
one half. Using the exponential potential, and taking the
approximation 3H2 � V0 during inflation, which means
we do not consider the backreaction from the space-time
to the classical evolution of the inflaton and focus on the
quantum fluctuation of the inflaton itself which is modeled
by the stochastic process, then we get

_’� ð	e	’ þ 4�’Þ
ffiffiffiffiffiffi
V0

3

s
¼ qnðtÞ; (38)

where we have defined q � H3=2

2� .

In Eq. (38), if the term on the right-hand side is absent
we recover the usual slow-climb equation of motion and
the inflaton will follow a classical trajectory ’cðtÞ.
Therefore, we expand the field ’ðtÞ around its classical
value ’cðtÞ up to order Oðq2Þ, namely

’ðtÞ ¼ ’cðtÞ þ q’1ðtÞ þ q2’2ðtÞ þOðq3Þ: (39)

Substituting this expansion into (38) and setting the coef-
ficients of the q-powers to zero, we acquire the equations

_’ c ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
ð	e	’c þ 4�’cÞ (40)

_’ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
ð	2e	’c þ 4�Þ’1 þ nðtÞ (41)

_’ 2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q �
1

2
	3e	’c’2

1 þ ð	2e	’c þ 4�Þ’2

�
: (42)

These three equations can be solved analytically in Case I
and Case II of (11) and (12), namely, for jf’j � jV0j and
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jf’j � jV 0j respectively. The explicit solutions are pre-
sented in the Appendix.

For case I, the condition for the Hubble parameter not to
be changed significantly by the quantum noise (see
Appendix A 1) reads

’0 & 	�1 lnV�1
0 ; (43)

while for Case II the corresponding condition (see
Appendix A 2) reads

’0 & 	�1 lnV�1
0 þ 	�1 lnð ffiffiffi

�
p

=	Þ: (44)

In other words, if these conditions are satisfied, that is if the
inflaton remains smaller than these critical values, then
inflation will not be eternal.

Let us now compare these expressions with the condi-
tion (35) derived in the previous section. Applying (35) in
the case of the exponential potential of the present section,
and keeping up to zeroth order in terms of � (since other-
wise we obtain transcendental equations), we acquire

’0 & 	�1 lnV�1
0 þ 2	�1 ln	: (45)

Clearly, this expression is consistent with both (43) and
(44), and the slight differences arise from the performed
assumptions that were necessary in order to solve the
Langevin equation. Additionally, going to first order in � in
(35), one can numerically show the agreement too.
Therefore, we conclude that the results of the previous
sections are indeed reliable.

V. CONCLUSIONS

In this work we investigated the necessary conditions
that prevent phantom inflation from being eternal, going
beyond the basic conditions of slow-climb behavior. In
particular, even using potentials bounded from above and
with suitable slopes, which give rise to slow climbing,
quantum fluctuations could still lead inflation to be eternal.
Thus, after presenting the slow-climb conditions, we per-
formed an analysis of the fluctuations, extracting the over-
all conditions that are necessary for preventing eternality.
Finally, in order to be general, we moreover allowed for a
nonminimal coupling of the phantom field with gravity.

Our main result is expression (35), which is the condi-
tion restricting the potential-forms that can give rise to a
finite inflation, or inversely the condition determining the
bounds inside which the field can move in a given, slow-
climb potential, in order to avoid eternality. Note that in
our analysis we did not need any additional mechanism in
order to exit eternal phantom inflation, such as the use of an
extra scalar [21], the imposition of strong backreaction
[22], the consideration of multiuniverses [18], or the use
of specially-designed braneworld models with brane/flux
annihilation [19].

Furthermore, in order to verify the obtained results, we
solved explicitly the cosmological system in a simple

example of an exponential potential, formulating the clas-
sical motion plus the stochastic effect of the quantum
fluctuations through Langevin equations. Requiring finite
parameters in the inflation we resulted to similar conditions
with those obtained by the above fluctuation-analysis
procedure.
Let us make a comment here, on the limits of applica-

bility of our analysis. First of all, as we have mentioned, the
phantom field must be smaller than the Planck scale, thus
its backreaction will be small and not capable of bringing
inflation to eternality (in Langevin-equation terms, this
means that the expansion around the classical trajectory
(39) is valid). However, in an inflating universe, even if the
examined region satisfies these conditions, its neighboring
regions can have very high densities, and thus one could
ask whether this behavior could bring about strong quan-
tum effects in the examined region too. Therefore, we have
to make an additional assumption, namely, that the initially
low-density, slow-roll-inflating region has been already
causally disconnected from its possible high-density
neighboring regions, and the possible interactions lie out-
side the horizon. In such a case, the inflation of the ob-
servable universe will not be led to eternality.
Phantom fields could have interesting implications ei-

ther in inflation or in describing the late-time acceleration
of the Universe. Although their quantum behavior could be
problematic at first, one can consider the phantoms to arise
through an effective description of a nonphantom, funda-
mental, higher-dimensional, underlying theory, consis-
tently with the basic requirements of quantum field
theory. Therefore, the examination of their cosmological
implications is valuable and can improve our understand-
ing of nature. In these lines, the fact that phantom inflation
can be noneternal makes the scenario at hand a candidate
for the description of the early universe.
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APPENDIX A: SOLUTION OF THE LANGEVIN
EQUATIONS

Since we are dealing with stochastic variables, we per-
form the average of any physical quantity by defining the
statistical measure. In particular, we use the Fokker-Planck
approach and define the measure to be the physical volume
of the Hubble patch, and thus the average is defined as

hHðtÞip ¼ hHðtÞe3NðtÞi
he3NðtÞi ; NðtÞ ¼

Z t

0
Hðt0Þdt0: (A1)

Since the Hubble patch that is eternally inflating will have
an exponentially larger physical volume, taking the largest
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weight in the average at late times, the physical volume can
be a good measure to characterize eternal inflation.
Therefore, the average hHðtÞip could be significantly

changed by quantum fluctuations if eternal inflation is
realized. Furthermore, we shall use the functional tech-
nique developed in [39] and define a generating functional

Wt½�� ¼ lnheMt½��i; Mt½�� ¼
Z t

0
�ðt0ÞHðt0Þdt0:

(A2)

Thus, hHðtÞip can be evaluated by functionally differenti-

atingWt½�� with respect to � and setting � ¼ 3, resulting
in the following equations up to Oðq2Þ:

hHðtÞip ¼ �Wt½��
��ðtÞ

���������ðtÞ¼3

¼ hHðtÞi þ 3
Z t

0
hhHðtÞHðt0Þiidt0; (A3)

hhHðtÞHðt0Þii ¼ hHðtÞHðt0Þi � hHðtÞiphHðt0Þip: (A4)

After these definitions we can proceed to the solution of the
Langevin equations.

1. Case I: jf’j � jV0j
In this case, the phantom field can be regarded as mini-

mally coupled to gravity and the solution to (40) writes

’ðtÞ ¼ ’cðtÞ þ qe	’cðtÞ�ðtÞ þ q2e	’cðtÞ�ðt0Þ (A5)

with

’cðtÞ ¼ �	�1 ln½e�	’0 � 	2t
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
�; (A6)

where the subscript 0 denotes the initial value of the field
(at t ¼ 0). In (A5) we have defined the quantities

�ðtÞ ¼
Z t

0
nðt0Þe�	’cðt0Þdt0

¼
Z t

0
nðt0Þ½e�	’0 � 	2t0

ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
�dt0 (A7)

and

�ðtÞ ¼ 	3

2

ffiffiffiffiffiffi
V0

3

s Z t

0
e2	’cðt0Þ�2ðt0Þdt0; (A8)

where �ðtÞ is a new stochastic variable normalized as

h�ðtÞi ¼ 0; (A9)

h�ðtÞ�ðt0Þi ¼ e�3	’0

	2
ffiffiffiffiffiffiffiffi
3V0

p f1�½1�	2e	’0

ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
minðt; t0Þ�3g:

(A10)

The Hubble parameter reads

HðtÞ ¼ HcðtÞ þ q

ffiffiffiffiffiffi
V0

3

s
	

2
e3	’cðtÞ=2�ðtÞ

þ q2

ffiffiffiffiffiffi
V0

3

s
	

8
e3	’cðtÞ=2½	e	’cðtÞ�2ðtÞ þ 4�ðtÞ�;

(A11)

where HcðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð’cðtÞÞ=3

p ¼ e	’c=2
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
. Using (A9)–

(A11), we can further obtain

hHðtÞi ¼ hHcðtÞi þ q2
e�2	’0

8
e3	’cðtÞ=2ðe	½’cðtÞ�’0� � 1Þ

(A12)

and

3
Z t

0
hhHðtÞHðt0Þii

¼ q2e�	’cðtÞ

10	2
f5e3	½’cðtÞ�’0� þ 1� 6e5	½’cðtÞ�’0�=2g: (A13)

Now, in the limit t � t0 � 	�2e�	’0
ffiffiffiffiffiffiffiffiffiffiffi
3=V0

p
we can

acquire the leading-order behavior of hHðtÞip in terms of

t as

hHðtÞip ¼ hHðt ¼ 0Þip þ e	’0=2

2

ffiffiffiffiffiffi
V0

3

s �
t

t0

�
þ q2e�	’0=2

8

�
t

t0

�
;

(A14)

where the second term arises from expanding the classical
motion HcðtÞ, while the last term comes from the quantum
correction (A12). Note that the contribution from (A13) is
of the order of ðt=t0Þ2. Requiring the Hubble parameter not
to be changed significantly by the quantum noise, we need
to impose

e	’0=2

2

ffiffiffiffiffiffi
V0

3

s
&

q2e�	’0=2

8
; (A15)

which provides the bound when ðt=t0Þ � 1 as

’0 & 	�1 lnV�1
0 : (A16)

2. Case II: jf’j � jV0j
In this case, the solution to (40) reads

’ðtÞ ¼ ’cðtÞ þ q’cðtÞ�ðtÞ þ q2’cðtÞ’20

’0

(A17)

with

’cðtÞ ¼ ’0 expð4�t
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
Þ; (A18)

where ’20 � ’2ðt ¼ 0Þ, and similarly to the previous sub-
section we have defined
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�ðtÞ ¼
Z t

0
nðt0Þ’�1

c ðt0Þdt0

¼ ’�1
0

Z t

0
nðt0Þ expð�4�t

ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
Þdt0; (A19)

normalized as

h�ðtÞi ¼ 0; (A20)

h�ðtÞ�ðt0Þi ¼ ’�2
0

8�
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p f1� exp½�8�
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

q
minðt; t0Þ�g:

(A21)

The Hubble parameter is

HðtÞ ¼ HcðtÞ þ q

ffiffiffiffiffiffi
V0

3

s
	

2
e	’cðtÞ=2’cðtÞ�ðtÞ

þ q2

ffiffiffiffiffiffi
V0

3

s
	

8
e3	’cðtÞ=2

�
	’2

cðtÞ�2ðtÞ þ 4’cðtÞ’20

’0

�
;

(A22)

where HcðtÞ ¼ e	’c=2
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
. Moreover we obtain

hHðtÞi ¼ hHcðtÞi þ q2

ffiffiffiffiffiffi
V0

3

s
	

8
e3	’cðtÞ=2

�
�
4’cðtÞ’20

’0

þ 	

8�
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p ��
’cðtÞ
’0

�
2 � 1

��

(A23)

and

3
Z t

0
hhHðtÞHðt0Þii

¼ 3q2	2e	’c=2

128�2

�
’c

’0

�

�
�

2

	’0

ðe	’c=2 � e	’0=2Þ þ
�
’0

’c

e	’c=2 � e	’0=2

�

þ 	’0

2

�
Ei

�
�	’c

2

�
� Ei

�
�	’0

2

���
; (A24)

where Ei is the exponential integral function.

In the limit t � t0 �
ffiffiffiffiffiffiffiffiffiffiffi
3=V0

p
=ð4�Þ we can obtain the

leading-order behavior of hHðtÞip in terms of t as

hHðtÞip ¼ hHðt ¼ 0Þip þ 	’0e
	’0=2

2

ffiffiffiffiffiffi
V0

3

s �
t

t0

�

þ q2

ffiffiffiffiffiffi
V0

3

s
	

8
e3	’0=2

�
�

	

4�
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p þ 4’20 þ 6	’0’20

��
t

t0

�
;

where the second term arises from expanding the classical
motion HcðtÞ and the last term comes from the quantum
correction (A23). Note that the contribution from (A24) is
of the order of ðt=t0Þ2. Requiring the Hubble parameter not
to be changed significantly by the quantum noise, we
impose

4’0 &
q2	e	’0

4�
ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p ; (A25)

where we have used that � � 1 and ’0 � ��1=2 � ��1=2.
Thus, we conclude that at ðt=t0Þ � 1:

’0 & 	�1 lnV�1
0 þ 	�1 lnð ffiffiffi

�
p

=	Þ: (A26)
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