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Recently, we have shown that scalar spectra with lower power on large scales and certain other features

naturally occur in punctuated inflation, i.e. the scenario wherein a brief period of rapid roll is sandwiched

between two stages of slow roll inflation. Such spectra gain importance due to the fact that they can lead to

a better fit of the observed CMB anisotropies, when compared to the conventional, featureless, power law

spectrum. In this paper, with examples from the canonical scalar field as well as the tachyonic models, we

illustrate that, in punctuated inflation, a drop in the scalar power on large scales is always accompanied by

a rise in the tensor power and, hence, an even more pronounced increase in the tensor-to-scalar ratio r on

these scales. Interestingly, we find that r actually exceeds well beyond unity over a small range of scales.

To our knowledge, this work presents for the first time, examples of single scalar field inflationary models

wherein r � 1. This feature opens up interesting possibilities. For instance, we show that the rise in r on

large scales translates to a rapid increase in the angular power spectrum, CBB
‘ , of the B-mode polarization

of the CMB at the low multipoles. We discuss the observational implications of these results.
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I. INTRODUCTION AND MOTIVATION

The concordant cosmological model—viz. a spatially
flat, � cold dark matter (�CDM) model and a nearly scale
invariant primordial spectrum, with or without a small
tensor contribution (say, with a tensor-to-scalar ratio r of
less than 0.1)—seems to fit the recent CMB data rather well
[1]. However, different observations have indicated that a
few low multipoles of the observed CMB angular power
spectrum lie outside the cosmic variance associated with
the concordant model [2]. These discrepancies have re-
mained in subsequent updates of the data [1,2], and have
also survived in other independent estimates of the angular
power spectrum (see, for instance, Ref. [3]). Given the
CMB observations, a handful of model independent ap-
proaches have been constructed over the last few years to
recover the primordial power spectrum [4]. At the smaller
scales, all these approaches arrive at a spectrum that is
nearly scale invariant. However, many of the approaches
seem to unambiguously point to a sharp drop in power
(with specific features) at the scales corresponding to the
Hubble scale today.

Even as the debate about the statistical significance of
the outliers in the CMB data has continued [5], a consid-

erable amount of effort has been devoted to understand the
possible physical reasons behind these outliers (for an
inexhaustive list, see Refs. [6–9]). Within the inflationary
paradigm, different models have been constructed to pro-
duce a sharp drop in the scalar power at large scales, so as
to lead to a better fit to the low quadrupole (see Refs. [7,8];
for earlier efforts that discuss generating features in the
inflationary perturbation spectrum, see Refs. [10–12]).
However, many of the scenarios that have been considered
in this context seem rather artificial—they either assume a
specific preinflationary regime or specific initial conditions
for the inflaton [8]. Also, in some cases, either certain
special initial conditions are chosen for the perturbations
or the initial conditions are imposed when a subset of the
modes are outside the Hubble radius [8]. Such require-
ments clearly contradict the spirit of inflation.
Motivated by the aim of arriving at the desired power

spectrum without any special initial conditions on either
the background or the perturbations, we have recently
considered a setting involving two stages of slow roll
inflation that sandwich an intermediate period of departure
from inflation [13]. In such a punctuated inflationary sce-
nario,1 the first phase of slow roll inflation allows us to
impose the standard, sub-Hubble initial conditions on the
perturbations which may leave the Hubble radius during
the subsequent rapid roll regime (i.e. a period wherein the
first slow roll parameter � * 1). The second slow roll
phase lasts for, say, 50–60 e-folds, thereby enabling us to
overcome the well-known horizon problem associated with
the hot big bang model. We had discovered that such a
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background behavior can be achieved in certain large field
inflationary models wherein the potentials contain a point
of inflection [the form of the potentials we had considered
are encountered in the minimal supersymmetric standard
model (MSSM)]. We had shown that the slow-rapid-slow
roll transition leads to a step like feature in the scalar power
spectrum. Importantly, we had found that, if we set the
scales such that the drop in the power spectrum occurs at a
length scale that roughly corresponds to the Hubble radius
today, then a spectrum we had obtained leads to a much
better fit to the WMAP 5-year data when compared to the
best fit reference �CDM model with the standard, power
law, primordial spectrum [13].

All models of inflation generate tensor perturbations that
can potentially have an observable effect on the measured
CMB temperature and polarization spectra [14]. Barring an
exception [15], most of the efforts in the literature have
focused on suppressing the scalar power spectrum on large
scales, and have overlooked the corresponding effects on
the tensors. In this paper, we investigate the effects of the
slow-rapid-slow roll transition on the tensor perturbations
in the canonical scalar field and the tachyonic [16–18]
inflationary models. Aided by a few different examples
(including the specific model that we had considered ear-
lier), we show that, in punctuated inflation, a drop in the
scalar power on large scales is always associated with an
increase in the tensor power and, hence, a dramatic rise in
the tensor-to-scalar ratio r, on these scales. In fact, we find
that the strong rise leads to a small range of modes for
which the tensor-to-scalar ratio actually proves to be much
greater than unity.2 We believe that this is the first instance
in the literature wherein examples of single scalar field
inflationary models resulting in r � 1 are being presented.
However, if we are to utilize the drop in the scalar power to
provide a better fit to the low CMB quadrupole, then the
modes with the rather large tensor-to-scalar ratio turn out
to be bigger than the Hubble scale today.

The rapid rise in the tensor-to-scalar ratio r at large
scales translates to a dramatic enhancement in the angular
power spectrum, CBB

‘ , of the B-mode polarization of the

CMB at the low multipoles. This could potentially be a
characteristic signature of punctuated inflationary scenar-
ios that match the CMB data well. But, in the specific
models of punctuated inflation that we have explored to
match the low multipoles of CMB temperature power
spectrum, the enhanced CBB

‘ is not at an observable level.

This is due to the following two reasons. First, the band of
scales where r � 1 is well beyond the Hubble scale today
and, second, because r is extremely small at large wave
numbers. However, it is readily conceivable that there exist
models of punctuated inflation where either one or both of

these features can be modified favorably to arrive at ob-
servable levels of CBB

‘ . We defer a systematic hunt for such

models to a later publication and, in this work, we highlight
the extremely large values of tensor-to-scalar ratio r attain-
able in the punctuated inflationary scenario.
This paper is organized as follows. In Sec. II, after

rapidly summarizing the essential equations and quantities,
we outline the broad features of the scalar and tensor
spectra in punctuated inflation. In Sec. III, we discuss the
spectra that arise in two different punctuated inflationary
models involving the canonical scalar field, while, in
Sec. IV, we discuss the spectra in a particular tachyonic
model. In Sec. V, we consider the corresponding effects on
the angular power spectrum of the B-mode polarization of
the CMB. Finally, in Sec. VI, we conclude with a brief
discussion on the implications of this feature. In the
Appendix, to highlight the feature that the tensor-to-scalar
ratio can turn out to be greater than unity for a range of
modes in punctuated inflation, we illustrate the evolution
of the scalar and tensor amplitudes for a particular mode
from this domain.
In the discussions below, we shall set @ and c as well as

MP ¼ ð8�GÞ�1=2 to unity. As is often done in the context
of inflation, we shall work with the spatially flat Friedmann
model. Also, throughout, an overdot and an overprime
shall denote differentiation with respect to the cosmic
and the conformal times, respectively. Moreover, � shall
denote the scalar field described by the canonical action,
while T shall denote the tachyon.

II. CHARACTERISTICS OF THE PERTURBATION
SPECTRA IN PUNCTUATED INFLATION

In this section, after outlining the equations governing
the perturbations and listing the observable quantities of
interest, we discuss the broad features of the scalar and the
tensor spectra that arise in the punctuated inflationary
scenario.

A. Key equations and quantities

We begin by briefly summarizing the essential equations
and the quantities that we shall be interested in [19,20].
The curvature perturbation Rk and the tensor perturbation
Uk satisfy the differential equations

R00
k þ 2

�
z0

z

�
R0

k þ k2c2SRk ¼ 0 and

U00
k þ 2

�
a0

a

�
U0

k þ k2Uk ¼ 0;

(1)

where a is the scale factor and cS denotes the speed of
propagation of the scalar perturbations. The effective speed
of sound cS turns out to be unity for the canonical scalar
field, while c2S ¼ ð1� _T2Þ in the case of the tachyon [18].

Also, the quantity z is given by

2In the models we consider, r attains a maximum value of
about 100. Though the tensor-to-scalar ratio is large, the actual
amplitude of the tensor perturbations still remains small enough
for the linear perturbation theory to be valid.
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z ¼ ða _�=HÞ and z ¼ ð ffiffiffi
3

p
a _T=cSÞ; (2)

in the case of the conventional scalar field and the ta-
chyonic inflationary models, respectively, withH, as usual,
being the Hubble parameter. The scalar and the tensor
power spectra P SðkÞ and P TðkÞ are then defined as

PSðkÞ ¼
�
k3

2�2

�
jRkj2 and P TðkÞ ¼ 2

�
k3

2�2

�
jUkj2;

(3)

with the amplitude of the perturbations Rk and Uk eval-
uated, in general, at super-Hubble scales. [The factor of 2
in the tensor spectrum P TðkÞ above is to account for the
two states of polarization of the gravitational waves.]
Finally, the tensor-to-scalar ratio rðkÞ is defined as follows:

rðkÞ �
�
P TðkÞ
P SðkÞ

�
: (4)

B. The scalar and the tensor spectra in punctuated
inflation

While considering single scalar field models, it is often
remarked that, during inflation, the amplitude of the cur-
vature perturbations freezes at its value at Hubble exit.
Actually, this happens to be true only if there is no depar-
ture from slow roll inflation soon after the modes leave the
Hubble radius [21]. But, when there is a period of deviation
from slow roll, then, it is found that the asymptotic (i.e. the
extreme super-Hubble) amplitude of the modes that exit
the Hubble scale just before the deviation are enhanced
when compared to their value at Hubble exit. While modes
that leave well before the departure from slow roll are
unaffected, it has been shown that there exists an inter-
mediate range of modes whose amplitudes are suppressed
at super-Hubble scales. Because of these behaviors, punc-
tuated inflation leads to a step like feature in the scalar
power spectrum. Evidently, the two nearly flat regions of
the step correspond to modes that exit the Hubble scale
during the two stages of slow roll. For instance, in the case
of the canonical scalar field models, these slow roll ampli-
tudes will be given by the following standard expression
(see, for example, Refs. [19,20]):

PSðkÞ ’
�

1

12�2

��
V3

V2
�

�
k¼ðaHÞ

; (5)

where V� � ðdV=d�Þ, and the spectral amplitude has to

be evaluated when the modes leave the Hubble radius. The
step actually contains a sharp dip before the rise, and this
feature is associated with the modes that leave the Hubble
radius just before the transition to the rapid roll regime.

Let us now understand the tensor spectrum that can
result in a similar situation. In the case of the scalar modes,
the quantity ðz0=zÞ that appears in the differential equation
for the curvature perturbationRk in Eq. (1) turns out to be

negative during a period of fast roll, and it is this feature
that proves to be responsible for the amplification or the
suppression of the modes at super-Hubble scales [21]. In
contrast, the coefficient of the friction term in the equation
for the tensor amplitude Uk in Eq. (1)—viz. ða0=aÞ—is a
positive definite quantity at all times. Hence, we do not
expect any nontrivial super-Hubble evolution of the tensor
perturbations. However, recall that, during a period of slow
roll, the tensor amplitude is proportional to the potential of
the scalar field and, in the case of the canonical scalar field
models, it is given by [19,20]

PTðkÞ ’
�
2V

3�2

�
k¼ðaHÞ

: (6)

It is then immediately clear that, in the slow-rapid-slow roll
scenario of our interest, the tensor spectrum will also be in
the shape of a step, with the modes that leave during the
second slow roll phase having lower power than those
which exit during the first phase [since, unless the potential
is negative, the inflaton always rolls down the potential
(see, for example, Ref. [22])]. In other words, in punctu-
ated inflation, the tensor step happens to be in exactly the
opposite direction as the step in the scalar spectrum. The
fact that the scalar power drops at large scales, while the
tensor power rises on these scales, leads to a sharp increase
in the tensor-to-scalar ratio r. Interestingly, we find that the
steep rise can result in the tensor-to-scalar ratio being
greater than unity for a small range of modes. (These range
of modes correspond to those for which the scalar spectrum
exhibits a sharp dip before the rise.) However, as we shall
discuss below, in the specific models of punctuated infla-
tion that we consider, in spite of the rise, the tensor-to-
scalar ratio remains too small to be observed (r proves to be
less than 10�4) for the modes of cosmological interest (say,
10�4 < k < 1 Mpc�1). But, we believe that the increase in
the tensor-to-scalar ratio at large scales considerably im-
proves the prospects of constructing punctuated inflation-
ary models wherein CBB

‘ at the low multipoles is within the

observational reach of current missions such as PLANCK
[23] or future ones such as, for instance, CMBPol [24].
In the following two sections, we shall explicitly illus-

trate these behavior with the help of specific examples.

III. PUNCTUATED INFLATION WITH
CANONICAL SCALAR FIELDS

In this section, we shall discuss punctuated inflationary
scenarios in models where inflation is driven by the ca-
nonical scalar field. We shall first present the model that we
had considered earlier [13], and then discuss a hybrid
inflation model.
Before proceeding to discuss the specific models, we

shall outline as to how one can arrive at the potential and
the parameters that result in punctuated inflation and the
desired scalar spectrum. Needless to say, not all potentials
will allow punctuated inflation. Therefore, to begin with,
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one has to identify a potential, or a class of potentials, that
lead to such a scenario. Even among the limited class of
potentials, the required slow-rapid-slow roll transition may
occur only for a certain range of values of the parameters
describing the potential. The form of the potential and the
range of the parameters can be arrived at, say, based on the
behavior of the first two potential slow roll parameters.
Once the potential and the range of the parameters that
allow punctuated inflation have been identified, we need to
ensure that the following two observational requirements
are also satisfied. First, the second stage of slow roll
inflation has to last for about 60 e-folds in order to over-
come the horizon problem. Second, the nearly scale invari-
ant higher step in the scalar power spectrum has to match
the cosmic background explorer (COBE) amplitude. These
two conditions further restrict the allowed range of the
parameters describing the potential.

A. The model motivated by MSSM

The model motivated by MSSM that we had considered
in our earlier work contains two parameters, m and �, and
is described by the potential [25]

Vð�Þ ¼
�
m2

2

�
�2 �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðn� 1Þp

m

n

�
�n þ

�
�

4

�
�2ðn�1Þ;

(7)

where n > 2 is an integer. This potential has a point of
inflection at � ¼ �0 [i.e. the location where both V� and

V�� � ðd2V=d�2Þ vanish], with �0 given by

�0 ¼
�

2m2

ðn� 1Þ�
�
1=ð2ðn�2ÞÞ

: (8)

Note that the potential (7) reduces to a typical large field
model when the field is sufficiently far away from the point
of inflection. It is then clear that the first stage of slow roll
can be achieved in the domain � � �0, and a period of

rapid roll can occur when� ’ ½ ffiffiffi
2

p ðn� 1Þ�. Also, since the
first two potential slow roll parameters vanish at the point
of inflection, a second stage of slow roll can be expected to
arise when the field is very close to �0. We find that
restarting inflation after the rapid roll phase and the number
of e-folds that can be achieved during the second stage of
slow roll crucially depends on the location of the point of
inflection. We depend on the numerics to arrive at a suit-
able value of�0. Once�0 has thus been identified, we find
that the COBE normalization determines the value of the
other free parameter m.
In Fig. 1, we have plotted the scalar and the tensor power

spectra for the cases of n ¼ 3 and n ¼ 4. These spectra
correspond to the parameters that provide the best fit to the
WMAP 5-year data (for further details, see Ref. [13]). We
should mention that in these cases inflation is actually
interrupted for about one e-fold during the rapid roll re-
gime. We had found that, while the n ¼ 3 case provides a
much better fit to the data than the reference concordant
model, the n ¼ 4 case leads to a very poor fit to the data.
We believe that the poor fit by the n ¼ 4 case can be
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FIG. 1 (color online). The scalar power spectrum P SðkÞ (the solid black line) and the tensor power spectrum P TðkÞ (the dashed black
line) have been plotted as a function of the wave number k for the cases of n ¼ 3 (on the left) and n ¼ 4 (on the right). These spectra
correspond to the following values of the potential parameters: m ¼ 1:5368� 10�7 and � ¼ 6:1517� 10�15 (corresponding to �0 ¼
1:9594) for n ¼ 3 case and m ¼ 1:1406� 10�7 and � ¼ 1:448� 10�16 (corresponding to �0 ¼ 2:7818) for n ¼ 4 case. The red
curve in these plots is the spectrum (9) with the exponential cutoff, whose parameters have been arrived at by a simple visual
comparison with the numerically evaluated scalar spectrum. It corresponds to AS ¼ 2� 10�9, nS ¼ 0:945, � ¼ 3:35, and k� ¼
2:4� 10�4 Mpc�1 in the n ¼ 3 case, while AS ¼ 2� 10�9, nS ¼ 0:95, � ¼ 3:6, and k� ¼ 9:0� 10�4 Mpc�1 in the case of n ¼ 4.
Note that the vertical blue lines denote k�. We should mention that, in the two slow roll regimes, the spectral amplitudes evaluated in
the slow roll approximation [cf. Eqs. (5) and (6)] match the above exact numerical spectra quite well. The horizontal dotted lines
indicate the maximum value of the tensor amplitude that can arise in these MSSM-motivated, punctuated inflationary models.
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attributed to the large bump in the scalar power spectrum
that arises just before it turns nearly scale invariant. Since
the bump grows with n, we feel that the cases with n > 4
will fit the data much more poorly and, hence, we have not
compared these cases with the data.
The scalar power spectrum with a drop in power at large

scales is often approximated by an expression with an
exponential cutoff of the following form (see, for instance,
the first two references in Ref. [8]):

PSðkÞ ¼ ASð1� exp½�ðk=k�Þ��ÞknS�1: (9)

In Fig. 1, we have also plotted this expression for values of
AS, nS,�, and k� that closely approximate the exact spectra
we obtain.
In Fig. 2, we have plotted the resulting tensor-to-scalar

ratio r for the two cases of n ¼ 3 and n ¼ 4. Clearly, the
broad characteristics of the scalar and the tensor spectra as
well as the tensor-to-scalar ratio that we had outlined in the
previous section are corroborated by these two figures.

B. A hybrid inflation model

Another model that is known to lead to a punctuated
inflationary scenario is a hybrid model that can be effec-
tively described by the following potential (see the first
reference in Ref. [21]; for the earliest discussion of the
model, see Ref. [26]):

0.00001 0.0001 0.001 0.01 0.1
1×10

-8
1×10

-7
1×10

-6
1×10

-5

0.0001

0.001

0.01

0.1

1

10

100

FIG. 2 (color online). The tensor-to-scalar ratio rðkÞ for the
cases of n ¼ 3 (the solid black line) and n ¼ 4 (the dashed black
line) has been plotted as a function of the wave number k. These
plots have been drawn for the same choice of parameters as in
the previous figure. The vertical solid and dashed blue lines
denote the k� corresponding to the n ¼ 3 and n ¼ 4 cases,
respectively. Note that, despite the rise at the larger wavelengths,
the tensor-to-scalar ratio remains smaller than 10�4 for modes of
cosmological interest (i.e. for k * k�). For this reason, in our
earlier work [13], we had ignored the tensor contribution when
comparing with the WMAP 5-year data. Interestingly, we find
that there arises a domain wherein the tensor-to-scalar ratio rðkÞ
is actually much greater than unity. To highlight this feature, we
have included the horizontal green line which denotes r ¼ 1. In
the Appendix, we have plotted the evolution of the scalar and
tensor amplitudes for a mode from this domain.
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FIG. 3 (color online). The scalar power spectrum P SðkÞ (the solid black line) and the tensor power spectrum P TðkÞ (the dashed black
line) have been plotted (on the left) as a function of the wave number k for the hybrid inflation model described by the potential (10).
The corresponding tensor-to-scalar ratio rðkÞ has also been plotted (on the right). As in the previous figure, the horizontal green line in
the right graph denotes r ¼ 1. These spectra correspond to following values of the potential parameters: M ¼ 2:6� 10�5 and B ¼
0:552. The solid red curve in the left graph is the exponential cutoff spectrum (9) corresponding to AS ¼ 2� 10�9, nS ¼ 1:0, k� ¼
2:2� 10�3 Mpc�1, and � ¼ 3:5. The vertical blue line in both the graphs denotes k�. We should mention that the blue tilt in the scalar
spectrum is very small and, hence, is not evident from the figure. Moreover, we find that, as in the previous MSSM-motivated
examples, in the two slow roll regimes, the amplitudes of the spectra calculated in the slow roll approximation agree very well with the
exact numerical spectra. Further, it should be noted that the amplitude of the tensors in the first slow roll phase determines the
maximum tensor amplitude that can arise in such a punctuated inflationary scenario.
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Vð�Þ ¼
�
M4

4

�
ð1þ B�4Þ: (10)

For suitable values of the parameter B, this potential admits
two stages of slow roll inflation, broken by a brief period of
rapid roll. The first slow roll phase is driven by the�4 term
and, when� has rolled down the potential and has become
sufficiently small, the false vacuum term drives the second
phase. The parameter M determines the amplitude of
nearly scale invariant lower step in the scalar spectrum
(associated with the modes that leave during the first stage
of slow roll inflation), with a mild dependence on B.
However, B very strongly affects the rise in the scalar
power (corresponding to the modes that leave just before
the rapid roll stage) and the asymptotic spectral index
(associated with the modes that leave during the second
stage of inflation), since it determines the extent and the
duration of the departure from slow roll.

We are able to achieve COBE normalization for a suit-
able combination of the parameters M and B. For these
values of the parameters, we find that, as in the MSSM-
motivated model, a departure from inflation occurs (again,
for about one e-fold) during the rapid roll phase. In Fig. 3,
we have plotted the resulting scalar and the tensor power
spectra as well as the associated tensor-to-scalar ratio. We
should hasten to clarify that we have not compared the
hybrid model with the CMB data, as we had done in the
n ¼ 3 and n ¼ 4 cases of the MSSM-motivated model. A
well-known property of the hybrid models is that they lead
to blue scalar spectra. We believe that, the blue tilt, along
with the rather large bump (which turns out to be larger
than the one in n ¼ 4, MSSM-motivated model) will con-
siderably spoil the fit to the CMB data.

IV. AN EXAMPLE OF TACHYONIC PUNCTUATED
INFLATION

In this section, we shall consider a tachyonic model that
allows punctuated inflation. Since our experience suggests
that a point of inflection in the potential is an assured way
of achieving a slow-rapid-slow roll transition, we shall
construct a tachyonic potential containing a point of
inflection.
Tachyonic potentials are usually written in terms of two

parameters, say, � and T0, in the following form [16–18]:

VðTÞ ¼ �V1ðT=T0Þ; (11)

where V1ðT=T0Þ is a function which has maximum at the
origin and vanishes as T ! 1. In order to achieve the
necessary amount of inflation and the correct amplitude
for the scalar perturbations, suitable values for the two
parameters � and T0 that describe the above potential can
be arrived at as follows. One finds that, in these potentials,
inflation typically occurs around T ’ T0 corresponding to

an energy scale of about �1=4. Moreover, it turns out that,
the quantity ð�T2

0Þ has to be much larger than unity (in

units wherein MP ¼ 1) for the potential slow roll parame-
ters to be small and, thereby ensure that, at least, 60 e-folds
of inflation takes place. One first chooses a sufficiently
large value of ð�T2

0Þ by hand in order to guarantee slow

roll. The COBE normalization condition for the scalar
perturbations then provides the second constraint, thereby
determining the values of both the parameters � and T0

[18].
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FIG. 4 (color online). The scalar and the tensor power spectra, the corresponding tensor-to-scalar ratio as well as the exponential
cutoff spectrum have been plotted for the tachyonic punctuated inflation model exactly in the same fashion as in the previous figure.
These figures correspond to the following values of the parameters: � ¼ 10�13, T0 ¼ 3:55� 107, x1 ¼ 10, AS ¼ 2� 10�9, nS ¼
0:96, k� ¼ 5:5� 10�4 Mpc�1, and � ¼ 3. We should also point out that, as in the earlier cases, in the two slow roll regimes, the
spectral amplitudes, when evaluated in the slow roll approximation, are in good agreement with the exact numerical spectra. Again, as
in the previous examples, the maximum value of the tensor amplitude that can arise in such punctuated inflationary scenarios is
determined by its value in the first slow roll phase.
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Now, consider a tachyon potential of the form

VðxÞ ¼
�

�

1þ gðxÞ
�
; (12)

where x ¼ ðT=T0Þ. Let the function gðxÞ be defined as an
integral of yet another function fðxÞ as follows:

gðxÞ ¼
Z

dxfðxÞ; (13)

with the constant of integration assumed to be zero. If we
choose fðxÞ to be a polynomial that vanishes at least
quadratically at a point, say, x1, then, it is clear that the
resulting potential VðxÞ, in addition to satisfying the above
mentioned conditions (i.e. having a maxima at the origin
and a minima at infinity), will also contain a point of
inflection at x1. A simple function that satisfies our require-
ments turns out to be3

fðxÞ ¼ ½ðx� x1Þ2x2�: (14)

For this choice of the function fðxÞ and appropriate values
of the parameters � and T0, we find that the corresponding
potential gives rise to punctuated inflation. However, it is
important to note that, unlike the earlier examples, the
rapid roll phase does not result in a deviation from infla-
tion. In Fig. 4, we have plotted the scalar and the tensor
power spectra, and the corresponding tensor-to-scalar ratio
that we obtain in this case. It is clear from the figure that the
spectra broadly behave in the same fashion as in the earlier
examples.

V. THE EFFECTS ON THE BMODES OF THE CMB

As is well known, the polarization of the CMB can be
decomposed into the E and B components. While the
E-mode polarization is affected by both the scalar as well
as the tensor perturbations, the Bmodes are generated only
by the tensor perturbations.4 Therefore, the B mode pro-
vides a direct signature of the primordial tensor perturba-
tions (see, for instance, the last reference in Ref. [19]). The
detection of the B mode is a coveted, prime goal of the
experimental community (see, for example, the white pa-
per [27]). We feel that the punctuated inflationary scenario
can provide additional theoretical motivation for this
endeavor.

We have evaluated the angular power spectrum of the
B-mode polarization of the CMB (i.e. CBB

‘ ) using the

Boltzmann code CAMB [28]. In Fig. 5, we have plotted
CBB
‘ for the best fit values of the parameters in the n ¼ 3

and the n ¼ 4 cases of the MSSM-motivated model. For

comparison, we have also plotted the corresponding angu-
lar power spectra for the concordant cosmological model
with a strictly scale invariant tensor spectrum and a tensor-
to-scalar ratio of r ¼ 0:01, r ¼ 2� 10�8 and r ¼ 10�7

(the last two values have been chosen since they match the
n ¼ 3 and n ¼ 4 cases of the MSSM-motivated model at
the small angular scales). The CBB

‘ for the two cases of the

MSSM-motivated model clearly exhibit an increase in their
amplitude at the lower multipoles, reflecting the rise in the
tensor-to-scalar ratio on these scales.5 But, despite the rise
at the lower multipoles, the amplitude ofCBB

‘ in these cases

proves to be way too smaller than what is possibly detect-
able in the near future (current/upcoming missions such as
PLANCK [23] and CMBPol [24] are expected to be sensi-
tive to r * 0:01). However, since the increase in the
B-mode power at large angular scales is a generic feature
of punctuated inflation, we feel that it improves the possi-
bility that the effect may be detected in the future. It is
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FIG. 5 (color online). The B-mode CMB angular power spec-
trum CBB

‘ has been plotted as a function of the multipole ‘ for the
best fit values of the n ¼ 3 (the solid black line) and the n ¼ 4
(the dashed black line) cases of the MSSM-motivated model. For
comparison, we have also plotted the CBB

‘ for the concordant

cosmological model with a strictly scale invariant tensor spec-
trum and a tensor-to-scalar ratio of r ¼ 0:01 (the solid blue line),
r ¼ 2� 10�8 (the solid red line), and r ¼ 10�7 (the dashed red
line). The latter two curves match the n ¼ 3 and n ¼ 4 cases of
the MSSM-motivated model at the small angular scales, and they
help in highlighting the effects of punctuated inflation at the
lower multipoles.

3Actually, this function contains another point of inflection at
the origin. But, as we shall restrict ourselves to the domain x >
0, it is not useful to us.

4In fact, the B modes are created by the vector perturbations,
too. However, inflation does not generate any vector
perturbations.

5We should point out that, in order to evaluate the CMB
angular power spectra, CAMB integrates over the following range
of wave number of the primordial scalar and tensor spectra:
7:5� 10�6 & k & 2:8� 10�1 Mpc�1. Note that, in both the
MSSM-motivated cases, the region where r > 1 is well beyond
the Hubble scale today, viz. k ’ 10�4 Mpc�1 (cf. Fig. 2).
Therefore, the resulting CBB

‘ will be sensitive to the tensor power
at such large scales, and we need to be careful about the lower
limit of the k integral in CAMB. We find that the CAMB’s default
lower limit works well in these cases since r attains its maximum
value at a wave number that is larger than the lower limit.
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conceivable that there exist punctuated inflationary models
that predict a significantly larger tensor-to-scalar ratio,
while still providing a good fit to the CMB temperature
angular power spectrum. For example, given a value of the
tensor-to-scalar ratio at, say, the Hubble radius today, one
can possibly work in the slow roll limit and invert the scalar
power spectrum (that results in a good fit) to arrive at a
suitable inflationary potential. It seems a worthwhile ex-
ercise to systematically hunt for such models.

VI. CONCLUSIONS

In our earlier work [13], we had performed a Markov
Chain Monte Carlo analysis to determine the values of the
parameters of the MSSM-motivated model that provide the
best fit to the WMAP 5-year data for the CMB angular
power spectrum. We had found that a scalar spectrum in
the n ¼ 3 case leads to a much better fit of the observed
data than the spatially flat,�CDMmodel with a power law,
primordial spectrum. We should emphasize again that we
have not carried out such a comparison with the data for the
hybrid or the tachyon model. In the n ¼ 3, MSSM-
motivated model, we had found that, in addition to the
drop in the power at large scales, the bump present in the
spectrum before it turns nearly scale invariant had led to
the improvement in the fit. In the n ¼ 4 case, a rather large
bump had led to a poor fit to the data. We find that, a
similar, large bump arises in the hybrid model as well.
Also, as we had mentioned, in the hybrid model, the scalar
spectral index proves to be greater than unity at small
scales. We feel that these two features will not allow a
better fit in the hybrid case. In the tachyonic model, though
the spectral index is close to the observed value, we find
that no bump (above the asymptotic, nearly scale invariant
amplitude) arises in the spectrum. We expect that this
feature will spoil the fit to the data. Moreover, we believe
that the lack of such a bump is due to the fact that inflation
is not interrupted in this case.

In models which start with a period of fast roll, along
with the scalar power, the tensor power is also suppressed
at large scales [15]. But, the drop in the scalar power proves
to be sharper than that of the tensors and, as a result, the
tensor-to-scalar ratio displays a rise over these scales in
such models. It has been argued that such a feature may be
detected by ongoing missions such as, for instance,
PLANCK [23]. We too encounter an increase in the
tensor-to-scalar ratio on the large scales, though the reason
is somewhat different. In punctuated inflation, the rise in
the tensor-to-scalar ratio turns out to be much stronger due
to the fact that the tensor amplitude itself increases on large
scales. Intriguingly, we find that the rapid rise leads to the
tensor-to-scalar ratio being much larger than unity for a
small range of modes. However, in the specific models we
have considered, the tensor amplitude on scales of cosmo-
logical interest (say, 10�4 < k< 1 Mpc�1) proves to be

too small (r < 10�4) for the effect to be possibly detected
in the very near future.
The sharper the drop in the scalar spectrum at large

scales, the better seems to be the fit to the low CMB
quadrupole. In punctuated inflation, the steeper the drop
in the scalar power, the faster will be the corresponding rise
in the tensor power at large scales. Therefore, if the scalar
power drops fast, the tensor-to-scalar ratio can be larger on
the small scales, thereby improving the prospects of its
detection through the B modes of the CMB polarization.
However, empirical evidence indicates that, in punctuated
inflation, a steeper drop in the scalar power requires a
larger value of the first slow roll parameter � during the
rapid roll. But, such a large � also leads to a bigger bump
(above the asymptotic amplitude) in the scalar spectrum
before it turns scale invariant. While a suitable bump seems
to provide a better fit to the data at a few lower multipoles
after the quadrupole, too large a bump seems to spoil the fit
to the data (as in the n ¼ 4, MSSM-motivated model). In
other words, to lead to a good fit, there appears to be a trade
off between the sharpness of the cutoff and the size of the
bump in the scalar power spectrum. We are currently
exploring punctuated inflationary models that will lead to
a sufficiently steep drop in the scalar power at large scales,
a suitably sized bump at the top of the spectrum, and also a
reasonable tensor amplitude at small scales that may be
detectable by forthcoming missions.

0 10 20 30 40 50 60
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FIG. 6 (color online). The evolution of the amplitudes of the
curvature perturbation Rk (in blue) and the tensor perturbation
Uk (in red) has been plotted as a function of the number of
e-folds N for the best fit values of the n ¼ 3, MSSM-motivated
model. These perturbations correspond to the mode k ¼
10�5 Mpc�1, and the arrow denotes the time when the mode
leaves the Hubble radius. Notice that, as expected, the tensor
amplitude freezes at its value near Hubble exit. In contrast, the
amplitude of the curvature perturbation is suppressed on super-
Hubble scales. Evidently, it is this behavior of the curvature
perturbation that leads to the large tensor-to-scalar ratio associ-
ated with the mode.
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APPENDIX: THE EVOLUTION OF THE SCALAR
AND TENSOR PERTURBATIONS FOR A MODE

WITH r > 1

In the various examples of punctuated inflation that we
had discussed in the text, though the tensor-to-scalar ratio

remains too small (r < 10�4) on the scales of cosmological
interest, we find that there exists a small range of modes for
which the tensor-to-scalar ratio turns out to be greater than
unity. We believe that this is an interesting feature with
potentially observable consequences. To highlight this fea-
ture, in Fig. 6, we have plotted the evolution of the ampli-
tudes of the curvature and the tensor perturbations for a
mode that has a tensor-to-scalar ratio greater than unity in
the n ¼ 3, MSSM-motivated model. Note that, due to the
deviation from slow roll, on super-Hubble scales, the am-
plitude of the curvature perturbation is suppressed when
compared to its value near Hubble exit. Whereas, the
tensor amplitude approaches a constant value soon after
the mode leaves the Hubble radius. It is such a suppression
of the curvature perturbation that results in the tensor-to-
scalar ratio being greater than unity.

[1] M.R. Nolta et al., Astrophys. J. Suppl. Ser. 180, 296
(2009); D. Larson et al., arXiv:1001.4635v1; C. L.
Bennett et al., arXiv:1001.4758v1.

[2] C. L. Bennett et al., Astrophys. J. 436, 423 (1994); E. L.
Wright, G. F. Smoot, C. L. Bennett, and P.M. Lubin,
Astrophys. J. 436, 443 (1994); E. L. Wright, C. L.
Bennett, K. Gorski, G. Hinshaw, and G. F. Smoot,
Astrophys. J. 464, L21 (1996); M. Tegmark, Astrophys.
J. Lett. 464, L35 (1996); H. V. Peiris et al., Astrophys. J.
Suppl. Ser. 148, 213 (2003); M. Tristram et al., Astron.
Astrophys. 436, 785 (2005); D.N. Spergel et al.,
Astrophys. J. Suppl. Ser. 170, 377 (2007).

[3] R. Saha, P. Jain, and T. Souradeep, Astrophys. J. 645, L89
(2006); R. Saha, S. Prunet, P. Jain, and T. Souradeep, Phys.
Rev. D 78, 023003 (2008); P. K. Samal, R. Saha, J.
Delabrouille, S. Prunet, P. Jain, and T. Souradeep,
Astrophys. J. 714, 840 (2010).

[4] S. L. Bridle, A.M. Lewis, J. Weller, and G. Efstathiou,
Mon. Not. R. Astron. Soc. 342, L72 (2003); P. Mukherjee
and Y. Wang, Astrophys. J. 599, 1 (2003); S. Hannestad, J.
Cosmol. Astropart. Phys. 04 (2004) 002; A. Shafieloo and
T. Souradeep, Phys. Rev. D 70, 043523 (2004); D.
Tocchini-Valentini, Y. Hoffman, and J. Silk, Mon. Not.
R. Astron. Soc. 367, 1095 (2006); A. Shafieloo, T.
Souradeep, P. Manimaran, P. K. Panigrahi, and R.
Rangarajan, Phys. Rev. D 75, 123502 (2007); A.
Shafieloo and T. Souradeep, ibid. 78, 023511 (2008); R.
Nagata and J. Yokoyama, Phys. Rev. D 79, 043010 (2009);
G. Nicholson and C. R. Contaldi, J. Cosmol. Astropart.
Phys. 07 (2009) 011.

[5] I. J. O’Dwyer et al., Astrophys. J. 617, L99 (2004); J.
Magueijo and R.D. Sorkin, Mon. Not. R. Astron. Soc.
Lett. 377, L39 (2007); C.-G. Park, C. Park, and J. R. Gott,
III, Astrophys. J. 660, 959 (2007); L.-Y. Chiang, P. D.
Naselsky, and P. Coles, Astrophys. J. 694, 339 (2009).

[6] Y. P. Jing and L. Z. Fang, Phys. Rev. Lett. 73, 1882 (1994);

G. Efsthathiou, Mon. Not. R. Astron. Soc. 343, L95
(2003); J. P. Luminet et al., Nature (London) 425, 593
(2003); A. Hajian and T. Souradeep, Astrophys. J. Lett.
597, L5 (2003); A. Hajian, T. Souradeep, and N. Cornish,
Astrophys. J. 618, L63 (2005); A. Hajian and T.
Souradeep, Phys. Rev. D 74, 123521 (2006); C. Gordon
and W. Hu, Phys. Rev. D 70, 083003 (2004).

[7] J. Yokoyama, Phys. Rev. D 59, 107303 (1999); B. Feng
and X. Zhang, Phys. Lett. B 570, 145 (2003); M.
Kawasaki and F. Takahashi, Phys. Lett. B 570, 151
(2003); S. Shankaranarayanan and L. Sriramkumar,
Phys. Rev. D 70, 123520 (2004); arXiv:hep-th/0410072;
R. Sinha and T. Souradeep, Phys. Rev. D 74, 043518
(2006).

[8] J.M. Cline, P. Crotty, and J. Lesgourgues, J. Cosmol.
Astropart. Phys. 09 (2003) 010; C. R. Contaldi, M.
Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart.
Phys. 07 (2003) 002; L. Sriramkumar and T.
Padmanabhan, Phys. Rev. D 71, 103512 (2005); D.
Boyanovsky, H. J. de Vega, and N.G. Sanchez, Phys.
Rev. D 74, 123006 (2006); 74, 123007 (2006); B. A.
Powell and W.H. Kinney, Phys. Rev. D 76, 063512
(2007); C. Destri, H. J. de Vega, and N.G. Sanchez,
Phys. Rev. D 78, 023013 (2008).

[9] P. Hunt and S. Sarkar, Phys. Rev. D 70, 103518 (2004); 76,
123504 (2007); M. Kawasaki, F. Takahashi, and T.
Takahashi, Phys. Lett. B 605, 223 (2005); J.-O. Gong, J.
Cosmol. Astropart. Phys. 07 (2005) 015; L. Covi, J.
Hamann, A. Melchiorri, A. Slosar, and I. Sorbera, Phys.
Rev. D 74, 083509 (2006); J. Hamann, L. Covi, A.
Melchiorri, and A. Slosar, Phys. Rev. D 76, 023503
(2007); M. Joy, V. Sahni, and A.A. Starobinsky, Phys.
Rev. D 77, 023514 (2008); M. Joy, A. Shafieloo, V. Sahni,
and A.A. Starobinsky, J. Cosmol. Astropart. Phys. 06
(2009) 028; M. J. Mortonson, C. Dvorkin, H.V. Peiris,
and W. Hu, Phys. Rev. D 79, 103519 (2009).

TENSOR-TO-SCALAR RATIO IN PUNCTUATED INFLATION PHYSICAL REVIEW D 82, 023509 (2010)

023509-9

http://dx.doi.org/10.1088/0067-0049/180/2/296
http://dx.doi.org/10.1088/0067-0049/180/2/296
http://arXiv.org/abs/1001.4635v1
http://arXiv.org/abs/1001.4758v1
http://dx.doi.org/10.1086/174918
http://dx.doi.org/10.1086/174919
http://dx.doi.org/10.1086/310073
http://dx.doi.org/10.1086/310079
http://dx.doi.org/10.1086/310079
http://dx.doi.org/10.1086/377228
http://dx.doi.org/10.1086/377228
http://dx.doi.org/10.1051/0004-6361:20042416
http://dx.doi.org/10.1051/0004-6361:20042416
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1086/506321
http://dx.doi.org/10.1086/506321
http://dx.doi.org/10.1103/PhysRevD.78.023003
http://dx.doi.org/10.1103/PhysRevD.78.023003
http://dx.doi.org/10.1088/0004-637X/714/1/840
http://dx.doi.org/10.1046/j.1365-8711.2003.06807.x
http://dx.doi.org/10.1086/379161
http://dx.doi.org/10.1088/1475-7516/2004/04/002
http://dx.doi.org/10.1088/1475-7516/2004/04/002
http://dx.doi.org/10.1103/PhysRevD.70.043523
http://dx.doi.org/10.1111/j.1365-2966.2006.10031.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10031.x
http://dx.doi.org/10.1103/PhysRevD.75.123502
http://dx.doi.org/10.1103/PhysRevD.78.023511
http://dx.doi.org/10.1103/PhysRevD.79.043010
http://dx.doi.org/10.1088/1475-7516/2009/07/011
http://dx.doi.org/10.1088/1475-7516/2009/07/011
http://dx.doi.org/10.1086/427386
http://dx.doi.org/10.1111/j.1745-3933.2007.00299.x
http://dx.doi.org/10.1111/j.1745-3933.2007.00299.x
http://dx.doi.org/10.1086/513455
http://dx.doi.org/10.1088/0004-637X/694/1/339
http://dx.doi.org/10.1103/PhysRevLett.73.1882
http://dx.doi.org/10.1046/j.1365-8711.2003.06940.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06940.x
http://dx.doi.org/10.1038/nature01944
http://dx.doi.org/10.1038/nature01944
http://dx.doi.org/10.1086/379757
http://dx.doi.org/10.1086/379757
http://dx.doi.org/10.1086/427652
http://dx.doi.org/10.1103/PhysRevD.74.123521
http://dx.doi.org/10.1103/PhysRevD.70.083003
http://dx.doi.org/10.1103/PhysRevD.59.107303
http://dx.doi.org/10.1016/j.physletb.2003.07.065
http://dx.doi.org/10.1016/j.physletb.2003.08.005
http://dx.doi.org/10.1016/j.physletb.2003.08.005
http://dx.doi.org/10.1103/PhysRevD.70.123520
http://arXiv.org/abs/hep-th/0410072
http://dx.doi.org/10.1103/PhysRevD.74.043518
http://dx.doi.org/10.1103/PhysRevD.74.043518
http://dx.doi.org/10.1088/1475-7516/2003/09/010
http://dx.doi.org/10.1088/1475-7516/2003/09/010
http://dx.doi.org/10.1088/1475-7516/2003/07/002
http://dx.doi.org/10.1088/1475-7516/2003/07/002
http://dx.doi.org/10.1103/PhysRevD.71.103512
http://dx.doi.org/10.1103/PhysRevD.74.123006
http://dx.doi.org/10.1103/PhysRevD.74.123006
http://dx.doi.org/10.1103/PhysRevD.74.123007
http://dx.doi.org/10.1103/PhysRevD.76.063512
http://dx.doi.org/10.1103/PhysRevD.76.063512
http://dx.doi.org/10.1103/PhysRevD.78.023013
http://dx.doi.org/10.1103/PhysRevD.70.103518
http://dx.doi.org/10.1103/PhysRevD.76.123504
http://dx.doi.org/10.1103/PhysRevD.76.123504
http://dx.doi.org/10.1016/j.physletb.2004.11.033
http://dx.doi.org/10.1088/1475-7516/2005/07/015
http://dx.doi.org/10.1088/1475-7516/2005/07/015
http://dx.doi.org/10.1103/PhysRevD.74.083509
http://dx.doi.org/10.1103/PhysRevD.74.083509
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://dx.doi.org/10.1103/PhysRevD.77.023514
http://dx.doi.org/10.1103/PhysRevD.77.023514
http://dx.doi.org/10.1088/1475-7516/2009/06/028
http://dx.doi.org/10.1088/1475-7516/2009/06/028
http://dx.doi.org/10.1103/PhysRevD.79.103519


[10] H.M. Hodges, G. R. Blumenthal, L. A. Kofman, and J. R.
Primack, Nucl. Phys. B335, 197 (1990).

[11] A. A. Starobinsky, JETP Lett. 55, 489 (1992).
[12] V. F. Mukhanov and M. I. Zelnikov, Phys. Lett. B 263, 169

(1991); D. Polarski and A.A. Starobinsky, Nucl. Phys.
B385, 623 (1992); D. Polarski, Phys. Rev. D 49, 6319
(1994); J. A. Adams, G.G. Ross, and S. Sarkar, Nucl.
Phys. B503, 405 (1997); J. Lesgourgues, Nucl. Phys.
B582, 593 (2000); J. Barriga, E. Gaztanaga, M. Santos,
and S. Sarkar, Mon. Not. R. Astron. Soc. 324, 977 (2001);
Nucl. Phys. B, Proc. Suppl. 95, 66 (2001); J. A. Adams, B.
Cresswell, and R. Easther, Phys. Rev. D 64, 123514
(2001).

[13] R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar,
and T. Souradeep, J. Cosmol. Astropart. Phys. 01 (2009)
009.

[14] A. A. Starobinsky, Sov. Astron. Lett. 11, 133 (1985); R.
Davis, H.M. Hodges, G. F. Smoot, P. J. Steinhardt, and
M. S. Turner, Phys. Rev. Lett. 69, 1856 (1992); T.
Souradeep and V. Sahni, Mod. Phys. Lett. A 7, 3541
(1992); B. C. Friedman, A. Cooray, and A. Melchiorri,
Phys. Rev. D 74, 123509 (2006).

[15] G. Nicholson and C. R. Contaldi, J. Cosmol. Astropart.
Phys. 01 (2008) 002.

[16] A. Sen, J. High Energy Phys. 10 (1999) 008; M. Garousi,
Nucl. Phys. B584, 284 (2000); E. Bergshoeff, M. de Roo,
T. de Wit, E. Eyras, and S. Panda, J. High Energy Phys. 05
(2000) 009; J. Kluson, Phys. Rev. D 62, 126003 (2000); A.
Sen, J. High Energy Phys. 04 (2002) 048; 07 (2002) 065.

[17] M. Sami, P. Chingangbam, and T. Qureshi, Phys. Rev. D
66, 043530 (2002); P. Chingangbam, S. Panda, and A.
Deshamukhya, J. High Energy Phys. 02 (2005) 052.

[18] D. A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527
(2004).

[19] E.W. Kolb and M. S. Turner, The Early Universe

(Addison-Wesley, Redwood City, California, 1990); A. R.
Liddle and D.H. Lyth, Cosmological Inflation and Large-
Scale Structure (Cambridge University Press, Cambridge,
England, 1999); V. F. Mukhanov, Physical Foundations of
Cosmology (Cambridge University Press, Cambridge,
England, 2005); R. Durrer, The Cosmic Microwave
Background (Cambridge University Press, Cambridge,
England, 2008).

[20] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1
(1984); V. F. Mukhanov, H. A. Feldman, and R.H.
Brandenberger, Phys. Rep. 215, 203 (1992); J. E. Lidsey,
A. Liddle, E.W. Kolb, E. J. Copeland, T. Barreiro, and M.
Abney, Rev. Mod. Phys. 69, 373 (1997); B. Bassett, S.
Tsujikawa, and D. Wands, Rev. Mod. Phys. 78, 537
(2006); W.H. Kinney, arXiv:0902.1529.

[21] S.M. Leach and A. R. Liddle, Phys. Rev. D 63, 043508
(2001); S.M. Leach, M. Sasaki, D. Wands, and A. R.
Liddle, Phys. Rev. D 64, 023512 (2001); R. K. Jain, P.
Chingangbam, and L. Sriramkumar, J. Cosmol. Astropart.
Phys. 10 (2007) 003.

[22] G. Felder, A. Frolov, L. Kofman, and A. Linde, Phys. Rev.
D 66, 023507 (2002).

[23] See http://www.rssd.esa.int/index.php?project=Planck.
[24] See http://cmbpol.uchicago.edu/.
[25] R. Allahverdi, J. Garcia-Bellido, K. Enqvist, and A.

Mazumdar, Phys. Rev. Lett. 97, 191304 (2006); R.
Allahverdi, K. Enqvist, J. Garcia-Bellido, A. Jokinen,
and A. Mazumdar, J. Cosmol. Astropart. Phys. 06
(2007) 019; J. C. B. Sanchez, K. Dimopoulos, and D.H.
Lyth, J. Cosmol. Astropart. Phys. 01 (2007) 015; R.
Allahverdi, A. Mazumdar, and T. Multamaki,
arXiv:0712.2031.

[26] A. Linde, Phys. Rev. D 49, 748 (1994).
[27] S. Dodelson et al., arXiv:0902.3796.
[28] See http://camb.info/.

JAIN et al. PHYSICAL REVIEW D 82, 023509 (2010)

023509-10

http://dx.doi.org/10.1016/0550-3213(90)90177-F
http://dx.doi.org/10.1016/0370-2693(91)90581-A
http://dx.doi.org/10.1016/0370-2693(91)90581-A
http://dx.doi.org/10.1016/0550-3213(92)90062-G
http://dx.doi.org/10.1016/0550-3213(92)90062-G
http://dx.doi.org/10.1103/PhysRevD.49.6319
http://dx.doi.org/10.1103/PhysRevD.49.6319
http://dx.doi.org/10.1016/S0550-3213(97)00431-8
http://dx.doi.org/10.1016/S0550-3213(97)00431-8
http://dx.doi.org/10.1016/S0550-3213(00)00301-1
http://dx.doi.org/10.1016/S0550-3213(00)00301-1
http://dx.doi.org/10.1046/j.1365-8711.2001.04373.x
http://dx.doi.org/10.1016/S0920-5632(01)01057-X
http://dx.doi.org/10.1103/PhysRevD.64.123514
http://dx.doi.org/10.1103/PhysRevD.64.123514
http://dx.doi.org/10.1088/1475-7516/2009/01/009
http://dx.doi.org/10.1088/1475-7516/2009/01/009
http://dx.doi.org/10.1103/PhysRevLett.69.1856
http://dx.doi.org/10.1142/S0217732392002950
http://dx.doi.org/10.1142/S0217732392002950
http://dx.doi.org/10.1103/PhysRevD.74.123509
http://dx.doi.org/10.1088/1475-7516/2008/01/002
http://dx.doi.org/10.1088/1475-7516/2008/01/002
http://dx.doi.org/10.1088/1126-6708/1999/10/008
http://dx.doi.org/10.1016/S0550-3213(00)00361-8
http://dx.doi.org/10.1088/1126-6708/2000/05/009
http://dx.doi.org/10.1088/1126-6708/2000/05/009
http://dx.doi.org/10.1103/PhysRevD.62.126003
http://dx.doi.org/10.1088/1126-6708/2002/04/048
http://dx.doi.org/10.1088/1126-6708/2002/07/065
http://dx.doi.org/10.1103/PhysRevD.66.043530
http://dx.doi.org/10.1103/PhysRevD.66.043530
http://dx.doi.org/10.1088/1126-6708/2005/02/052
http://dx.doi.org/10.1103/PhysRevD.70.043527
http://dx.doi.org/10.1103/PhysRevD.70.043527
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1103/RevModPhys.69.373
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://arXiv.org/abs/0902.1529
http://dx.doi.org/10.1103/PhysRevD.63.043508
http://dx.doi.org/10.1103/PhysRevD.63.043508
http://dx.doi.org/10.1103/PhysRevD.64.023512
http://dx.doi.org/10.1088/1475-7516/2007/10/003
http://dx.doi.org/10.1088/1475-7516/2007/10/003
http://dx.doi.org/10.1103/PhysRevD.66.023507
http://dx.doi.org/10.1103/PhysRevD.66.023507
http://dx.doi.org/10.1103/PhysRevLett.97.191304
http://dx.doi.org/10.1088/1475-7516/2007/06/019
http://dx.doi.org/10.1088/1475-7516/2007/06/019
http://dx.doi.org/10.1088/1475-7516/2007/01/015
http://arXiv.org/abs/0712.2031
http://dx.doi.org/10.1103/PhysRevD.49.748
http://arXiv.org/abs/0902.3796

