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Several different explicit reconstructions of fðRÞ gravity are obtained from the background Friedmann-

Laı̂matre-Robertson-Walker expansion history. It is shown that the only theory whose Lagrangian is a

simple function of the Ricci scalar R, that admits an exact �CDM expansion history, is standard general

relativity with a positive cosmological constant and the only way to obtain this behavior of the scale factor

for more general functions of R is to add additional degrees of freedom to the matter sector.
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I. INTRODUCTION

After more than one hundred years, general relativity
(GR) is still considered to be the best fundamental theory
for the description of the gravitational action. When ap-
plied to cosmology, assuming homogeneity and isotropy
[encoded in the Friedmann-Laı̂matre-Robertson-Walker
(FLRW) metric], together with a fluid description of bary-
ons, cold dark matter (CDM) and radiation, GR gives rise
to a set of field equations which when solved produce the
simplest expanding cosmology—the Friedmann model,
governing the dynamics of the cosmological scale factor
aðtÞ. This model has been remarkably successful, giving,
for example, the correct light element abundances and
explaining the origin of the cosmic microwave background
radiation (CMBR). In the past two decades, however,
advances in observational cosmology appears to suggest
that if one wishes to retain the FLRW metric, the universe
must have undergone two periods of accelerated expan-
sion. The first period of acceleration, known as the infla-
tionary epoch is needed to explain the flatness problem and
the near-scale invariant spectrum of temperature fluctua-
tions observed in the CMBR, while the second period
explains the dimming of distant type Ia supernovae relative
to Einstein-de Sitter universe model. In order to explain
these periods of acceleration, the strong energy condition
(�þ 3p � 0) needs to be violated. In the case of inflation,
this is achieved by introducing a dynamical scalar field,
while the present day acceleration is most easily explained
with the introduction of a cosmological constant. The
resulting description of the Universe, in which the recent
expansion history is driven by a cosmological constant and
ordinary matter is dominated by a CDM component has
become known as the �CDM or Concordance Model [1].
Unfortunately, this beautifully simple phenomenological
model, which appears to fit all currently available obser-
vations (Supernovae Ia [2], CMBR anisotropies [3], Large
Scale Structure formation [4], baryon oscillations [5] and

weak lensing [6]) is affected by significant fine-tuning
problems related to the vacuum energy scale and therefore
it is important to investigate alternatives to this description
of the Universe.
Currently, one of the most popular alternatives to the

�CDM model is based on modifications of the standard
Einstein-Hilbert action. This is due to the fact that these
changes naturally admit a phase of late-time accelerated
expansion (an early Universe inflationary phase is also
possible [7]). In this way Dark Energy can be thought of
as have a geometrical origin, rather than be due to the
vacuum energy or additional scalar fields which are added
by hand to the energy momentum tensor. As a result, the
cosmology and astrophysics of modified gravity is cur-
rently an extremely active area of research (see the recent
reviews [8] and references therein).
One of the simplest extensions of GR is based on gravi-

tational actions which are nonlinear in the Ricci curvature
R and/or contain terms involving combinations of deriva-
tives of R [9–15]. An important feature of these theories is
that the field equations can be written in a way which
makes it easy to compare with GR. This is done by moving
all the higher-order corrections to the curvature onto the
RHS of the field equations and defining an ‘‘effective’’
source term, often described as the curvature fluid. Once
this has been done, it is easy to see that how a change of
sign in the deceleration parameter of the FLRW cosmology
can occur, leading to a period of late-time acceleration.
Studies of the physics of these theories is however

hampered by the complexity of the field equations, making
it difficult to obtain both exact and numerical solutions
which can be compared with observations. Theses prob-
lems can be reduced somewhat by using the theory of
dynamical systems [16], which provides a relatively simple
method for obtaining exact solutions and a (qualitative)
description of the global dynamics of these models for a
given fðRÞ theory [17].
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Another useful approach is to assume that the expansion
history of the universe is known exactly, and to invert the
field equations to deduce what class of fðRÞ theories give
rise to this particular cosmological evolution.

This has been done recently for exact power-law solu-
tions for the scale factor, corresponding to phases of cos-
mic evolution when the energy density is dominated by a
perfect fluid. It was found that such expansion histories
only exist for Rn gravity [18]. A more extensive analysis of
reconstruction methods has been carried out in [19] to
obtain theories which give an approximate description of
deceleration-acceleration transitions in cosmology and in
[20] a powerful approach to reconstruction based on stan-
dard cosmic parameters instead of a time law for the scale
factor was introduced.

In this paper we perform a number of explicit recon-
structions which lead to a number of interesting results. We
find, for example, that the only real valued Lagrangian
fðRÞ that is able to mimic an exact �CDM expansion
history for a universe filled with dustlike matter is the
Einstein-Hilbert Lagrangian with positive cosmological
constant. This does not mean that fðRÞ gravity is incom-
patible with an exact �CDM expansion history. In fact we
further show that in a universe filled with a both a
minimally-coupled noninteracting massless scalar field
and dustlike matter, a theory of gravity can be found
which exactly mimics the �CDM expansion history, mak-
ing it impossible to distinguish it from GR at the level of
the FLRW background. Moreover, number of realistic
models may also mimic late-time acceleration epoch
approximately.

II. FIELD EQUATIONS FORHOMOGENEOUS AND
ISOTROPIC SPACETIMES IN fðRÞ GRAVITY

We consider the following action within the context of 4-
dimensional homogeneous and isotropic spacetimes, i.e.,
the FLRW universes with negligible spatial curvature:

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fðRÞ þLm�; (1)

where R is the Ricci scalar, f is general differentiable (at
least C2) function of the Ricci scalar and Lm corresponds
to the matter Lagrangian. Units are chosen so that c ¼
8�G ¼ 1.

The field equations for homogeneous and isotropic
spacetimes are the Raychaudhuri equation

3 _H þ 3H2 ¼ � 1

2f0
½�þ 3pþ f� f0Rþ 3Hf00 _R

þ 3f000 _R2 þ 3f00 €R�; (2)

where H is the Hubble parameter; the Friedmann equation

3H2 ¼ 1

f0

�
�þ Rf0 � f

2
� 3Hf00 _R

�
; (3)

the trace equation

3 €Rf00 ¼ �� 3Pþ f0R� 2f� 9Hf00 _R� 3f000 _R2; (4)

and the energy conservation equation for standard matter

_� ¼ ��ð�þ PÞ: (5)

Combining the Friedmann and Raychaudhuri equations,
we obtain

R ¼ 6 _H þ 12H2; (6)

which is the usual definition for the Ricci scalar for homo-
geneous and isotropic flat Friedmann-Laı̂matre-Robertson-
Walker spacetimes.
The Raychaudhury equation can be obtained by adding

the Friedmann equation with its time derivative (using the
energy conservation equation and the definition of the
Ricci scalar). Therefore any solution of the Friedmann
equation is automatically a solution to the Raychaudhuri
equation and hence it is sufficient to solve the Friedmann
equation to reconstruct the theory of gravity.

III. RECONSTRUCTION OFA fðRÞTHEORY THAT
ADMITS AN EXACT �CDM MODEL

As we know, the present day observations suggest that
the variation of the Hubble parameter with the redshift is
sufficiently well described by the relation

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

3
ð1þ zÞ3 þ�

3

s
; (7)

where �0 � 0 is the matter density (which consists of the
observed and the cold dark matter) and � is the cosmo-
logical constant. In what follows we try and construct
theories (belonging to the class of fðRÞ gravity), that ex-
actly mimic the above expansion history.
From Eq. (7) we see that the time derivative of the scale-

factor aðtÞ can be given as

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

3a
þ�

3

s
: (8)

Here we have used the usual definition of the redshift
1=a ¼ 1þ z. From the above equation we can immedi-
ately calculate the second derivative of the scale-factor,
which is given by

€a ¼ 1

2
ð _a2Þ;a ¼ 2�a3 � �0

6a2
: (9)

We know for a flat FLRW universe, the Ricci scalar is
defined by

R ¼ 6

�
€a

a
þ _a2

a2

�
: (10)

Using Eqs. (8) and (9) in Eq. (10) we obtain the Ricci scalar
in terms of the scale-factor as
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RðaÞ ¼ 4�a3 þ �0

a3
: (11)

We would like to emphasize here that till now we have
not a priori assumed any specific theory of gravity. Equa-
tion (8) is obtained by observations while Eq. (10) is a
purely geometrical result for flat homogeneous and iso-
tropic spacetimes, independent of the theory of gravity.

We can now invert Eq. (10), to write the scale-factor in
terms of the Ricci scalar

aðRÞ ¼
�

�0

R� 4�

�ð1=3Þ
: (12)

We note that, since the scale-factor has to be real, we
considered only the real root of Eq. (10), discarding the
other two complex conjugate roots. Also the positivity of
the scale-factor implies that the Ricci scalar reaches the
value 4�, asymptotically in an infinite time. From Eq. (12)
we can calculate the Hubble parameter and the time de-
rivative of Ricci scalar in terms of the Ricci scalar and
these are given by

HðRÞ ¼ 1

aðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

3aðRÞ þ
�

3

s
; (13)

_R ¼ R;aðaðRÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

3aðRÞ þ
�

3

s
: (14)

Similarly, using the energy conservation equation we can
write the matter density of the universe in terms of scale-
factor ‘a’, or alternatively �ðaðRÞÞ.

To investigate which functions fðRÞ exactly mimic the
�CDM expansion history, we substitute all the above
quantities written as a function of the Ricci scalar into
the Friedmann equation, obtaining

�3ðR� 3�ÞðR� 4�Þf00ðRÞ þ
�
R

2
� 3�

�
f0ðRÞ þ 1

2
fðRÞ

� �ðRÞ ¼ 0: (15)

Since this equation has to be satisfied for all times (which
imply for all R � 4� 2 <), this becomes a differential
equation for the function fðRÞ in R-space. It is easy to see
that the above equation is an exact inhomogeneous hyper-
geometric equation for the variable x � �3þ R=�, with
�ðRÞ as the inhomogeneous term. The solution to the
homogeneous part is given by

fðxÞ ¼ C1Fð½�þ; ���;�1
2; xÞ þ C2x

3=2Fð½�þ; ���; 52; xÞ;
(16)

where �� ¼ ð�7� ffiffiffiffiffiffi
73

p Þ=12, �� ¼ ð�11� ffiffiffiffiffiffi
73

p Þ=12
and C1;2 are arbitrary constants of integration.

Let us now analyze the solution carefully. The two finite
poles of the hypergeometric equation are at R ¼ 3� and
R ¼ 4� respectively. Since the allowed range of R is R �

4�, one of the pole is out of the range and the other is at the
boundary. However we see that in this range x � 1. We
know that the convergence of a hypergeometric function
for the variable ‘x’ is guaranteed if jxj< 1, and otherwise
the function is either divergent or complex valued. Indeed
one can check explicitly that both the solutions of the
homogeneous equation are complex valued for R � 4�.
Hence to ensure a real valued function fðRÞ, we must
choose both the arbitrary constants C1;2 to be zero. This

is interesting as it shows that there cannot be any real
valued function of Ricci scalar that can mimic a �CDM
expansion for a vacuum universe.
Therefore from now on we only consider the particular

solution for the given inhomogeneous term �ðRÞ. Let us
now explicitly reconstruct the theories for which a given
matter field would obey a �CDM expansion history. We
would like to note here that a different reconstruction
approach related with local tests in modified gravity was
considered in [21].

A. Reconstruction for dustlike matter

Supposing the Universe is filled with dustlike matter
(w ¼ 0). From the energy conservation equation we have

�ðaÞ ¼ �0

a3
) �ðRÞ ¼ R� 4�: (17)

Substituting in the Friedmann Eq. (15), we get the particu-
lar solution as

fðRÞ ¼ R� 2�; (18)

which is the well known Lagrangian for general relativity
with a cosmological constant. This result is interesting as it
proves that the only real valued Lagrangian fðRÞ, that
can mimic an exact �CDM expansion history for a uni-
verse filled with dustlike matter, is the Einstein-Hilbert
Lagrangian with positive cosmological constant.
It is also important to note, however, that this is not the

case, if we put � ¼ 0. In that case the general solution of
the Friedmann equation is

fðRÞ ¼ Rþ C1R
�þ þ C2R

�� (19)

We see that the function is real valued for positive Ricci
scalar and hence there exist classes of real valued function
fðRÞ, other than GR, that can mimic a dustlike expansion
history without the cosmological constant. But even a very
small value of the cosmological constant would break this
degeneracy, and in that case the theory must be GR.

B. Reconstruction for perfect fluid with equation of
state p ¼ �1=3�

A perfect fluid with an equation of state p ¼ � 1
3� is

physically interesting as it lies in the boundary of the set of
matter fields that obey the strong energy condition. In GR
such fluids give rise to a Milne Universe which is a coast-
ing universe, and the Ricci scalar is proportional to the
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square of the Hubble parameter. However as we would see,
even this kind of fluids can also mimic a �CDM Universe
in higher-order gravity.

Using the equation of state in the energy conservation
equation and supposing the present density of the fluid is
�f we get

�ðaÞ ¼ �f

a2
) �ðRÞ ¼ ½�fðR� 4�Þ�2=3: (20)

Now solving the Friedmann Eq. (15), the particular solu-
tion is

fðRÞ ¼ �ðR� 4�Þ2=3; (21)

where � is a constant depending on �f.

C. Reconstruction for multifluids

Let us now consider that along with dustlike matter, a
noninteracting stiff fluid is also present in the universe and
their present densities are �0 and �s respectively. This
scenario is also possible if we have noninteracting
minimally-coupled massless scalar field with the dustlike
matter. In this case, from the conservation equation, total
matter density is

�ðaÞ ¼ �0

a3
þ �s

a6
) �ðRÞ ¼ ðR� 4�Þ þ �s

�2
0

ðR� 4�Þ2:
(22)

Substituting this into the Friedmann Eq. (15), we get the
following particular solution:

fðRÞ ¼ �1Rþ�2R
2 þ�3; (23)

where �nðn ¼ 1::3Þ are constants depending on �0, �s and
�. We therefore conclude that if the universe is filled with
minimally-coupled noninteracting massless scalar field
with dustlike matter, then the theory of gravity described
above would exactly mimic a �CDM expansion history
and it is impossible to distinguish this from GR with
present cosmological observations for the background
FLRW level.

D. Reconstruction for nonisentropic perfect fluids

Nonisentropic perfect fluids are generally described by
the equation of state

p ¼ hð�; aÞ: (24)

Using the energy conservation relation we get the required
differential equation for � as

�ðaÞ;a ¼ � 3

a
ð�þ hð�; aÞÞ: (25)

In general the above equation may not admit a closed form
solution. However the calculation gets much simpler if
hð�; aÞ is a separable function of the form

hð�; aÞ ¼ wðaÞ�; (26)

that is, the barotropic index of the fluid changes with time.
In this case we can directly integrate Eq. (25) to get

�ðaÞ ¼ exp

�
�3

Z 1þ wðaÞ
a

da

�
: (27)

We then substitute this into the Friedmann equation to get
the required theory of gravity.
As a specific illustration, lets assume that the time

dependent barotropic index is given by

wðaÞ ¼ 2�� �a3

�þ �a3
; (28)

where � and � are constants. As we can see in early times
the fluid has positive pressure and at late times this behaves
like a cosmological constant. Using (27) and (12), we get �
in terms of the Ricci scalar as

�ðRÞ ¼ ð��0 þ �R� 4��Þ3
�2
0

: (29)

Substituting this into the Friedmann Eq. (15), we obtain the
particular solution to be

fðRÞ ¼ �1Rþ�2R
2 þ�3R

3 þ�4; (30)

where �nðn ¼ 1::4Þ are constants depending on �0, �, �
and �.
Let us consider another form of nonisentropic perfect

fluids where the equation of state is given by

p ¼ w�þ hðaÞ: (31)

This equation of state is physically interesting, due to the
presence of the tuning function hðaÞ, which can compen-
sate the effect of the fourth order gravity at intermediate
times. In this way we can have a matter dominated
Friedmann like epoch (necessary for structure formations
in the Universe), followed by an accelerated expanding
phase.
Integrating the energy conservation Eq. (25), we obtain

�ðaÞ ¼
�
�

Z
3að2þ3wÞhðaÞdaþ C1

�
a�3ð1þwÞ; (32)

where C1 is an arbitrary constant of integration. Thus, we
see that the effective density is that of an isentropic perfect
fluid together with a time dependent cosmological term.
We can always tune this term to obtain a fit with cosmo-
logical observations.
As a specific example let us consider hðaÞ � a�12 and

w ¼ 0. This then implies that the matter field in the
Universe is dust along with a time dependent cosmological
term which diverges at the Big Bang singularity and goes
to zero sufficiently fast at the later epochs.
Integrating the energy conservation equation we obtain

�ðaÞ ¼ �0

a3
þ �1

a12
) �ðRÞ ¼ R� 4�þ �1

�0

ðR� 4�Þ4:
(33)
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Solving the Friedmann equation, we obtain the following
particular solutions

fðRÞ ¼ �1Rþ�2R
2 þ�3R

3 þ�4R
4 þ�5; (34)

where�n (n ¼ 1::5) are constants depending on �0, �1 and
�.

IV. RECONSTRUCTION OFAPPROXIMATE
�CDM MODELS

Let us now consider a useful technique proposed in
Ref. [22], where the Friedmann equations are written as
functions of the number of e-foldings instead of the time,
N ¼ ln a

a0
. In such a case, the Hubble parameter is given in

terms of N as:

H ¼ gðNÞ ¼ gð� lnð1þ zÞÞ: (35)

Then, the first FLRW equation for a flat universe yields,

0 ¼ �9GðNðRÞÞð4G0ðNðRÞÞ þG00ðNðRÞÞÞ d
2fðRÞ
dR2

þ
�
3GðNðRÞÞ þ 3

2
G0ðNðRÞÞ

�
dfðRÞ
dR

� fðRÞ
2

þX
i

�i0a
�3ð1þwiÞ
0 e�3ð1þwiÞNðRÞ; (36)

where GðNÞ � gðNÞ2 ¼ H2, and the Ricci scalar can be
related with N via R ¼ 12GðNÞ þ 3G0ðNÞ. Then the
Eq. (36) can be resolved for a given Hubble expansion
rate, and the corresponding fðRÞ theory is reconstructed.

Cosmological solutions in fðRÞ gravity with the
presence of an inhomogeneous EoS fluid

We consider now a Universe governed by some specific
fðRÞ theory in the presence of a perfect fluid, whose
equation of state is given by,

p ¼ wðaÞ�þ �ðaÞ; (37)

where wðaÞ and �ðaÞ are functions of the scale-factor a,
which could correspond to the dynamical behavior of the
fluid and to its viscosity. Let us write the FLRW equations
for fðRÞ as following,

H2 ¼ 1
3ð�0 þ �fðRÞÞ; ; (38)

2 _H þ 3H2 ¼ �ðp0 þ pfðRÞÞ; (39)

where �0 ¼ �
f0ðRÞ and p0 ¼ p

f0ðRÞ . The pressure and energy

density with the subscript fðRÞ contains the terms corre-
sponded to fðRÞ and are defined as

�fðRÞ ¼ 1

f0

�
Rf0 � f

2
� 3H _Rf00

�
; (40)

pfðRÞ ¼ 1

f0

�
_R2f000 þ 2H _Rf00 þ €Rf00 þ 1

2
ðf� Rf0Þ

�
:

(41)

Then, by combining both FLRW equations, and using the
equation of state defined in (37), we can write

�ðaÞ ¼ ðwðaÞ�fðRÞ � pfðRÞ � 2 _H

� 3ð1þ wðaÞÞH2Þf0ðRðaÞÞ: (42)

As �ðaÞ just depends on the Hubble parameter and its
derivatives, for some specific solutions, any kind of cos-
mology can be reproduced. Let us consider the example,

3

	2
H2 ¼ G�a

�c þGqa
d; (43)

where G� and Gq are constants. We can check that in this

solution, the first term in the r.h.s. corresponds to a fluid
with EoS wp ¼ �1þ c=3>�1, while the second term, it

has an equation of state wq ¼ �1� d=3<�1, which

corresponds to a phantom fluid. We could consider a viable
fðRÞ function proposed in [23], which is given by

FðRÞ ¼ �Rmþl � �Rn

1þ �Rl
: (44)

This function is known to pass the local gravity tests and
could contribute to drive the Universe to an accelerated
phase. Then, by introducing (43) and (44) in the expression
for �ðaÞ in (42), we obtain the equation of state for the
inhomogeneous fluid that, together with fðRÞ, reproduces
the solution (43), which for c ¼ 3 and d � 0 reproduces
the �CDM model, and probably drives the Universe evo-
lution into a phantom phase in the near future.

V. CONCLUSION

In this paper we have extended a the reconstruction
programme for fðRÞ gravity obtaining several interesting
explicit reconstructions. In particular we find that the only
real valued Lagrangian fðRÞ that is able to mimic an exact
�CDM expansion history for a universe filled with dustlike
matter is the Einstein-Hilbert Lagrangian with positive
cosmological constant. This does not mean that fðRÞ grav-
ity is incompatible with an exact�CDM expansion history,
only that one has to extend the theory somewhat in order
that this possibility can be realized. For example in a
universe filled with a both a minimally-coupled noninter-
acting massless scalar field and dustlike matter, a theory of
gravity can be found which exactly mimics the �CDM
expansion history, making it impossible to distinguish it
from GR using measurements of the background cosmo-
logical parameters. It is then an interesting problem to
probe, how the perturbations in these modified theories
can break this degeneracy, by predicting different structure
formations, growth factor or cosmological gravitational
waves from GR, that can be experimentally verified [24].
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In fact the matter power spectrum for power-law fðRÞ
theories satisfies the requirement for scale invariance and
has distinct features that can be detected by combining
future cosmic microwave background (CMB) and large
scale surveys (LSS) data. Moreover, it remains the number
of realistic modified gravities which reproduce this late-
time cosmic acceleration era approximately, where essen-
tially any degree of accuracy may be achieved. In that case,
it is then required to have local constraints, like the Solar
System or Post Newtonian constraints (see for e.g. [21] and

the references therein, which rules out the Lagrangians
which grow indefinitely as the Ricci scalar vanishes) to
have a modified gravity theory that works for both local
and cosmological scales.
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