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We discuss the properties of homogeneous and isotropic flat cosmologies in which the present

accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM)

particles (�m ¼ 1). For some matter creation rates proposed in the literature, we show that the main

cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth

factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free

parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background

(CMB) + SNe Ia data yields ~�m ¼ 0:28� 0:01 (1�), where ~�m is the observed matter density parameter.

In particular, this implies that the model has no dark energy but the part of the matter that is effectively

clustering is in good agreement with the latest determinations from the large-scale structure. The growth

of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the

fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies

predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to

the usual �CDM cosmology. Such results point to the possibility of a crucial observational test

confronting CCDM with �CDM scenarios through a more detailed analysis involving CMB, weak

lensing, as well as the large-scale structure.
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I. INTRODUCTION

The analyses of high quality cosmological data (e.g.
supernovae type Ia, cosmic microwave background
(CMB), galaxy clustering, etc.) have converged towards a
cosmic expansion history that involves a spatially flat
geometry and some sort of dark energy in order to explain
the recent accelerating expansion of the universe [1–7].
The simplest dark energy candidate corresponds to a cos-
mological constant, � (see [8–10] for reviews). In the
standard concordance �CDM model, the overall cosmic
fluid contains baryons, cold dark matter, plus a vacuum
energy that fits accurately the current observational data
and thus it provides an excellent scenario to describe the
observed universe.

On the other hand, the concordance model suffers from,
among others [11], two fundamental problems: (a) The
fine-tuning problem, i.e., the fact that the observed value
of the vacuum energy density (�� ¼ �c2=8�G ’
10�47 GeV4) is more than 120 orders of magnitude below
the natural value estimated using quantum field theory [8],
and (b) the coincidence problem [12], i.e., the fact that the
matter energy density and the vacuum energy density are of
the same order just prior to the present epoch. Such prob-
lems have inspired many authors to propose alternative
candidates to dark energy such as �ðtÞ cosmologies, quin-
tessence, k essence, vector fields, phantom, tachyons,
Chaplygin gas, and the list goes on (see [13–28] and
references therein).

Nowadays, the nature of the dark energy is considered
one of the most fundamental and difficult problems in the

interface uniting astronomy, particle physics, and cosmol-
ogy. However, there are other possibilities. For instance,
one may consider nonstandard gravity theories where the
present accelerating stage of the universe is driven only by
cold dark matter, that is, with no appealing to the existence
of dark energy. Such a reduction of the so-called dark
sector is naturally obtained in the so-called fðRÞ gravity
theories [29] (see, however, [30]). Even in the framework
of the standard general relativity theory, it is also possible
to reduce the dark sector by considering the presence of
inhomogeneities [31], quartessence models [32], as well as
the gravitationally induced particle creation mechanism
[33–48]. In what follows we focus our attention to the
last approach by considering the gravitational creation of
cold dark matter in the expanding Universe.
The basic microscopic description for gravitational par-

ticle production in an expanding universe has been inves-
tigated in the literature by many authors starting with
Schrödinger [49]. In the late 1960s, independently of
Schrödinger’s work, this issue was investigated by Parker
and others [33,34] by considering the Bogoliubov mode-
mixing technique in the context of quantum field theory in
curved spacetime. The basic physical effect is that a clas-
sical nonstationary background influences bosonic or fer-
mionic quantum fields in such a way that their masses
become time dependent (see, e.g., [50] for more recent
works). For a real scalar field in a flat Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) geometry described in confor-
mal coordinates, for example, the key result is that the
effective mass reads [51] m2

effð�Þ � m2a2 � a00=a, where
m is the ‘‘Minkowskian’’ constant mass of the scalar field,
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að�Þ is the scale factor, and the derivatives are computed
with respect to the conformal time. This time-dependent
mass accounts for the interaction between the scalar field
and the geometry of the Universe. When the field is quan-
tized, this leads to particle creation, with the energy for
newly created particles being supplied by the classical,
time-varying gravitational background.

Macroscopically, the first self-consistent formulation for
matter creation was put forward by Prigogine and co-
workers [35] and somewhat clarified by Calvão, Lima,
and Waga [36] (see also [37]). It was shown that matter
creation, at the expense of the gravitational field, is also
macroscopically described by a negative pressure, and,
potentially, can accelerate the Universe. Within this frame-
work, various interesting features of cosmologies with
particle creation have been discussed in [38–44] (see also
[45] for recent studies on this subject). More recently, the
corresponding effects on the global dynamics of the parti-
cle creation regime have been investigated extensively by a
number of authors (see [46–48] and references therein). In
particular, it was also found that a subclass of such models
depends only on one free parameter and that the evolution
of the scale factor is exactly the same of �CDM models
[48]. Naturally, in order to know if creation of cold dark
matter (CCDM) models provides a realistic description of
the observed Universe, its viability needs to be tested by
discussing all the constraints imposed from current obser-
vations both for background and perturbative levels (struc-
ture formation).

In this context, the basic aim of the present work is
twofold. First, we place constraints on the main parameters
of CCDM cosmologies by performing a joint likelihood
analysis involving the shift parameter of the cosmic mi-
crowave background (CMB) [3] and the observed baryonic
acoustic oscillations (BAO) [5], and the latest SNIa data
(Constitution) [7]. Second, for a wide class of matter
creation cosmologies, we also develop the linear approach
for the density perturbations. Analytical solutions for the
differential equation governing the evolution of the growth
factor and some properties of the large-scale structure
(cluster formation) are also discussed and compared to
the predictions of the �CDM model.

The paper is planned as follows. The basic theoretical
elements of the problem are presented in Sec. II, where we
introduce the basic FLRW cosmological equations for
CCDM cosmologies. In Secs. III and IV we present the
specific CCDM scenarios and derive the constraints on
their parameters based on a statistical joint analysis involv-
ing the shift parameter of the cosmic microwave back-
ground (CMB) [3], the baryonic acoustic oscillations
(BAO) [5], and the latest SNIa data (Constitution) [7]. In
Sec. V we study the evolution of linear perturbations, while
in Sec. VI we present the corresponding theoretical pre-
dictions regarding the formation of the galaxy clusters
with basis on the Press-Schechter formalism. Finally, in

Sec. VII we draw our conclusions. Throughout the paper
we consider H0 ¼ 70:5 km= sec =Mpc as given by the
WMAP five-years data [3].

II. CREATION COLD DARK MATTER (CCDM)
COSMOLOGIES: BASIC EQUATIONS

The nontrivial cosmological equations for the mixture of
radiation, baryons and cold dark matter (with creation of
dark matter particles), and the energy conservation laws for
each component have been investigated thoroughly by
[37–39,46–48]. In this framework, for a spatially flat
FLRW geometry the basic equations which govern the
global dynamics of the universe in the matter dominated
era (�rad � 0) are given by [46–48]

H2 ¼ 8�G

3
ð�bar þ �dmÞ ¼ 8�G

3
�m; (1)

€a

a
¼ � 4�G

3
ð�m þ 3pcÞ; (2)

_� bar þ 3H�bar ¼ 0; _�dm þ 3H�dm ¼ �dm�; (3)

which implies that

_�m þ 3H�m ¼ �dm�; where �m ¼ �dm þ �bar:

(4)

In the above set of differential equations, an overdot de-
notes derivative with respect to time, �bar and �dm are the
baryonic and dark matter energy densities, H ¼ _a=a is the
Hubble parameter, whereas pc corresponds to the creation
pressure. The quantity � is the so-called creation rate of the
cold dark matter and it has units of ðtimeÞ�1. The creation
pressure is defined in terms of the creation rate and other
physical quantities. For adiabatic creation of cold dark
matter, it has been found [36,37] that the creation pressure
is given by (see also Prigogine et al. [35])

pc ¼ ��dm�

3H
: (5)

Using Eqs. (1) and (4) we can obtain the following useful
formula:

_H þ 3

2
H2 ¼ 4�G�dm

3

�

H
: (6)

Expressions (4)–(6) show how the matter creation rate, �,
modifies the basic quantities of Einstein-de Sitter cosmol-
ogy. Note that if the creation rate is negligible, � � H,
then, the creation pressure is negligible, �m / a�3, and the
solution of the above equation reduces to that of the
Einstein-de Sitter model, namely, HðtÞ ¼ 2=3t.

III. TWO SPECIFIC CCDM MODELS

Although the precise functional form of �ðtÞ is still
missing, a number of different phenomenological parame-
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trizations have been proposed in the literature treating the
time-dependent �ðtÞ function ([46–48] and references
therein). In what follows, we consider two different flat
matter creation models, namely, Lima, Silva, and Santos
(hereafter LSS [46]) and Lima, Jesus, and Oliveira (here-
after LJO [48]), respectively. With the aid of the current
observational data, we will also put stringent constraints on
their free parameters.

A. The LSS model

In the LSS scenario, the functional form of � is phenom-
enologically parametrized by the following linear expan-
sion in the Hubble parameter (see LSS for more details):

� ¼ 3�H0 þ 3�H: (7)

It is worth noticing that in its original formulation by LSS,
both the baryonic and radiative contributions were ne-
glected (�bar ¼ �rad ¼ 0). Such incompleteness was cured
in a subsequent paper by Steigman et al. [47]. The advan-
tage of the LSS model is that it is analytically described,
and due to this feature we will consider it as an interesting
and preparatory toy model for more physical CCDM
scenarios.

The mass density in LSS reduces to the dark matter
density, �m ¼ �dm [see Eq. (4)]. Without going into the
details of that model, let us present its main features. Based
on the latter considerations the basic Friedmann equation
becomes [see Eq. (6)]

_H þ 3

2
H2

�
1� �� �H0

H

�
¼ 0: (8)

Performing the integration of Eq. (8) we derive the follow-
ing Hubble function:

HðtÞ ¼ H0

�
�

1� �

�
eð3�H0=2Þt

ðeð3�H0=2Þt � 1Þ ; (9)

and by integrating the latter we obtain the evolution of the
scale factor

aðtÞ ¼ 1

ð1þ zÞ ¼
��

1� �� �

�

��
e3�H0t=2 � 1

��
2=3ð1��Þ

:

(10)

Evaluating Eq. (10) at the present time (a � 1 or z ¼ 0),
we can define the present age of the Universe:

t0 ¼ 2

3�H0

ln

�
1� �

1� �� �

�
: (11)

Now utilizing Eqs. (9) and (10), we find after some
algebra that the normalized Hubble flow takes the follow-
ing form [47]:

EðaÞ ¼ HðaÞ
H0

¼ �

1� �
þ 1� �� �

1� �
a�3ð1��Þ=2: (12)

We now study the conditions under which an inflection

point exists in our past, implying an acceleration phase of
the scale factor. This crucial period in the cosmic history
corresponds to €aðtIÞ ¼ 0 and tI < t0. Differentiating twice
Eq. (10), we simply have

aI ¼ 1

1þ zI
¼

�
2�

ð1� 3�Þð1� �� �Þ
��2=3ð1��Þ

: (13)

Note that if � ¼ 0, there is no transition from an early
decelerating to a late time accelerating Universe [47]. In
this case, one can also prove that the expansion of the
Universe always decelerates for 0 � �< 1=3 and always
accelerates for 1=3<� � 1. The latter condition implies
that the parameter � has to obey the following restriction
0<� � 1. When � ¼ 0, negative values of � mean de-
struction of particles, and, for completeness, such a possi-
bility will also be considered in the discussion of some
background tests (see Sec. IV).

B. The LJO model

Now, let us consider an alternative CCDM scenario that
includes the baryonic and radiative components, and was
also proposed with the intention to solve the cluster prob-
lem in such a framework [48]. In this context, the particle
creation rate reads

� ¼ 3 ~��

�
�co

�dm

�
H; (14)

where ~�� (called � in the [48]) is a constant, �co ¼
3H2

0=8�G is the present-day value of the critical density,

and the factor 3 has been maintained for mathematical
convenience. We stress that such CCDM scenario mimics
the global dynamics of the traditional � cosmology [48].
Indeed, the combination of Eqs. (1), (6), and (14) leads to
the following formula:

_H þ 3
2H

2 ¼ 3
2
~��H

2
0 ; (15)

a solution of which is given by

HðtÞ ¼
ffiffiffiffiffiffiffiffi
~��

q
H0 coth

�3H0

ffiffiffiffiffiffiffiffi
~��

q
2

t

�
: (16)

Using now the definition of the Hubble parameter H �
_a=a, the scale factor of the universe aðtÞ, normalized to
unity at the present epoch, evolves with time as

aðtÞ ¼
� ~�m

~��

�
1=3

sinh2=3
�3H0

ffiffiffiffiffiffiffiffi
~��

q
2

t

�
; (17)

where ~�m ¼ 1� ~�� � 1� � can be viewed as the ef-
fective matter density parameter at the present time. For an

arbitrary redshift, ~�mðzÞ measures the mass density that is
effectively clustering [48]. The cosmic time is related with
the scale factor as
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tðaÞ ¼ 2

3
ffiffiffiffiffiffiffiffi
~��

q
H0

sinh�1

� ffiffiffiffiffiffiffiffi
~��

~�m

vuut a3=2
�
: (18)

Combining the above equations we can define the normal-
ized Hubble expansion as a function of the scale factor:

EðaÞ ¼ HðaÞ
H0

¼ ð ~�ma
�3 þ ~��Þ1=2: (19)

Obviously, the LJO model contains only one free parame-
ter. The inflection point [namely, the point where the
Hubble expansion changes from the decelerating to the
accelerating regime, €aðtIÞ ¼ 0] takes place at

tI ¼ 2

3
ffiffiffiffiffiffiffiffi
~��

q
H0

sinh�1

� ffiffiffi
1

2

s �
; aI ¼

� ~�m

2 ~��

�
1=3

: (20)

In what follows we constrain the free parameters of such
models coming from the background tests. For the sake of
clarity, the study of the perturbed models and the associ-
ated constraints coming from galaxy cluster formation will
be postponed to Secs. V and VI.

IV. BACKGROUND TESTS: BAO, CMB SHIFT
PARAMETERS, AND SNE IA DATA

In this section we briefly present the statistical analysis
used in order to constrain the matter creation models
presented in the previous section. First of all, we consider
the baryonic acoustic oscillations (BAO). This kind of
estimator is produced by pressure (acoustic) waves in the
photon-baryon plasma in the early universe, generated by
dark matter overdensities. Evidence of this excess was
recently found in the clustering properties of the luminous
SDSS red-galaxies [5] and it provides a ‘‘standard
ruler’’ with which we can constrain dark energy models.
In particular, we use the following estimator: AðpÞ ¼
f ffiffiffiffiffiffiffiffi

�m

p
=½z2sEðasÞ�1=3gf

R
1
as
ðdaÞ=½a2EðaÞ�g2=3, measured from

the SDSS data to be A ¼ 0:469� 0:017, where zs ¼ 0:35
[or as ¼ ð1þ zsÞ�1 ’ 0:75]. Therefore, the corresponding
�2
BAO function is simply written

�2
BAOðpÞ ¼

½AðpÞ � 0:469�2
0:0172

; (21)

where p is a vector containing the cosmological parameters
that we want to fit.

On the other hand, a very accurate and deep geometrical
probe of dark energy is the angular scale of the sound
horizon at the last scattering surface as encoded in the
location lTT1 of the first peak of the cosmic microwave
background (CMB) temperature perturbation spectrum.
This probe is described by the CMB shift parameter

[52,53] and is defined as R ¼ ffiffiffiffiffiffiffiffi
�m

p R
1
als
fðdaÞ=½a2EðaÞ�g.

The shift parameter measured from the WMAP five-years
data [3] is R ¼ 1:71� 0:019 at zls ¼ 1090 [or als ¼ ð1þ

zlsÞ�1 ’ 9:17� 10�4]. In this case, the �2
cmb function is

given:

�2
cmbðpÞ ¼

½RðpÞ � 1:71�2
0:0192

: (22)

Note that the measured CMB shift parameter is somewhat
model dependent but mostly to models which are not
included in our analysis; for example, in the case where
massive neutrinos are included or when there is a strongly
varying equation of state parameter. The robustness of the
shift parameter was tested and discussed in [54].
Finally, we use the ‘‘Constitution set’’ of 397 type Ia

supernovae of Hicken et al. [7]. In order to avoid possible
problems related with the local bulk flow, we use a sub-
sample of the overall sample in which we select those SNIa
with z > 0:023. This subsample contains 351 entries. The
corresponding �2

SNIa function becomes

�2
SNIaðpÞ ¼

X351
i¼1

�
	thðai;pÞ �	obsðaiÞ

�i

�
2
; (23)

where ai ¼ ð1þ ziÞ�1 is the observed scale factor of the
Universe, zi is the observed redshift, 	 is the distance
modulus 	 ¼ m�M ¼ 5 logdL þ 25, and dLða;pÞ is

the luminosity distance dLða;pÞ ¼ c
a

R
1
a

dy
y2HðyÞ , where c is

the speed of light. We can combine the above probes by
using a joint likelihood analysis: LtotðpÞ ¼ LBAO �
Lcmb �LSNIa or �

2
totðpÞ ¼ �2

BAO þ �2
cmb þ �2

SNIa in order

to put even further constraints on the parameter space
used.1

Performing now our statistical analysis, we attempt to
put constraints on the free parameters. In particular, we
sample � 2 ½�0:2; 0:2� and � 2 ½0:1; 1� in steps of 0.001.
Thus, the overall likelihood function peaks at � ¼
�0:15� 0:007 and � ¼ 0:86� 0:01 with �2

totð�;�Þ ¼
432:5 (dof ¼ 351). Using the latter cosmological parame-
ters the corresponding current age of the universe is found
to be t0 � 14:8 Gyr while the inflection point is located at
aI ’ 0:44. This corresponds to a redshift zI ’ 1:26, which
is substantially higher than in the case of the concordance
model. If we now impose � ¼ 0, the SNIa likelihood
analysis provides a best fit value of � ¼ 0:66� 0:02, in
agreement with [47]. Note that [47] used only the SNIa
data. We find that, although our SNIa likelihood analysis
provides a similar � value to that found in [47], our joint
likelihood function peaks at � ¼ 0:41� 0:01 but with a
poor quality fit: the reduced �2

tot is ’ 3.

This simply means that the functional form EðaÞ ¼ �þ
ð1� �Þa�3=2 is unable to fit the observational data simul-
taneously at low and high redshifts. We confirm this point

1Likelihoods are normalized to their maximum values. We will
report 1� uncertainties of the fitted parameters. The overall
number of data points used is Ntot ¼ 353 and the degrees of
freedom dof ¼ Ntot � nfit, with nfit the number of fitted parame-
ters, which varies for the different models.

S. BASILAKOS AND J. A. S. LIMA PHYSICAL REVIEW D 82, 023504 (2010)

023504-4



by using the CMB shift parameter only, finding that the
corresponding likelihood function peaks at � ’ 0:20. This
value is �3:4 times larger than that provided by the
SNIaþ BAO solution � ’ 0:68 (SNIa only points � ’
0:66). This fact alone suggests that for the class of models
with a constant creation rate � ¼ 3�H0, we are unable to
provide a quality fit of the basic cosmological data in all the
relevant redshift ranges.

Now, let us constrain the LJO model with the observa-
tional data from background tests. From our joint analysis
involving BAOþ CMB shift parameterþ SNe Ia data,
we find that the best fit value (within 1� uncertainty) is
~�m ¼ 0:28� 0:01 with �2

totð�mÞ ’ 431:5 (dof ¼ 352).
This result is in good agreement with recent studies [1–
3,6,7] of the concordance � cosmology. Therefore, the
current age of the universe is t0 ’ 13:9 Gyr while the
inflection point is located at aI ’ 0:58 (hence at redshift
zI ’ 0:72).

Summing up, although solving the acceleration and age
problems, the LSS type scenarios is endowed with severe
difficulties even for the set of background tests analyzed
here. On the other hand, the LJO scenario provides good
fits for the SNeþ BAOþ CMB shift parameter. A more
detailed analysis on this issue (background tests) will be
published in a forthcoming paper.

V. MATTER DENSITY PERTURBATIONS IN CCDM
COSMOLOGIES

Let us now derive the basic equation that governs the
evolution of the mass density contrast, modeled here as an
ideal fluid in a ‘‘quasi’’-Newtonian or neo-Newtonian
framework [55]. In this approach, background equations
are formulated in a way that the isotropic pressure becomes
dynamically relevant even for FLRW cosmologies where
all the physical properties may depend only on time. This
allows us to describe an accelerated expansion of the
Universe powered by an effective negative pressure in a
Newtonian framework. Naturally, even considering that the
neo-Newtonian approach reproduces the general relativity
(GR) background dynamics exactly, small differences may
occur at the perturbative level. However, as discussed by
Reis [56], the GR first-order perturbation dynamics and its
neo-Newtonian counterpart coincide exactly for a vanish-
ing sound speed. Indeed, for constant equations of state it
has been demonstrated that the correct large-scale behavior
in the synchronous gauge are also reproduced. This should
also be expected since the observational data correspond to
modes that are well inside the Hubble radius, for which the
use of a neo-Newtonian approach seems to be adequate
(for recent papers in this subject see [57] and references
therein).

A. Basic formalism

In what follows we will adopt a nonrelativistic descrip-
tion with basis in an extended continuity equation together

with the Euler and Poisson equations. In virtue of the
particle creation process they take the form�

@�

@t

�
r
þrr 	 ð�uÞ ¼ ��; (24)

�
@u

@t

�
r
þ ðu 	 rrÞu ¼ �r�; (25)

and

r2
r� ¼ 4�G���eff ; (26)

where ðr; tÞ are the proper coordinates, u is the velocity of a
fluid element of volume, � is the mass density, and� is the
gravitational potential. Since we are working within the
context of cosmological models with matter creation we
havemodified the continuity equation (24) by including the
‘‘standard’’ source term. Utilizing Eqs. (2) and (5), the
quantity �eff is defined as

�eff ¼ �� 12�Gpc ¼ �þ 4�G�dm

�

H
; (27)

where for completeness and future comparison to the
present cosmic concordance model (�CDM), we have
also included the cosmological � term.
Now, by changing from proper ðr; tÞ to comoving ðx; tÞ

variables, the fluid velocity becomes [58]

u ¼ _axþ a _x ¼ _axþ vðx; tÞ; (28)

while the corresponding differential operators take the
following forms:

rx � r ¼ arr; (29)

and �
@

@t

�
x
� @

@t
¼

�
@

@t

�
r
þHx 	 r; (30)

where x ¼ r=a and vðx; tÞ is the peculiar velocity with
respect to the general expansion. Note that the mass density
is written as

� ¼ �mðtÞ½1þ 
ðx; tÞ�: (31)

In this context, using Eqs. (4), (29), and (30) and neglecting
second order terms (
 � 1 and v � u), it is routine to
rewrite Eqs. (24)–(26)

€axþ @v

@t
þHv ¼ �r�

a
; (32)

r 	 v ¼ �a

�
@


@t
þ c


�m

�
; (33)

1

a2
r2� ¼ 4�G�mð1þ 
Þ ��eff : (34)

Following the notations of [58], we write the gravitational
potential as

CONSTRAINTS ON COLD DARK MATTER ACCELERATING . . . PHYSICAL REVIEW D 82, 023504 (2010)

023504-5



� ¼ �ðx; tÞ þ 2
3�G�ma

2x2 � 1
6�effa

2x2: (35)

Thus utilizing Eqs. (1), (5), and (27) we derive after some
algebra that

@v

@t
þHv ¼ �r�

a
; (36)

and

r2� ¼ 4�Ga2�m
: (37)

Finally, by taking the divergence of Eq. (36) and using
Eqs. (33) and (37), we obtain the time evolution equation
for the growth factor DðtÞ � 
=AðxÞ [where AðxÞ is an
arbitrary function]:

€Dþ ð2H þQÞ _D� ð4�G�m � 2HQ� _QÞD ¼ 0; (38)

where

QðtÞ ¼ �dm�

�m

: (39)

Now, it is clear how the matter creation term affects the
growth factor via the function QðtÞ.

It should be noticed that the background creation pres-
sure affects both the global dynamics as well as the fluc-
tuations viaQðtÞ. In the above results, it was also implicitly
assumed that the produced particles have negligible veloc-
ities as measured by the observers in the comoving frame-
work which implies that any additional internal pressure
term is negligible. In fact, this is a reasonable assumption
since we are working with a nonrelativistic phase of uni-
verse expansion (matter era). The second assumption is
that the matter production is strictly homogeneous which
implies that possible contributions of QðtÞ at the perturba-
tive level are practically zero. Thus, within the context of
the latter assumptions, the advantage of employing a neo-
Newtonian approach is a gain in simplicity and transpar-
ency of all computations.

In order to solve the above differential equation we need
to know the functional form of the quantity QðtÞ (or �). In
the case of a negligible matter creation rate � � H
[QðtÞ � 0], the above equation reduces to the usual time
evolution equation for the mass density contrast [58] for
which the growth factor is DEdSðaÞ ¼ a. As one may
check, by solving Eq. (38) for the � cosmology [QðtÞ ¼
0], we also derive the well-known perturbation growth
factor (see [58]):

D�ðaÞ ¼ 5�mEðaÞ
2

Z a

0

dx

x3E3ðxÞ ; (40)

where �m ¼ 1��� is the matter density parameter and
EðaÞ ¼ HðaÞ=H0 is the normalized Hubble function

EðaÞ ¼ ð�� þ�ma
�3Þ1=2: (41)

It is also interesting to mention here that one can explicitly
derive Eq. (38) in the framework of cosmological models

with a time-varying vacuum energy density [59]. Note that
for simplicity throughout the rest of the paper we will use
geometrical units (c ¼ 8�G � 1). In the analytical treat-
ment below, unless explicitly stated, we consider � ¼ 0.

B. Growth of fluctuations in CCDM models: Analytical
solutions

Let us now discuss thoroughly the time evolution equa-
tion of the mass density contrast in the linear regime in
order to test the implications of CCDM models on the
structure formation process. In order to illustrate our re-
sults with a basic application, we also consider later the
formation of galaxy clusters through the so-called Press-
Schetcher formalism.

1. Fluctuations in the LSS Model

Using the time evolution equation for the mass density
contrast as given by (38), we now derive the growth factor
of fluctuations for LSS cosmology. To begin with, we
change variables from t to a new one defined by the
following transformation:

y ¼ ent=2 � 1 with n ¼ 3�H0: (42)

In this context, using Eqs. (1), (4), (7), (9), (10), (39), and
(42) we obtain

HðyÞ ¼ nðyþ 1Þ
	y

; �mðyÞ ¼ 3n2ðyþ 1Þ2
	2y2

;

QðyÞ ¼ n½3y� ð	� 3Þ�
	y

; _QðyÞ ¼ n2ð	� 3Þðyþ 1Þ
2	y2

;

(43)

where 	 ¼ 3ð1� �Þ. We can now rewrite Eq. (38) as

	2ðyþ 1Þy2D00 þ	yfðyÞD0 þ 2gðyÞD ¼ 0; (44)

where prime denotes derivatives with respect to y and

fðyÞ ¼ ð10þ	Þðyþ 1Þ � 3	

gðyÞ ¼ 9ðyþ 1Þ � 7	þ	2:
(45)

Factors of n drop at the end of the calculation. Notice that
this variable is related with the scale factor as

y ¼ 3�

	� 3�
a	=2: (46)

We find that Eq. (44) has a growing solution of the form

DðyÞ ¼ Cyð�10þ3	þ ffiffiffi
�

p Þ=2	F
�
�1; �1 þ 2

ffiffiffi
7

p
	

; �2;�y

�
;

(47)

where
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�1 ¼ 3

2
�

ffiffiffi
7

p
	

þ
ffiffiffiffi
�

p
2	

�2 ¼ 1þ
ffiffiffiffi
�

p
	

;

� ¼ 28� 4	þ	2:

(48)

Notice that the quantity F is the hypergeometric function
and C is a constant. Inserting Eq. (46) into Eq. (47), we
obtain the growth factor DðaÞ as a function of the scale
factor:

DðaÞ ¼ C1a
ð�10þ3	þ ffiffiffi

�
p Þ=4F

�
�1; �1 þ 2

ffiffiffi
7

p
	

;�2;� 3�a	=2

	� 3�

�
;

(49)

where

C1 ¼ C
�

3�

	� 3�

�ð�10þ3	þ ffiffiffi
�

p Þ=2	
: (50)

2. Fluctuations in LJO models

Let us now proceed further to solve analytically the
differential Eq. (38) in order to investigate the matter
fluctuation field of the LJO model in the linear regime.
To do so, we change variables from t to y according to the
transformation

y ¼ coth

�3H0

ffiffiffiffiffiffiffiffi
~��

q
2

t

�
: (51)

Using (51) we find, after some calculations, that Eq. (38)
takes on the form

3y2ðy2 � 1Þ2D00 þ 2yfðyÞD0 � 2gðyÞD ¼ 0; (52)

where

fðyÞ ¼ ðy2 � 1Þðy2 � 3Þ; gðyÞ ¼ ðy4 � 7y2 þ 3Þ:
(53)

Note that factors of H0 drop at the end of the calculation.
In deriving Eq. (52) we have substituted the various

terms in (38) as a function of the new variable [see
Eq. (51)]. For instance, from Eqs. (1), (16), and (39), we
have

HðyÞ ¼
ffiffiffiffiffiffiffiffi
~��

q
H0y; �mðyÞ ¼ 3 ~��H

2
0y

2;

QðyÞ ¼ 3
ffiffiffiffiffiffiffiffi
~��

q
H0

y
; _QðyÞ ¼ 9

ffiffiffiffiffiffiffiffi
~��

q
H0ðy2 � 1Þ
2y2

:

(54)

In this framework, the differential equation (52) can be
brought into the following expression:

6x2ðxþ 1Þ2 d
2D

dx2
þ xqðxÞdD

dx
� bðxÞD ¼ 0; (55)

qðxÞ ¼ ðxþ 1Þð5x� 4ÞbðxÞ ¼ ðx2 � 5x� 3Þ; (56)

where

x ¼ y2 � 1 ¼
� ~�m

~��

�
a�3; xþ 1 ¼ y2 ¼ E2ðaÞ

~��

;

(57)

in which we have used Eqs. (16), (17), and (19).
The solution of the main differential equation (55) is

DðxÞ ¼ C
xð5�

ffiffi
7

p Þ=6

xþ 1
F

�

; 
þ 5

6
; 2

�

þ 7

6

�
;�x

�
; (58)

where 
 ¼ �ð4þ ffiffiffi
7

p Þ=6 and C is a constant. Inserting
Eq. (57) into Eq. (58), we finally obtain the growth factor
DðaÞ as a function of the scale factor:

DðaÞ ¼ C1

a�ð5� ffiffi
7

p Þ=2

E2ðaÞ F

�

; 
þ 5

6
; 2

�

þ 7

6

�
;�

~�m

~��

a�3

�
;

(59)

where

C1 ¼ C ~��

� ~�m

~��

�ð5� ffiffi
7

p Þ=6
: (60)

We would like to stress here that the above solution of the

growth factor is valid when ~�� � 0 (or ~�m � 1).

C. Linear growth: Analysis and summary

Let us now discuss the evolution of the growth factor as a
function of the redshift [DðzÞ, z ¼ a�1 � 1] as predicted
by the two CCDM cosmologies [see Eqs. (49) and (59)].
For comparison, we also present the growth factor pro-
vided by the standard �CDM cosmology [see Eq. (40)].
In Fig. 1 we display the basic results. First, we notice

that the growth factors are normalized to unity at the
present time (z ¼ 0). It is also evident that the LSS growth
factor (dashed line) is much greater with respect to the
other two models, LJO (dotted line) and � (solid line). In
this framework, we find that for z � 0:8 the LSS growth
factor (dashed line hereafter LSS1) starts to decay, imply-
ing that cosmic structures cannot be formed via gravita-
tional instability. The same general behavior seems to hold
also for the LSS model with � ¼ 0 and � ¼ 0:66 (dot-
dashed line hereafter LSS2).
Let us now compare the predictions of LJO and �CDM

growth factors. First, we stress a remarkable result: despite
the fact that the two models share the same global dynam-
ics [compare Eqs. (19) and (41)], they trace differently the
evolution of the matter fluctuation field. In particular, close
to the present epoch (z < 0:4) the LJO growth factor (dot-
dashed line) reaches almost a plateau, which means that the
matter fluctuations are effectively frozen. Between 0:4 �
z < 1:6, the growth factor in the LJO model is greater than
that of the concordance �CDM cosmology. In particular,
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the corresponding deviation ð1�D=D�Þ% lies in the in-
terval ½�35;�19�%. As an example, prior to the inflection
point (zI � 0:72) we find �� 28%.

It is worth noting that in the interval of 1:6 � z � 2:8
the LJO growth factor tends to the � solution. Indeed, at
the epoch of z� 1:62 (a� 0:38), in which the most distant
cluster has been found [60], the deviation ð1�D=D�Þ% of
the growth factor DðzÞ for the LJO scenario with respect to
the � solution D�ðzÞ is �5%. To this end, for z > 2:8 we
find that DðzÞ<D�ðzÞ and the corresponding deviation
ð1�D=D�Þ% remains close to�28%. Naturally, one may
expect that the differences among the growth factors will
affect the predictions related with the formation of the
cosmic structures (see the next section). In particular,
such results point to the possibility of a crucial observa-
tional test confronting CCDM with �CDM scenarios in a
perturbative level.

VI. THE FORMATION AND EVOLUTION OF
COLLAPSED STRUCTURES

In this section we study the cluster formation processes
in CCDM cosmologies by using the standard Press-
Schechter formalism [61]. In such an approach, the behav-
ior of the matter perturbations is described by assuming
that the density contrast behaves like a Gaussian random
field. As it is widely known, the cluster distribution basi-
cally traces scales that have not yet undergone the non-
linear phase of gravitationally clustering, thus simplifying
their connections to the initial conditions of cosmic struc-
ture formation.

The basic aim here is to estimate the fractional rate of
cluster formation (see [62,63]). In particular, these studies
introduce a methodology which computes the rate at which
mass joins virialized halos (such as galaxy clusters) which
grow from small initial perturbations in the universe, with
matter fluctuations 
 greater than a critical value 
c.
Now, by assuming that the density fluctuation field,

smoothed at the scale R (corresponding to a mass scale
of M ¼ 4� ��R3=3, with �� the mean background mass
density of the Universe), is normally distributed with
zero mean, then the probability that the field will have a
value 
 at any given point in space is

P ð
; zÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�ðR; zÞ exp

�
� 
2

2�2ðR; zÞ
�
; (61)

where the variance of the Gaussian field �2ðR; zÞ is given
by

�2ðR; zÞ ¼ 1

2�2

Z 1

0
k2Pðk; zÞW2ðkRÞdk; (62)

with Pðk; zÞ the power spectrum of density fluctuations
which evolves according to Pðk; zÞ ¼ Pðk; 0ÞD2ðzÞ, with
DðzÞ the growing mode of the density fluctuations evolu-
tion, normalized such that Dð0Þ ¼ 1.
Finally,WðkRÞ is the top-hat smoothing kernel, given in

Fourier space by

WðkRÞ ¼ 3

ðkRÞ3 ½sinðkRÞ � kR cosðkRÞ�: (63)

We can now estimate what fraction of the Universe, at
some reference redshift z and above some mass threshold
M, has collapsed to form bound structures. To this end we
need to integrate the probability function given by Eq. (61)
over all regions that at some prior redshift had overden-
sities which by the reference redshift have increased to
above the critical value 
cðzÞ, which in an Einstein-
de Sitter universe is ’ 1:686 and varies slightly for differ-
ent values of �m [64,65]. Therefore, this fraction is given
by [28,63,66,67]

F ðM; zÞ ¼
Z 1


cðzÞ
P ð
; zÞd
; (64)

and performing the above integration, parametrizing the
rms mass fluctuation amplitude at R ¼ 8h�1 Mpc which
can be expressed as a function of redshift as �ðM; zÞ ¼
�8ðzÞ ¼ DðzÞ�8, we obtain

F ðzÞ ¼ 1

2

�
1� erf

�

cffiffiffi

2
p

�8ðzÞ
��

: (65)

It is worth noticing that the above generic form of
Eq. (65) is heavily dependent on the choice of the back-
ground cosmology and the matter power spectrum normal-
ization,�8. For the sake of comparison, in what follows we
consider two values �8. The first is the WMAP5 result
�8 ’ 0:80 [3], whereas the second is �8 ’ 0:95.

FIG. 1. The evolution of the growth factor. The lines corre-
spond to LSS1 [dashed line, ð�; �Þ ¼ ð�0:15; 0:86Þ], LSS2 [dot-
dashed line, ð�; �Þ ¼ ð0; 0:66Þ], LJO (dotted line), and � cos-
mology (solid line). Note that the growth factors of all models
were scaled to unity at the present time. Despite the fact that LJO
and �CDM models share the same global dynamics, we see that
they trace differently the evolution of the matter fluctuation field
(compare the dotted and solid lines).
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Finally, we normalize the above probability to give the
fraction of mass in bound structures which have already
collapsed by the epoch z, divided by the corresponding
fraction in structures which have collapsed at the present
epoch (z ¼ 0),

~FðzÞ ¼ F ðzÞ=F ð0Þ: (66)

In Fig. 2, by assuming the matter power spectrum nor-
malization, �8 ’ 0:80, we present in a logarithmic scale
the behavior of normalized structure formation rate as a
function of redshift for the present cosmological models.

In the context of the LSS1 matter creation model (see
dashed line), we find that prior to z� 0:8 (or z� 1:1 for
the LSS2 model, dot-dashed line) the cluster formation has
effectively terminated due to the fact that the matter fluc-
tuation field, DðzÞ, effectively overs (see Sec. VC). Also,
the large amplitude of the LSS fluctuation field (see also
Fig. 1) implies that in this model galaxy clusters appear to
form much earlier (z� 7) with respect to the LJO (dot-
dashed) and � (solid line) cosmological models. Indeed,
for the latter cosmological models we find that galaxy
clusters formed typically at z� 2:2. From the observatio-
nal point of view, it is interesting to point out here that the
most distant cluster has been found at z� 1:62 [60]. We
would like to stress that the LSS2 predicts an early rapid
cluster formation that takes place at the redshift of reioni-
zation (z ’ zreion � 10), at which the universe was reion-
ized from the neutral state to a fully ionized state.
Obviously, this result rules out the LSS2 model.

We also stress that the amount of cluster abundances
between the two models remains almost the same for 1:6 �
z � 2:2. This is to be expected due to the fact that the two
cosmological models have almost the same growth factors
(see also Sec. VC). Then for z < 1:6 the LJO cluster

formation rate becomes larger than that of the concordance
model and finally it terminates for z � 0:4.
In Fig. 3 we also display the normalized structure for-

mation rate as a function of redshift, but now for a higher
value of the power spectrum parameter (�8 ¼ 0:95).
Comparing Figs. 2 and 3, we see that the basic effect of
a larger value of �8 is that the corresponding cluster
formation rate moves to higher redshifts.

VII. CONCLUSIONS

In this work, we have investigated (analytically and
numerically) the overall dynamics of two cosmological
models in which the dark matter creation process provides
the late time accelerating phase of the cosmic expansion
without the need of dark energy. Such scenarios termed
here by LSS [46] and LJO [48] are phenomenologically
characterized by two distinct creation rates, � (see
Sec. III). In the first scenario (LSS), the creation rate is � ¼
3�H0 þ 3�H while in the second one it is proportional to

the Hubble parameter; namely, � ¼ 3 ~��ð�co=�dmÞH,
where �co ¼ 3H2

0=8�G is the present-day value of the

critical density.
It should also be stressed that the phenomenological

approach adopted here cannot determine the mass of the
particles, as well as whether their nature is fermionic or
bosonic. In order to access the mass of the particles, and,
therefore, the nature of the CDM particles, it is necessary
to determine the creation rate, �, from quantum field
theory in FLRW space time. In principle, such a treatment
must somewhat incorporate a source of entropy since the
matter creation process is truly an irreversible process. In
particular, in the case of adiabatic matter creation consid-
ered here, both the entropy (S) and the number of particles
(N) in a comoving volume increase but the specific entropy
(S=N) remains constant [36,37,43].

FIG. 2. The predicted fractional rate of cluster formation as a
function of redshift for �8 ’ 0:80. The lines represent (a) LSS1
[dashed line, ð�;�Þ ¼ ð�0:15; 0:86Þ], (b) LSS2 [dot-dashed line,
ð�; �Þ ¼ ð0; 0:66Þ], (c) LJO (dotted line), and (d) � cosmology
(solid line). Note that the clusters in LSS-type models form
earlier (z� 7� 10) in comparison to those produced in the
framework of the LJO and �CDM models (z� 2).

FIG. 3. The predicted fractional rate of cluster formation as a
function of redshift for using a higher value for the normalization
of the power spectrum, �8 ’ 0:95. The meaning of the various
lines is the same as Fig. 2. We see that for a larger value of �8 the
corresponding cluster formation rate is displaced to higher red-
shifts (compare to Fig. 2).
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In this context, by using current observational data
(BAOs, CMB shift parameter, and SNIa) we have first
performed a joint likelihood analysis in order to put tight
constraints on the main cosmological parameters. Sub-
sequently, through a linear analysis we have also studied
the growth factor of density perturbations for both classes
of creation cold dark matter models, and, finally, by using
the Press-Schechter formalism we have discussed how the
cluster formation rates evolve in such scenarios.

The result of our joint statistical analysis shows that the
fit provided by the LSS model with � ¼ 0:66 and � ¼ 0
turns out to be of poor quality because it is unable to adjust
simultaneously the observational data at low and high
redshift. This result confirms the conclusion by Steigman
et al. [47] using only SNe Ia and the determination of zeq,

the redshift of the epoch of matter radiation equality. For
the LSS scenario, we also find that the amplitude and the
shape of the linear density contrast are significantly differ-
ent with respect to those predicted by the LJO and �
models (see Fig. 1). In particular, for z � 0:8 the matter
fluctuation field of the LSS model practically decays
thereby implying that the corresponding cosmic structures
cannot be formed via gravitational instability (see also
Figs. 2 and 3).

On the other hand, the creation cold dark matter scenario
(termed here as LJO) provides good quality fits of the
cosmological parameters at all redshifts and it resembles
the global dynamics of the concordance �CDM cosmol-
ogy by including only one free parameter. Despite the
latter, the corresponding growth factor has the following

evolution with respect to that of the usual � cosmology:
(i) prior to the present epoch (z < 0:4) the evolution of the
LJO growth factor reaches almost a plateau, which means
that the matter fluctuations are effectively frozen;
(ii) between 0:4 � z < 1:6, the growth factor in the LJO
model is greater than that of the concordance � cosmol-
ogy, while for 1:6 � z � 2:8 the two growth factors have
converged; and (iii) for z > 2:8 we find that DðzÞ<D�ðzÞ
and the corresponding deviation ð1�D=D�Þ% remains
close to �28%.
Summarizing, in the case of LSS scenario, the large-

scale structures (such as galaxy clusters) form earlier (z�
7� 10) with respect to those produced in the framework of
the LJO and �CDM models (z� 2). Therefore, in view of
the recent cluster observational data, the latter are much
more favored as compared to the former. Our basic con-
clusion is that the LJO creation cold dark matter model
which has only one free parameter passes all the tests
considered here. However, new constraints from comple-
mentary observations need to be investigated in order to
see whether this kind of scenario provides a realistic de-
scription of the observed Universe.
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