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Theories of gravity for which gravitons can be treated as massive particles have presently been studied

as realistic modifications of general relativity, and can be tested with cosmological observations. In this

work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser

theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent

Type-Ia Supernovae (SNe Ia) data set, adopting the current ratio of the total density of nonrelativistic

matter to the critical density (�m) as a free parameter. We also combine the SNe Ia data with constraints

from baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) measurements. We

find that, for the allowed interval of values for �m, a model based on Visser’s theory can produce an

accelerated expansion period without any dark energy component, but the combined analysis (SNe Iaþ
BAOþ CMB) shows that the model is disfavored when compared with the �CDM model.
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I. INTRODUCTION

The current Universe’s energy budget is a consequence
of the convergence of independent observational results
that led to the following distribution of the energy densities
of the Universe: 4% for baryonic matter, 23% for dark
matter, and 73% for dark energy [1]. The key observational
results that support this picture are: measurements of lu-
minosity distance as a function of redshift for distant
supernovae [2–4], anisotropies in the cosmic microwave
background (CMB) observed by the WMAP satellite [5]
and the Large Scale Structure (LSS) matter power spec-
trum inferred from galaxy redshift surveys such as the
Sloan Digital Sky Survey (SDSS) [6] and 2dF Galaxy
Redshift Survey (2dFGRS) [7].

In order to explain all the currently available cosmologi-
cal data, the cosmological concordance model �CDM
needs to appeal to two exotic components, the so-called
dark matter and dark energy. The latter drives the late-time
accelerated expansion of the Universe, and it is one of the
greatest challenges for the current cosmology. Indeed, the
physical nature of the dark energy is a particularly com-
plicated issue to address in the �CDM context, due to its
unusual properties. It behaves as a negative-pressure ideal
fluid smoothly distributed through space. One can ask if the
accelerating expansion of the Universe might indicate that
Einstein’s theory of gravity is incomplete, i.e., can an

alternative theory of gravity explain consistently the late-
time cosmic acceleration without recurring to dark energy?
There are several alternative approaches based on the

idea of modifying gravity. Currently, one of the most
studied alternative gravity theories is the so-called fðRÞ
gravity, whose basic idea is to add terms which are powers
of the Ricci scalar R to the Einstein-Hilbert Lagrangian [8–
13].
Recently, M. Visser proposed a modification of the

general relativity (GR) where the gravitons can be massive
particles [14]. In particular, several authors have studied
the limits that can be imposed to the graviton mass using
different approaches. For example, from analysis of the
planetary motions in the solar system, it was found that
mg < 7:8� 10�55 g [15]. Another bound comes from the

studies of galaxy clusters, which gives mg < 2� 10�62 g

[16]. Although this second limit is more restrictive, it is
considered less robust due to uncertainties in the content of
the Universe in large scales. Studying rotation curves of
galactic disks, de Araujo and Miranda [17] have found that
mg � 10�59g in order to obtain a galactic disk with a scale

length of b� 10 kpc.
Studying the mass of the graviton in the weak field

regime Finn and Sutton have shown that the emission of
gravitational radiation does not exclude a non-null
(although small) rest mass. They found the limit mg <

1:4� 10�52 g [18] analyzing the data from the orbital
decay of the binary pulsars PSR B1913þ 16 (Hulse-
Taylor pulsar) and PSR B1534þ 12.
In particular, as discussed by Bessada and Miranda [19],

ifmg > 10�65g then massive gravitons would leave a clear

signature on the lower multipoles (l < 30) in the cosmic
microwave background (CMB) anisotropy power spec-
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trum. Moreover, massive gravitons give rise to a nontrivial
Sachs-Wolfe effect, which leaves a vector signature of the
quadrupolar form on the CMB polarization [20].

An interesting result that comes from Visser’s model is
that the gravitational waves can present up to six polariza-
tion modes [21] instead of the two usual polarizations
obtained from the GR. So, if in the future we would be
able to identify the gravitational wave polarizations, we
would impose limits on the graviton mass by this way.

The Visser’s theory of massive gravitons can be used to
build realistic cosmological models that can be tested
against available observational data. It has the advantage
that it is not necessary to introduce new degrees of freedom
or extra cosmological parameters. In fact, the cosmology
with massive gravitons based on the Visser’s theory has the
same number of parameters of the flat �CDM model but
no extra fields are added. In this paper we derive cosmo-
logical constraints on the parameters of the Visser’s model.
We use the most recent compilation of Type-Ia Supernovae
(SNe Ia) data, the so-called Union2 compilation of 557
SNe Ia [22]. We also combine the supernova data with
constraints from baryon acoustic oscillations (BAO) [23]
and CMB shift parameter measurements [24].

The paper is organized as follows: in Sec. II we briefly
review the Visser’s approach. Section III is devoted to the
description of the cosmological model. In Sec. IV we
investigate the observational constraints on the Visser’s
cosmological model from SNe Ia, BAO, and CMB shift
parameter data. In Sec. V we present our conclusions.

II. THE FIELD EQUATIONS

The full action considered by Visser is given by [14]:

I ¼
Z

d4x

� ffiffiffiffiffiffiffi�g
p c4RðgÞ

16�G
þLmassðg; g0Þ þLmatterðgÞ

�
;

(1)

where besides the Einstein-Hilbert Lagrangian and the
Lagrangian of the matter fields we have the bimetric
Lagrangian

Lmassðg; g0Þ ¼ 1
2m

2 ffiffiffiffiffiffiffiffiffiffi�g0
p fðg�1

0 Þ��ðg� g0Þ��ðg�1
0 Þ��

� ðg� g0Þ�� � 1
2½ðg�1

0 Þ��ðg� g0Þ���2g;
(2)

where m ¼ mgc=@, mg is the graviton mass and ðg0Þ�� is a

general flat metric.
The field equations, which are obtained by a variation of

(1), can be written as

G�� � 1

2
m2M�� ¼ � 8�G

c4
T��; (3)

where G�� is the Einstein tensor, T�� is the energy-
momentum tensor for a perfect fluid, and the contribution
of the massive tensor to the field equations reads

M�� ¼ ðg�1
0 Þ��½ðg� g0Þ�� � 1

2ðg0Þ��ðg�1
0 Þ��ðg� g0Þ���

� ðg�1
0 Þ��: (4)

Note that if one takes the limit mg ! 0, the usual

Einstein field equations are recovered.
Regarding the energy-momentum conservation, we will

follow the same approach of [25,26] in such a way that the
conservation equation now reads [27,28]:

r�T
�� ¼ m2c4

16�G@
2
r�M

��; (5)

since the Einstein tensor satisfies the Bianchi identities
r�G

�� ¼ 0.

III. COSMOLOGY WITH MASSIVE GRAVITONS

For convention we use the Robertson-Walker metric as
the dynamical metric:

ds2 ¼ c2dt2 � a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin2�d	2Þ

�
;

(6)

where aðtÞ is the scale factor. The flat metric is written in
spherical polar coordinates:

ds20 ¼ c2dt2 � ½dr2 þ r2ðd�2 þ sin2�d	2Þ�: (7)

The choice of Minkowski as the nondynamical back-
ground metric g0 is based on the criterion of simplicity. In
the first place, the metric g0 is defined in such a way that it
coincides with the dynamical metric g in the absence of
gravitational sources. The other point is that we do not
need additional parameters for the cosmological model.
The last important point is that considering Minkowski for
g0, we obtain a consistent relation for the energy-
momentum conservation law [27].
Using (6) and (7) in the field equations (3) we get the

following equations describing the dynamics of the scale
factor (taking k ¼ 0 for simplicity):

�
_a

a

�
2 þ 1

4
m2c2ða2 � 1Þ ¼ 8�G

3c2
� (8)

and

€a

a
þ 1

2

�
_a

a

�
2 þ 1

8
m2c2a2ða2 � 1Þ ¼ � 4�G

c2
p; (9)

where as usual � is the energy density and p is the pressure.
From Eq. (5) we get the evolution equation for the

cosmological fluid, namely:

_�þ 3H

�
ð�þ pÞ þ m2c4

32�G
ða4 � 6a2 þ 3Þ

�
¼ 0; (10)

whereH ¼ _a=a. Considering a matter-dominated universe
(p ¼ 0) the above equation gives the following evolution
for the energy density:
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� ¼ �0

a3
� 3m2c4

32�G

�
a4

7
� 6a2

5
þ 1

�
; (11)

where �0 is the present value of the energy density. Note
that in the case mg ! 0, we obtain the usual Friedmann

equations.
Now, inserting (11) in the modified Friedmann equation

(8), we obtain the Hubble parameter:

H2ðaÞ ¼ H2
0

�
�0

m

a3
þ 1

2
�0

gð7a2 � 5a4Þ
�
; (12)

where the relative energy density of the i-component is
�i ¼ �i=�c (�c ¼ 3H2c2=8�G is the critical density)
where ‘‘i’’ applies for baryonic and dark matter.
Moreover, the present contribution of the massive term is
defined by

�0
g ¼ 1

70

�
mg

mH

�
2
; (13)

where mH ¼ @H0=c
2 is a constant with units of mass.

Since we are assuming a plane Universe (k ¼ 0), the
total density parameter is �0

total ¼ 1. Thus, �0
g can be

replaced by �0
g ¼ 1��0

m. This tells us that the model

described by the Hubble parameter (12) has only two free
parameters, namely H0 and �0

m, which can be adjusted by
the cosmological observations, i.e., the same number of
free parameters of the �CDM model.

IV. ANALYSIS AND DISCUSSION

A. Supernova Ia

In order to put constraints on the cosmological model
derived from the Visser’s approach, we minimize the 
2

function


2ð�mÞ ¼
X
i

½�thðzij�mÞ ��obsðziÞ�2
�2ðziÞ

(14)

where �thðzij�mÞ is the predicted distance modulus for a
supernova at redshift zi. For a given �m we have

�ðzj�mÞ � m�M ¼ 25þ 5 logdLðzj�mÞ; (15)

wherem andM are, respectively, the apparent and absolute
magnitudes, and dLðzj�mÞ stands for the luminosity dis-
tance given by

dLðzj�mÞ ¼ ð1þ zÞc
Z z

0

dz0

Hðz0j�mÞ : (16)

Also, �obsðziÞ are the values of the observed distance
modulus obtained from the data and �ðziÞ is the uncer-
tainty for each of the determined magnitudes from super-
nova data.

Evaluating the minimum value of 
2 from the Union2
compilation of SNe Ia [22] we found 
2

min ¼ 561:11 for the
Visser’s theory, with �m ¼ 0:261þ0:021

�0:020, where we have

considered errors at 1 sigma level.

B. Baryon acoustic oscillations

The primordial baryon-photon acoustic oscillations
leave a signature in the correlation function of luminous
red-galaxies as observed by Eisenstein et al. [23]. This
signature provides us with a standard ruler which can be
used to constrain the following quantity

A ¼ ffiffiffiffiffiffiffiffi
�m

p
Eðz1Þ�1=3

�
1

z1

Z z1

0

dz

EðzÞ
�
2=3

; (17)

where EðzÞ ¼ HðzÞ=H0, the observed value of A is Aobs ¼
0:469� 0:017 and z1 ¼ 0:35 is the typical redshift of the
SDSS sample. The computation of the values of�m which
better adjust Aobs lead us to �m ¼ 0:306þ0:027

�0:025.

C. CMB shift parameter

The shift parameter R, which relates the angular diame-
ter distance to the last scattering surface with the angular
scale of the first acoustic peak in the CMB power spectrum,
is given by (for k ¼ 0) [24,29]

R1089 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

q Z 1089

0

dz

H
¼ 1:70� 0:03: (18)

It is worth stressing that the measured value of R1089 is
model independent. Also, note that in order to include the
CMB shift parameter into the analysis, it is needed to
integrate up to the matter-radiation decoupling (z ’
1089), so that radiation is no longer negligible and so
that it was properly taken into account. With these consid-
erations, the best-fit value for the relative matter density
using R1089 is �m ¼ 0:224þ0:046

�0:038.

D. Joint analysis

When the measurements of SNe Ia luminosity distances
are combined with information related to the BAO peak
and the CMB shift parameter, the constraining power of the
fit to the parameters in the cosmological model is greatly
improved. Following such an approach, we examine here
the effects of summing up the contributions of these last
two parameters into the 
2 of Eq. (14). Our result is�m ¼
0:273� 0:015 with the corresponding minimum value for
the 
2 function: 
2

min ¼ 565:06.
We can compare our results with the �CDM model by

taking the difference between 
2
g and 


2
�CDM, which are the

minimum 
2 values for the massive bimetric model and for
the �CDM model, respectively. The evaluation of this
difference gives the result �
2 ¼ 
2

g � 
2
�CDM ¼ 21:30,

which shows that the bimetric Visser’s model is disfavored
when compared with the flat �CDM model.
In the Table I we summarize our results for �m consid-

ering each cosmological observable: SNe, CMB, BAO and
the combined analysis (SNeþ CMBþ BAO). For the
sake of comparison we also show the values of 
2

min and

�m for the �CDM model.
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It is also instructive to evaluate the effect of adding the
systematic uncertainties of the SNe analysis on our results.
Considering only SNe, the addition of the systematic errors
to the statistical errors leads us to�m ¼ 0:295þ0:039

�0:036 for the

Visser’s model. We also obtain a considerably lower value
for the difference between the 
2 of the two models�
2 ¼
8:11. Now, taking into account the CMB and BAO mea-
surements together with SNe, we obtain�m ¼ 0:290þ0:020

�0:019

and �
2 ¼ 10:26 (see Table I).
In Figs. 1 and 2 we show the Hubble parameter and the

distance modulus as functions of redshift considering the
best-fit value of �m for the SNe. For the sake of compari-
son, the standard �CDM model is also shown. Note that
although the massive graviton model is disfavored, it
seems to be able to reproduce very well the SNe Ia mea-
surements, as can be seen in the Fig. 2. This shows the
importance of the 
2 test in distinguishing the two models.

E. Effective equation of state

The Fig. 3 shows the effective equation of state

weffðzÞ ¼ �1þ 2ð1þ zÞ
3H

dH

dz
(19)

as a function of the redshift for the best-fit values above.
The deceleration parameter, which is shown in Fig. 4, is
related to weff through qðzÞ ¼ ð3weffðzÞ þ 1Þ=2. In order to
plot these curves, we have included a component of radia-
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FIG. 1. Hubble parameter as a function of the redshift for best-
fit value obtained from SNe Ia. By using the different best-fit
values, the curve does not change significantly.
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FIG. 2. Best-fit for the distance modulus versus redshift for the
Visser model (solid gray line) and the �CDM model (dashed
line). The SNe data were taken from the Union2 compilation
[22].
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FIG. 3. Effective state parameter as a function of the redshift
for the best-fit value obtained from SNe Ia.

TABLE I. Best-fit values for �m for the cosmological observables considered in this work. It
is also shown how the introduction of systematic errors from the SNe measurements can affect
the best fit. We have worked only with flat Universe models, i.e., k ¼ 0.

Visser �CDM
Fit 
2

min �m 
2
min �m

SNe 561.11 0:261þ0:021
�0:020 542.68 0:270þ0:021

�0:020

CMB �0 0:224þ0:046
�0:038 �0 0:239þ0:043

�0:036

BAO �0 0:306þ0:027
�0:025 �0 0:273þ0:025

�0:024

SNeþ CMBþ BAO 565.06 0:273þ0:015
�0:015 543.76 0:267þ0:015

�0:015

SNe(Sys) 538.83 0:295þ0:039
�0:036 530.72 0:275þ0:040

�0:037

SNeðSysÞ þ CMBþ BAO 542.07 0:290þ0:020
�0:019 531.81 0:265þ0:019

�0:018
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tion with the present value of the density parameter �r ¼
5� 10�5. For the best-fit value found in our analysis, the
Visser model goes through the last three phases of cosmo-
logical evolution, i.e., radiation-dominated (w ¼ 1=3),
matter-dominated (w ¼ 0), and the late-time acceleration
phase (w<�1=3).

Note that for low redshifts the Visser’s model shows
additionally a phase dominated by matter, indicating that
for this model the late-time acceleration of the Universe
was a transient phase which has already finished.
Moreover, for low redshifts, this behavior of the Visser’s
theory is in accordance with the fact that the luminosity
distance of very low redshift SNe Ia can be fitted with the
CDM model only, i.e., at very low redshift the �CDM,
CDM, and Visser’s models are degenerate for the cosmo-
logical observations.

V. CONCLUSIONS

The theory of massive gravitons as considered in the
Visser’s approach has the advantage that the field equations
(3) differs from Einstein equations only in a subtle way,
namely, by the introduction of the bimetric mass tensor
M��. Moreover, the van Dam-Veltmann-Zakharov discon-

tinuity present in the Pauli-Fierz term can be circumvented

in Visser’s model by introducing a nondynamical flat-
background metric [30].
From the cosmological point of view, the meaning of the

mass tensor, classically speaking, is a long range correction
to the ordinary Friedmann equation. Such a correction
mimics the effects of a dark energy component in such a
way that additional fields are not necessary.
In this context, we have shown that the cosmological

model with massive gravitons could be a viable explana-
tion to the dark energy problem. But, although the parame-
ter �m is well constrained, the model is disfavored when
compared to the �CDM model. Considering systematic
errors, the difference between the 
2

min of the two models

reduces considerably, but the Visser model is still
disfavored.
Finally, the plots of the effective state parameter and of

the deceleration parameter for the best-fit value of �m,
show a very particular feature of the Visser’s model,
namely, the transient behavior of the accelerated phase of
expansion. The Universe begins to accelerate approxi-
mately at the same redshift of the �CDM model, but for
a very small redshift (z� 4� 10�2) we have a second
transition and the Universe becomes to decelerate again.
In spite of this, the behavior of the Hubble parameter HðzÞ
is very similar in both models, as can be seen in the Fig. 1.
In this way, one would think that the transient acceleration
phase is what makes the Visser model less compatible with
SNe data than the�CDMmodel. This is a problem that we
will address in the future in order to find consistent mod-
ifications of Visser’s approach.
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