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We present the first Bayesian constraints on the single field inflationary reheating era obtained from

cosmic microwave background (CMB) data. After demonstrating that this epoch can be fully charac-

terized by the so-called reheating parameter, we show that it is constrained by the seven years Wilkinson

microwave anisotropies probe (WMAP7) data for all large and small field models. An interesting feature

of our approach is that it yields lower bounds on the reheating temperature which can be combined with

the upper bounds associated with gravitinos production. For large field models, we find the energy scale of

reheating to be higher than those probed at the Large Hadron Collider, �1=4
reh > 17:3 TeV at 95% of the

confidence limit. For small field models, we obtain the two-sigma lower limits �1=4
reh > 890 TeV for a mean

equation of state during reheating �wreh ¼ �0:3 and �1=4
reh > 390 GeV for �wreh ¼ �0:2. The physical origin

of these constraints is pedagogically explained by means of the slow-roll approximation. Finally, when

marginalizing over all possible reheating history, the WMAP7 data push massive inflation under pressure

(p < 2:2 at 95% of the confidence limit where p is the power index of the large field potentials) while they

slightly favor super-Planckian field expectation values in the small field models.
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I. INTRODUCTION

The current ongoing flow of high accuracy astrophysical
observations has important consequences for our under-
standing of the very early Universe. In particular, the
widely accepted inflationary paradigm [1–4] (for a review,
see e.g. Refs. [5–8]) is now under close scrutiny. According
to this scenario, the cosmic microwave background (CMB)
anisotropies and the large scale structures originate from
the unavoidable quantum fluctuations of the inflaton and
gravitational fields in the very early Universe subsequently
amplified during inflation [9–13]. One can show that the
corresponding power spectrum of the cosmological fluctu-
ations naturally acquires an almost scale invariant form
which is fully consistent with all observations. Another
crucial property of the inflationary power spectrum is that
the slight deviations from scale invariance are linked to the
microphysics of inflation [14–16]. Therefore, by measur-
ing these deviations, one can probe the shape of the inflaton
potential and, therefore, learn about the physical origin of
the inflaton field.

It is often claimed from the above properties that ob-
servations give access to a limited part of the potential
only, namely, the one which is slow rolled over by the
inflaton when scales of astrophysical interest today left the
Hubble radius. This observational window represents a
range of approximately 7 e-folds or three decades in

wave numbers. However, inflation does not consist of the
slow-roll phase only and the pre- and/or reheating period is
also of fundamental importance since it allows us to under-
stand how inflation is connected to the hot big-bang phase
[17–20]. This physical phenomenon is related to a different
part of the inflationary potential, usually the one located
close to its true minimum, i.e. a few decades in e-folds
away from the observable window.
Observation of pre-/reheating effects can be achieved in

two ways. First, the power spectrum can evolve on large
scales when the inflaton field oscillates around the mini-
mum of its potential. However, this happens only in quite
complicated models, typically those containing more than
one field [21–23]. In fact, it was recently shown that this
type of effect can also happen in single field inflation but
on much smaller scales [24–26]. Secondly, the duration of
the pre-/reheating phase can significantly modify the posi-
tion of the observational window mentioned above. Put
differently, at fixed astrophysical scales today, changing
the pre-/reheating duration is equivalent to moving the
window along the potential, hence probing different values
of the power spectrum spectral index, amplitude of the
anisotropies, and tensor-to-scalar ratio. Obviously, this
cannot be done arbitrarily because CMB data impose
accurate bounds on their value. Conversely, this opens up
the possibility to constrain the pre-/reheating duration and/
or its equation of state from CMB data [27]. Notice that a
direct detection of primordial gravitational waves would
also allow us to probe the reheating temperature, as shown
in Refs. [28,29].
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The goal of this article is to address this question for the
standard scenarios of inflation. It is traditional to study
three categories of models usually considered as represen-
tative of the full inflationary space. These models are large
field [30], small field [2,3], and hybrid inflation [31].
Hybrid scenarios involve multiple fields and, therefore,
the power spectrum can change during the preheating
phase. This makes this class of scenarios deserving of a
separate investigation. For this reason, in this article, we
limit ourselves to the class of large and small field models.

In the following, we will use the term ‘‘reheating’’ to
refer to the pre-/reheating phases of the Universe defined to
have occurred just after the end of inflation and just before
the radiation dominated era. So far, the constraints on the
reheating energy scale are not so numerous. Obviously, it
should be less than the energy scale of inflation which
implies that Treh & 1016 GeV. In addition, if one assumes
that supersymmetry is the correct extension of the standard
model of particle physics, then constraints from big-bang
nucleosynthesis (BBN) on unstable gravitinos lead to a
reheating temperature Treh & 107 GeV [32–42]. Notice
that this constraint can nevertheless be avoided if one
considers the scenario of Ref. [43]. Reheating itself should
also proceed before BBN and this implies that Treh *
10 MeV. We see that the reheating temperature is poorly
constrained, in particular, its lower limit. As a matter of
fact, the work presented here precisely yields a lower limit
on the reheating energy scale from the current seven years
Wilkinson microwave anisotropies probe (WMAP7) data
[44–46].

In order to derive constraints on the reheating phase, we
make use of Bayesian techniques and utilize a full numeri-
cal approach [47]. This has several advantages. First, it is
exact and rests only on the linear theory of cosmological
perturbations: the method remains accurate when the slow-
roll approximation breaks down, as one expects near the
end of inflation. Second, and of particular importance for
the present work, it permits a new treatment of reheating.
Indeed, instead of viewing the reheating parameters as
nuisance parameters, they can easily be included in the
Bayesian data analysis process. Third, the evolution of
cosmological perturbations in the hot big-bang eras already
relies on numerical codes. Treating perturbations during
inflation in the same way allows the whole procedure to be
automatized and to be easily extended to other scenarios.
Fourth, the numerical approach allows us to address the
question of the priors choice in a particularly well-defined
way. Indeed, from a physical point of view, our prior
knowledge is on the inflationary theory and not on the
shape of the primordial power spectra which is actually a
model prediction. Therefore, it is better, and easier, to
choose prior probability distributions directly on the model
parameters, such as the power index of the large field
potentials. This reflects the fact that a model of inflation
is not a disembodied mathematical structure that one only

needs to ‘‘fit’’ but a physical scenario rooted in high energy
physics that one needs to understand.
This paper is organized as follows. In Sec. II, we extend

the above discussion and explain in detail why the reheat-
ing epoch can be constrained with CMB data. In particular,
we introduce the so-called reheating parameter which de-
pends on the reheating duration and on the mean equation
of state of the fluid dominating the Universe during this
epoch. Then, using the slow-roll approximation, we ana-
lytically demonstrate that the accuracy of theWMAP7 data
is now sufficient to obtain some constraints on the reheat-
ing era. In Sec. III, using a full numerical integration of the
tensor and scalar power spectra coupled to Bayesian meth-
ods, we derive the constraints that any reheating model has
to satisfy. Then, assuming specific values for the mean
equation of state, we translate these constraints into new
lower limits for the reheating energy density and/or reheat-
ing temperature. These results significantly improve the
bounds coming from the BBN. In Sec. IV, we recap our
main findings and discuss how our results are modified by
the inclusion of others CMB data sets. In Appendix A, we
work out a typical example which illustrates the robustness
of our assumptions: a noninstantaneous transition between
reheating and the radiation dominated era when one con-
siders the finite decay width of the inflaton field. Finally, as
a by-product of our data analysis, Appendix B presents the
updated WMAP7 constraints on the spectral index, tensor-
to-scalar ratio and first order slow-roll parameters margi-
nalized over second order effects.

II. PHYSICAL ORIGIN OF THE CONSTRAINT

Before presenting and discussing the constraints on the
reheating temperature, we explain why and how these ones
can be inferred from high accuracy CMB observations. In
particular, we use the slow-roll approximation to explicitly
illustrate the method.

A. Parametrizing the reheating

The evolution of scalar (density) perturbations is con-
trolled by the so-called Mukhanov-Sasaki variable vk. If
matter is described by a scalar field (as is the case during
inflation and pre-/reheating), then its equation of motion is
given, in Fourier space, by [6–8,15]

v00
k þ

�
k2 � ða ffiffiffiffiffi

�1
p Þ00
a

ffiffiffiffiffi
�1

p
�
vk ¼ 0: (1)

Here, a prime denotes a derivative with respect to confor-
mal time. The quantity k is the comoving wave number and
�1 � � _H=H2 is the first Hubble flow function [48], H ¼
_a=a being the Hubble parameter and a the Friedmann-
Lemaı̂tre-Robertson-Walker scale factor (a dot means de-
rivative with respect to cosmic time). The quantity vk is
related to the curvature perturbation �k through the follow-
ing expression:
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�k ¼ 1

MPl

vk

a
ffiffiffiffiffiffiffiffi
2�1

p ; (2)

where MPl stands for the reduced Planck mass. As a con-
sequence, the power spectrum of �k can be expressed as

P � ðkÞ � k3

2�2
j�kj2 ¼ k3

4�2M2
Pl

�������� vk

a
ffiffiffiffiffi
�1

p
��������2

: (3)

In order to calculate P � ðkÞ, one needs to integrate Eq. (1),

which requires the knowledge of the initial conditions for
the mode function vk. Since, at the beginning of inflation,
all the modes of astrophysical interest today were much
smaller than the Hubble radius, the initial conditions are
chosen to be the Bunch-Davis vacuum which amounts to

lim
k=H!þ1

vk ¼ 1ffiffiffiffiffi
2k

p e�ik�; (4)

where � denotes conformal time and H ¼ aH is the
conformal Hubble parameter. The importance of the cur-
vature perturbation lies in the fact that it is directly related
to CMB anisotropies, the two point correlation function of
which can be expressed in term of the spectrum of �k.
Moreover, under very general conditions (including the
assumption that inflation proceeds with only one field),
�k is a conserved quantity on large scales and, therefore,
can be used to propagate the inflationary spectrum from the
end of inflation to the postinflationary era [49]. In other
words, the power spectrum is not affected by the postinfla-
tionary evolution, in particular, by the pre-/reheating
epoch.

However, this does not mean that the reheating era has
no effect on the inflationary predictions. On the contrary,
the relation between the physical scales at present time and
during inflation depends on the properties of this phase of
evolution. As a consequence, in order to calibrate the
inflationary spectrum with respect to the physical scales
of astrophysical interest today, it is necessary to know how
the reheating phase proceeded. Conversely, this also opens
the possibility to constrain the physical conditions that
prevailed at that time by means of CMB observations.

In order to put the above considerations on a quantitative
footing, let us rewrite Eq. (1) in terms of the number of e-
folds during inflation, N � lnða=ainiÞ, where aini is the
value of the scale factor at the beginning of inflation. It
takes the form

d2vk

dN2
þ 1

H
dH
dN

dvk

dN
þ

��
k

H

�
2 �USðNÞ

�
vk ¼ 0; (5)

where USðNÞ is an effective potential for the perturbations
which depends on the scale factor and its derivatives only.
All the terms in this equation but k=H are completely
specified by the inflationary background evolution. In
practice, we are given a physical scale today, say k=anow
(for instance k=anow ¼ 0:05 Mpc�1) and we need to ex-
press k=H in terms of k=anow and quantities defined

during inflation. Straightforward considerations lead to

k

H
¼ �k

HðNÞ e
NT�N; (6)

whereNT is the total number of e-folds during inflation and
�k is defined by

�k � k

anow
ð1þ zendÞ; (7)

with zend being the redshift of the end of inflation. As
expected �k depends on the whole postinflationary history
through zend. During this postinflationary history, only the
reheating phase is poorly known and represents, by far, the
main source of uncertainty for the inflationary predictions.
For convenience, we rewrite �k as

�k ¼ k

anow

�
�end

���cri

�
1=4

R�1
rad ; (8)

thus defining the new parameter Rrad. This parameters
plays a crucial role in this article. In the above equation,
�end is the energy density at the end of inflation, �cri is the
present day critical energy density, and �� ’ 2:471�
10�5h�2 is the density parameter of radiation today. As a
result ���cri � �� is the present day radiation energy

density and does not depend on h2. The above equations
make clear that the parameter Rrad must be specified if one
wants to compare an inflationary model to observations.
In fact, the quantity Rrad has a simple physical interpre-

tation. Let us assume that the reheating phase is dominated
by a conserved effective fluid with energy density � and
pressure P. The fact that we assume the effective fluid to be
conserved is not a limitation. For instance, in a simple
model where the inflaton scalar field is coupled to radiation
(see Appendix A), the effective fluid is just defined by � ¼
�� þ �� and P ¼ P� þ ��=3. The scalar field and the

radiation are not separately conserved but the effective
fluid is. Then, it is straightforward to show that

�ðNÞ ¼ �end exp

�
�3

Z N

NT

½1þ wrehðnÞ�dn
�
; (9)

where wreh � P=� is the equation of state function during
reheating. Using this expression, one obtains

lnRrad ¼ �N

4
ð�1þ 3 �wrehÞ; (10)

where

�N � Nreh � NT; (11)

is the total number of e-folds during reheating, Nreh being
the number of e-folds at which reheating is completed and
the radiation dominated era begins. The quantity �wreh

stands for the mean equation of state parameter

�w reh � 1

�N

Z Nreh

NT

wrehðnÞdn: (12)
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Therefore, the parameter Rrad only depends on what hap-
pens during reheating. To put it differently, it singles out in
the expression of�k, the contribution coming from reheat-
ing. Equation (10) also allows us to understand why Rrad

carries the subscript ‘‘rad.’’ Indeed, if the effective fluid is
equivalent to radiation, then �wreh ¼ 1=3 and lnRrad ¼ 0.
The physical interpretation is very clear: in this case the
reheating stage cannot be distinguished from the subse-
quent radiation dominated era and, therefore, cannot affect
the inflationary predictions: as a consequence Rrad ¼ 1 in
Eq. (8).

In fact, one can even go further and express Rrad in an
even more compact form. Using Eq. (9), one can write
�reh ¼ �end exp½�3�Nð1þ �wrehÞ� from which, together
with Eq. (10), one obtains

lnRrad ¼ 1� 3 �wreh

12ð1þ �wrehÞ ln
�
�reh

�end

�
; (13)

where �reh has to be understood as the energy density at the
end of the reheating era, i.e. �ðNrehÞ.

Let us summarize our discussion. In order to calculate
the power spectrum of the inflationary cosmological per-
turbations, one needs to solve Eq. (5). In this formula, all
the terms are accurately known during inflation except

k

H
¼ k

anow

�
�end

��

�
1=4 1

HðNÞRrad

eNT�N; (14)

and the theoretical uncertainty in this expression solely
comes from the parameter Rrad which depends on reheating
only (more precisely, on the energy density at the end of
reheating, �reh, and the mean equation of state �wreh).

B. Why CMB observations constrain reheating

Having discussed the physical interpretation of Rrad, we
now explain how the CMB observations can constrain its
value. For this purpose, we reexpress Rrad in terms of
quantities defined at the Hubble radius crossing. One ob-
tains

lnRrad ¼ NT � N� þ N0 � 1

4
ln

�
H2�

M2
Pl�1�

�

þ 1

4
ln

�
3

�1�
Vend

V�
3� �1�
3� �1end

�
; (15)

where we have defined

N0 � ln

�
k=anow

�1=4
�

�
: (16)

In this formula, N� is the e-folds number at which the scale
k=anow crossed out the Hubble radius during inflation (all
the quantities with a subscript * are evaluated at that time)
and Vð�Þ is the inflaton potential. Despite the appearance
of the first Hubble flow function, this equation is exact
(moreover, we also have �1end ¼ 1). At leading order, one
has

H2�
M2

Pl�1�
¼ 8�2P�; (17)

where the amplitude of the scalar power spectrum at the
pivot scale P� ¼ P � ðk�Þ is directly related to the cosmic

background observer normalization.
The above equation (15) can be used in two different

manners. The first way is to assume something about Rrad

and to derive the corresponding range of variations of the
inflationary slow-roll predictions N� and �iðN�Þ. In other
words, this determines how the inflationary predictions
depend on the details of the reheating era. This approach
is the one usually considered in the literature to compare
inflationary predictions to the current constraints on the
slow-roll parameters �i� (or spectral index and tensor-to-
scalar ratio). Unfortunately, the assumptions on Rrad are
rarely explicit and comparison is only made by choosing
reasonably assumed values of N�: typically 30 and 60 e-
folds as one may derive under generic assumptions [50].
However, as Eq. (15) explicitly shows, once Vð�Þ is
chosen, and the tilt and amplitude of the scalar perturba-
tions measured, N� is directly related to Rrad, which itself,
as already noticed, depends on the energy density �reh at
which reheating ends and �wreh. As a result, the range of
variation for N� can only be known once a reheating model
is assumed. Without such an assumption, from one model
to another, an assumed value of N� may inconsistently
imply that the reheating occurs after nucleosynthesis, or
even at energy densities higher than �end. This type of
model therefore appears to be compatible with the CMB
data favored power spectra while being totally inconsistent
with standard cosmology.
Let us now see how it works in practice. In order to be

consistent with the standard cosmological model, lnRrad

cannot take arbitrary values. One should have �wreh < 1 to
respect the positivity energy conditions of general relativ-
ity and �wreh >�1=3 by the very definition of reheating
which is not inflation. Notice that we impose conditions on
the mean value of the equation of state only. In addition,
reheating should occur after inflation and before BBN, i.e.
�nuc < �reh < �end, with

�nuc � ð10 MeVÞ4: (18)

This allows us to explicitly use Eq. (15). Combined with
Eq. (13), we can determine the range of variation of
�N� � NT � N� 2 ½�Nnuc� ;�Nend� �. Straightforward ma-
nipulations lead to

�Nnuc� ¼ �N0 þ ln

�
H�
MPl

�
� 1

3ð1þ �wrehÞ ln
�end

M4
Pl

þ 1� 3 �wreh

12ð1þ �wrehÞ ln
�nuc

M4
Pl

; (19)

while if one chooses �reh ¼ �end, one obtains

JÉRÔME MARTIN AND CHRISTOPHE RINGEVAL PHYSICAL REVIEW D 82, 023511 (2010)

023511-4



�Nend� ¼ �N0 þ ln

�
H�
MPl

�
� 1

4
ln
�end

M4
Pl

: (20)

Interestingly enough, the last equation no longer depends
on �wreh. This is of course because requiring �reh ¼ �end

means that one immediately reheats the Universe after
inflation. It is important to notice that these equations are
algebraic for �Nnuc� and �Nend� because H� and �end are
also functions of �N�. The corresponding range of varia-
tions of the inflationary predictions is determined by cal-
culating ��i� ¼ �ið�N�Þ with �N� given above. To
proceed further, one needs to specify the model of inflation.
In the next section, one considers the prototypical scenario
of chaotic inflation as well as the small field models.

Before dealing with these explicit examples, let us
briefly anticipate and discuss the second way of using
Eq. (15). It consists of considering Rrad as an observable
model parameter and in including it in the data analysis, as
it should be from a Bayesian point of view. If we are given
a specific potential, then Vend is explicitly known. CMB
data put a limit on H2�=�1� through the amplitude of the
anisotropies, as well as on �1� from the tensor-to-scalar
ratio. As a result, one expects CMB data to also give some
information on Rrad. This is the subject of Sec. III in which
we perform a Bayesian data analysis of the WMAP7 data
for both the large and small field models by including the
reheating. For the first time, we find that Rrad is not only a
nuisance parameter for inflation but ends up being con-
strained by the WMAP7 data. We then discuss the physical
implications of these bounds and show that CMB data give
us a lower bound on the energy scale at which the reheating
ended.

C. Large field models

We now consider the archetypal model of inflation,
namely, large field inflation. This working example is
important because it allows us to show explicitly which
type of constraints one should expect. Large field models
are characterized by the potential

Vð�Þ ¼ M4

�
�

MPl

�
p
; (21)

where M is an energy scale which fixes the amplitude of
the CMB anisotropies and p is a free index. In this case the
slow-roll trajectory is explicitly known and one can calcu-
late ��, the field vacuum expectation value at Hubble

radius crossing from �end=MPl ¼ p=
ffiffiffi
2

p
, the field vacuum

expectation value (VEV) at which inflation stops. One gets
[27]

�2� ¼ 2pM2
Pl�N� þ�2

end: (22)

The reheating phase in large field models proceeds by
parametric oscillations around the minimum of the poten-
tial and it is well known that the corresponding equation of
state parameter is given by [6,17,18,50]

�w reh ¼ p� 2

pþ 2
: (23)

In particular, for p ¼ 2, one obtains �wreh ¼ 0; that is to say
the oscillatory phase is equivalent to a matter dominated
era (the quartic case corresponding to a radiation domi-
nated era, and so on). Although this formula is derived
without taking into account the coupling between the in-
flaton field and radiation, we show in Appendix A that it is
a very good approximation.
Knowing explicitly the equation during reheating, we

are now in a position where the algebraic equations (19)
and (20) can be solved exactly. After some algebra, one
obtains

�Nnuc� ¼ �p

4
� p2 � 2pþ 4

12p
W0

�
� 12p

p2 � 2pþ 4

� exp

�
� 12pðN nuc þ p=4Þ

p2 � 2pþ 4

��
; (24)

and

�Nend� ¼ �p

4
� p� 2

8
W0

�
� 8

p� 2

� exp

�
� 8ðN end þ p=4Þ

p� 2

��
; (25)

whereW0 is a Lambert function. Both quantitiesN nuc and
N end depend only on the model parameter p and the
amplitude of the observed anisotropies. Explicitly, N nuc

reads

N nuc ¼ �N0 þ 2

3p
ðp� 1Þ ln

�
2�

ffiffiffiffiffiffiffiffi
120

p Qrms-PS
T

�

� pþ 2

6p
ln

�
9

2ð�p2þp�6Þ=ðpþ2Þ

pð�p2þ2p�4Þ=ð2pþ4Þ

�

� p� 4

3p
ln
�nuc

MPl

; (26)

where the amplitude of the CMB anisotropies has been
expressed in terms of the quadrupole moment

Qrms-PS
T

¼
ffiffiffiffiffiffiffiffiffi
5C2

4�

s
’ 6� 10�6: (27)

In Eq. (26), the last term vanishes for p ¼ 4 since, as
already noticed above, the phase of oscillations is equiva-
lent to a radiation dominated era which cannot be distin-
guished from the subsequent hot big-bang epoch. On the
other hand, the constant N end can be expressed as

N end ¼ �N0 þ 1

2
ln

�
2�

ffiffiffiffiffiffiffiffi
120

p Qrms-PS
T

�
� 1

4
ln

�
9

21�p

p1�p=2

�
:

(28)

From Eqs. (24) and (25), we immediately deduce that,
for the large field models, the range of allowed values of
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�N� strongly depends on p. In Figs. 1 and 2, we have
plotted the large field predictions, obtained from Eqs. (24)
and (25), for the slow-roll parameters �1ð�N�Þ and
�2ð�N�Þ compared to the one- and two-sigma WMAP7
confidence intervals (see Appendix B). The first figure
represents the slow-roll predictions in the plane ðnS; rÞ,
while the second one corresponds to the plane ð�1; �2Þ.
The annotated values trace the quantity logðg1=4� Treh=GeVÞ,
where the reheating temperature is defined by the relation

g1=4� Treh �
�
30

�2
�reh

�
1=4

; (29)

and g� is the number of relativistic degrees of freedom at
that time. Large values of p cannot explain the current
measurements of nS and r, while the low values can.
Therefore, it is clear that there now exists a lower bound
on the reheating temperature. In Sec. III, we derive the

Bayesian two-sigma limits on �reh (or g
1=4
� Treh) by includ-

ing the reheating parameter into the data analysis process.
These plots should make evident that the reheating in the
large field models is already observable with the current
CMB data, and more than being a nuisance parameter, it is
actually constrained.

Let us also remark that the case p ¼ 4 is particularly
interesting; see the blue point annotated ‘‘16’’ in Figs. 1
and 2. Indeed, the value p ¼ 4 is the extreme case in which
�N� is actually fixed to

�Np¼4
� ¼ �N0 þ 1

2
ln

�
2�

ffiffiffiffiffiffiffiffi
120

p Qrms-PS
T

�
’ 58:5: (30)

This is why this model is represented by a single point in
Figs. 1 and 2. Making any other choice is equivalent to
assuming a more complicated reheating model which
should at least be specified. For instance, Ref. [45] (see
Fig. 19) uses two values, 50 and 60 e-folds, instead of one.
From the above considerations, it is clear that 50 is much
too small. But, of course, one can always assume that the
shape of the potential in the slow-roll regime is not the
same as in the reheating regime (actually, this has to be the
case for small field models, see below). In this case Vð�Þ /
�4 is not relevant during the oscillations of the field and
�wreh � 1=3. However, as discussed in the next section,
even in this case, the reheating epoch is still constrained.
The same range of variations for�N� has also been used in
Ref. [51] (see Fig. 2) for the �2 model. Compared to our
results, 50 is too high and excludes models which are still
allowed while 60 predicts a reheating energy scale higher
the energy scale at the end of inflation: �reh >�end.

D. Small field models

One of the reasons leading to such a strong reheating
influence on the large field model predictions comes from
Eq. (23). Once the potential is chosen, the spectral index
and tensor-to-scalar ratio are intimately linked to the way
the reheating proceeds. One may therefore wonder how the
reheating can influence the model predictions in a case
where it is unrelated to the shape of the primordial power
spectra. As a motivated example, we discuss in this section
the case of the small field models ending with a reheating

FIG. 1 (color online). Reheating consistent slow-roll predic-
tions for the large field models in the plane ðnS; rÞ. The two
contours are the one- and two-sigma WMAP confidence inter-
vals (marginalized over second order slow roll). The two lines
represent the locus of the p * 1 and p ¼ 2 models while the
blue point annotated 16 corresponds to p ¼ 4. The annotations
trace the energy scale at which the large field reheating ends and

correspond to logðg1=4� Treh=GeVÞ. Clearly, these values are lim-
ited from below to stay inside the two-sigma contours.

FIG. 2 (color online). Reheating consistent slow-roll predic-
tions for the large field models in the plane ð�1; �2Þ. The two blue
dot-dashed contours are the one- and two-sigma WMAP3 con-
fidence intervals (marginalized over second order slow roll),
while the pink solid contours are the one- and two-sigma
WMAP7 ones. As in Fig. 1, the annotations trace the energy
scale at which the large field reheating ends and correspond to

logðg1=4� Treh=GeVÞ. The solid line represents the model p * 1.
This confirms that there now exists a lower bound on the value of

g1=4� Treh (see Sec. III).
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characterized by a mean equation of state �wreh. The small
field potential reads

Vð�Þ ¼ M4

�
1�

�
�

�

�
p
�
; (31)

where� represents a VEV for the field�, p a power index,
and M fixes the amplitude of the observed anisotropies.
Inflation proceeds from small to large values of the field.
For convenience, we denote by 	 the field value in units of
�, i.e. 	 � �=�. The slow-roll trajectory in terms of 	
reads [27]

�N� ¼ �2

2pM2
Pl

�
	2� þ 2

p� 2
	2�p
� � 	2

end þ
2

2� p
	2�p
end

�
;

(32)

where, again, 	end is defined by �1ð	endÞ ¼ 1, i.e.

	p�1
end ¼

ffiffiffi
2

p
p

�

MPl

ð1� 	p
endÞ: (33)

Both of these equations do not have an explicit solution
(unless p ¼ 2) but can be numerically solved for a given
set of model parameters � and p. For this reason, instead
of deriving the reheating allowed values for�N�, it is more
convenient to derive the reheating allowed values for 	�. In
fact, 	� should lie between 	nuc� and 	end� , the field values
such that reheating ends, respectively, at BBN and just
after inflation. After some algebra, one finds 	nuc� to be
the solution of

�2

2pM2
Pl

�
	� þ 2

p� 2
	2�p
�

�
þ 3 �wreh

3þ 3 �wreh

lnð1� 	p
� Þ

� 3 �wreh þ 1

3þ 3 �wreh

lnð	p�1
� Þ

¼ �2

2pM2
Pl

�
	2
end þ

2

p� 2
	2�p
end

�
þF nuc; (34)

with

F nuc ¼ �N0 þ 1þ 3 �wreh

3þ 3 �wreh

ln

�
2�

ffiffiffiffiffiffiffiffi
120

p Qrms-PS
T

�

� 1

3þ 3 �wreh

ln

�
9

�
�

MPlp

�
3 �wrehþ1

2ð3 �wreh�1Þ=2
�

� 1

3þ 3 �wreh

lnð1� 	p
endÞ þ

1� 3 �wreh

3þ 3 �wreh

ln

�
�1=4
nuc

MPl

�
:

(35)

Similarly, solving for �reh ¼ �end gives 	
end� as the solution

of

�2

2pM2
Pl

�
	2� þ 2

p� 2
	2�p
�

�
þ 1

4
lnð1� 	p

� Þ � 1

2
lnð	p�1

� Þ

¼ �2

2pM2
Pl

�
	2
end þ

2

p� 2
	2�p
end

�
þF end; (36)

where

F end ¼ �N0 þ 1

2
ln

�
2�

ffiffiffiffiffiffiffiffi
120

p Qrms-PS
T

�

� 1

4
ln

�
9

�
�

MPlp

�
2ð1� 	p

endÞ
�
: (37)

As a result, for given values of �, p, and �wreh, one has first
to solve Eq. (33) to get 	end, then Eqs. (34) and (36) to
obtain 	nuc� and 	end� from which �Nnuc� and �Nend� are
deduced by using Eq. (32). From the value of 	�, one can
also directly evaluate the two slow-roll parameters �1� and
�2�. Let us notice that some of the expressions above can be
ill defined if p ¼ 2. In this case, Eqs. (34) and (36) should
be rederived from the start and one can show that it then
always leads to well-defined expressions. The rest is the
same as for the large field models (see Sec. II C), �reh being
in one-to-one correspondence with the value of �N�
through Eqs. (10) and (13) once a value of �wreh has been
chosen. It is worth emphasizing again that, in order to
derive these results, no assumption has been made about
the reheating epoch which is entirely characterized by �reh

and �wreh.
In Fig. 3, we have represented the slow-roll predictions

for an assumed generic value of p ¼ 3 and various values
of �wreh ranging from �0:2 to 0.8. The annotations are the

values of logðg1=4� Treh=GeVÞ while the color scale (shad-
ing) traces the values of�=MPl. For small field models, the
reheating energy scale is all the more so constrained that
�wreh and� are small. In fact, these plots show that �wreh and
� are degenerated: it is possible to render compatible a low
value of �wreh provided � is super-Planckian. Conversely,
small values of� can be made compatible with the data for
a high energy scale reheating if �wreh < 1=3, or a low energy
scale reheating for �wreh > 1=3. In the next section, we
perform a full analysis of the small field models, reheating
included, in view of theWMAP7 data to quantify the above
claims in terms of posterior probability distributions.

III. INFERRING REHEATING FROM CMB DATA

In view of the previous results, the correct way to discuss
how well the CMB data constrain a set of known infla-
tionary models is to perform a Bayesian analysis of the
data given the model parameters, including the reheating.
Notice that this is different than constraining the slow-roll
parameters, or the spectral index and tensor-to-scalar ratio,
which only encode the shape of the primordial power
spectra and know nothing about reheating (whereas a
model of inflation does).

A. Exact numerical integration

The numerical exact integration method has been intro-
duced in Refs. [27,47,52,53] and consists of the computa-
tion of the primordial power spectra assuming only general
relativity and linear perturbation theory. Therefore, the

FIRST CMB CONSTRAINTS ON THE INFLATIONARY . . . PHYSICAL REVIEW D 82, 023511 (2010)

023511-7



only model parameters are the ones appearing in the in-
flaton potential together with the reheating parameter Rrad,
for the very reasons explained in Sec. II. The numerical
integration of the inflationary perturbations sets up the
initial conditions for the subsequent cosmological pertur-
bations from which the CMB anisotropies are deduced. For
this purpose, we have used a modified version of the CAMB

code [54] coupled to a Monte Carlo–Markov-chain
(MCMC) exploration of the parameter space implemented
in the COSMOMC code [55] and given the WMAP7 data
[44–46]. Concerning the standard cosmological model, we
have assumed a flat �CDM model having five parameters:
the density parameter of baryons �b, of cold dark matter
�dm, the Hubble parameter today H0, the optical depth 


encoding the redshift at which the Universe reionized, and
the nuisance parameter ASZ encoding the relative ampli-
tude of the diffuse Sunyaev-Zel’dovich (SZ) effect com-
pared to the analytical model of Ref. [56]. In fact, as
discussed in Ref. [55], it is more convenient to sample
the cosmological parameter space along the rescaled
quantity ð�bh

2;�dmh
2; 
; �; ASZÞ where H0 ¼

100h km=s=Mpc and � measures the ratio of the sound
horizon at last scattering to the angular diameter distance.
Following Ref. [45], we have included the lensing correc-
tions on the temperature and polarization power spectra,
and, to limit parameter degeneracies, completed the
WMAP7 data with the latest Hubble Space Telescope
bound on H0 [57]. Concerning the primordial parameters,

FIG. 3 (color online). Reheating consistent slow-roll predictions for the small field models with an assumed generic value p ¼ 3 and
for �wreh ¼ �0:2 (top panels), �wreh ¼ 0 (middle panels), and �wreh ¼ 0:8 (bottom panels). The right panels display the corresponding
predictions in the plane ðnS; rÞ. The reheating has a strong influence for low values of both �wreh and �=MPl. As in Figs. 1 and 2, the

annotations give the values of logðg1=4� Treh=GeVÞ. It is also interesting to notice that the sequence of successive Treh is switched for
�wreh ¼ 0:8 (in fact for �wreh > 1=3), i.e. large reheating temperatures correspond to smaller spectral indices for �wreh ¼ 0:8 (i.e. �wreh >
1=3) while, for �wreh ¼ 0 or �wreh ¼ �0:2 (i.e. �wreh < 1=3), they correspond to larger nS.
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they are now provided by our inflationary model parame-
ters, up to some observationally convenient rescaling. For
instance, we will prefer to sample on P�, the amplitude of
the scalar perturbation at the pivot scale, rather than on the
potential normalization M, both being in one-to-one cor-
respondence. Similarly, it is more convenient to sample the
reheating era over the parameter R,

R � Rrad

�1=4
end

MPl

; (38)

rather than Rrad. As can be seen by comparing Eq. (15) and
the following exact expression:

lnR ¼ NT � N� þ N0 þ 1

2
ln

�
3
Vend

V�
3� �1�
3� �1end

�
; (39)

contrary to R, the values of Rrad explicitly depend on P�.
This would induce unwanted correlations between Rrad and
P� which are therefore avoided by sampling the reheating
over R. Notice that since R and Rrad differ by a factor �end,
they are also in one-to-one correspondence once the model
of inflation is specified [27]. In order to perform the
MCMC analysis, we still have to specify the prior proba-
bility distributions. Concerning the cosmological parame-
ters, we have chosen wide flat priors around the preferred
posterior values obtained by the WMAP team [45]. The
reheating energy scale being unknown, we assume a flat
prior on lnR whose extension is given by the consistency
conditions mentioned in Sec. II B. Reheating should occur
before nucleosynthesis and after the end of inflation while
the positivity energy conditions imply �1=3< �wreh < 1.
As a result, we take a flat prior for lnR in the range [27]

ln

�
�1=4
nuc

MPl

�
< lnR<� 1

3
ln

�
�1=4
nuc

MPl

�
þ 4

3
ln

�
�1=4
end

MPl

�
: (40)

The lower bound is approximately ’ �47 for �nuc ¼
10 MeV whereas the upper bound depends on �end, and
thus on the other inflationary model parameters. Finally,
we have chosen a flat prior on the logarithm of P� around
the value giving the right amplitude of the CMB anisotro-
pies: 2:7< lnð1010P�Þ< 4:0. Let us notice that since P� is
well constrained, this translates into an upper bound on

lnð�1=4
end=MPlÞ<�5:5 (analogous to the upper bound onH�

in the slow-roll approximation) that will therefore be in-
herited by lnR so that the maximal value of the upper
bound is ’ 8:3. The other prior choices on the primordial
parameters are those concerning the inflaton potential and
will be specified later.

In the following, we perform the WMAP7 data analysis
along those lines for both the large and small field models.
As the first step, we sample over the rescaled reheating
parameter lnR without any assumptions on �wreh. We show
that it is actually constrained for all models. As can be
checked in Eq. (10), it means that the CMB data restrict the
a priori possible values of �N and �wreh. Conversely, this

result shows that not including the reheating parameter
when constraining inflationary models is no longer a rea-
sonable option. For the second step, we break the degen-
eracy between �wreh and �N and assume that �wreh takes its
natural values for the large field models given in Eq. (23),
or choose a specific value in the small field models. These
reasonable extra assumptions translate the bounds on lnR

into a lower limit on �reh and/or g
1=4
� Treh. Unless specified,

we have stopped theMCMC exploration according to the R
statistics [58] implemented in COSMOMC such that the
difference in variances between the different Markov
chains does not exceed a few percent. Typically, this
corresponds to a set of 300 000 to 500 000 samples depend-
ing on the underlying model of inflation.

B. Large field models

The potential for the large field models is given in
Eq. (21). Together with P� and lnR, there is only one
additional primordial parameter p for which we have
chosen a flat prior in the range p 2 ½0:2; 5�. The upper
bound is motivated by the previous constraints on large
fields [27] whereas the lower one is a theoretical prejudice
associated with the non-naturalness of extremely small
values of p in any field theory. The marginalized posterior
distributions for the sampled and derived cosmological
parameters are represented in Fig. 4 for the two prior
assumptions detailed in the following. The solid lines are
without any assumption on the reheating whereas the
dashed ones are under the natural equation of state �wreh ¼
ðp� 2Þ=ðpþ 2Þ. These probabilities are compatible with
the one already derived in the literature [45,59] up to slight
shifts coming from changing the reheating assumptions.
This is the result of some tension between the large field
models which generically predict a large tensor-to-scalar
ratio r and its nonobservation. Being more restrictive on
the reheating gives less flexibility to the model such thatH0

and�b are slightly shifted to compensate for the too high r
values.
In Fig. 5, we have plotted the marginalized probability

distribution for the large field primordial parameters with-
out assumption on the reheating. It is particularly interest-
ing to compare these plots to Fig. 18 of Ref. [27] since this
allows us to see the improvements on the parameter con-
straints coming from the passage from WMAP3 data to
WMAP7. In addition to the expected constraints on P�, we
find the 95% confidence limit

p < 2:2; (41)

suggesting that �2 inflation may now be considered under
pressure. Let us emphasize that this result is robust against
any possible reheating evolution since marginalized over
lnR. Concerning this last parameter, we find a 95% lower
bound:

lnR>�28:9: (42)
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In fact, as can be checked in Fig. 6, these two parameters
are correlated together and also with �end. These correla-
tions can be understood as follows. From Eq. (39), the
quantities lnR, p, and lnð�end=M

4
PlÞ are related by the

formula

ln

�
�end

M4
Pl

�
¼ lnð128�2P�Þ � 2N0 þ 2 lnR� 2

1� nS

� p

2

1þ nS
1� nS

þ ln

�
8pð1� nSÞ

pþ 2

�
; (43)

where P� and nS are well-constrained quantities. As a
result, at fixed lnR, the larger the p values, the lower the
energy scale at the end of inflation has to be, which is
exactly what is observed in Fig. 6. Of course, p cannot be
too large since, in this case, the tensor-to-scalar ratio r
increases and rapidly becomes incompatible with the CMB
data. In Fig. 6, we also observe that the smaller p, the
larger the allowed range of variation of lnR. The upper
limit on lnR does not depend on p and just comes from the
upper limit on the energy scale of inflation ( lnR & 8:3). On
the other hand, the lower limit strongly depends on p and
represents a nontrivial result. This expresses the fact that,
for a given p, there are values of lnR for which there is no
way to obtain, at the same time, a consistent reheating
epoch and CMB predictions compatible with the data.
From this effect, we also get the energy scale of large field
inflation, and at two-sigma level

4:4� 1015 GeV<�1=4
end < 1:2� 1016 GeV: (44)

3 3.05 3.1 3.15

ln[1010 P
*
]
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p
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ln(R)
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ln(ρ
end

 / M
pl
4 )

FIG. 5. Marginalized posterior probability distributions (solid
lines) and mean likelihoods (dotted lines) for the large field
model primordial parameters. This is without assumption on the
reheating era. Notice the lower bound on the reheating parameter
lnR which correlates with the potential power p (see also Fig. 6).
The energy scale at the end of large field inflation is also
constrained.
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FIG. 4 (color online). Marginalized posterior probability dis-
tributions for the base and derived cosmological parameters in
large field inflation. The black solid lines are without any
assumptions on the large field reheating whereas the red dashed
ones are under the prior �wreh ¼ ðp� 2Þ=ðpþ 2Þ. They have
been represented only when they differ with respect to the
former.
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FIG. 6 (color online). Two-dimensional marginalized posterior
probability distribution (point density) in the plane ðp; lnRÞ and
its one- and two-sigma confidence intervals. Correlations with
the energy scale of large field inflation are traced by the color
scale (shading).
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The upper limit just comes from the constrain on the
energy scale of inflation while the lower limit originates
from the fact that p cannot be too large (recall low values
of �end means large value of p).

Assuming now that the reheating proceeds according to
Eq. (23), one obtains the marginalized posteriors plotted in
Figs. 7 and 8. To be consistent, we have modified our prior
on p by assuming a flat distribution in p 2�1; 5�; the case
p ¼ 1 is a limiting case that may be problematic. Indeed,
values of p < 1 would induce �wreh <�1=3 and inflation
would not stop. Moreover, instead of using lnR, we have
used Eqs. (13) and (38) to sample the parameter space over
lnð�reh=M

4
PlÞ and from a flat prior in ½lnð�nuc=M

4
PlÞ;

lnð�end=M
4
PlÞ�. The upper bound on the p posterior is

slightly tighter due to the restriction made over the reheat-
ing: we find the two-sigma limit p < 2:1. For the same
reasons, the energy scale of large field inflation is a bit
more constrained, and the two-sigma range becomes

5:2� 1015 GeV< �1=4
end < 9:1� 1015 GeV: (45)

Certainly, the more interesting result is the lower bound on
the reheating energy scale. At 95% of the confidence limit

�1=4
reh > 17:3 TeV: (46)

The correlations between these three parameters are rep-
resented in Fig. 8 and have the same origin as the ones
displayed in Fig. 6, up to the change of variable R to �reh.
In particular, we see that, at a fixed value of p, the con-
straints on �reh are tighter for p & 1:5 than for p ’ 1:5.
This comes from the fact that the reheating is well con-
strained for a negative mean equation of state, which

precisely corresponds to p < 2 [see Eq. (23)]. The change
of behavior around p ¼ 1:5 comes from this effect com-
bined with a two high tensor-to-scalar ratio when p * 2.
Let us also emphasize that Eq. (46) is marginalized over all
large field models. Coming with a theoretical preference
for a given value of p can lead to stronger bounds, as for
instance if p * 1 or p ¼ 2 (see Fig. 8). Finally, one can
check that the bounds found in this section are compatible
with the expectations we have derived from the slow-roll
predictions of Sec. II C.
In the next section, we perform a similar analysis for the

small field models.

C. Small field models

The small field model potential of Eq. (31) involves an
extra parameter compared to large fields which is the VEV
�. The scale of this parameter being unknown, we have
chosen a flat prior on logð�=MPlÞ in the range ½�1; 2�.
With the lower and upper limits being chosen only for
numerical convenience, one should keep in mind that the
physical values of � may be larger or smaller. The impor-
tant point is however that such a prior includes both sub-
Planckian and super-Planckian values without prejudice.
Concerning the potential index p, we have chosen a flat
prior in the range p 2 ½2:4; 10�. The upper bound is arbi-
trary whereas the lower bound excludes p ¼ 2 since this
model is a special case [27]. In fact, there exists another
reason that justifies the above choices. In the limit
�=MPl � 1, one can show, using a perturbative expansion
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FIG. 7. Marginalized posterior probability distributions (solid
lines) and mean likelihood (dotted lines) for the large field
parameters when �wreh ¼ ðp� 2Þ=ðpþ 2Þ. This extra assump-
tion on reheating yields to tighter constraints than in Fig. 5. In
particular, we find �reh > 17:3 TeV at 95% confidence level, as
well as p < 2:1.
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FIG. 8 (color). One- and two-sigma marginalized limits in the
plane ½p; lnð�reh=M

4
PlÞ� for the large field models with �wreh ¼

ðp� 2Þ=ðpþ 2Þ. The point density traces the associated two-
dimensional posterior while the color map (shading) shows
correlations with the energy scale at which inflation ends.
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in MPl=�, that the two first horizon flow functions �1 and
�2 become independent from � and p, namely �1 ¼
ð4�N� þ 1Þ�1 and �2 ¼ 4�1. Therefore, it would be use-
less to take a larger upper bound on the � prior since the
corresponding physical predictions are no longer affected
by this choice. All the other priors, both on the cosmologi-
cal and primordial parameters, have been chosen as for the
large field exploration. For the sake of clarity, we have not
represented the marginalized posteriors for the cosmologi-
cal parameters. Contrary to the large field models, these
posteriors are almost the same whatever we assume for the
reheating. The reason is that small field models do not have

a tendency to produce a high tensor-to-scalar ratio. There is
therefore no need for the cosmological parameters to com-
pensate for such an effect and they decouple from the
details of the inflationary and reheating phases. Finally,
the cosmological parameter posteriors in small field infla-
tion end up being very similar to the dashed curves (or
solid curves when they are absent) plotted in Fig. 5.
In Figs. 9 and 10, we have plotted the marginalized

posterior probability distributions (one- and two-
dimensional, respectively) for the primordial small field
parameters without assumption on the reheating. Again,
we find the WMAP data to give a lower limit on the
reheating parameter, at two-sigma level

lnR>�23:1: (47)

Concerning the parameters � and p, they are not con-
strained. However, the posteriors of Fig. 9 clearly show a
tendency to favor super-Planckian values of � together
with large values of p. As can be seen in Fig. 10, since
� can take arbitrarily low values, the energy scale of small
field inflation is not constrained from below. We find only

the consistency condition that �1=4
end < 9� 1015 GeV from

the P� limits. The correlations between � and p can be
understood from Sec. II D and come from the requirements
of having the right spectral index. The bound of Eq. (47)
has the same origin but through the selection of the favored
�N� values. More details on these effects can be found in
Refs. [27,47].
As we did for large fields, we now assume an equation of

state parameter for the small field reheating. Contrary to
large field models, we no longer have a relationship be-
tween �wreh and the inflationary potential and one may only
assume fiducial values ranging from�1=3 to 1. Again, the
MCMC has been now sampled directly over lnð�reh=M

4
PlÞ

rather than over lnR by making use of Eqs. (13) and (38).
The resulting one-dimensional posteriors for the primor-
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FIG. 9. Marginalized posterior probability distributions (solid
lines) and mean likelihoods (dotted lines) for the small field
model primordial parameters. This is without assumption on the
reheating era. Notice again the lower bound on the reheating
parameter lnR and the slightly favored super-Planckian values of
�. Correlations are displayed in Fig. 10.
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FIG. 10 (color online). One- and two-sigma contours of the two-dimensional marginalized probability distributions for small field
inflation. The point density traces the associated two-dimensional posterior while the color scale (shading) shows correlations with
third parameters. Notice the correlation between � and p, as well as with lnR.
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dial parameters have been plotted in Fig. 11 for the four
values �wreh ¼ �0:3, �0:2, �0:1, and �wreh ¼ 0, and only
when the posteriors are affected by this choice. Comparing
Figs. 9 and 11 shows that the posteriors of �, p (and P�)
are mostly independent of the details of the reheating. The
only quantity changing accordingly is �reh. This is not
surprising since at a given R, changing the values of �wreh

modifies the number of e-folds the Universe reheated. As a
result, the constraint on R for small fields translates into a
lower bound on �reh but only when �wreh is small. At 95% of
the confidence limit, we find

�wreh ¼ �0:3 ) �1=4
reh > 8:9� 105 GeV;

�wreh ¼ �0:2 ) �1=4
reh > 3:9� 102 GeV;

(48)

while higher values of �wreh do not constrain �reh more than
the prior �reh > �nuc. Physically, these results can be fully
understood from Fig. 3. In particular, the fact that con-
straints on �reh can be derived for negative values of �wreh is
apparent from these plots. As expected, correlations be-
tween �reh and the other parameters are similar to the ones
associated with lnR. In Fig. 12, we have represented the
two-dimensional posterior and its one- and two-sigma
contours in the plane ½logð�=MPlÞ; lnð�reh=M

4
PlÞ�. The

color scale (shading) traces correlations with the energy
scale of small field inflation. We recover the slightly dis-
favored values of sub-Planckian vacuum expectation val-
ues. They clearly remain acceptable but only if the

reheating ends at a high energy. Again, the previous results
are compatible and easily understandable with the slow-
roll predictions of Sec. II D.
To conclude this section, we have found that the current

WMAP data give nontrivial information on the reheating
era in the two most considered classes of prototypical
inflationary models (large and small fields). Conversely,
when the goal is to use CMB data to constrain these
models, including the reheating into the marginalization
is definitely no longer an option.

D. Importance sampling from slow-roll bounds

The formulas derived in Sec. II B link the reheating and
inflationary model parameters to the spectral index and
tensor-to-scalar ratio. As a result, they could be used to
extract constraints on the reheating energy scale from some
already derived constraints on the slow-roll parameters by
using importance sampling [55]. However, this method is
highly inefficient since most of the favored ðnS; rÞ values
do not necessarily correspond to a consistent reheating
model in a given inflationary framework. However, it
clearly illustrates how knowledge on the primordial power
spectra shape, complete with an inflaton potential, trans-
lates into some information on the energy scale at which
the reheating ends. For this reason, we briefly discuss this
method in the following although we prefer an exact
numerical integration as performed above.
Assuming an inflationary model, with a known potential

Vð�Þ, one can generate any spectral index and tensor-to-
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FIG. 11 (color online). Marginalized posterior probability dis-
tributions (solid lines) and mean likelihoods (dotted lines) for the
small field model. These posteriors assume a constant equation
of state with (from bottom to top) �wreh ¼ �0:3 (black lines),
�0:2 (red lines), �0:1 (blue lines), and �wreh ¼ 0 (green lines).
Only �reh is affected by such prior choices (bottom right panel).
The energy scale of reheating is all the more constrained from
below than �wreh is small.
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FIG. 12 (color online). One- and two-sigma marginalized lim-
its in the plane ½logð�=MPlÞ; lnð�reh=M

4
PlÞ� for the large field

models with �wreh ¼ �0:3. The point density traces the associ-
ated two-dimensional posterior while the color map (shading)
shows correlations with the energy scale at which inflation ends.
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scalar ratio such that, at leading order in slow roll,

r ¼ 16�1�; nS � 1 ¼ �2�1� � �2�; (49)

with

�1� ¼ 1

2

�
V0�
V�

�
2
; �2� ¼ �2

�
V00�
V�

�
�
V 0�
V�

�
2
�
: (50)

A prime here is understood as a derivative with respect to
the field �. The star still refers to the time at which the
scale under consideration crossed out the Hubble radius
during inflation. Inverting Eq. (49), or Eq. (50), gives the
value of �� (and eventually other parameters) leading to
the required couple ðnS; rÞ. For instance, in the large field
models, one would find

��
MPl

¼
ffiffiffiffiffiffiffiffiffi
8�1�
�22�

s
; p ¼ 4

�1�
�2�

: (51)

From �� one can derive �N� from the slow-roll trajectory
and the value at which inflation stops, �end. For instance,
for large field inflation, one would obtain

�N� ¼ 1� �1�
�2�

: (52)

The energy scale at which reheating ends stems from
Eqs. (10) and (13):

ln

�
�1=4
reh

MPl

�
¼ 3þ 3 �wreh

1� 3 �wreh

ðN0 þ �N�Þ

� 1þ 3 �wreh

2ð1� 3 �wrehÞ lnð8�
2P�Þ þ ln

ffiffiffiffiffiffiffi
�1�

p

þ 1

1� 3 �wreh

ln

�
3

�1�
3� �1�
3� �1end

Vend

V�

�
; (53)

provided �wreh � 1=3. As expected, if the reheating is ra-
diation dominated, it cannot be distinguished from the
usual radiation era and �reh cannot be inferred. Clearly,
for a given set ð�1�; �2�; P�Þ, in an assumed model of
inflation, the right-hand side of Eq. (53) is uniquely deter-
mined and hence is �reh. As already mentioned, such a
method is not well suited: picking up a random
ð�1�; �2�; P�Þ compatible with the power spectra shapes
usually predicts a value of �reh which is either incompat-
ible with BBN, or with the underlying model, i.e. �reh >
�end. The reason is that inflationary physics is much more
than Taylor expanding a potential and fitting the power
spectra shape. In order to solve this issue, the way out is to
perform an exact numerical integration of the inflationary
perturbations, including the reheating parameter, as we
previously did. This method has also the advantage to
free ourselves from any assumption on the equation of
state parameter �wreh.

IV. CONCLUSION

We now conclude our investigation by revisiting our
main results. The most important conclusion is that, both
for large and small field scenarios, the reheating parameter
lnR is now constrained by CMB data. The physical origin
of this result is clear. For fixed physical length scales today,
a change in lnR modifies the location of the CMB observ-
able window along the inflationary potential, which is
possible only for a limited range of lnR given the data
accuracy. This conclusion is general and does not depend
on the details of the reheating epoch. However, if one
assumes a model for reheating, typically if one chooses a
specific value of the mean equation of state, then it be-
comes possible to express the constraints mentioned above
as limits on the energy density at the end of reheating or,
equivalently, as constraints on the reheating temperatures.
This leads to Eqs. (46) and (48). These results are of
particular interest for the supersymmetric extension of
either large or small field inflationary models. Indeed,
our result limits the reheating temperature from below
whereas gravitinos production gives an upper bound [32–
42]: Treh < 104 TeV, where Treh is given in Eq. (29).
Therefore, assuming g� ’ 200 in the large field case, we
now have an allowed range of variation for the reheating
temperature given by

6 TeV & Treh & 104 TeV: (54)

By including the reheating parameter in our analysis, we
can marginalize over all reheating history to infer the
inflationary parameter values in a robust way. For large
field scenarios, we find that the power index is upper
limited by p < 2:2, at 95% confidence limit. This means
that the prototypical model of inflation, namely, massive
chaotic inflation, is now under pressure. Similarly, the
small field models with sub-Planckian vacuum expectation
values � are slightly disfavored. In fact, � is correlated
with the potential power p, as represented in Fig. 10.
Without marginalization over p, large values of p * 6
are actually necessary to allow the sub-Planckian values
of � to be inside the 95% contour. If one has a theoretical
prejudice for�<MPl, and for reasonable values of p < 6,
then small field models can also be considered under
pressure.
Since the constraints on the reheating parameters are

directly related to the ability of the data to determine the
observable parameters, one could consider more data sets
than the WMAP7 data. In fact, since solely the accuracy on
the primordial parameters matters, data sets improving the
constraints on the standard cosmological parameters do not
change the reheating bounds. On the other hand, small
scale CMB experiments may be decisive but, as mentioned
in Ref. [45], they do not give a significant improvement on
the determination of nS and r due to their low accuracy at
large multipoles. We have indeed tested that our limits do
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not change by including the baryonic acoustic oscillation
[60] or the arcminute cosmology bolometer array receiver
data [61] in our analysis. On the other hand, since the
future Planck data are expected to improve the bounds on
nS, r and even on new primordial observables, we should
get unprecedented information on the inflationary reheat-
ing era.
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APPENDIX A: REHEATING FROM INFLATON
DECAY

For large field models, we have used the fact that �wreh ¼
ðp� 2Þ=ðpþ 2Þ, a well-known formula established for the
first time in Ref. [17]. However, this result assumes that the
inflaton field is not coupled to other fields, a hypothesis
that, if acceptable at the early stages of the reheating phase,
cannot be maintained if one is interested in the transition to
the radiation dominated era. The purpose of this Appendix
is to take into account the coupling of the inflaton field with
the rest of the world and to study its impact on the value of
�wreh. As we show in the following, when the coupling is
considered, the value of �wreh does not significantly deviate
from the equation given above.

A simple and standard way to model the physical situ-
ation where the inflaton field decays into radiation is to
write the Klein-Gordon equation as [17]

€�þ ð3Hþ �Þ _�þ dV

d�
¼ 0; (A1)

with � being the inflaton decay rate. The evolution equa-
tion for the radiation energy density is modified accord-
ingly in order to ensure that the total energy density is
conserved. One obtains

d��

dN
þ 4�� ¼ 2p

pþ 2

�

H
�inf ; (A2)

where �inf � _�2=2þ Vð�Þ. Of course, these two formulas
must be supplemented with the Friedmann-Lemaı̂tre equa-
tion, H2 ¼ ð�inf þ ��Þ=ð3M2

PlÞ. We have numerically inte-

grated Eqs. (A1) and (A2) for large field inflation with
p ¼ 2 and the corresponding evolutions of �inf , �rad, wreh,
and �wreh are displayed in Fig. 13.

There are some subtle issues if one wants to numerically
evaluate the value of �wreh. For instance, the time at which
one considers the Universe to be reheated is not very well
defined since we have a smooth transition, and this affects
the precise numerical determination of �wreh. Indeed, one
could consider that reheating is completed when t� ��1

or when wreh ¼ 1=3� � for a given �. These choices (for
instance the precise value of �) lead to different values of

the mean equation of state. Moreover, the numerical cal-
culation itself can be difficult since one has to integrate a
rapidly oscillating function. All in all, we find that, for
Nreh ’ 5 (as in Fig. 13), �wreh & 0:08, that is to say a value
close to 0. Let us also notice that when the value of Nreh

increases (i.e. when the reheating temperature decreases),
one expects this value to be even less than the limit quoted
before (but this regime is numerically difficult to follow
since the equation of state rapidly oscillates during a long
time). Therefore, we conclude that Eq. (23) can reasonably
be trusted and this justifies the approach used in this
paper.

FIG. 13 (color online). Top panel: Evolution of the inflaton
(dotted green line) and radiation (solid red line) energy densities
during the reheating epoch as a function of the number of e-folds
since the beginning of large field inflation with p ¼ 2 (NT ’ 61).
The inflaton decay rate has been chosen to be � ’ 1:375�
109 GeV corresponding to a reheating temperature of Treh ’
3:2� 1013g�1=4

� GeV. The total number of e-folds during the
reheating epoch is Nreh ¼ 5. Bottom panel: the instantaneous
equation of state (black solid line), wreh ¼ ðPinf þ
��=3Þ=ð�inf þ ��Þ, during the reheating era and going to 1=3.

The dashed red line represents �wreh. Its value when the instan-
taneous equation of state has reached 1=3 is ’ 0:08 so that, even
when the number of e-folds during reheating is small, deviations
from �wreh ¼ 0 never exceed 8%.
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APPENDIX B: SLOW-ROLL POSTERIOR
DISTRIBUTIONS

In Sec. II, we used the one- and two-sigma contours in
the planes ðnS; rÞ and ð�1; �2Þ obtained from the WMAP7
data. In this section, for the sake of completeness, we also
provide the resulting one-dimensional marginalized poste-
rior probability distributions on those four parameters to-
gether with the third slow-roll parameters �3 and the
energy scale of inflation. Let us notice that our analysis,
even for nS and r, assumes the second order slow-roll
expanded primordial power spectra for both the scalar
and tensor perturbations.

In Fig. 14, we present the marginalized posterior proba-
bility distributions for the three first slow-roll parameters
and for the Hubble parameter during inflation (Hinf ¼ H�).
For the first slow-roll parameter, we have assumed a
Jeffreys’ prior in the range ½10�5; 100�, i.e. a flat prior on
logð�1Þ in the range ½�5; 0�, as appropriate for a parameter

the order of magnitude of which is unknown. For the two
next slow-roll parameters, we have chosen flat priors in
½�0:2; 0:2�. The upper limit on �1 directly comes from the
level of primordial gravitational waves. The parameter �2
is well constrained while �3 remains unbounded. There
exists an upper limit on the energy scale of inflation which,
as for the first slow-roll parameter, directly comes from the
nonobservation of the primordial gravitational waves. In
Fig. 15, the spectral index and the tensor-to-scalar ratio
have been plotted and obtained by importance sampling
from the slow-roll constraints. Indeed, at second order in
slow roll, one has

nS ¼ 1� 2�1 � �2 � 2�21 � ð2Cþ 3Þ�1�2 � C�2�3;

r ¼ 16�1

�
1þ C�2 þ

�
C� �2

2
þ 5

�
�1�2

þ
�
C2

2
� �2

8
þ 1

�
�22 þ

�
C2

2
� �2

24

�
�2�3

�
; (B1)

where C is a numerical constant, C ’ �0:7296. As can be
seen on these plots, the spectral index value nS ¼ 1 is
disfavored but not excluded when marginalizing over sec-
ond order slow roll. As for �1, there is only an upper limit
on the tensor-to-scalar ratio r.
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