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In this paper we present trispectrum estimation methods which can be applied to general nonseparable

primordial and CMB trispectra. We review the relationship between the reduced CMB trispectrum and the

reduced primordial trispectrum. We present a general optimal estimator for the connected part of the

trispectrum, for which we derive a quadratic term to incorporate the effects of inhomogeneous noise and

masking. We describe a general algorithm for creating simulated maps with given arbitrary (and

independent) power spectra, bispectra, and trispectra. We propose a universal definition of the trispectrum

parameter TNL, so that the integrated trispectrum on the observational domain can be consistently

compared between theoretical models. We define a shape function for the primordial trispectrum, together

with a shape correlator and a useful parametrization for visualizing the trispectrum; these methods might

also be applied to the late-time trispectrum for large-scale structure. We derive separable analytic CMB

solutions in the large-angle limit for constant and local models. We present separable mode decom-

positions which can be used to describe any primordial or CMB trispectra on their respective wave number

or multipole domains. By extracting coefficients of these separable basis functions from an observational

map, we are able to present an efficient estimator for any given theoretical model with a nonseparable

trispectrum. The estimator has two manifestations, comparing the theoretical and observed coefficients at

either primordial or late times, thus encompassing a wider range of models, such as secondary

anisotropies, lensing, and cosmic strings. We show that these mode decomposition methods are

numerically tractable with order l5 operations for the CMB estimator and approximately order l6 for

the general primordial estimator (reducing to order l3 in both cases for a special class of models). We also

demonstrate how the trispectrum can be reconstructed from observational maps using these methods.

DOI: 10.1103/PhysRevD.82.023520 PACS numbers: 98.80.Cq, 98.80.Es

I. INTRODUCTION

Single-field slow-roll inflationary fluctuations in the
standard picture of cosmology predict a nearly scale-
invariant spectrum of adiabatic perturbations with a nearly
Gaussian distribution. Hence it can be described very
accurately by its angular power spectrum. These predic-
tions agree well with measurements of the CMB and large-
scale structure, such as those provided by the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite and the
Sloan Digital Sky Survey. However, it remains possible
that there exists a mechanism for generating large non-
Gaussianities in the early Universe. Measurements of such
non-Gaussianities open up the opportunity of investigating
the physics of the early Universe, including different infla-
tionary models and competing alternative scenarios. In
order to study such observations, higher order correlators,
beyond the two-point function, offer possibly the best
prospects. General methods for comparing the three-point
correlator, dubbed the bispectrum, were developed in [1–
3]. In those papers an integrated measure of the bispectrum
was defined, as well as a set of formalisms for comparing,
evolving, and constraining the bispectrum in the case of
both the primordial and CMB three-point correlators. In
this paper we will generalize many of these methods to the

four-point correlator which is denoted as the trispectrum.
We will emphasize the application of these methods to the
primordial and CMB trispectra. The primary motivation
for this paper is to develop formalisms to bring observa-
tions to bear on this broader class of cosmological models.
We will demonstrate that despite the complexity of trispec-
trum estimation, these methods are numerically tractable
given present resources, even at Planck satellite resolution.
In order to get large non-Gaussianities we must move

away from the standard single-field slow-roll inflation [4].
Multifield inflation allows the possibility for superhorizon
evolution. Non-Gaussianities are generated when this evo-
lution is nonlinear. We can consider superhorizon behavior
as occurring in patches separated by horizons which evolve
independently of each other. This locality in position space
translates to nonlocality in momentum space and indicates
that, for such models, we expect the signal to peak for
k4 � k1, k2, k3. This forms the so-called local model. Such
models have been investigated in the context of the tris-
pectrum in [5–13]. Since subhorizon modes oscillate and
so average out, the only chance to have large non-
Gaussianities in single-field inflationary models is when
all modes have similar wavelengths and exit at the same
time. A nonstandard kinetic term allows for such a possi-
bility. Since the signal peaks when the modes have similar
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wavelengths, these forms are known as equilateral models
and have been investigated using the trispectrum in [14–
20]. It should be noted that this amplification of nonlinear
effects around the time the modes exit the horizon is not
possible for slow-roll single-field inflation. It has also been
shown in [21,22] that a large trispectrum may be generated
in the ghost inflation model. These models are so-called as
they are based on the idea of a ghost condensate, i.e. a kind
of fluid with equation of state p ¼ ��, that can fill the
Universe, and which provides an alternative method of
realizing de Sitter phases in the early Universe. Of course,
there are other methods that can generate non-Gaussianity,
such as having sharp features in the potential or a non-
Bunch-Davies vacuum. Also, there are models which have
features that resemble the aforementioned forms in differ-
ent regimes, e.g. quasisingle field inflation [23], or have
mixed contributions, e.g. in multifield Dirac-Born-Infeld
inflation [24].

One of the motivations for studying the four-point cor-
relator is that it may be possible that the bispectrum is
suppressed while the trispectrum is still large. In particular,
this behavior may be realized in quasisingle field inflation
[23] or in the curvaton model [25]. It also occurs in the case
of cosmic strings where the bispectrum is suppressed by
symmetry considerations [26,27]. The effects of non-
Gaussianity could also be detectable in a wide range of
astrophysical measurements, such as cluster abundances
and the large-scale clustering of highly biased tracers. In
[28] the possibility of using the galaxy bispectrum to
constrain the local form of the trispectrum has been
reviewed.

The trispectrum Tðk1; k2; k3; k4Þ is generally parame-
trized using the variable �NL, which schematically is given
by the ratio �NL � Tðk; k; k; kÞ=PðkÞ3. Standard slow-roll
inflation predicts �NL & r=50, where r < 1 is the tensor to
scalar ratio [11]. Such a low signal would be undetectable
since it is below the level of non-Gaussian contamination
that would be expected from secondary anisotropies,
�NL � Oð1Þ. Using the analysis of N-point probability
distribution of the CMB anisotropies [29], where a local
nonlinear perturbative model � ¼ �L þ fNLð�2

L �
h�2

LiÞ þ gNL�
3
L þOð�4

LÞ is used to characterize the
large-scale anisotropies, the constraint �5:6� 105 <
gNL < 6:4� 105 was obtained.1 For the more general
case, there is only a weak experimental bound imposed
on non-Gaussianity by the trispectrum, which is roughly
j�NLj & 108 [30]. In [31,32] an improved constraint on �NL

was presented using estimators to allow a joint fit of fNL

and gNL using the trispectrum of 5-yr Wilkinson
Microwave Anisotropy Probe data. However, the analysis
therein included an incomplete formula for the CMB tris-

pectrum due to local non-Gaussianity.2 Nonetheless, the
approach indicates that vast improvements to trispectrum
constraints should be achievable in the near future. In fact,
it is expected that the Planck satellite will be sensitive to a
value of j�NLj � 560 [33].
The analysis of the trispectrum is a computationally

intensive operation. In fact, only the trispectrum induced
by the local shape has been constrained so far by CMB
data. The local form is an example of a separable shape—a
notion which we will define more concretely in this paper.
Essentially, since the primordial trispectrum is a six-
dimensional quantity, separability means the trispectrum
is the product of one-dimensional functions of each of
these variables. Exploiting this separability reduces the
problem from one ofOðl7maxÞ operations to a more manage-
able Oðl5maxÞ. In special cases we get a further reduction to
Oðl3maxÞ.
In the next section we shall describe the CMB trispec-

trum and its relation to the primordial equivalent. We will
make use of a particular parametrization of the reduced
primordial trispectrum and exploit a Legendre series ex-
pansion in terms of one of these parameters to write an
expression for the reduced CMB trispectrum which is valid
in general. We will also outline a general correlation
method for comparing different trispectra. In this section
we will also give a formula for the kurtosis in terms of the
multipoles. In Sec. III we define a shape function which is a
scale-invariant form of the trispectrum. Using this function
we define a shape correlator that is expected to predict
closely the correlation between the respective trispectra.
Next, we show how to decompose this shape in order to
provide a method for visualizing trispectra. We apply this
visualization to the case of the local and equilateral models
which we describe in Sec. IV. We also present the Sachs-
Wolfe limit (l < 100) for the local and constant models. In
Sec. V we describe how to form a mode expansion for
general nonseparable shapes. This provides a rigorous
method to find a separable approximation to any shape
and therefore makes analysis of the trispectrum far more
tractable. This expansion can be performed for both the
primordial and CMB trispectra. Of immediate relevance in
terms of the Planck satellite is to find a general measure for
the size of the trispectrum. This is addressed in Sec. VI in
both the primordial and CMB cases. It is clearly desirable
to be able to reconstruct the underlying trispectrum given
the data. As we shall describe in Sec. VII, this is a compu-
tationally intensive task, but it is tractable. We will observe
here that there is a degeneracy in reconstruction of the
primordial trispectrum, implying that only the zeroth
Legendre mode is recoverable. Finally, in Sec. VIII we
outline a method for performing CMBmap simulations for
given general bispectra and trispectra.

1It should be noted that for single-field local inflation �locNL ¼
ð56 fNLÞ2. Since fNL is constrained by the bispectrum, gNL is the
quantity that is constrained by the trispectrum directly in this
case.

2The formula for the reduced local CMB trispectrum has been
used in place of the full local CMB trispectrum, which appears to
simplify the analysis.
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II. THE CMB TRISPECTRUM

A. Definition of the primordial and CMB trispectra

We are concerned with the analysis of the four-point
function induced by a non-Gaussian primordial gravita-
tional potential �ðkÞ in the CMB temperature fluctuation
field. The temperature anisotropies may be represented
using the alm coefficients of a spherical harmonic decom-
position of the cosmic microwave sky,

�T

T
ðn̂Þ ¼ X

l;m

almYlmðn̂Þ: (1)

The primordial potential � induces the multipoles alm via
a convolution with the transfer functions �lðkÞ through the
relation

alm ¼ 4�ð�iÞl
Z d3k

ð2�Þ3 �lðkÞ�ðkÞYlmðk̂Þ: (2)

The connected part of the four-point correlator of the alm
gives us the trispectrum. In particular,

Tl1m1l2m2l3m3l4m4
¼ hal1m1

al2m2
al3m3

al4m4
ic

¼ ð4�Þ4ð�iÞ
P

i
li
Z d3k1d

3k2d
3k3d

3k4
ð2�Þ12 �l1ðk1Þ�l2ðk2Þ�l3ðk3Þ�l4ðk4Þh�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þic

� Yl1m1
ðk̂1ÞYl2m2

ðk̂2ÞYl3m3
ðk̂3ÞYl4m4

ðk̂4Þ; (3)

where ki ¼ jkij and the subscript c is used to denote the connected component. Naively, we would define the primordial
trispectrum as

h�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þic ¼ ð2�Þ3�ðk1 þ k2 þ k3 þ k4ÞT0
�ðk1;k2;k3;k4Þ:

Here, the four wave vectors form a quadrilateral as shown in Fig. 1.
However, a more useful definition is to write

h�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þic ¼ ð2�Þ3
Z

d3K�ðk1 þ k2 þKÞ�ðk3 þ k4 �KÞT�ðk1;k2;k3;k4;KÞ: (4)

Here the delta function indicates that the diagonal K makes triangles with ðk1;k2Þ and ðk3;k4Þ, respectively. Of course
there are symmetries implicit in this definition of T�—namely, that we may form triangles with different combinations of
the vectors. In particular,

T�ðk1;k2;k3;k4;KÞ ¼ P�ðk1;k2;k3;k4;KÞ þ
Z

d3K0½�ðk3 � k2 �KþK0ÞP�ðk1;k3;k2;k4;K
0Þ

þ �ðk4 � k2 �KþK0ÞP�ðk1;k4;k3;k2;K
0Þ�; (5)

where P� are constructed using a reduced trispectrum T � via

P�ðk1;k2;k3;k4;KÞ ¼ T �ðk1;k2;k3;k4;KÞ þT �ðk2;k1;k3;k4;KÞ þT �ðk1;k2;k4;k3;KÞ
þT �ðk2;k1;k4;k3;KÞ: (6)

Therefore, we need only consider the reduced trispectrum
T from one particular arrangement of the vectors and form
the other contributions by permuting the symbols.

The CMB trispectrum may also be written in a rotation-
ally invariant way as

Tl1m1l2m2l3m3l4m4
¼ X

LM

ð�1ÞM l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
Tl1l2
l3l4

ðLÞ: (7)

The Wigner 3j symbols impose the triangle conditions on
the multipole combinations ðl1; l2; LÞ and ðl3; l4; LÞ. As in
the case of the primordial trispectrum, there are implicit
symmetries in this definition. In a similar manner to the
primordial case we can write

FIG. 1. Quadrilateral defined by the four wave vectors ki. The
diagonal is represented for K.
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Tl1m1l2m2l3m3l4m4
¼X

LM

ð�1ÞM l1 l2 L

m1 m2 �M

 !

� l3 l4 L

m3 m4 M

 !
Pl1l2
l3l4

ðLÞ

þ ðl2 $ l3Þ þ ðl2 $ l4Þ; (8)

with

Pl1l2
l3l4

ðLÞ ¼ T l1l2
l3l4

ðLÞ þ ð�1Þl1þl2þLT l2l1
l3l4

ðLÞ
þ ð�1Þl3þl4þLT l1l2

l4l3
ðLÞ

þ ð�1Þl1þl2þl3þl4T l2l1
l4l3

ðLÞ; (9)

where the factors of powers of ð�1Þ are induced by iden-
tities of the Wigner 3j symbol. Therefore, we again need
only consider the reduced trispectrumT from one particu-
lar arrangement of the multipoles. Indeed, we need only
find the reduced CMB trispectrum induced by the reduced
primordial trispectrum. In particular, we denote

T l1m1l2m2l3m3l4m4
¼ X

LM

ð�1ÞM l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
T l1l2

l3l4
ðLÞ; (10)

and observe that

Tl1m1l2m2l3m3l4m4
¼ T l1m1l2m2l3m3l4m4

þT l2m2l1m1l3m3l4m4
þT l1m1l2m2l4m4l3m3

þT l2m2l1m1l4m4l3m3
þT l1m1l3m3l2m2l4m4

þT l3m3l1m1l2m2l4m4
þT l1m1l3m3l4m4l2m2

þT l3m3l1m1l4m4l2m2
þT l1m1l4m4l2m2l3m3

þT l4m4l1m1l2m2l3m3

þT l1m1l4m4l3m3l2m2
þT l4m4l1m1l3m3l2m2

: (11)

B. Relation between the primordial and CMB trispectra

In order to relate the above definitions for the primordial and CMB trispectra, we use the following identities:

�ðkÞ ¼ 1

ð2�Þ3
Z

eir:kd3r; eir:k ¼ 4�
X
l;m

iljlðkrÞYlmðk̂ÞY�
lmðr̂Þ; Yl�m ¼ ð�1ÞmY�

lm: (12)

We find, using these identities with Eqs. (3) and (4),

T l1m1l2m2l3m3l4m4
¼
�
2

�

�
5ð�iÞ

P
li
Z
ð�4

i¼1d
3ki�liðkiÞYlimi

ðk̂iÞÞd3KT �ðk1;k2;k3;k4;KÞ

� X
l0i;L

0;L00

X
m0

i;M
0;M00

Z
d3r1d

3r2i

P
i0
l0iþL0�L00

½jl01ðk1r1ÞYl01m
0
1
ðk̂1ÞY�

l01m
0
1
ðr̂1Þ�½jl02ðk2r1ÞYl02m

0
2
ðk̂2ÞY�

l02m
0
2
ðr̂1Þ�

� ½jl0
3
ðk3r2ÞYl0

3
m0

3
ðk̂2ÞY�

l0
3
m0

3
ðr̂2Þ�½jl0

4
ðk4r2ÞYl0

4
m0

4
ðk̂4ÞY�

l0
4
m0

4
ðr̂2Þ�½jL0 ðKr1ÞYL0M0 ðK̂ÞY�

L0M0 ðr̂1Þ�
� ½jL00 ðKr2ÞY�

L00M00 ðK̂ÞYL00M00 ðr̂2Þ�; (13)

where k̂i represents the unit vector in the direction ki.
To calculate further, we must choose an appropriate

parametrization for T �. We note that the primordial tris-
pectrum shape has 6 degrees of freedom. We could define
the quadrilateral uniquely by the lengths of the four sides
ki ¼ jkij, together with the two diagonals K ¼ jKj and
~K ¼ j ~Kj. However, we find it more convenient to represent
the sixth degree of freedom with the angle �4 which
represents the deviation of the quadrilateral from planarity
(as illustrated in Fig. 2). Using rotational invariance of
the trispectrum we may assume that the nonplanarity angle
for the k4 wave vector coincides with �4. Many well-

FIG. 2. Quadrilateral defined by the four wave numbers ki, the
diagonal K, and the angle �4 out of the plane of the first triangle.
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motivated primordial models, such as the local and equilateral cases we shall discuss, are planar (i.e. �4 ¼ 0). So we
choose the independent parameters to identify the shape to be ðk1; k2; k3; k4; K; �4Þ, that is,T � ¼ T �ðk1; k2; k3; k4;K; �4Þ.
Using this parametrization, the following identities,

Z
d�r̂Yl1m1

ðr̂ÞYl2m2
ðr̂ÞYl3m3

ðr̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3

0 0 0

 !
l1 l2 l3

m1 m2 m3

 !
;

Z
d�r̂Ylmðr̂ÞY�

l0m0 ðr̂Þ ¼ �ll0�mm0

(14)

and (12), we find

T l1m1l2m2l3m3l4m4
¼
�
2

�

�
5 X
L0;M0

X
l0
4
;m0

4

ð�1ÞM0 Z ðk1k2k3k4KÞ2dk1dk2dk3dk4dKr21dr1r22dr2jLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�

� ½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�hl1l2L0hl3l04L
0 ð�1Þm0

4

� l1 l2 L0

m1 m2 �M0

 !
l3 l04 L0

m3 �m0
4 M0

 !Z
d�k̂4

T �ðk1; k2; k3; k4;K; �4ÞYl4m4
ðk̂4ÞYl0

4
m0

4
ðk̂4Þ; (15)

where we write

hl1l2L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2L0 þ 1Þ

4�

s
l1 l2 L0
0 0 0

� �
:

(16)

Next, we note that inverting Eq. (10) gives the expression

T l1l2
l3l4

ðLÞ ¼ X
mi;M

ð2Lþ 1Þð�1ÞM l1 l2 L
m1 m2 M

� �

� l3 l4 L
m3 m4 �M

� �
T l1m1l2m2l3m3l4m4

: (17)

The sum over m1, m2 is proportional to

X
m1;m2

ð2Lþ 1Þ l1 l2 L
m1 m2 M

� �
l1 l2 L0
m1 m2 �M0

� �

¼ �L;L0�M;�M0 (18)

and therefore the sum over L0, M0 implies L0 ¼ L and
M0 ¼ �M. The sum over m3, M is then proportional to

X
m3;M

l3 l4 L
m3 m4 �M

� �
l3 l04 L
m3 �m0

4 �M

� �

¼ 1

2l04 þ 1
�l4;l

0
4
�m4;�m0

4
: (19)

Combining these we find that

T l1l2
l3l4

ðLÞ ¼ hl1l2Lhl3l4L

�
2

�

�
5 Z ðk1k2k3k4KÞ2dk1dk2dk3dk4dKr21dr1r22dr2jLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�

� ½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�
1

2l4 þ 1

� Xl4
m4¼�l4

Z
d�k̂4

T �ðk1; k2; k3; k4;K; �4ÞYl4m4
ðk̂4ÞY�

l4m4
ðk̂4Þ: (20)

We can decompose this expression further by expanding the primordial trispectrum as a Legendre series. In particular, we
write

T �ðk1; k2; k3; k4;K; �4Þ ¼
X1
n¼0

T �;nðk1; k2; k3; k4;KÞPnðcos�4Þ: (21)

This is an expansion about the n ¼ 0 planar mode which, as we have noted, is sufficient for describing many well-

motivated models. Noting that Pn ¼
ffiffiffiffiffiffiffiffiffi
4�

2nþ1

q
Yn0, our expression for the CMB trispectrum becomes

GENERAL CMB AND PRIMORDIAL TRISPECTRUM ESTIMATION PHYSICAL REVIEW D 82, 023520 (2010)

023520-5



T l1l2
l3l4

ðLÞ ¼ hl1l2Lhl3l4L

�
2

�

�
5 Z ðk1k2k3k4KÞ2dk1dk2dk3dk4dKr21dr1r22dr2jLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�

� ½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�
Xl4

m4¼�l4

X1
n¼0

ð�1Þm4
l4 l4 n
0 0 0

� �

� l4 l4 n
m4 �m4 0

� �
T �;nðk1; k2; k3; k4;KÞ:

This expression may be further simplified by noting

X
m4

ð�1Þm4
l4 l4 n
m4 �m4 0

� �
¼ ð�1Þl4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l4 þ 1
p

�n0

and

l4 l4 0
0 0 0

� �
¼ ð�1Þl4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l4 þ 1
p ;

which together imply that the final line reduces to T �;0. In particular, we have

T l1l2
l3l4

ðLÞ ¼ hl1l2Lhl3l4L

�
2

�

�
5 Z ðk1k2k3k4KÞ2dk1dk2dk3dk4dKr21dr1r22dr2jLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�

� ½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�T �;0ðk1; k2; k3; k4;KÞ: (22)

The reduction to the n ¼ 0mode in (22) shows clearly that
the CMB only probes and constrains the planar component
of the primordial trispectrum T�. In order to test theories
which have general nonplanar n > 0 contributions, we will
have to use 3D data, such as 21 cm surveys or large-scale
galaxy distributions (as we shall discuss later).

From Eq. (20) it is clear that the definition-reduced
trispectrum [34] includes an unnecessary geometrical fac-
tor hl1l2Lhl3l4L, and we therefore advocate the use of the

true reduced trispectrum,

tl1l2l3l4
ðLÞ ¼ T l1l2

l3l4
ðLÞ

hl1l2Lhl3l4L
; (23)

by analogy with the reduced bispectrum bl1l2l3 ¼
Bl1l2l3=hl1l2l3 , where Bl1l2l3 represents the angle-averaged

bispectrum. To prevent confusion, however, we refer to

tl1l2l3l4
ðLÞ as the ‘‘extra’’-reduced trispectrum.

C. Relationship between the primordial trispectrum
and other probes

As is clear from Eq. (22) the CMB trispectrum depends
only on the zeroth Legendre mode of the primordial tris-
pectrum. Therefore, in order to break this degeneracy other
probes of non-Gaussianity should be considered. As has
been discussed in [35] the matter density perturbations are
related to the primordial fluctuations by the Poisson equa-
tion via the expression

�kðaÞ ¼ Mðk; aÞ�k; (24)

where a is the scale factor and Mðk; aÞ is given by

Mðk; aÞ ¼ � 3

5

k2TðkÞ
�mH

2
0

DþðaÞ; (25)

where TðkÞ is the transfer function, DþðaÞ is the growth
factor in linear perturbation theory,�m is the present value
of the dark matter density, and H0 is the present value of
the Hubble constant. Therefore, the primordial contribu-
tion to the n-point connected correlation function of matter
density perturbations at a given value of the scale factor is
given by

h�k1
ðaÞ�k2

ðaÞ . . .�kn
ðaÞic

¼ Mðk1; aÞMðk2;aÞ . . .Mðkn;aÞh�k1
�k2

. . . �kn
ic: (26)

Possible probes of the matter density perturbations include
galaxy surveys and the Lyman alpha forest, i.e. the sum of
absorption lines from the Ly-� transition of the neutral
hydrogen in the spectra of distant galaxies and quasars.
There are three sources of non-Gaussianity in such surveys
[36]: one primordial, one due to gravitational instability,
and the last due to nonlinear bias. The 21 cm observations
offer another probe of non-Gaussianity and are less subject
to the unknown galaxy bias, especially at high redshift.
However, uncertainties in the neutral fraction replace the
uncertainties in the bias in this case. There are also com-
plications due to redshift space distortions arising from
peculiar velocities. Despite these drawbacks, recent advan-
ces in this area suggest that probes of the matter density
perturbations potentially represent a powerful tool to detect
non-Gaussianity and possibly break the degeneracy im-
plicit in trispectrum measurements using the CMB. The
study of such data involves using the full Legendre expan-
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sion of the primordial trispectrum as in Eq. (21). In the
remainder of this paper we proceed to investigate the CMB
trispectrum. However, many of the results presented in the
paper are straightforwardly extended to alternative probes
of non-Gaussianity as discussed here.

D. Ideal estimator

Unfortunately, the trispectrum signal, like the bispec-
trum, is too weak for us to measure individual multipoles
directly. Therefore, in order to compare theory with ob-

servations it is necessary to use an estimator that sums over
all multipoles. Estimators can be thought of as performing
a least-squares fit of the trispectrum predicted by theory,
hal1m1

al2m2
al3m3

al4m4
ic, to the trispectrum obtained from

observations. The trispectrum from observations is given
by ðaobsl1m1

aobsl2m2
aobsl3m3

aobsl4m4
Þc, where we subtract the uncon-

nected or Gaussian part, denoted uc, from the four-point
function, aobsl1m1

aobsl2m2
aobsl3m3

aobsl4m4
. This unconnected part is

related to the observed angular power spectrum Cobs
l by

ðaobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

Þuc ¼ ð�1Þm1þm3Cobs
l1

Cobs
l3

�l1;l2�m1;�m2
�l3;l4�m3;�m4

þ ð�1Þm1þm2Cobs
l1

Cobs
l2

ð�l1;l3�m1;�m3
�l2;l4�m2;�m4

þ �l1;l4�m1;�m4
�l2;l3�m2;�m3

Þ: (27)

We define the estimator to be

E ¼ 1

NT

X
limi

hal1m1
al2m2

al3m3
al4m4

icðaobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

Þc
Cl1Cl2Cl3Cl4

;

(28)

where the normalization factor NT is given by (see
Appendix A)

NT ¼ X
li;L

Tl1l2
l3l4

ðLÞTl1l2
l3l4

ðLÞ
ð2Lþ 1ÞCl1Cl2Cl3Cl4

: (29)

As is clear from the earlier discussion, assuming isotropy
for a given theoretical model, we need only calculate the
reduced trispectrum T l1l2

l3l4
ðLÞ, rather than the more chal-

lenging full trispectrum hal1m1
al2m2

al3m3
al4m4

ic.
This estimator naturally defines a correlator for testing

whether two competing trispectra could be differentiated
by an ideal experiment. Replacing the observed trispec-
trumwith one calculated from a competing theory, we have

C ðT; T0Þ ¼ 1

NT

X
li;mi

hal1m1
al2m2

al3m3
al4m4

icha0l1m1
a0l2m2

a0l3m3
a0l4m4

ic
Cl1Cl2Cl3Cl4

¼ 1

NT

X
li;L

Tl1l2
l3l4

ðLÞT0l1l2
l3l4

ðLÞ
ð2Lþ 1ÞCl1Cl2Cl3Cl4

; (30)

where now the normalization NT is defined as follows,

NT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
li;L

Tl1l2
l3l4

ðLÞTl1l2
l3l4

ðLÞ
ð2Lþ 1ÞCl1Cl2Cl3Cl4

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
li;L

T0l1l2
l3l4

ðLÞT0l1l2
l3l4

ðLÞ
ð2Lþ 1ÞC0

l1
C0
l2
C0
l3
C0
l4

vuuut : (31)

An alternative correlator between two trispectra, which is easier to solve numerically, is found by replacing the trispectra
by the respective reduced trispectra in the above definitions. Therefore, when comparing two trispectra we shall use this
latter definition, CðT ;T 0Þ. The exact relation between the two correlators can be deduced from Appendix B in Ref. [34].

E. General estimator

The above estimator is applicable for general trispectra in the limit where non-Gaussianity is small and the observed
map is free of instrument noise and foreground contamination. Of course, this is an idealized case and we need to consider
taking into account the effect of sky cuts and inhomogeneous noise. Here we follow the approach of [37] (an approach that
is further elucidated in [38,39]). As we prove in Appendix B the appropriate form of the optimal estimator becomes

E general ¼ fsky
~N

X
limi

hal1m1
al2m2

al3m3
al4m4

ic½ðC�1aobsÞl1m1
ðC�1aobsÞl2m2

ðC�1aobsÞl3m3
ðC�1aobsÞl4m4

� 6ðC�1Þl1m1;l2m2

�ðC�1aobsÞl3m3
ðC�1aobsÞl4m4

þ 3ðC�1Þl1m1;l2m2
ðC�1Þl3m3;l4m4

�; (32)

where
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~N ¼ X
limi

hal1m1
al2m2

al3m3
al4m4

icðC�1Þl1m1;l
0
1
m0

1
ðC�1Þl2m2;l

0
2
m0

2
ðC�1Þl3m3;l

0
3
m0

3
ðC�1Þl4m4;l

0
4
m0

4
hal0

1
m0

1
al0

2
m0

2
al0

3
m0

3
al0

4
m0

4
ic;

fsky is the fraction of the sky outside the mask, and where the covariance matrix C is now nondiagonal due to mode-mode
coupling introduced by the mask and anisotropic noise. Because of the breaking of isotropy extra terms have been added in
order to maintain the optimality of the estimator. The optimal estimator, in the case that the covariance matrix is diagonal,
reads

E ¼ fsky

NT

X
limi

hal1m1
al2m2

al3m3
al4m4

ic
Cl1Cl2Cl3Cl4

½aobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

� 6ð�1Þm1Cl1�l1l2�m1�m2
aobsl3m3

aobsl4m4

þ 3ð�1Þm1þm2�l1l2�m1�m2
�l3l4�m3�m4

Cl1Cl3�; (33)

where NT is given by Eq. (29). We note also that the
average of this estimator is

hEi ¼ fsky
NT

X
limi

hal1m1
al2m2

al3m3
al4m4

ichaobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

ic
Cl1Cl2Cl3Cl4

;

(34)

as expected.
In the remainder of this paper we shall refer to the ideal

estimator, unless otherwise stated. However, this formula is
important for the general implementation of the formal-
isms introduced here.

F. Kurtosis as a measure of non-Gaussianity

As an aside, we note that the use of nonoptimal estima-
tors may also provide useful information, e.g. as a reality
check on these complex calculations. The kurtosis of the
one-point temperature distribution offers such an estima-
tor. The kurtosis g2 is defined as

g2 ¼
hð�TT ðn̂ÞÞ4i

ðhð�TT ðn̂ÞÞ2iÞ2 � 3: (35)

As we show in Appendix C (where we also include a
discussion on the skewness for completeness) the kurtosis
may be written in the following form:

g2 ¼
48�

P
li;L

h2l1l2Lh
2
l3l4L

tl1l2l3l4
ðLÞ=ð2Lþ 1Þ

ðPlð2lþ 1ÞClÞ2
: (36)

The calculation of this quantity is relatively straightfor-
ward compared to the full estimator due to the absence of
Wigner 6j symbols in the expression.

III. THE SHAPE OF PRIMORDIAL TRISPECTRA

A. Shape function

It is known from CMB observations that the power
spectrum is nearly scale invariant. An analysis of the
bispectrum is performed using the shape function, which
is a scale-invariant form of the bispectrum. To parallel this
analysis we wish to write a scale-invariant form of the

trispectrum (or, in particular, the trispectrum modes).
Therefore, we need to eliminate a k9 scaling. Motivated by
(22) we define this shape by

STðk1; k2; k3; k4; KÞ ¼ ðk1k2k3k4Þ2K
�3

�N
T�;0ðk1; k2; k3; k4;KÞ;

(37)

where N is an appropriate normalization factor. For clarity,
in what follows we shall use the symbol ST when referring
to the shape induced by the reduced primordial trispec-
trum. Of course, this choice of the shape function is not
unique. Another choice of shape function is

~S Tðk1; k2; k3; k4; KÞ ¼ ðk1k2k3k4Þ9=4
�3

�N
T�;0ðk1; k2; k3; k4;KÞ;

(38)

which has the advantage of remaining independent of the
diagonal K if the underlying trispectrum has this property.
Such a class of models is discussed further in Appendix D.
Nonetheless, we proceed with ST as our choice of shape
function in this paper, leaving further investigation of this
issue to a future publication [40]. We should also notice
that, since our analysis here is focused on the CMB, we
have only included the zeroth mode of the Legendre ex-
pansion as indicated by (22). However, for more general
probes of non-Gaussianity, as discussed in Sec. II, the full
Legendre expansion described by Eq. (21) is required. In
such a case the analysis outlined here can be applied mode
by mode. Because of orthogonality of the Legendre modes,
extending the study is a trivial task.
If we rewrite the reduced CMB trispectrum in terms of

the shape function ST , we have

T l1l2
l3l4

ðLÞ ¼ Nhl1l2Lhl3l4L

�
2

�

�
5 Z

dV kST ðk1; k2; k3; k4; KÞ
� K�l1ðk1Þ�l2ðk2Þ�l3ðk3Þ�l4ðk4Þ
� IGl1l2l3l4Lðk1; k2; k3; k4; KÞ; (39)

where the integral IG is given by
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IGl1l2l3l4Lðk1; k2; k3; k4; KÞ ¼
Z

r21r
2
2dr1dr2jLðKr1ÞjLðKr2Þ

� jl1ðk1r1Þjl2ðk2r1Þjl3ðk3r2Þ
� jl4ðk4r2Þ (40)

and dV k corresponds to the area inside the region
ki; K=2 2 ½0; kmax� allowed by the triangle conditions.
Therefore, the shape function is the signal that is evolved
via the transfer functions to give the trispectrum today.
Essentially, IG acts like a window function on all the
shapes as it projects from k to l space; that is, it will tend
to smear out their sharper distinguishing features. This
means that the shape function ST , especially in the
scale-invariant case, can be thought of as the primordial

counterpart of the reduced CMB trispectrum T l1l2
l3l4

ðLÞ be-
fore projection.

B. Shape correlators

We wish to construct a primordial shape correlator that
predicts the value of the CMB correlator CðT ;T 0Þ. To this
end we should consider something of the form

FðST ; ST 0 Þ ¼
Z

dV kST ðk1; k2; k3; k4; KÞ
� ST 0 ðk1; k2; k3; k4; KÞ!ðk1; k2; k3; k4; KÞ;

(41)

where ! is an appropriate weight function. With this
choice of weight the primordial shape correlator then takes
the form

�CðST ; ST 0 Þ ¼ FðST ; ST 0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðST ; ST ÞFðST 0 ; ST 0 Þp : (42)

The question now is what weight function should we
choose? Our goal is to choose S2! in k space such that it
produces the same scaling as the estimator T2=ðð2Lþ
1ÞC4Þ in l space. Let us consider the simplest case where
k ¼ k1 ¼ k2 ¼ k3 ¼ k4 ¼ K and l ¼ l1 ¼ l2 ¼ l3 ¼ l4 ¼
L. For primordial trispectra which are scale invariant, we
then have

S2
T
ðk; k; k; k; kÞ!ðk; k; k; k; kÞ / !ðk; k; k; k; kÞ: (43)

If we work in the large-angle approximation, and assume
lþ 1 � l, then we know Cl / l�2, and from the analytic
solution for the local model, which we will describe below
[see Eqs. (59) and (63)], we have

Tll
ll ðlÞ / h2lll

1

l6
: (44)

Now

hlll / l3=2
l l l
0 0 0

� �

and the Wigner 3J symbol has an exact solution for which

l l l
0 0 0

� �
� ð�1Þ3l=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3lþ 1
p

ffiffiffiffiffiffi
l!3

3l!

s
ð3l=2Þ!
ðl=2Þ!3

� ð�1Þ3l=2
ffiffiffiffiffiffiffiffiffiffi
2ffiffiffi
3

p
�

s
1

l
: (45)

Therefore Tll
ll ðlÞ / l�5 and so

Tll
ll ðlÞ2

ð2lþ 1ÞC4
l

/ l�3: (46)

Hence we find that we should choose a weight function
!ðk; k; k; k; kÞ / k�3. The particular choice of ! may sig-
nificantly improve forecasting accuracy—by, for instance,
using a phenomenological window function to incorporate
damping due to photon diffusion or smoothing due to
projection from k to l space—but it does not impact
important qualitative insights. A specific choice of weight
function, motivated by the choice of weight function for
the bispectrum, is the following:

wðk1; k2; k3; k4; KÞ ¼ K

ðk1 þ k2 þ KÞ2ðk3 þ k4 þ KÞ2 :
(47)

C. Shape decomposition

Given the strong observational limits on the scalar tilt,
we expect all shape functions to exhibit behavior close to
scale invariance, so that ST ðk1; k2; k3; k4; KÞ will depend
only weakly on the overall magnitude of the summed wave
numbers. Here we choose to parametrize the magnitude of
the wave numbers with the quantity

k ¼ 1
2ðk1 þ k2 þ KÞ: (48)

k is the semiperimeter of the triangle formed by the vectors
k1, k2, K. Because of the scaling behavior the form of the
shape function on a cross section is essentially independent
of k, so that

ST ðk1; k2; k3; k4; KÞ ¼ fðkÞ �ST ðk̂1; k̂2; k̂3; k̂4; K̂Þ; (49)

where k̂i ¼ ki=k and K̂ ¼ K=k. Since we are restricted to
the region where the wave numbers ðk1; k2; KÞ and
ðk3; k4; KÞ form triangles by momentum conservation, we
will reparametrize the allowed region to separate out the
overall scale k from the behavior on a cross-sectional slice.
This four-dimensional slice is spanned by the remaining
coordinates. Concentrating on each triangle individually,
we reparametrize in a similar fashion to the analysis done
in [3]. For triangle ðk1; k2; KÞ we have

K ¼ kð1� �Þ; k1 ¼ k

2
ð1þ �þ �Þ;

k2 ¼ k

2
ð1� �þ �Þ;

(50)

while for triangle ðk3; k4; KÞ we have
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K ¼ �kð1� �Þ; k3 ¼ �k

2
ð1þ 	þ �Þ;

k4 ¼ �k

2
ð1� 	þ �Þ;

(51)

where � parametrizes the ratio of the perimeters of the two

triangles, i.e. � ¼ k3þk4þK
k1þk2þK . We consider 1 � � <1. The

different expressions for K imply that

1� � ¼ �ð1� �Þ: (52)

The conditions for triangle ðk1; k2; KÞ that 0 � k1, k2, K �
k imply that 0 � � � 1 and �ð1� �Þ � � � 1� �,
while the conditions for triangle ðk3; k4; KÞ that 0 � k1,
k2, K � �k, along with the relationship between � and �
and the requirement that � 	 1, imply that �ð1� �Þ=� �
	 � ð1� �Þ=�. In summary, we have the following do-
mains,

0 � k <1; 1 � � <1; 0 � � � 1;

�ð1� �Þ � � � 1� �; � 1� �

�
� 	 � 1� �

�
:

(53)

With this parametrization we can rewrite the shape func-
tion and the volume element, respectively, as

ST ðk1; k2; k3; k4; KÞ ¼ fðkÞ �ST ð�;�; 	; �Þ;
dV k ¼ dk1dk2dk3dk4dK ¼ �k4dkd�d�d	d�:

(54)

In order to represent the shape function graphically we can

choose fixed values of �, in which case the shape �S
becomes three dimensional. The particular three-
dimensional domain is shown in Fig. 3. From the image
we see how the particular triangles created by the wave
numbers generate the three-dimensional slice for each �.
We can envisage the four-dimensional shape by imagining

an orthogonal direction for � out of the page, along which
are located increasingly squeezed rectangular pyramids.

IV. SEPARABLE SHAPES

A. Examples: Local, equilateral, and constant models

The local model is given by the reduced primordial
trispectrum

T loc
� ðk1;k2;k3;k4;KÞ ¼ T loc

�Aðk1;k2;k3;k4;KÞ
þT loc

�Bðk1;k2;k3;k4;KÞ;
(55)

where

T loc
�Aðk1;k2;k3;k4;KÞ ¼ 25

9
�NLP�ðKÞP�ðk1ÞP�ðk3Þ;

(56)

T loc
�Bðk1;k2;k3;k4;KÞ ¼ gNL½P�ðk2ÞP�ðk3ÞP�ðk4Þ

þ P�ðk1ÞP�ðk2ÞP�ðk4Þ�:
(57)

For single-field inflation we have �NL ¼ ð65 fNLÞ2. This

relationship breaks down for multifield inflation (see
[41]). We can see clearly here that the local trispectrum
is independent of the angle �4; i.e. the zeroth mode of the
local trispectrum is exactly the full local trispectrum. The
primordial shapes for each of these expressions may be
shown visually using the prescription described in the
previous section, and they are shown in Figs. 4 and 5. As
expected, for the local model the signal peaks in the
corners. However, as is easily observable, the ‘‘peaking’’
behavior is somewhat orthogonal between the two models.
Working in the Sachs-Wolfe approximation, where we re-
place the transfer function with a Bessel function,

FIG. 3 (color online). Three-dimensional shape function domain for a fixed value of �, i.e. for a particular ratio of the perimeters of
the triangles created by the wave numbers ðk1; k2; KÞ and ðk3; k4; KÞ, respectively. Note that the triangle conditions on these two wave
number sets restrict them to the two tetrahedral domains illustrated (right diagrams). Slices through these tetrahedra are mapped, as
shown, into the full domain, a rectangular pyramid (left diagram).
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�lðkÞ ¼ 1
3jlðð�0 � �decÞkÞ; (58)

the integral for the reduced trispectrum can be expressed in closed form. Setting P�ðkÞ ¼ ��k
�3 we find

T l1l2loc
l3l4;A

ðLÞ ¼ 25�NL

9

�3
�

34

�
2

�

�
5
hl1l2Lhl3l4L

Z
r21dr1r

2
2dr2K

�1dKk�1
1 dk1k

�1
3 dk3Il2ð2; r1ÞIl4ð2; r1Þ

¼ 25�NL

9

�3
�

34

�
2

�

�
5
hl1l2Lhl3l4L

�
�

2

�
2
ILð�1; 1ÞIl1ð�1; 1ÞIl3ð�1; 1Þ

¼ 25�NL

36
�2

�3
�

34

�
2

�

�
5
hl1l2Lhl3l4L

�
1

2LðLþ 1Þ2l1ðl1 þ 1Þ2l3ðl3 þ 1Þ
�
; (59)

FIG. 4 (color online). Local A model (59). The peak as � ! 1 corresponds to K ! 0, i.e. the ‘‘doubly squeezed’’ limit. The other
peak corresponds to k1 ! 0, k3 ! ð�� 1Þk. As � rises above unity [i.e. for triangle ðk3; k4; KÞ bigger than triangle ðk1; k2; KÞ] we
expect this peak to become suppressed, as observed.
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where

Ilðp; xÞ ¼
Z

kpdkjlðkÞjlðxkÞ; (60)

and we have used

Ilð2; rÞ ¼ �

2r2
�ðr� 1Þ; (61)

Ilð�1; 1Þ ¼ 1

2lðlþ 1Þ : (62)

Similarly,

T l1l2loc
l3l4;B

ðLÞ ¼ gNL

�2

4

�3
�

34

�
2

�

�
5
hl1l2Lhl3l4L

�
�

1

2l2ðl2 þ 1Þ2l3ðl3 þ 1Þ2l4ðl4 þ 1Þ
þ ðl1 $ l3Þ

�
: (63)

Next we propose a constant model for the primordial
trispectrum, analogous to the simplest model for the bis-
pectrum. This is given by

FIG. 5 (color online). Local B model (63). The peaks at � ¼ 1 correspond to k2 ! 0, while the peaks at � ¼ �1 correspond to
k1 ! 0. For � ¼ 1 [i.e. equal triangle sizes ðk1; k2; KÞ and ðk3; k4; KÞ] we see a more confined peaking at 	 ¼ �1, 	 ¼ 1, i.e. k3 ! 0,
k4 ! 0, respectively. We observe the peaking of the local B models to be somewhat orthogonal to the local A model.
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1

�3
�N

ðk1k2k3k4Þ2KT �;0ðk1; k2; k3; k4;KÞ

¼ ST ðk1; k2; k3; k4; KÞ ¼ 1 (64)

with N the normalization factor of Eq. (64) and the choice
�3

� motivated by comparison to the local model. Again, as

for the local model, the primordial trispectrum is already a
zero mode quantity with respect to angle �4, i.e. T ¼ T;0.

Using the Sachs-Wolfe approximation the integral (22) can
be written as

T l1l2const
l3l4

ðLÞ ¼ �3
�N

34

�
2

�

�
5
hl1l2Lhl3l4L

�
Z

dxx2dr1r
3
1Il1ð0; r1ÞIl2ð0; r1Þ

� Il3ð0; r1xÞIl4ð0; r1xÞILð1; xÞ; (65)

where we write r2=r1 ¼ x. Now we can evaluate

Ilð0; xÞ ¼ �

2ð2lþ 1Þ x
�ðlþ1Þ for x > 1

¼ �

2ð2lþ 1Þ x
l for x < 1; (66)

ILð1; xÞ ¼ ��ðLþ 1Þ
2�ðLþ 3=2Þ x

�ðLþ2Þ
2 F1

�
1

2
; Lþ 1;Lþ 3

2
; x�2

�
for x > 1

¼ ��ðLþ 1Þ
2�ðLþ 3=2Þ x

L
2F1

�
1

2
; Lþ 1;Lþ 3

2
; x2

�
for x < 1; (67)

where 2F1 is a generalized hypergeometric function. We can write 2F1 in terms of a series expansion in the form

2F1ða; b; c; zÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; (68)

where ðpÞn ¼ �ðpþ nÞ=�ðpÞ. The conditions for convergence—namely, that this series converges for c a non-negative
integer with jzj< 1—are satisfied in this case. Using this decomposition we find

T l1l2const
l3l4

ðLÞ ¼ �3
�N

34
hl1l2Lhl3l4L

1

�

1

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þ
X1
n¼0

�ð1=2þ nÞ�ðLþ 1þ nÞ
�ðLþ 3=2þ nÞ

1

n!

�
�

1

2nþ 3þ l3 þ l4 þ L

�
1P
li þ 4

� 1

A1

�
þ 1

2nþ 1þ l1 þ l2 þ L

�
1P
li
þ 1

A1

�

þ 1

2nþ 3þ l1 þ l2 þ L

�
1P
li þ 4

� 1

A2

�
þ 1

2nþ 1þ l3 þ l4 þ L

�
1P
li
þ 1

A2

��
: (69)

Notice that this sum is still finite if the denominators A1 ¼ l1 þ l2 � l3 � l4 þ 2 or A2 ¼ l3 þ l4 � l1 � l2 þ 2 are zero
since in those cases the respective numerators vanish. Alternatively, we can integrate over the hypergeometric function
directly and write the solution in the following closed form:

T l1l2const
l3l4

ðLÞ ¼ �3
�N

34
hl1l2Lhl3l4L

1

2�

1

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1ÞBðLþ 1; 1=2Þ

�
��

1P
li þ 4

� 1

A1

�
B

�
C1 þ 2

2
; 1

�
3F2

��
C1 þ 2

2
;
1

2
; Lþ 1

�
;

�
Lþ 3

2
;
C1 þ 4

2

�
; 1

�

þ
�

1P
li
þ 1

A1

�
B

�
C2

2
; 1

�
3F2

��
C2

2
;
1

2
; Lþ 1

�
;

�
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2
;
C2 þ 2

2

�
; 1

�

þ
�

1P
li þ 4

� 1

A2

�
B

�
C2 þ 2

2
; 1

�
3F2

��
C2 þ 2

2
;
1

2
; Lþ 1

�
;

�
Lþ 3

2
;
C2 þ 4

2

�
; 1

�

þ
�

1P
li
þ 1

A2

�
B

�
C1

2
; 1

�
3F2

��
C1

2
;
1

2
; Lþ 1

�
;

�
Lþ 3

2
;
C1 þ 2

2

�
; 1

��
; (70)

where Bðx; yÞ denotes the beta function and C1 ¼ 1þ l3 þ l4 þ L, C2 ¼ 1þ l1 þ l2 þ L.
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The equilateral shape has also received a lot of attention in the literature. As has been described in [14], for the purposes
of data analyses, there are two representative forms for the equilateral trispectra. These are given by the following shapes
for the reduced trispectra:

Sequil
T ;c1

ðk1;k2;k3;k4;KÞ / K
k1k2k3k4

ðk1 þ k2 þ k3 þ k4Þ5
; (71)

S
equil

T ;s1
ðk1;k2;k3;k4;KÞ / k1k2k3k4K

2

ðk3 þ k4 þ KÞ3
�

1

2ðk1 þ k2 þ KÞ3 þ
6ðk3 þ k4 þ KÞ2

ðk1 þ k2 þ k3 þ k4Þ5
þ 3ðk3 þ k4 þ KÞ

ðk1 þ k2 þ k3 þ k4Þ4

þ 1

ðk1 þ k2 þ k3 þ k4Þ3
�
; (72)

FIG. 6 (color online). Equilateral c1 model (71). The signal peaks at � ¼ 1 towards 	 ¼ 0, � ¼ 0, � ¼ 0, i.e. at k1 ¼ k2 ¼ k3 ¼
k4 ¼ K=2. For � > 1 the signal similarly peaks for k1 ¼ k2, k3 ¼ k4, but since the triangles ðk1; k2; KÞ and ðk3; k4; KÞ are now unequal,
the peak position is less sharp and shifts to smaller values of K.
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where we use the notation c1 and s1 to correspond to [14].
These shapes are similar in most regions, apart from the
doubly squeezed limit (k3 ¼ k4 ! 0). It has been observed
that the first ansatz is factorizable by introducing the
integral 1=Mn ¼ ð1=�ðnÞÞR1

0 tn�1e�Mtdt, where M ¼P
ki. As we observe from Figs. 6 and 7 it is clear that

the shapes for the two representative forms are highly
correlated. Therefore, for the purposes of the analysis of
the equilateral model, it may only be necessary to consider
the c1 model.

V. MODE DECOMPOSITION

Our goal is to represent an arbitrary nonseparable re-
duced primordial trispectrum (zero mode) T �;0ðk1; k2;

k3; k4;KÞ or a reduced CMB trispectrum T l1l2
l3l4

ðLÞ on their

respective wave number or multipole domains using a
rapidly convergent mode expansion. We need to achieve
this in a separable manner, in order to make tractable the
five-dimensional integrals (� dk1dk2dk3dk4dK) required
for trispectrum estimation by breaking them down into
products of one-dimensional integrals. In particular, this
means that we wish to expand an arbitrary nonseparable
primordial (reduced) shape function in the form

ST ðk1; k2; k3; k4; KÞ ¼
X

p;r;s;u;v

�prsuvqpðk1Þqrðk2Þqsðk3Þ

� quðk4ÞrvðKÞ; (73)

FIG. 7 (color online). Equilateral s1 model (72). As for the equilateral c1 model the signal peaks for equal ki at �, while for � > 1 the
peak position becomes less sharp. As is clearly observable from the figures the equilateral c1 and s1 models are highly correlated.
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where the qp, rv are appropriate basis mode functions

which are convergent and complete; that is, they span the
space of all functions on the wave number domain. The
differing notation, q, r, is due to the different ranges of the
variables—ki 2 ½0; kmax� butK 2 ½0; 2kmax�. In the case of
more general probes of non-Gaussianity this is easily ex-
tended to include the other Legendre modes of Eq. (21) by
writing

Sðk1; k2; k3; k4; K; �4Þ ¼
X
n

ST nðk1; k2; k3; k4; KÞPnðcos�4Þ;

(74)

where S is the shape function applied to the full Legendre
expansion (21). The shape function of the nth Legendre
mode, ST n, may be decomposed as in Eq. (73).

We will present one method for finding the basis func-
tions q, r below. We will achieve this objective in stages.
First, we create examples of one-dimensional mode func-
tions which are orthogonal and well behaved over the full
wave number (or multipole) domain. We then construct
five-dimensional products of these wave functions,
qpðk1Þqrðk2Þqsðk3Þquðk4ÞrvðKÞ ! Qm. This creates a

complete basis for all possible reduced trispectra on the
given domain. By orthonormalizing these product basis
functions, Qm ! Rm, we obtain a rapid and convenient
method for calculating the expansion coefficients �prsuv

(or �m). Here we use bounded symmetric polynomials as a
concrete implementation of this methodology. Of course,
as outlined in the case of the bispectrum in [1], there are
alternatives to using the polynomials Qm, Rm, but the
shortcoming of these alternatives is that either (i) they
can lead to overshooting at the domain boundaries or
(ii) the choice may compromise separability. However, it
is possible that an alternative to the polynomial expansion
may be desirable to improve the rate of convergence. This
should be able to conveniently represent functions in a
separable form, and should be derived explicitly for the
domain.

A. Domain and weight functions

In Fourier space, the primordial reduced trispectrum
zero mode T �;0ðk1; k2; k3; k4;KÞ is defined when the

wave vectors k1, k2, K and k3, k4, K close to form
triangles subject to k1 þ k2 þK ¼ 0 ¼ k3 þ k4 �K.
Each such triangle is uniquely defined by the lengths of
the sides k1, k2, K and k3, k4, K. In terms of these wave
numbers, the triangle conditions restrict the allowed com-
binations into a region defined by

k1 � K þ k2 for k1 	 k2; K; or k2 � K þ k1

for k2 	 k1; K; or K � k1 þ k2 for K 	 k1; k2

(75)

and

k3 � K þ k4 for k3 	 k4; K; or k4 � K þ k3

for k4 	 k3; K; or K � k3 þ k4 for K 	 k3; k4:

(76)

Since the wave number K is common to both triangles, the
region is a product of the tetrahedral domains defined by
the conditions (75) and (76). Considering each region
individually we note that they each describe a regular
tetrahedron for k1 þ k2 þ K < 2kmax (or k3 þ k4 þ K <
2kmax). However, motivated by issues of separability and
observation, it is more natural to extend the domain out to
values given by a maximum wave number kmax. In particu-
lar, we have ki < kmax and K < 2kmax. In each case the
allowed region is a hexahedron formed by the intersection
of a tetrahedron and a rectangular parallelepiped. For
brevity we will denote this configuration as a tetrapiped.
This region is an extension of the tetrapyd referred to in [1]
due to the extended range of K, and is shown in Fig. 8.
In order to integrate functions fðk1; k2; k3; k4; KÞ over

the tetrapiped domains, which we denoteVT , we note the
presence of K in both regions. We find that the integration
is given explicitly by

FIG. 8 (color online). ‘‘Tetrapiped’’ domain for allowed wave
numbers of the primordial reduced trispectrum T ðk1; k2; k3;
k4;K; �4Þ imposed by the triangle created by ðk1; k2; KÞ. There
is a corresponding tetrapiped domain imposed by the triangle
created by ðk3; k4; KÞ. The region is an extension of the tetrapyd
domain described in [1] due to the extended range of K. The
same domain is valid for allowed multipole values li, L in the

case of the reduced CMB trispectrum T l1l2
l3l4

ðLÞ. The shaded area

denotes the region described in Fig. 3.
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I½f� 

Z
VT

fðk1; k2; k3; k4; KÞ!ðk1; k2; k3; k4; KÞdVT

¼ k5max

�Z 1=2

0
dt
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0
ds
Z tþs

t�s
dxþ
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t
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0
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Z tþy
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Z tþs

t�s
dxþ

Z t

1�t
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Z tþs

t�s
dxþ

Z 1
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ds
Z 1

s�t
dx

�
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�Z 1�t

0
dy

Z tþy

t�y
dzþ

Z t

1�t
dy
Z tþy

t�y
dzþ

Z 1

t
dy
Z 1

y�t
dz

�
þ
Z 2

1
dt
Z 1

t�1
ds
Z 1

t�s
dx

Z 1

t�1
dy

Z 1

t�y
dzFW

�
; (77)

where!ðk1; k2; k3; k4; KÞ is an appropriate weight function
and we have made the transformation t ¼ K=kmax, s ¼
k1=kmax, x ¼ k2=kmax, y ¼ k3=kmax, z ¼ k4=kmax with
Fðs; x; y; z; tÞ ¼ fðkmax � ðs; x; y; z; tÞÞ and Wðs; x; y;
z; tÞ ¼ !ðkmax � ðs; x; y; z; tÞÞ. For integrals over the prod-
uct of two functions f and g, we can define the inner
product hf; gi ¼ I½fg�. This inner product essentially de-
fines a Hilbert space of possible shape functions in the
domain. The total volume of the domain is given by I½1� ¼
k5max=3. Initially we will restrict our attention to the case of
weight ! ¼ 1. However, it is important to incorporate a
weight function for a variety of reasons which we will
discuss later.

Analysis of the CMB extra-reduced trispectrum tl1l2l3l4
ðLÞ

is more straightforward than in the primordial case. This is
because the CMB trispectrum, being defined on a two-
sphere, is an explicitly five-dimensional quantity and there-
fore is defined completely in terms of the multipoles. We

note here that the quantity pl1l2
l3l4

ðLÞ ¼ tl1l2l3l4
ðLÞ þ tl2l1l3l4

ðLÞ þ
tl1l2l4l3

ðLÞ þ tl2l1l4l3
ðLÞ is probably a more elegant expression for

this analysis since it is more symmetric while being defined
on the same domain and being subject to the same weight-
ing over the domain. Nonetheless, we proceed in this paper

with the analysis of tl1l2l3l4
ðLÞ, leaving exploration of this

minor issue to an upcoming paper [40]. As for the primor-

dial case, we extend the tetrahedral domains to include
multipoles out to li, L=2< lmax. The respective tetrapiped
domains for the extra-reduced trispectrum become the
discrete fl1; l2; l3; l4; Lg satisfying

l1; l2; l3; l4; L=2< lmax; li; L 2 N;

l1 � l2 þ L for l1 	 l1; L;þcyclic perms;

l3 � l4 þ L for l3 	 l4; L;þcyclic perms;

l1 þ l2 þ L ¼ 2n1; l3 þ l4 þ L ¼ 2n2;

n1; n2 2 N: (78)

In multipole space, we will be primarily dealing with a
summation over all possible fl1; l2; l3; l4; Lg combinations
in the correlator CðT ;T 0Þ. The appropriate weight func-
tion in the sum from (23) is then

!ðl1; l2; l3; l4; LÞ ¼ h2l1l2Lh
2
l3l4L

: (79)

A straightforward continuum version of this can be de-
duced by comparison of this ‘‘weight’’ formula to the
bispectrum multipole weight function in [1]. Similarly to
that analysis, we should eliminate a scaling in this weight
such that the overall weight becomes very nearly constant.
We can do this by using a separable weight function as

!sðl1l2l3l4LÞ ¼ !ðl1; l2; l3; l4; LÞ
ð2l1 þ 1Þ1=3ð2l2 þ 1Þ1=3ð2l3 þ 1Þ1=3ð2l4 þ 1Þ1=3ð2Lþ 1Þ2=3 : (80)

We note that there is also a freedom to absorb an arbitrary
separable function vl into the weight functions. If we
define a new weight �! in the estimator as

�! l1l2l3l4L ¼ !l1l2l3l4L=ðvl1vl2vl3vl4vLÞ2; (81)

then we must rescale the estimator functions by the factor
vl1vl2vl3vl4vL. The important point is to use both the
weight �! and the estimator rescaling throughout the analy-
sis, including the generation of appropriate orthonormal
mode functions.

B. Orthogonal polynomials on the domain

We now construct some concrete realizations of mode
functions which are orthogonal on the domain VT and
which have the form required for a separable expansion.
First, we will generate one-dimensional orthogonal poly-
nomials qpðsÞ; rvðtÞ for unit weight ! ¼ 1. Considering

functions qpðsÞ depending only on the s coordinate,3 we

integrate over the t, x, y, z directions to yield the weight

3We can consider s as corresponding to any of the ki.
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functions �!ðsÞ for s 2 ½0; 1� (for simplicity, we take
kmax ¼ 1):

�!ðsÞ ¼ s� s3 þ 5

12
s4; with I½f� ¼

Z 1

0
fðsÞ �!ðsÞds:

(82)

Therefore, the moments for each power of s become

�!n 
 I½sn� ¼ 1

nþ 2
þ 5

12ðnþ 5Þ �
1

nþ 4

¼ 5n2 þ 54nþ 160

12ðnþ 2Þðnþ 4Þðnþ 5Þ : (83)

For functions rvðtÞ (where t corresponds to the K coordi-
nate), we integrate over the s, x, y, z directions to yield the
weight functions !̂ðtÞ for t 2 ½0; 2�:

!̂ðtÞ ¼
�
t

2
ð4� 3tÞ

�
2

for t 2 ½0; 1�

¼ ðt� 2Þ4
4

for t 2 ½1; 2�;

with I½f� ¼
Z 2

0
fðtÞ!̂ðtÞdt: (84)

With this choice of weight the moments of each power of t
become

!̂ n 
 I½tn�

¼ n2 þ 15nþ 68

4ðnþ 3Þðnþ 4Þðnþ 5Þ

þ 768� 2n � 744� 474n� 131n2 � 18n3 � n4

4ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þðnþ 5Þ :

(85)

From these moments we can create orthogonal polyno-
mials using the generating functions,

qnðsÞ ¼ 1

N 1

�����������������������

1=3 73=360 1=7 . . . �!n

73=360 1=7 367=3360 . . . �!nþ1

. . . . . . . . . . . . . . .
�!n�1 �!n �!nþ1 . . . �!2n�1

1 s s2 . . . sn

�����������������������
(86)

and

rnðtÞ ¼ 1

N 2

�����������������������

1=3 7=30 4=21 . . . !̂n

7=30 4=21 73=420 . . . !̂nþ1

. . . . . . . . . . . . . . .
!̂n�1 !̂n !̂nþ1 . . . !̂2n�1

1 t t2 . . . tn

�����������������������
; (87)

where we choose the normalization factors N 1, N 2 such
that I½q2n� ¼ 1 and I½r2n� ¼ 1 for all n 2 N, that is, such
that the qnðsÞ [or rnðtÞ] are orthonormal,

hqn; qpi 
 I½qnqp� ¼
Z
VT

qnðsÞqpðsÞdVT ¼ �np;

(88)

hrv; rui 
 I½rvru� ¼
Z
VT

rvðtÞrvðtÞdVT ¼ �vu: (89)

The first few orthonormal polynomials on the domainVT
are explicitly

q0ðsÞ ¼
ffiffiffi
3

p
;

q1ðsÞ ¼ 7:161 03ð�0:608 333þ sÞ;
q2ðsÞ ¼ 7:767 59� 33:2061sþ 29:0098s2;

q3ðsÞ ¼ �11:7911þ 93:1318s� 194:111s2

þ 116:964s3; . . .

(90)

and
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r0ðtÞ ¼
ffiffiffi
3

p
;

r1ðtÞ ¼ 6:069 77ð�0:7þ tÞ;
r2ðtÞ ¼ 7:650 66� 24:1493tþ 16:1942t2;

r3ðtÞ ¼ �12:2182þ 63:4315t� 91:6438t2

þ 38:7091t3; . . . :

(91)

We note that the qn’s and rv’s are only orthogonal in
one dimension [e.g. hqnðsÞrvðtÞi � �nv and
hqnðsÞqmðxÞi � �nm]. However, as product functions of t,
s, x, y, and z, they form an independent and well-behaved
basis which we will use to construct orthonormal five-
dimensional eigenfunctions. In practice, the qn’s and rv’s
remain the primary calculation tools, notably in perform-
ing separable integrations. In Fig. 9 we plot the first few
qn’s and rv’s.

Now we turn to the polynomials �QðsÞ and �RðtÞ, which
are orthonormal on the multipole domain. Using the weight
function ! ¼ 1 we find the same polynomials as above.
For the scaled weight function !s the polynomials will, of
course, differ. While either polynomial set would suffice as
independent basis functions on the multipole domain, the
use of correctly weighted functions leads to improvements
in the immediate orthogonality of the derived five-
dimensional polynomial sets. For definiteness we take
ðt; s; x; y; zÞ � lmax ¼ ðL; l1; l2; l3; l4Þ. The generating func-

tion is obtained as above but now using the moments �!n 

I½sn� ¼ R

!ðt; s; x; y; zÞsndVT and !̂n 
 I½tn� ¼R
!ðt; s; x; y; zÞtndVT .

C. Five-dimensional basis functions

We can represent arbitrary (reduced) trispectra
Legendre modes on the domain VT using a suitable set
of independent basis functions formed from products
qpðsÞqrðxÞqsðyÞquðzÞrvðtÞ. (Here again we take t ¼
K=kmax, s ¼ k1=kmax, x ¼ k2=kmax, y ¼ k3=kmax, z ¼
k4=kmax, or t ¼ L=lmax, etc.) We denote the 5D basis
function as

Q mðt; s; x; y; zÞ ¼ qpðsÞqrðxÞqsðyÞquðzÞrvðtÞ: (92)

We can order these products linearly with a single index m
in a similar manner to that described in [1] for the
bispectrum.
While the Qm’s by construction are an independent set

of five-dimensional functions on the domainVT , they are
not, in general, orthogonal. To construct an orthonormal set
Rm from the Qm we perform an iterative Gram-Schmidt
orthogonalization process such that

hRnRmi ¼ �nm: (93)

In particular, we form the Gram matrix � ¼ ðhQnQmiÞ
which needs to be factorized as � ¼ �T� where � ¼
ðhQnRmiÞ is triangular. This process is described in
more detail in [1].

D. Mode decomposition of the trispectrum

Having formed the orthonormal basis fRmg we consider
an arbitrary primordial reduced trispectrum (zero mode)
T ;0ðk1; k2; k3; k4;KÞ described by the shape function ST
and decompose it as follows:

ST ðk1; k2; k3; k4; KÞ ¼
X
m

�R
mRmðt; s; x; y; zÞ; (94)

where the expansion coefficients �R
m are given by

�R
m ¼ hRm; ST i ¼

Z
VT

RmST!dVT (95)

and kmaxðt; s; x; y; zÞ ¼ ðK; k1; k2; k3; k4Þ on the domain
VT defined in (75) and (76). In practice, we must always
work with partial sums up to a given N ¼ nmax with

SN
T

¼ XN
m¼0

�R
mRmðt; s; x; y; zÞ; ST ¼ lim

N!1S
N
T
: (96)

Given the complete orthonormal basis Rm, Parseval’s
theorem for the integrated product of two functions implies

hST ; S0
T
i ¼

Z
VT

ST S0
T
!dVT ¼ lim

N!1
XN
m¼0

�R
m �R0

m ;

(97)

FIG. 9 (color online). The orthonormal one-dimensional
eigenmodes qn, rv plotted on their respective domains for n, v ¼
0, 1, 2, 3. The qn, rv plotted are calculated for unit weight ! ¼ 1
on the domain VT . The shape of these eigenmodes alters for
different choices of the weighting.
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which for the square of a mode ST yields the sum of the

squares of the expansion coefficients, I½S2
T
� ¼ P

m�
R2
m .

In order to accomplish the goal of a general separable
expansion, we must transform backwards from the or-
thogonal sum Rm into an expansion over the separable
product functions Qm through

SN
T

¼ XN
m¼0

�Q
mQmðt; s; x; y; zÞ: (98)

The �Q
m can be obtained from the �R

m via

�Q
m ¼ XN

p¼0

ð
TÞmp�
R
p ; (99)

where the transformation matrix 
np was defined above.

Using the inverse relation �R
m ¼ P

N
p¼0ð
TÞ�1

mp�
Q
p we find

that the matrices � and � are related by

ð	�1Þnp ¼ XN
r

ð
TÞnr
rp: (100)

This implies that

hSN
T
; SN

T
i ¼ XN

m¼0

�R2
m ¼ XN

m¼0

XN
p¼0

�Q
m 	mp�

Q
p : (101)

As we have already noted, the separable Qm expansion is
most useful for practical calculations. However, its coef-
ficients must be constructed from the orthonormal Rm.
We can expand the CMB extra-reduced trispectrum

tl1l2l3l4
ðLÞ at late times using the same polynomials. How-

ever, as noted previously the CMB trispectrum is an ex-
plicitly five-dimensional quantity and, as such, we do
not require the extra step of finding the zero mode of
the Legendre series expansion. In particular, the

appropriate expansion is of the form tl1l2l3l4
ðLÞ ¼P

m ��R
mRmðt; s; x; y; zÞð¼

P
m ��Q

mQmðt; s; x; y; zÞÞ.

VI. MEASURES OF TNL

A. Primordial estimator

We have obtained related mode expansions for a general
primordial shape function, one with the orthonormal basis
Rm and the other with the separable basis functions Qm.
Substitution of the (reduced) separable form into the ex-
pression for the extra-reduced trispectrum (23) offers an
efficient route to its direct calculation through

tl1l2l3l4
ðLÞ ¼ N�3

�

�
2

�

�
5 Z

r21dr1r
2
2dr2dk1dk2dk3dk4dKK

X
m

�Q
mQmðk1; k2; k3; k4; KÞjLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�

� ½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�
¼ N�3

�

X
m

�Q
m

Z
r21dr1r

2
2dr2Q

l1l2l3l4L
m ðr1; r2Þ; (102)

where

Q l1l2l3l4L
m ðr1; r2Þ ¼ ql1p ðr1Þql2r ðr1Þql3s ðr2Þql4u ðr2ÞrLvðr1; r2Þ

(103)

with

qlpðrÞ ¼ 2

�

Z
dkqpðkÞ�lðkÞjlðkrÞ;

rLvðr1; r2Þ ¼ 2

�

Z
dKKrvðKÞjLðKr1ÞjLðKr2Þ:

(104)

Next, we note from (11) that

T l1m1l2m2l3m3l4m4
¼ X

LM

ð�1ÞM l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
T l1l2

l3l4
ðLÞ: (105)

Therefore, using these formulas in the estimator (28) (we
omit the normalization factor NT here and return to it later
in the section) we find

E ¼ 12
X
limi

T l1m1l2m2l3m3l4m4

ðal1m1
al2m2

al3m3
al4m4

Þc
Cl1Cl2Cl3Cl4

) E

¼ X
limi

X
LM

12N�3
�

��Z
dn̂1Yl1m1

ðn̂1ÞYl2m2
ðn̂1ÞY�

LMðn̂1Þ
�

�
�Z

dn̂2Yl3m3
ðn̂2ÞYl4m4

ðn̂2ÞYLMðn̂2Þ
�X

m

�Q
m

Z
r21dr1r

2
2dr2Q

l1l2l3l4L
m ðr1; r2Þ

� ðal1m1
al2m2

al3m3
al4m4

Þc
Cl1Cl2Cl3Cl4

: (106)
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Now using the notation E ¼ Etot � Euc, where ‘‘tot’’ refers to al1m1
al2m2

al3m3
al4m4

and ‘‘uc’’ refers to
ðal1m1

al2m2
al3m3

al4m4
Þuc, in place of ðal1m1

al2m2
al3m3

al4m4
Þc, we find

E uc ¼ 12N�3
�

X
m

�Q
m

Z
dn̂1dn̂2

Z
dr1dr2r

2
1r

2
2Nvðn̂1; n̂2; r1; r2ÞðMuc

prðn̂1; n̂1; r1; r1ÞMuc
suðn̂2; n̂2; r2; r2Þ

þMuc
psðn̂1; n̂2; r1; r2ÞMuc

ruðn̂1; n̂2; r1; r2Þ þMuc
puðn̂1; n̂2; r1; r2ÞMuc

rs ðn̂1; n̂2; r1; r2ÞÞ (107)

and

E tot ¼ 12N�3
�

X
m

�Q
m

Z
dn̂1dn̂2

Z
dr1dr2r

2
1r

2
2Mpðn̂1; r1ÞMrðn̂1; r1ÞMsðn̂2; r2ÞMuðn̂2; r2ÞNvðn̂1; n̂2; r1; r2Þ; (108)

where

Muc
psðn̂1; n̂2; r1; r2Þ ¼

X
l1m1

Yl1m1
ðn̂1ÞY�

l1m1
ðn̂2Þql1p ðr1Þql1s ðr2Þ
Cl1

;

Mpðn̂1; r1Þ ¼
X
l1m1

Yl1m1
ðn̂1Þal1m1

ql1p ðr1Þ
Cl1

;

Nvðn̂1; n̂2; r1; r2Þ ¼
X
LM

Y�
LMðn̂1ÞYLMðn̂2ÞrLvðr1; r2Þ:

(109)

We can summarize these results (substituting back in NT)
as

E ¼ 12N�3
�

NT

X
m

�Q
m

Z
dn̂1dn̂2

Z
dr1dr2r

2
1r

2
2

�MQ
m ðn̂1; n̂2; r1; r2Þ

¼ N�3
�

NT

X
m

�Q
m �Q

m ; (110)

with

�Q
m ¼ 12

Z
dn̂1dn̂2

Z
dr1dr2r

2
1r

2
2M

Q
m ðn̂1; n̂2; r1; r2Þ

(111)

and the form of MQ
m inferred from the above equations.

The estimator has been reduced entirely to tractable inte-
grals and sums which can be performed relatively quickly.

We can estimate the computational time needed to find
this estimator. The multipole summation needed for each
basis is OðlmaxÞ (since the sum over the m’s can be pre-
computed). The integral�R

d2n̂ is anOðl2maxÞ calculation,
while the line of sight integral �R

dr is conservatively

estimated as an Oð100Þ operation. Therefore, in total the
estimated number of operations is Oð10 000Þ �Oðl5maxÞ.

In the case that the primordial trispectrum is indepen-
dent of the diagonal K, the estimated number of operations
reduces to Oð100Þ �Oðl3maxÞ as outlined in Appendix D.

B. CMB estimator

In the case of a precomputed CMB trispectrum or a late-
time source of non-Gaussianity in the CMB, such as gravi-

tational lensing or active models such as cosmic strings, we
wish to find a late-time CMB estimator. For the late-time
analysis we wish to expand the estimator functions using

the separable �Qmðl1; l2; l3; l4; LÞ mode functions created

out of the �QpðlÞ and �RvðLÞ polynomials. (Note that we

denote the multipole modes with a bar to distinguish them
from the primordial equivalents, and also that we have no
need for a subscript for the zeroth Legendre mode since the
CMB trispectrum is an explicitly five-dimensional quantity
as described earlier.) In order to effectively expand in mode
functions modulated by the Cl’s, we choose to decompose
the estimator functions directly as

vl1vl2vl3vl4vLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2Cl3Cl4

p tl1l2l3l4
ðLÞ ¼ X

m

��Q
m

�Qm; (112)

where the separable vl incorporates the freedom to make
the weight function ! even more scale invariant. The
estimator expansion with Cl in (106) is appropriate for
primordial models, but it is expected that flatter choices
will be more suitable for late-time anisotropy, such as from
cosmic strings.
Substituting this mode expansion into the estimator (28)

(where again we omit the normalization factor NT and
return to it later in the section), we find

E ¼ 12
X
limi

X
LM

X
n

��Q
n

�Qpðl1Þ �Qrðl2Þ �Qsðl3Þ �Quðl4Þ �RvðLÞ

�
Z

d2n̂1Yl1m1
ðn̂1ÞYl2m2

ðn̂1ÞY�
LMðn̂1Þ

�
Z

d2n̂2Yl3m3
ðn̂2ÞYl4m4

ðn̂2ÞYLMðn̂2Þ

� ðal1m1
al2m2

al3m3
al4m4

Þc
vl1vl2vl3vl4vL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2Cl3Cl4

p : (113)

After some algebra we find
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Etot ¼ 12N�3
�

X
n

��Q
n

Z
d2n̂1d

2n̂2
�Mpðn̂1Þ �Mrðn̂1Þ �Msðn̂2Þ

� �Muðn̂2Þ �N vðn̂1; n̂2Þ;
Euc ¼ 12N�3

�

X
n

��Q
n

Z
d2n̂1d

2n̂2ð �Muc
prðn̂1; n̂1Þ �Muc

suðn̂2; n̂2Þ

þ �Muc
psðn̂1; n̂2Þ �Muc

ruðn̂1; n̂2Þ
þ �Muc

puðn̂1; n̂2Þ �Muc
rsðn̂1; n̂2ÞÞ �N vðn̂1; n̂2Þ; (114)

where

�Mpðn̂1Þ ¼
X
l1m1

al1m1
Yl1m1

ðn̂1Þ �Qpðl1Þ
vl1

ffiffiffiffiffiffiffi
Cl1

p ;

�Muc
psðn̂1; n̂2Þ ¼

X
l1m1

Yl1m1
ðn̂1ÞY�

l1m1
ðn̂2Þ �Qpðl1Þ �Qsðl1Þ
v2
l1

;

�N vðn̂1; n̂2Þ ¼
X
LM

Y�
LMðn̂1ÞYLMðn̂2Þ �RvðLÞ

vL

: (115)

Again we can summarize these results (substituting back in
NT) as

E ¼ N�3
�

NT

X
n

��Q
n

��Q
n (116)

with

��Q
n ¼ 12

Z
d2n̂1d

2n̂2
�MQ

n ðn̂1; n̂2Þ; (117)

and the form of �MQ
n ðn̂1; n̂2Þ can be deduced from the

equations for Etot and Euc.
Since there are no line of sight integrals (� R

dr) for
this estimator, the number of operations required in this
case is Oðl5maxÞ suggesting that the late-time estimator is
much more computationally efficient than the primordial
version.

Similarly to the primordial case, there is a reduction in
complexity to Oðl3maxÞ in the case that the late-time extra-
reduced trispectrum is independent of the diagonal L. This
is explained further in Appendix D.

C. TNL estimator

As with the shortcomings of normalizing the quantity
fNL of the bispectrum that was addressed in [1], the current
method [14] of normalizing the level of non-Gaussianity
due to the trispectrum, tNL, poses problems. In particular,
the level of non-Gaussianity is found by normalizing the
shape function against a central point. More specifically,
we can identify this method as setting ST ðk; k; k; k; kÞ ¼ 1
and identifying the normalization N of Eq. (37) as
ð50=27ÞtNL. In the case of the local model this gives

tlocANL ¼ 2:16f2NL ¼ 1:5�NL; tlocBNL ¼ 1:08gNL; (118)

where we note again that the relationship between �NL and

fNL is only strictly true for single-field inflation. This
approach assumes scale invariance and therefore will pro-
duce inconsistent results between models peaking or dip-
ping at this central point. Also, this definition is not well
defined for models which are not scale invariant, such as
feature models, and it is simply not applicable to non-
Gaussian signals created at late times, such as those in-
duced by cosmic strings or secondary anisotropies. An
alternative measure of the non-Gaussianity is given by
comparison of the primordial trispectrum to the local pri-
mordial trispectrum, but this approach is not well defined
and is essentially an order of magnitude estimation [13].
Therefore, we propose a universally defined trispectrum

non-Gaussianity parameter TNL which (i) is a measure of
the total observational signal expected for the trispectrum
of the model in question and (ii) is normalized for direct
comparison with the canonical local model (with gNL ¼
0). We define ~TNL from an adapted version of the estimator
(28) with

~TNL ¼ 1

NT
�N TlocA

�X
limi

hal1m1
al2m2

al3m3
al4m4

icðaobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

Þc
Cl1Cl2Cl3Cl4

;

(119)

where N is the appropriate normalization factor for the
given model,

N2
T ¼ X

li;L

ðTl1l2
l3l4

ðLÞÞ2
ð2Lþ 1ÞCl1Cl2Cl3Cl4

; (120)

and �N TlocA is the normalization for the local model with
�NL ¼ 1, gNL ¼ 0.

�N 2
TlocA ¼X

li;L

ðTl1l2
l3l4

ðLÞlocð�NL¼1;gNL¼0ÞÞ2
ð2Lþ 1ÞCl1Cl2Cl3Cl4

: (121)

The ~TNL estimator will recover �NL for the local model

with gNL ¼ 0, while it gives ð �N TlocB=
�N TlocAÞgNL for the

local model with �NL ¼ 0, where �N TlocB is the normal-
ization for the local model with �NL ¼ 0, gNL ¼ 1. This
coefficient is dependent on lmax but is a number of order
unity.
Results for primordial models should not depend

strongly on the multipole cutoff lmax. However, diffusion
due to Silk damping in the transfer functions ensures that
the primordial signal is exponentially suppressed for l *
2000. Therefore, an appropriate choice for a canonical
cutoff is lmax ¼ 2000. Late-time anisotropies, such as cos-
mic strings, do not generically fall off exponentially for
l * 2000 but, nonetheless, in the domain l & 2000 we can
make a meaningful comparison to the local �NL ¼ 1,
gNL ¼ 0 model. Alternative measures must be proposed
beyond this domain. As indicated in Appendix A the
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normalization factor N2
T is a computationally intensive

calculation. Instead, we use the approximation NT �
�N TlocAðNT = �N T locAÞ, where the subscript T instead of
T refers to using the reduced trispectrum instead of the full
trispectrum in the above calculations. With these approx-
imations we need only accurately calculate the full nor-
malization factor in the case of the model with �NL ¼ 1,
gNL ¼ 0. Regardless of the accuracy, given the vastly
increased speed of the calculation, we adopt this latter
convention and define TNL, i.e.

TNL ¼
�N T locA

NT
�N 2

TlocA

�X
limi

hal1m1
al2m2

al3m3
al4m4

icðaobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

Þc
Cl1Cl2Cl3Cl4

:

(122)

The relation between TNL and ~TNL as well as the accuracy
of the above approximation for NT—which is only a con-
jecture at present—will be explored further in an upcoming
paper. However, we note here that the TNL estimator also
recovers �NL in the case of the local model with gNL ¼ 0.

If the CMB trispectrum is not known precisely for the
primordial model under study, then we can make an esti-
mate for the normalization factor NT in (122) using the
shape function for the reduced trispectrum ST ðk1; k2;
k3; k4; KÞ. One can obtain a fairly accurate approximation
to the relative normalizations in (122) from

N̂ 2 ¼ FðST ; ST Þ
¼
Z

dV kS
2
T
ðk1; k2; k3; k4; KÞ!ðk1; k2; k3; k4; KÞ;

(123)

where the appropriate weight function was found in (47)
and the domain V k is given by (75) and (76). Using

NT = �N T locA � N̂=N̂locA to approximate NT , we can
make a fairly accurate estimate of the level of non-
Gaussianity or can renormalize �NL constraints for differ-
ent models into compatible constraints in a similar manner
to the analysis of fNL constraints in the case of the bispec-
trum in [1].

VII. RECOVERING THE TRISPECTRUM

A. Recovering the primordial trispectrum

The form of the estimator in (106) suggests that further
information may be extracted from the observed trispec-
trum beyond the �NL for one specific theoretical model.

This is because, through the coefficients �Q
m , we have

obtained some sort of mode decomposition of the trispec-
trum of the observational map. Consider the expectation

value of �Q
m obtained from an ensemble of maps generated

for a particular theoretical model with shape function

ST ¼ P
m�

Q
mQm. Since the shape function is in terms of

the zeroth mode of the Legendre expansion of the primor-
dial trispectrum, we can only hope to recover information
about this mode via recovery of the shape function.4 Using
the expression

h�Q
m i ¼ 12

X
limi

X
LM

��Z
dn̂1Yl1m1

ðn̂1ÞYl2m2
ðn̂1ÞY�

LMðn̂1Þ
�

�
�Z

dn̂2Yl3m3
ðn̂2ÞYl4m4

ðn̂2ÞYLMðn̂2Þ
�

�
Z

r21dr1r
2
2dr2Q

l1l2l3l4L
m ðr1; r2Þ

�

� hal1m1
al2m2

al3m3
al4m4

ic
Cl1Cl2Cl3Cl4

; (124)

as well as the identity for the Wigner 6j symbol in
Appendix A, we find, after some algebra,

h�Q
m i ¼ 12

X
li;L

Z
dr1dr2r

2
1r

2
2Q

l1l2l3l4L
m ðr1; r2Þ

X
m0
�Q
m0

�
h2l1l2Lh

2
l3l4L

Z
dr1dr2r

2
1r

2
2P

l1l2l3l4L
m0 ðr1; r2Þ

þX
L0
hl1l2Lhl3l4Lhl1l3L0hl2l4L0 ð�1Þl2þl3

(
l1 l2 L

l4 l3 L0

)Z
dr1dr2r

2
1r

2
2P

l1l3l2l4L
0

m0 ðr1; r2Þ

þX
L0
hl1l2Lhl3l4Lhl1l4L0hl2l3L0 ð�1ÞLþL0

(
l1 l2 L

l3 l4 L0

)Z
dr1dr2r

2
1r

2
2P

l1l4l2l3L
0

m0 ðr1; r2Þ
�

¼ X
m0
�mm0�Q

m0 ; (125)

where P l1l2l3l4L
m0 ¼ Ql1l2l3l4L

m0 þQl2l1l3l4L
m0 þQl1l2l4l3L

m0 þQl2l1l4l3L
m0 . The quantity �mm0 represents a matrix with positions

labeled by m, m0 and can be inferred readily by the above equation. Inverting the relationship we can recover the �Q
m via

4This is to be somewhat expected since the primordial trispectrum is a six-dimensional quantity whereas the CMB trispectrum is
explicitly five dimensional.
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�Q
m ¼ X

m0
ð��1Þmm0 h�Q

m0 i: (126)

Therefore, if the decomposition coefficients are found with
adequate significance, we can reconstruct the shape func-
tion through the expansion

ST ¼X
m

X
m0
ð��1Þmm0�Q

m0Qm: (127)

This reconstruction will be sufficient to uniquely define the
planar case (�4 ¼ 0) (as well as the general CMB case in
the next section). However, as already discussed, the shape
function only gives information about the zeroth Legendre
mode of the primordial trispectrum. Therefore, recovery of
the full primordial trispectrum is compromised by this

degeneracy. However, as we have discussed in Sec. II,
this degeneracy may be broken by using other probes of
non-Gaussianity, such as galaxy surveys and 21 cm obser-
vations. We note also that the calculation of the matrix � is
computationally intensive due to the presence of the
Wigner 6j symbols. Nonetheless we include the discussion
here for completeness.

B. Recovering the CMB trispectrum

The recovery of the CMB bispectrum from a given
observational map is more straightforward (as for the
bispectrum). In a similar fashion to the calculation in the
case of the primordial trispectrum, we find that

h ��Q
n i ¼ 12

X
limi

X
LM

��Z
dn̂1Yl1m1

ðn̂1ÞYl2m2
ðn̂1ÞY�

LMðn̂1Þ
��Z

dn̂2Yl3m3
ðn̂2ÞYl4m4

ðn̂2ÞYLMðn̂2Þ
�Z

r21dr1r
2
2dr2

�Ql1l2l3l4L
n ðr1; r2Þ

�

� hal1m1
al2m2

al3m3
al4m4

ic
vl1vl2vl3vl4vL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2Cl3Cl4

p
)h ��Q

n i ¼ 12
X
li;L

�Ql1l2l3l4L
n

X
p

��Q
p

"
h2l1l2Lh

2
l3l4L

P l1l2l3l4L
p þX

L0
hl1l2Lhl3l4Lhl1l3L0hl2l4L0 ð�1Þl2þl3

(
l1 l2 L

l4 l3 L0

)

�P l1l3l2l4L
0

p þX
L0
hl1l2Lhl3l4Lhl1l4L0hl2l3L0 ð�1ÞLþL0

(
l1 l2 L

l3 l4 L0

)
P l1l4l2l3L

0
p

#

¼X
p

��np�
Q
p ; (128)

where �Ql1l2l3l4L ¼ �Qpðl1Þ �Qrðl2Þ �Qsðl3Þ �Quðl4Þ �RvðLÞ and
P l1l2l3l4L

p ¼ Ql1l2l3l4L
p þQl2l1l3l4L

p þQl1l2l4l3L
p þQl2l1l4l3L

p .
Inverting the matrix ��np we find

�Q
n ¼X

p

���1
np h ��Q

p i: (129)

Therefore, if we can measure the coefficients ��Q
p with

significance from a particular experiment, we can recon-
struct the trispectrum map using (112),

tl1l2l3l4
ðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cl1Cl2Cl3Cl4

p
vl1vl2vl3vl4vL

X
np

���1
np

��Q
p

�Qn: (130)

The calculation of the matrix �� remains computationally
intensive, but it is tractable. We can, in principle, extract
the full CMB trispectrum which, together with the ex-
tracted CMB bispectrum [1], will prove to be a key test
of the Gaussianity of the Universe.

VIII. MAP MAKING

In this section we derive an algorithm for creating a non-
Gaussian map with a given trispectrum, developing meth-
ods presented for the bispectrum in Ref. [42] and general-

ized in Ref. [1]. This algorithm is valid in the limit of weak
non-Gaussianity.
We define the function

T2½aG� ¼ 1

24

X
limi

Tl1m1l2m2l3m3l4m4
aGl1m1

aGl2m2
aGl3m3

aGl4m4
;

(131)

where aGlm is the Gaussian part of the CMB multipoles,

generated using the angular power spectrum Cl, while
Tl1m1l2m2l3m3l4m4

is the given trispectrum of the theoretical

model for which simulations are required.
Setting

a0lm ¼ aGlm þ 1

6

X
limi

bll2l3G
ll2l3
mm2m3

a�Gl2m2

Cl2

a�Gl3m3

Cl3

þ 1

4

@

@a�lm
T2½C�1aG�

¼ aGlm þ 1

6

X
limi

bll2l3G
ll2l3
mm2m3

a�Gl2m2

Cl2

a�Gl3m3

Cl3

þ 1

24

X
limi

Tlml2m2l3m3l4m4

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

;

(132)
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we recover the bispectrum from ha0l1m1
a0l2m2

a0l3m3
i (as described in [42]). Next, we calculate the four-point correlator of the

a0lm’s and find

ha0l1m1
a0l2m2

a0l3m3
a0l4m4

i ¼ haGl1m1
aGl2m2

aGl3m3
aGl4m4

i

þ
	
1

24

X
ljmj

Tl1m1lbmblcmcldmd

a�Glbmb

Clb

a�Glcmc

Clc

a�Gldmd

Cld

aGl2m2
aGl3m3

aGl4m4



þ permutations; (133)

where j 2 ðb; c; dÞ. The first term clearly gives the uncon-
nected component of the four-point correlator. We note that
the contribution from the bispectrum is zero since the
correlator over an odd number of aGlm vanishes.
Evaluating the correlators in the second term on the
right-hand side and adding up the different permutations,
we find

ha0l1m1
a0l2m2

a0l3m3
a0l4m4

i ¼ haGl1m1
aGl2m2

aGl3m3
aGl4m4

i
þ Tl1m1l2m2l3m3l4m4

: (134)

This verifies the validity of the use of a0lm to make maps,

including the Gaussian, bispectrum, and trispectrum con-
tributions to the model under study.
We observe, using (11), that we may write T2½aG� in the

form

T2½aG� ¼ 1

2

X
limi

T l1m1l2m2l3m3l4m4
aGl1m1

aGl2m2
aGl3m3

aGl4m4
:

(135)

Using this formula we may also rewrite the trispectrum

contribution to a0lm, which we denote aNG;T
lm , as

aNG;T
lm ¼ 1

24

X
limi

Tlml2m2l3m3l4m4

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

¼ 1

8

X
limi

ðT lml2m2l3m3l4m4
þT l2m2lml3m3l4m4

þT l2m2l3m3lml4m4
þT l2m2l3m3l4m4lmÞ

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

: (136)

Using the formulas for the extra-reduced trispectrum (23) and the Gaunt integral (14), we note that

T l1m1l2m2l3m3l4m4
¼X

LM

�Z
d�n̂1Yl1m1

ðn̂1ÞYl2m2
ðn̂1ÞY�

LMðn̂1Þ
��Z

d�n̂2Yl3m3
ðn̂2ÞYl4m4

ðn̂2ÞYLMðn̂2Þ
�
tl1l2l3l4

ðLÞ: (137)

As an aside, we note that if tl1l2l3l4
ðLÞ is independent of the diagonal L, then we can use Eq. (C11) to write

T l1m1l2m2l3m3l4m4
¼
Z

d�n̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂ÞYl4m4

ðn̂Þtl1l2l3l4
; (138)

where we drop the label L from the extra-reduced trispec-
trum. This special class of trispectra is explored further in
Appendix D.

Denoting the bispectrum contribution to a0lm as aNG;B
lm we

have verified the following prescription for forming maps,
including the bispectrum and trispectrum contributions,

a0lm ¼ aGlm þ fNL~a
NG;B
lm þ �NL~a

NG;T
lm ; (139)

where we have written aNG;B
lm ¼ fNL~a

NG;B
lm and aNG;T

lm ¼
�NL~a

NG;T
lm to make the size of the respective non-

Gaussian components more explicit.
Since the computation of the reduced trispectrum is

more efficient using the late-time expression (due to the

absence of the line of sight integrals), we write out the

formula for aNG;T
lm using the late-time mode decomposition.

It is straightforward to find the equivalent formula using
the primordial expression. Later in the section we present a
particular application using the primordial local model of
this formalism.
The late-time mode decomposition of the extra-reduced

trispectrum tl1l2l3l4
ðLÞ—as detailed at the end of Sec. V—may

be written as

tl1l2l3l4
ðLÞ ¼ X

n

��Q
n

�Qpðl1Þ �Qrðl2Þ �Qsðl3Þ �Quðl4Þ �RvðLÞ:

(140)
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Using these expressions we have

X
limi

T lml2m2l3m3l4m4

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

¼ X
n

��Q
n

Z
d�n̂1

d�n̂2
Ylmðn̂1Þ �QpðlÞ �Mrðn̂1Þ �Msðn̂2Þ

� �Muðn̂2Þ �N vðn̂1; n̂2Þ; (141)

where

�Mrðn̂1Þ ¼
X
l2m2

Yl2m2
ðn̂1Þa�Gl2m2

Cl2

�Qrðl2Þ;

�N vðn̂1; n̂2Þ ¼ �N vðn̂2; n̂1Þ ¼
X
LM

Y�
LMðn̂1ÞYLMðn̂2Þ �RvðLÞ:

(142)

Evaluating, in a similar way, the other terms in Eq. (136)
we find

aNG;T
lm ¼ 1

8

X
n

��Q
n

Z
d�n̂1

d�n̂2
Ylmðn̂1Þ½ð �QpðlÞ �Mrðn̂1Þ

þ �QrðlÞ �Mpðn̂1ÞÞ �Msðn̂2Þ �Muðn̂2Þ
þ ð �QsðlÞ �Muðn̂1Þ
þ �QuðlÞ �Msðn̂1ÞÞ �Mpðn̂2Þ �Mrðn̂2Þ� �N vðn̂1; n̂2Þ:

(143)

As emphasized in [1] the condition that the map has the
power spectrum Cl specified in the input will only be
satisfied if the power spectrum of the non-Gaussian com-
ponents CNG

l is small. Therefore, one has to ascertain that

spuriously large CNG
l contributions do not affect the overall

power spectrum significantly. We will discuss the imple-
mentation of the algorithm presented here in an upcoming
paper [40].

Application to the local model

The reduced trispectrum for the local model, as shown in
Sec. IV, is made up of two terms which we denote locA and
locB. As shown in [43]—and can be deduced from
Sec. IV—the extra-reduced trispectra may be written as

tl1l2l3l4
ðLÞlocA ¼ 25

9
�NL

Z
dr1dr2r

2
1r

2
2FLðr1; r2Þ�l1ðr1Þ

� �l2ðr1Þ�l3ðr2Þ�l4ðr2Þ; (144)

tl1l2l3l4
ðLÞlocB ¼ gNL

Z
drr2�l2ðrÞ�l4ðrÞð�l1ðrÞ�l3ðrÞ

þ �l1ðrÞ�l3ðrÞÞ; (145)

where

FLðr1; r2Þ ¼ 2

�

Z
K2dKP�ðKÞjLðKr1ÞjLðKr2Þ;

�lðrÞ ¼ �lðrÞ ¼ 2

�

Z
k2dk�lðkÞjlðkrÞ;

�lðrÞ ¼ 2

�

Z
k2dkP�ðkÞ�lðkÞjlðkrÞ:

(146)

Using these formulas, and exploiting that the locB trispec-
trum is independent of the diagonal L with Eq. (138), we
find

X
limi

T locA
lml2m2l3m3l4m4

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

¼ 25

9
�NL

Z
dr1dr2r

2
1r

2
2�lðr1Þ

Z
d�n̂1

d�n̂2
Ylmðn̂1Þ

�MFðn̂1; n̂2; r1; r2ÞM�ðn̂1; r1ÞM�ðn̂2; r2Þ
�M�ðn̂2; r2Þ; (147)

X
limi

T locB
lml2m2l3m3l4m4

a�Gl2m2

Cl2

a�Gl3m3

Cl3

a�Gl4m4

Cl4

¼ gNL

Z
drr2

Z
d�n̂Ylmðn̂Þ½�lðrÞM�ðn̂; rÞ

þ �lðrÞM�ðn̂; rÞ�M�ðn̂; rÞM�ðn̂; rÞ; (148)

where

M�ðn̂; rÞ ¼ M�ðn̂; rÞ ¼
X
lm

�lðrÞYlmðn̂Þa�Glm
Cl

;

M�ðn̂; rÞ ¼
X
lm

�lðrÞYlmðn̂Þa�Glm
Cl

;

MFðn̂1; n̂2; r1; r2Þ ¼
X
LM

Y�
LMðn̂1ÞYLMðn̂2ÞFLðr1; r2Þ:

(149)

We similarly find the other terms in (136) to get

ðaNG;T
lm ÞlocA ¼ 25

36
�NL

Z
dr1dr2r

2
1r

2
2

�
�lðr1Þ

Z
d�n̂1

d�n̂2
Ylmðn̂1ÞM�ðn̂1; r1Þ þ �lðr1Þ

Z
d�n̂1

d�n̂2
Ylmðn̂1ÞM�ðn̂1; r1Þ

�

�M�ðn̂2; r2ÞM�ðn̂2; r2ÞMFðn̂1; n̂2; r1; r2Þ; (150)
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ðaNG;T
lm ÞlocB ¼ 1

4
gNL

Z
drr2

�
�lðrÞ

Z
d�n̂Ylmðn̂ÞM�ðn̂; rÞM�ðn̂; rÞM�ðn̂; rÞ

þ �lðrÞ
Z

d�n̂Ylmðn̂Þð3M�ðn̂; rÞM�ðn̂; rÞM�ðn̂; rÞÞ
�
: (151)

In the case of the bispectrum, direct implementation of the
explicitly separable local shape results in spuriously large
CNG
l contributions. However, it was found that using the

eigenmode expansion in Ref. [1] was much more robust,
circumventing such effects, because of the bounded nature
of the polynomial eigenmodes. This improvement is ex-
pected to occur for the trispectrum. An alternative method
is to regularize the expressions given here by eliminating
pathological terms, while leaving the final trispectrum of
the map unchanged. For arbitrary separable trispectra (un-
like the eigenmode expansion), convergence must be
achieved by hand on a case-by-case basis.

IX. CONCLUSIONS

We have described in this paper two comprehensive
pipelines for the analysis of general primordial or CMB
trispectra. The methods are based on mode expansions,
exploiting a complete orthonormal eigenmode basis to
efficiently decompose arbitrary trispectra into a separable
polynomial expansion. These separable mode expansions
allow for a reduction of the computational overhead to
tractable levels, regardless of whether the reduced trispec-
trum is being computed at Planck resolution or we are
directly finding an estimator for the size of the trispectrum
from a real data set. A shape decomposition has been
described allowing for a visualization of a scale-invariant
reduced trispectrum on particular slices.

We have presented a correlator for comparing trispectra.
We have also defined a correlator for comparing the shape
functions, which is expected to closely approximate the
former. However, the main purpose of this paper was to
present a detailed theoretical framework for finding an
estimator for the size of the trispectrum using separable
eigenmode expansions. Using this efficient method for
finding an estimator for the trispectrum, we have defined
a universal measure TNL which will allow for consistent
comparison between theoretical models. This measure can
be calculated for both primordial models and late-time
models, e.g. due to active models such as cosmic strings.
The completeness of the orthogonal eigenmodes should
allow for a reconstruction of the full CMB trispectrum
from the data, assuming the presence of a sufficiently
significant non-Gaussian signal. We have also detailed an
algorithm for producing non-Gaussian simulations with a
given power spectrum, bispectrum, and trispectrum. The
implementation of these methods will be discussed in a
future publication [40]. Clearly, the full implementation of
the primordial and late-time pipelines represents a signifi-
cant challenge. However, the generality and robustness of

the methodology described here indicates that there is an
intriguing possibility of exploring and constraining a wide
class of non-Gaussian models using the trispectrum.
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APPENDIX A: NORMALIZATION FACTOR

Clearly the appropriate normalization factor for the
estimator (28) is of the form

NT0 ¼ X
limi

hal1m1
al2m2

al3m3
al4m4

ichal1m1
al2m2

al3m3
al4m4

ic
Cl1Cl2Cl3Cl4

:

In order to relate this toNT expressed in (29) we use Eq. (7)
to expand NT0 in the form

NT0 ¼ X
liLL

0

X
miMM0

1

Cl1Cl2Cl3Cl4

ð�1ÞM l1 l2 L
m1 m2 �M

� �

� l3 l4 L
m3 m4 M

� �
Tl1l2
l3l4

ðLÞð�1ÞM0

� l1 l2 L0
m1 m2 �M0

� �
l3 l4 L0
m3 m4 M0

� �
Tl1l2
l3l4

ðL0Þ:

Now, using

X
m1m2

l1 l2 L

m1 m2 �M

 !
l1 l2 L0

m1 m2 �M0

 !
¼ �L;L0�M;M0

2Lþ 1
;

X
M

X
m3m4

l3 l4 L

m3 m4 M

 !
l3 l4 L

m3 m4 M

 !
¼ 1; (A1)

we find that

NT0 ¼X
li;L

Tl1l2
l3l4

ðLÞTl1l2
l3l4

ðLÞ
ð2Lþ 1ÞCl1Cl2Cl3Cl4

¼ NT:

This verifies the use of Eq. (29) to normalize the estimator
(28).

GENERAL CMB AND PRIMORDIAL TRISPECTRUM ESTIMATION PHYSICAL REVIEW D 82, 023520 (2010)

023520-27



We can expand NT in terms of the reduced trispectrum
using

NT ¼ 12
X
limi

T l1m1l2m2l3m3l4m4
Tl1m1l2m2l3m3l4m4

Cl1Cl2Cl3Cl4

: (A2)

Then with the identity for the Wigner 6j symbol (see the
Appendix in [34]),

�
a b e
c d f

�
¼ X

��	

X
���

ð�1Þeþfþ�þ� a b e
� � �

� �

� c d e
	 � ��

� �
a d f
� � ��

� �

� c b f
	 � �

� �
; (A3)

the identities (A1), and relations for P in (8) and (9), we
find that

NT ¼ 12
X
li;L

T l1l2
l3l4

ðLÞ
Cl1Cl2Cl3Cl4

�Pl1l2
l3l4

ðLÞ
2Lþ 1

þX
L0
ð�1Þl2þl3

�
�
l1 l2 L
l4 l3 L0

�
Pl1l3
l2l4

ðL0Þ þX
L0
ð�1ÞLþL0

�
�
l1 l2 L
l3 l4 L0

�
Pl1l4
l3l2

ðL0Þ
�
: (A4)

Because of the presence of the 6j symbols the calculation
of NT is computationally very expensive, in general.

APPENDIX B: OPTIMAL ESTIMATOR

When non-Gaussianity is weak we can exploit the multi-
variate Edgeworth expansion [37] around the Gaussian
probability distribution function (PDF), PGðaÞ, i.e.

PðaÞ ¼
�
1�X

limi

hal1m1
al2m2

al3m3
i @

@al1m1

@

@al2m2

@

@al3m3

þX
limi

hal1m1
al2m2

al3m3
al4m4

ic @

@al1m1

@

@al2m2

� @

@al3m3

@

@al4m4

þ . . .

�
PGðaÞ; (B1)

where the Gaussian PDF is given by

PGðaÞ ¼ e�ð1=2ÞP
lm

P
l0m0 almðC�1Þlm;l0m0al0m0

ð2�ÞN=2jCj1=2 (B2)

with Clm;l0m0 ¼ halmal0m0 i and N the number of l and m.

Maximizing over the three-point correlator results in the
optimal bispectrum estimator. Here we will ignore this
term (setting it to zero for convenience) and concentrate

on the four-point correlator. We find

PðaÞ ¼
�
1þX

limi

hal1m1
al2m2

al3m3
al4m4

ic

� ððC�1aÞl1m1
ðC�1aÞl2m2

ðC�1aÞl3m3
ðC�1aÞl4m4

� 6ðC�1Þl2m2;l1m1
ðC�1aÞl3m3

ðC�1aÞl4m4

þ 3ðC�1Þl1m1;l2m2
ðC�1Þl3m3;l4m4

Þ
�
PGðaÞ; (B3)

where ðC�1aÞlm ¼ P
l0m0C�1

l0m0;lmal0m0 . Parametrizing the

size of the trispectrum by E, we wish to maximize the
PDF with respect to this. We assume that
ðal1m1

al2m2
al3m3

al4m4
Þc / E such that the second term is

proportional to E. Maximizing the PDF means that we
wish to set ðdP=dEÞ ¼ 0, such that the Taylor expansion
about E ¼ 0 reads

PðaÞ ¼
�
1þ dðP=PGÞ

dE
E þ 1

2

d2ðP=PGÞ
dE2

E2 þ . . .

�
PGðaÞ

�
�
1þ 1

2

d2ðP=PGÞ
dE2

E2

�
PGðaÞ: (B4)

Since

d2P

dE2
/ 2

X
limi

hal1m1
al2m2

al3m3
al4m4

icðC�1Þl1m1;l
0
1m

0
1

�ðC�1Þl2m2;l
0
2
m0

2
ðC�1Þl3m3;l

0
3
m0

3
ðC�1Þl4m4;l

0
4
m0

4

�ðal01m0
1
al02m0

2
al03m0

3
al04m0

4
Þc

we find that the estimator is maximized by setting (with an
appropriate choice of proportionality constant)

E ¼ fsky
~N

X
limi

hal1m1
al2m2

al3m3
al4m4

icððC�1aÞl1m1
ðC�1aÞl2m2

�ðC�1aÞl3m3
ðC�1aÞl4m4

� 6ðC�1Þl1m1;l2m2
ðC�1aÞl3m3

�ðC�1aÞl4m4
þ 3ðC�1Þl1m1;l2m2

ðC�1Þl3m3;l4m4
Þ;

(B5)

where

~N ¼ X
limi

hal1m1
al2m2

al3m3
al4m4

icðC�1Þl1m1;l
0
1
m0

1
ðC�1Þl2m2;l

0
2
m0

2

�ðC�1Þl3m3;l
0
3
m0

3
ðC�1Þl4m4;l

0
4
m0

4
ðal0

1
m0

1
al0

2
m0

2
al0

3
m0

3
al0

4
m0

4
Þc:
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APPENDIX C: NONOPTIMAL ESTIMATORS—
SKEWNESS AND KURTOSIS

The deviation from non-Gaussianity may be measured
in a nonoptimal way by estimating the departure of the
one-point PDF from Gaussian behavior. This deviation
may be measured in terms of the skewness and kurtosis.
The skewness is given by

g1 ¼
hð�TT ðn̂ÞÞ3i

ðhð�TT ðn̂ÞÞ2iÞ3=2 ; (C1)

while the kurtosis is given by (35). Using (1) we evaluate
the variance as

	�
�T

T
ðn̂Þ

�
2


¼ X

l0m0

X
lm

Z d�n̂

4�
ha�l0m0almiY�

l0m0 ðn̂ÞYlmðn̂Þ

¼ 1

4�

X
lm

ha�lmalmi ¼
P

lð2lþ 1ÞCl

4�
: (C2)

The three-point temperature correlator is similarly given
by

	�
�T

T
ðn̂Þ

�
3


¼ X

limi

hal1m1
al2m2

al3m3
i

�
Z d�n̂

4�
Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂Þ

¼ 1

4�

X
limi

ðGl1l2l3
m1m2m3

Þ2bl1l2l3 ; (C3)

where Gl1l2l3
m1m2m3

is the Gaunt integral and bl1l2l3 is the

reduced bispectrum. The Gaunt integral is given by

G l1l2l3
m1m2m3

¼ hl1l2l3
l1 l2 l3
m1 m2 m3

� �
: (C4)

Using Eq. (A1) we can simplify this expression to get

	�
�T

T
ðn̂Þ

�
3


¼ 1

4�

X
li

h2l1l2l3bl1l2l3 : (C5)

Next, in order to evaluate the kurtosis we calculate the
quantity

K ¼
	�

�T

T
ðn̂Þ

�
4


� 3

�	�
�T

T
ðn̂Þ

�
2

�

2

¼ X
limi

hal1m1
al2m2

al3m3
al4m4

i
Z d�n̂

4�
Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂ÞYl4m4
ðn̂Þ

�X
limi

Z d�n̂1

4�

d�n̂2

4�
hal1m1

al2m2
ihal3m3

al4m4
iYl1m1

ðn̂1ÞYl2m2
ðn̂1ÞYl3m3

ðn̂2ÞYl4m4
ðn̂2Þ

�X
limi

Z d�n̂1

4�

d�n̂2

4�
hal1m1

al3m3
ihal2m2

al4m4
iYl1m1

ðn̂1ÞYl3m3
ðn̂1ÞYl2m2

ðn̂2ÞYl4m4
ðn̂2Þ

�X
limi

Z d�n̂1

4�

d�n̂2

4�
hal1m1

al4m4
ihal2m2

al3m3
iYl1m1

ðn̂1ÞYl4m4
ðn̂1ÞYl2m2

ðn̂2ÞYl3m3
ðn̂2Þ; (C6)

where the final three terms are clearly equivalent. Using

hal1m1
al2m2

al3m3
al4m4

i ¼ hal1m1
al2m2

al3m3
al4m4

ic þ hal1m1
al2m2

ihal3m3
al4m4

i þ hal1m1
al3m3

ihal2m2
al4m4

i
þ hal1m1

al4m4
ihal2m2

al3m3
i; (C7)

it can be shown after some algebra that

K ¼ 1

4�

X
limi

hal1m1
al2m2

al3m3
al4m4

ic

�
Z

d�n̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂ÞYl4m4

ðn̂Þ: (C8)

From Eq. (11) this may be written in terms of the reduced
trispectrum as

K ¼ 12

4�

X
limi

T l1m1l2m2l3m3l4m4

Z
d�n̂Yl1m1

ðn̂ÞYl2m2
ðn̂Þ

� Yl3m3
ðn̂ÞYl4m4

ðn̂Þ: (C9)

Next, noting that the product of two spherical harmonics
can be written as

Yl1m1
ðn̂ÞYl2m2

ðn̂Þ ¼ X
L0M0

hl1l2L0
l1 l2 L0
m1 m2 �M0

� �

�ð�1ÞM0
YL0M0 ðn̂Þ (C10)

and Eq. (14), we find
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Z
d�n̂Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂ÞYl4m4
ðn̂Þ

¼ X
L0M0

ð�1ÞM0
hl1l2L0hl3l4L0

l1 l2 L0
m1 m2 �M0

� �

� l3 l4 L0
m3 m4 M0

� �
: (C11)

Finally, using Eq. (10) for the reduced trispectrum, the
orthogonality relation between Wigner 3j functions as ex-
pressed in (18), and the extra-reduced trispectrum (23), we
find

K ¼ 12

4�

X
li;L

hl1l2Lhl3l4L
2Lþ 1

T l1l2
l3l4

ðLÞ

¼ 12

4�

X
li;L

h2l1l2Lh
2
l3l4L

2Lþ 1
tl1l2l3l4

ðLÞ: (C12)

In summary, the skewness and kurtosis are given, respec-
tively, by

g1 ¼
ffiffiffiffiffiffiffi
4�

p P
li
h2l1l2l3bl1l2l3

ðPlð2lþ 1ÞClÞ3=2
; (C13)

g2 ¼
48�

P
li;L

h2l1l2Lh
2
l3l4L

tl1l2l3l4
ðLÞ=ð2Lþ 1Þ

ðPlð2lþ 1ÞClÞ2
: (C14)

APPENDIX D: SPECIAL CASE OF THE
TRISPECTRUM INDEPENDENT OF THE

DIAGONAL

Suppose that the primordial reduced trispectrum is in-
dependent of the diagonal K. In particular, we write
T �;0ðk1; k2; k3; k4;KÞ ¼ T �;0ðk1; k2; k3; k4Þ. In that case

the extra-reduced trispectrum [see (23) and (24)] becomes

tl1l2l3l4
ðLÞ ¼

�
2

�

�
5 Z ðk1k2k3k4KÞ2dk1dk2dk3dk4dKr21dr1r22dr2jLðKr1ÞjLðKr2Þ½jl1ðk1r1Þ�l1ðk1Þ�½jl2ðk2r1Þ�l2ðk2Þ�

� ½jl3ðk3r2Þ�l3ðk3Þ�½jl4ðk4r2Þ�l4ðk4Þ�T �;0ðk1; k2; k3; k4Þ: (D1)

Next, using Eq. (61) we find

Z
dKK2jLðKr1ÞjLðKr2Þ ¼ �

2r22
�ðr2 � r1Þ: (D2)

This implies that

tl1l2l3l4
ðLÞ ¼

�
2

�

�
4 Z ðk1k2k3k4Þ2dk1dk2dk3dk4r21dr1½jl1ðk1r1Þ�l1ðk1Þ�½jl2ðk2r1Þ�l2ðk2Þ�½jl3ðk3r1Þ�l3ðk3Þ�

� ½jl4ðk4r1Þ�l4ðk4Þ�T �;0ðk1; k2; k3; k4Þ; (D3)

i.e. we only have one line of sight integral. This expression
also shows that, if the primordial trispectrum is indepen-
dent of the diagonal K, then tl1l2l3l4

ðLÞ is independent of L.
We can exploit this property in our estimators. From Eqs.
(10), (23), and (14) for the Gaunt integral (which we denote
here in the form Gl1l2l3

m1m2m3
) we have

T l1m1l2m2l3m3l4m4
¼ X

LM

ð�1ÞMGl1l2L
m1m2�MG

l3l4L
m3m4M

tl1l2l3l4
ðLÞ:

(D4)

If the extra-reduced trispectrum is independent of Lwe can
use Eq. (C11) to write

T l1m1l2m2l3m3l4m4
¼
Z

d�n̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂Þ

� Yl4m4
ðn̂Þtl1l2l3l4

; (D5)

where we drop the label L from the extra-reduced trispec-
trum. The extra-reduced trispectrum now has the following
mode expansion:

tl1l2l3l4
¼ N�3

�

X
m

�Q
m

Z
drr2Ql1l2l3l4

m ðrÞ; (D6)

where now we have

Q l1l2l3l4
m ðrÞ ¼ ql1p ðrÞql2r ðrÞql3s ðrÞql4u ðrÞ (D7)

with

qlpðrÞ ¼ 2

�

Z
dkqpðkÞ�lðkÞjlðkrÞ: (D8)

The mode decomposition is similar to that described in
Sec. V with rv ¼ constant. In this case we use the follow-
ing primordial decomposition:

ðk1k2k3k4Þ2T �;0ðk1; k2; k3; k4Þ
¼ X

m

�Q
m qpðk1Þqrðk2Þqsðk3Þqtðk4Þ: (D9)

Using this in the expression for the general estimator (32),
which can be reexpressed as
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E ¼ 12

NT

X
limi

T l1m1l2m2l3m3l4m4
ðal1m1

al2m2
al3m3

al4m4
Þobsc (D10)

with

ðal1m1
al2m2

al3m3
al4m4

Þobsc ¼ aobsl1m1
aobsl2m2

aobsl3m3
aobsl4m4

� ðð�1Þm1Cl1�l1l2�m1�m2
aobsl3m3

aobsl4m4
þ 5 permsÞ

þ ðð�1Þm1þm3�l1l2�m1�m2
�l3l4�m3�m4

Cl1Cl3 þ 2 permsÞ; (D11)

we find

E ¼ 12N�3
�

NT

X
m

�Q
m

Z
dn̂

Z
drr2½Mpðn̂; rÞMrðn̂; rÞMsðn̂; rÞMtðn̂; rÞ � ðMuc

prðn̂; rÞMsðn̂; rÞMtðn̂; rÞ þ 5 permsÞ

þ ðMuc
prðn̂; rÞMuc

st ðn̂; rÞ þ 2 permsÞ�; (D12)

where

Mpðn̂; rÞ ¼
X
lm

almYlmðn̂Þ
Cl

qlpðrÞ; Muc
prðn̂; rÞ ¼

X
lm

Y�
lmðn̂ÞYlmðn̂Þ

Cl

qlpðrÞqlrðrÞ: (D13)

We again can estimate the computational time needed to find this estimator. Since we now have only one line of sight
integral and one integral over the sky �R

dn̂, we use the prescription outline in Sec. VI to estimate the complexity

conservatively as Oð100Þ �Oðl3maxÞ.
The implementation in the case of the late-time estimator for which the extra-reduced trispectrum is independent of L

can be found similarly. Since this estimator no longer requires a line of sight integral, the complexity of the calculation can
be estimated as Oðl3maxÞ.
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