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The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a

promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its

variation from current and future surveys and find that the promise of void shape measurements compares

favorably to that of standard methods such as supernovae and cluster counts even for currently available

data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark

Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as

EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling

several observational and theoretical systematics has only moderate effects on these forecasts. We discuss

additional systematics which will require further study using simulations.
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I. INTRODUCTION

A number of observations have established that the
expansion of the Universe is accelerating at late times
[1–9]. The cause of acceleration is usually attributed to
an otherwise unobserved component called dark energy,
but models of dark energy are generically plagued by fine-
tuning issues [10–14]. One can also interpret these obser-
vations as a consequence of the gravitational dynamics
being different from the evolution of a standard
Friedmann-Robertson-Walker (FRW) universe under gen-
eral relativity. Such differences could arise due to the
symmetries of the FRW universe being broken in the real
Universe, and the assumptions of smallness of the pertur-
bations being invalid [15–18], or because general relativity
is not a correct description of gravity [19–21]. With such
fundamental questions at stake, a prime objective of physi-
cal cosmology is to understand the source and nature of
this acceleration. All available current data [9,22–29] are
consistent with an FRWuniverse having dark energy in the
form of a cosmological constant, yet various models of
different classes are still allowed by the data. Therefore an
important objective of current and future observational
efforts is to study the acceleration of the Universe in differ-
ent ways and detect departures in the behavior from that
expected in a standard �CDM model.

In order to compute parameter constraints from obser-
vational data, one usually parametrizes our ignorance
about dark energy with a time dependent equation of state
(EOS) of dark energy as a specific function of redshift and
theoretically computes the observational signatures. Avery
widely used choice, following the recommendations of the
Dark Energy Task Force (DETF) [30], is the Chevallier-
Polarski-Linder (CPL) parametrization of the equation of
state [31,32]. This results in joint constraints on different
parameters of the cosmological model, including the pa-

rameters of the EOS of dark energy. It is important to use
different sets of observational data. Different kinds of data
sets probe different physical imprints of dark energy lead-
ing to distinct shapes of constraints on parameters.
Consequently, the simultaneous use of many ‘‘complemen-
tary’’ probes leads to the tightest constraints on cosmologi-
cal parameters [33–36].
Moreover, as indicated above, we can hardly be certain

that the specific parametrization of the EOS chosen, or
even the choice of the physical model causing the accel-
eration, is correct. In that light, probing the observable
effects of dark energy in terms of different physical aspects
is even more important. A tension between constraints
computed from different subsets of available data may be
indicative of an incorrect parametrization [37], or even an
untenable choice of a physical model. Traditionally, the
main observations used to constrain cosmological parame-
ters have pertained to the apparent magnitudes of type IA
supernovae (SNe), the power spectrum of anisotropies of
the cosmic microwave background (CMB), and the power
spectrum of inhomogeneities in the matter distribution
(matter power spectrum). The constraints from the super-
novae relate to effects on the geometry of the Universe due
to dark energy through the changes in the background
expansion. The CMB and matter power spectrum con-
straints stem mostly from a measurement of the geometry
through the angular location of peaks of the anisotropy
power spectrum and the peak positions of the baryon
acoustic oscillations (BAO), but also its effects on the
growth of perturbations through the magnitude of the
power spectrum. Current status of the parameter con-
straints on the basis of recent CMB, large-scale structure,
and SNe observations can be found in [38–40]. Further, the
use of observations of clusters of galaxies and weak lensing
can be used to measure the growth of perturbations. It is
therefore important to use probes of different aspects of
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cosmic evolution for constraining the cosmological pa-
rameters and models. From the viewpoint of both these
perspectives, new probes for studying dark energy parame-
ters are invaluable.

In the above mentioned probes of the growth of cosmic
structures, one studies the dependence of the dynamical
growth of fluctuations on the cosmological parameters
through the dependence of the growth of the amplitude
(i.e., size) of the fluctuations on the cosmology. However,
in standard cosmology, while the fluctuations are stochas-
tically isotropic, the individual fluctuations are not iso-
tropic. Thus, a measure of the anisotropy and the time
evolution of such measures can depend on cosmology in
a distinct way. Consequently, this may be used to further
constrain cosmological parameters. One expects that the
signatures of anisotropic measures in observations would
be related to the shapes of observed structures. Studying
the evolution of shapes of high density regions (observable
as galaxies or galaxy clusters at late times) and comparing
with theory (e.g. [41]) is difficult because this requires high
resolution numerical simulations capturing the nonlinear
evolution of these systems. This difficulty can be avoided
to a large extent by studying voids using semianalytic
methods. Therefore, the shapes of voids can be used to
probe cosmology through the evolution of the anisotropy
of fluctuations during cosmic growth.

Park and Lee [42,43] identified the probability distribu-
tion of a quantity which they called ellipticity [44] related
to the eigenvalues of the tidal tensor. They showed that the
distribution was sensitive to the dark energy equation of
state. Besides, they stated that the ellipticity could be
derived from a catalog of galaxies, identifying voids of
different sizes and measuring their shapes, and the distri-
bution was verified using results from N-body simulations.
This ellipticity is an example of a measure of anisotropy of
individual fluctuations. The comparison of the probability
distribution can provide complementary constraints on
dark energy parameters if its cosmology dependence is
different from other probes. Wewill not require new probes
to study constraints from voids, rather one can study them
using probes designed to study large scale structure in
conventional ways, thereby allowing for better leveraging
of data. Voids may be detected by the use of different void
identification algorithms [45–50], which find voids using
different characteristics, and may be considered to be
different definitions of voids. Properties of voids have
been explored in 2dF [51] in the Sloan Digital Sky
Survey (SDSS) [52,53]. The shapes and sizes of voids in
the SDSS DR5 have been explored in Foster and Nelson
[54].

The main objective of this paper is twofold: (a) we want
to quantify the potential of using void ellipticities to probe
the nature of dark energy in terms of constraints on dark
energy parameters, (b) and to clarify the model assump-
tions that are important for this procedure, which should be
verified or modified according to results from simulations.

This paper is organized as follows: In Sec. II we review the
idea that the shapes of voids can be quantified in terms of
asymmetry parameters that can be related to the tidal
tensor. We discuss the initial distribution of eigenvalues
of the tidal tensor, and their evolution to study the evolu-
tion of the asymmetry parameters of voids and their de-
pendence on the underlying cosmology. There are different
theoretical choices of models to approximate the nonlinear
evolution of the initial potential field to observable void
ellipticities. We discuss two different choices in the
Appendixes B and C and show that our results are insensi-
tive to these choices. In Sec. III, we discuss the parameters
from the surveys considered and our method of estimating
the number of voids identified from these surveys. In
Sec. IV, we write down a likelihood and explicit formulas
for the Fisher matrix and use them to forecast constraints
from these surveys. We also study how the constraints are
degraded by systematic issues. We summarize the paper
and discuss our outlook in Sec. V.

II. THEORY

In this section, we outline the basic idea of using asym-
metry parameters describing the shapes of voids in esti-
mating cosmological parameters. The anisotropy of
fluctuations may be captured by studying the eigenvectors
and eigenvalues of the tidal tensor, which may be visual-
ized as an ellipsoid with its principal axes along the eigen-
vectors of the tidal tensor, and sizes of the principal axes
equal to the eigenvalues of the tidal tensor. At early times,
the distribution of these eigenvalues at any point in space is
known, and their evolution can be studied by semianalytic
methods. Therefore, the distribution of these quantities
may be computed theoretically and it is desirable to find
observational signatures of this distribution. Voids form
around the minima in the density field of matter. The void
geometry may be approximated by an ellipsoidal shape,
which we shall refer to as the void ellipsoid. The central
idea of Park and Lee [42] is that the shape of the void
ellipsoid as quantified by relative sizes of its principal axes
is set by the geometry (functions of the eigenvalues) of the
tidal ellipsoid and these should be strongly correlated. This
implies that the ellipticity measured from the geometry of
voids can be used as an observable for specific functions of
the eigenvalues of the tidal tensor. Observations of void
shapes at different redshifts can then be used to trace the
evolution of the stochastic distribution of these eigenvalues
of the tidal ellipsoid at different redshifts. This contains
dynamical information that may be used to constrain cos-
mological parameters.
We briefly describe measures of ellipticity of the void

ellipsoid and their connection to the eigenvalues of the
tidal ellipsoid in subsection II A: this specifies the func-
tions of the tidal eigenvalues that are constrained by the
void shapes. We then describe the distribution of eigenval-
ues of the initial tidal tensor appropriate to an observed
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void in subsection II B. Then, in appendices B and C, we
study the time evolution of the initial eigenvalues using
two different approximations, and find them to be
consistent.

A. Relating the asymmetry parameters to the tidal
tensor

To describe the dynamics, we choose the comoving
coordinates of particles (or galaxies) as the Eulerian coor-
dinates ~x, while the Lagrangian coordinates are taken to be
~q, which are approximately the ‘‘initial’’ Eulerian coordi-
nates at some chosen large redshift. The two coordinates

are always related through the displacement field ~�ð ~q; �Þ:
~x ¼ ~qþ ~�ð ~q; �Þ: (1)

While the solution �ð ~q; �Þ describes the dynamics com-
pletely, partial aspects of the dynamics may be described
by other measures. The asymmetry of the fluctuation can
be understood in terms of the eigenvectors and eigenvalues

of the tidal tensor Ti;j ¼ @�ið ~qÞ
@qj

. This can be visualized as an

ellipsoid, which we shall refer to as the tidal ellipsoid, with
principal axes along the eigenvectors of the tidal tensor
with sizes equal to the eigenvalues. For a spherically
symmetric fluctuation, these eigenvalues are equal, while
the departure from spherical symmetry may be character-
ized by different choices of functions of ordered eigenval-
ues of the tidal tensor. (See Appendix A for some other
popular choices in the literature.) This was recognized and
used in correcting for ellipsoidal collapse of halos rather
than spherical collapse in Press-Schechter–like estimates
of the mass function of dark matter halos [55–57]. From a
theoretical side, we can describe the evolution of the
distribution of these eigenvalues. Therefore, it is these
dynamical quantities that we are interested in, even though
they are not directly observable.

We will next proceed to describe observable quantities
which relate to the shape of the voids, and then show how
functions of those observables trace functions of these
dynamical quantities. Since voids form around minima of
the density fields where the gradient of field vanishes, one
can approximate the density profiles around the minima by
truncating the Taylor expansion at second order. This gives
density profiles that are ellipsoidal in shape. One may
expect voids to inherit this shape, and therefore be approxi-
mately ellipsoidal. In fact, voids have often been modeled
as spherical (e.g. [58]), while others have argued that the
shapes of larger voids fit ellipsoids well only for smaller
voids [59]. For irregularly shaped voids (obtained by suit-
able void identification algorithms), one can define a void
ellipsoid by fitting a moment of inertia tensor to the posi-
tions of observed void galaxies ~x in Eulerian coordinates
relative to the void center ~xv

Sij ¼
P
k

ðxki � xvi Þðxkj � xvj Þ
N

;

where the index k runs over the observed galaxies in the
void region, and N is the number of galaxies fitted. The
void ellipsoid can be defined as the ellipsoid with principal
axes along the eigenvectors of this mass tensor, and lengths
proportional to the square root of the eigenvalues
fJ1; J2; J3g. Here, we shall ignore the discrepancy between
the actual shape and this void ellipsoid. Following Park and
Lee [42,43] (see Appendix C of Lavaux and Wandelt [60]
for a calculation to first order), one can relate the eigen-
values of the tidal tensor f�1; �2; �3g to the functions of the
ratio of eigenvalues of the void ellipsoid which were called
ellipticity. Accordingly, the ellipticities f�;!g of the void
ellipsoid are to first order

� ¼ 1�
�
J1
J3

�
1=4 � 1�

�
1� �1

1� �3

�
1=2

;

! ¼ 1�
�
J2
J3

�
1=4 � 1�

�
1� �2

1� �3

�
1=2

:

(2)

Clearly, this relation will be affected, at least to some
extent, by more detailed dynamics. This would lead to �
measured from data sets on voids being correlated with the
functions of f�ig with some scatter. In computing parame-
ter constraints, we shall account for this in terms of a
variance in the quantity � which also contains contribu-
tions from observational errors. We shall assess the impact
of this assumption of the void shapes being perfect tracers
of the eigenvalues by studying the degradation of con-
straints on increasing the variance in our study of system-
atics in Sec. IVC.

B. Distribution of initial eigenvalues of the tidal tensor

An observed void evolves from a fluctuation of low
underdensity at early times when the distribution of fluc-
tuations was Gaussian. Given a void of a given density
contrast, at a particular redshift, we wish to calculate the
distribution of eigenvalues of the tidal tensor of the initial
fluctuation.
At early times, the fluctuations are small enough, their

growth can be described by linear perturbation theory, and
the distribution remains Gaussian. One can use the statis-
tical properties of filtered isotropic and homogeneous
Gaussian fields to derive a probability distribution of the
ordered eigenvalues of the tidal tensor given by the
Doroshkevich formula

Pð�1; �2; �3j�RÞ ¼ 3375

8
ffiffiffi
5

p
�6

R

exp

��3K2
1

2�2
R

þ 15K2

2�2
R

�
K3; (3)

where K1 ¼ �1 þ �2 þ �3, K2 ¼ �1�2 þ �2�3 þ �3�1,
while K3 ¼ �ð�1 � �2Þð�2 � �3Þð�3 � �1Þ, and �2

R is
the variance of the smoothed overdensity field at the filter-
ing scale R at that time [61]. Note, that this gives the
distribution of the size of the eigenvalues over all spatial
points. This distribution is extremely similar but slightly
different if restricted to the maxima of the Gaussian field
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[62], or the minima of the Gaussian field [60] which should
evolve to voids. For the small fluctuations, one can use the
Jacobian of the transformation from Eulerian to
Lagrangian coordinates to show that the sum of the eigen-
values K1 can be identified with the density contrast.

It should be noted that this distribution depends on the
filtering scale RSmooth as a parameter while the size of voids
is not important. This is appropriate for comparison with a
data set of voids obtained from redshift surveys by means
of an algorithm which uses a filtering scale as a parameter,
rather than the void size. This is true for a class of algo-
rithms that define voids as regions of space where the
smoothed matter density is a minimum (e.g. [60,63])
with the smoothing scale RSmooth being a parameter, with
the actual size of voids not being crucial to the definition.
On the other hand there are void finding algorithms which
define voids as the largest contiguous underdense regions,
obtained by some form of clustering algorithms. A corre-
sponding parameter here is the size R of the voids related to
the void volume by R3 � 3V

4� , while the smoothing scale is

not crucial. While each algorithm might yield slightly
different properties of voids, it would be expected that
they are not too different. In Appendix B, we show that a
calculation based on the generalized excursion set formal-
ism can be used to calculate the distribution of eigenvalues
of an initial fluctuation that evolves to form a void of size
R. The result of this calculation supports the above result.

C. Evolution of the tidal eigenvalues

At low redshifts, gravitational collapse introduces non-
linearities into the evolution leading to non-Gaussian dis-
tributions of the density field. Thus, the distribution of the
tidal eigenvalues of the previous subsection which as-
sumed Gaussianity are not directly applicable. We study
the evolution of these eigenvalues with time in two differ-
ent methods, one based on the Zeldovich approximation
and one based on Bond and Myers [64].

It is well known that nonlinearity is manifested much
less in the displacement field or the gravitational (and the
related displacement) potential than in the density field.
Therefore before shell-crossing, the evolution of structures
from initial condition may be described by the Zeldovich
approximation, where the displacement field is assumed to
be separable into a time dependent and a time independent

part. �ðq; �Þ ¼ Dð�Þ
Dð�0Þ�ðq; �0Þ, where Dð�Þ is the linear

growth function. Hence, at a particular spatial point, its
eigenvalues �ið�Þ at time � evolve linearly from the eigen-
values �ið�0Þ at some initial time �0 as �ið�Þ ¼
Dð�Þ�ið�0Þ=Dð�0Þ. Rewriting the early time eigenvalues
in the Doroshkevich formula [Eq. (3)] in terms of the
eigenvalues at time �, one can then find a distribution of
eigenvalues at any time to be given by the Doroshkevich
formula where the �R is replaced by Dð�Þ�R=Dð�0Þ, the
linearly extrapolated variance over the Lagrangian smooth-
ing scale R. The formula is exactly the same as Eq. (3) with

the variance �2
R being replaced by the linearly extrapolated

variance �2ðR; zÞ, and �i replaced by the eigenvalues at the
redshift of the void. Further, since the sum of the eigen-
valuesK1 at early times was equal to the density contrast at
that time, the term K1 is equal to the linearized density
contrast of the time of the void

�linð�Þ ¼ Dð�Þ
Dð�0Þ�ð�0Þ

¼ Dð�Þ
Dð�0Þ ð�1ð�0Þ þ �2ð�0Þ þ �3ð�0ÞÞ

¼ ð�1ð�Þ þ �2ð�Þ þ �3ð�ÞÞ: (4)

In regions of high density peaks where structure forms, it
has been found that modeling the density growth as a
collapse of a homogeneous ellipsoid leads to a better
approximation to N-body simulations. It is unclear whether
this should also be true for low density regions like voids.
In Appendix C, we study the evolution of the eigenvalues
of the tidal tensor based on ellipsoidal collapse [64] and
find the differences with the evolution computed using
Zeldovich approximation to be small.

D. Cosmology dependence of the distribution of
ellipticity

Therefore, using the Zeldovich approximation, one can
write down the probability distribution of the eigenvalues
of the tidal tensor at any time. Further, using the relations
of the ellipticities of the void [Eq. (2)] and the relation of
the linearly extrapolated density contrast to the eigenvalues
f�1; �2; �3g, one can recast this as the joint distribution of
the ellipticities f�;!g given the smoothing scale and the
linearly extrapolated density contrast. Following Park and
Lee, we define �, � and write the probability distribution
for the larger ellipticity �

� ¼ ðJ2=J3Þ1=4; � ¼ ðJ1=J3Þ1=4

Pð�; �j�linðR; zÞ; �linðzÞÞ ¼ 34=4

�ð5=2Þ
�

5

2�2
linðR; zÞ

�
5=2

� exp

�
� 5�2

linðzÞ
2�2

linðR; zÞ

þ 15K�
2

2�2
linðR; zÞ

�
K�

3 J

Pð�j�linðR; zÞ; �linðzÞÞ ¼
Z 1

1��
d�Pð�; 1� �j�linðR; zÞ;

�linðzÞÞ; (5)

whereK�
2 ,K

�
3 are the values ofK2,K3 in Eq. (3) in terms of

�, � when the constraint of Eq. (4) holds, and J is the
Jacobian in the transformation from the coordinates
f�1; �2; �ling to f�; �; �ling. This last equation gives the
probability distribution of the larger ellipticity � marginal-
ized over the smaller ellipticity !. It depends on the
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cosmology only through the linearly extrapolated variance
�2

linðR; zÞ of density fluctuations �ðx; zÞ smoothed at a

certain filtering scale R by a window function WRðx; x0Þ:
�2

linðR; zÞ � h�?
Rðx; zÞ�Rðx; zÞi ¼ D2ð�Þ�2

R

�Rðx; zÞ ¼
Z

d3x0�ðx; zÞWRðx; x0Þ;
(6)

where Dð�Þ is the growth function and �R is evaluated at
early times. For qualitative understanding, it is useful to
think of the variance depending on cosmology through �R

which depends on the primordial power spectrum and the
wave mode dependent transfer function, and the subse-
quent scale independent growth described by the growth
functionDð�Þ. While the transfer function depends on most
of the cosmological parameters, in most models dark en-
ergy does not become significant at early times. Therefore
most of the effects of dark energy are embedded in the
growth function. Closed analytic forms for the growth
function are not known for nonflat cosmologies, with
time varying equations of state dark energies, but
Percival [65] improves upon a fit to the growth function
by Basilakos [66], so that the fit works for nonflat cosmol-
ogies having dark energy with time varying equation of
state as long as they are close to flat �CDM models, even
when the equation of state is less than �1. If we consider
the CPL parametrization

wðzÞ ¼ w0 þ wa

z

zþ 1
; (7)

we see in the left panel of Fig. 1 that the growth function
changes more dramatically as a function of w0 than for wa

for redshifts below unity. Thus, we expect, that constraints
from voids in these redshift ranges should be stronger on
w0 than on wa. From the right panel of Fig. 1, we can see
the effect of the filtering scale R on the distribution. Since
�linðR; zÞ is a monotonically decreasing function of R, a
larger filtering scale (a) shifts the distribution toward
smaller values of �, and (b) sharpens the distribution.
This is consistent with intuition based on previous studies
[67–69]. Leaving all other variables the same, increasing R
corresponds to excluding the smaller voids. Since the
variation of possible values is caused by the variance in

the Gaussian distribution, a smaller value of �linðR; zÞ also
corresponds to a sharper distribution.
In this paper, we shall assume that all voids are found at

a linearized density contrast of �lin ¼ �2:81, the under-
density at shell-crossing. We shall compute �linðR; zÞ di-
rectly from numerical integration of the smoothed density
fluctuations evolved by a modified version of the
Boltzmann code CAMB [70].

III. DISTRIBUTION OF ELLIPTICITY:
CONNECTING TO OBSERVATIONS

Estimate of voids to be found from a survey

Next, we proceed to estimate the number of voids that
we expect to find in a certain survey. We model a survey by
considering a redshift survey, which can measure the red-
shifts of the galaxies up to a limiting visual magnitude of
mL in a given filter and from a minimum redshift of zmin to
a maximum of zmax. In case of photometric surveys, the
errors in redshift can be much larger, leading to errors in
the size of the ellipse along the line of sight, consequently
the distribution of ellipticities will have to be marginalized
over this error. Here, we will limit our considerations to
spectroscopic surveys, where the error in measuring the
redshift of the galaxies �10�4 is negligible.
In order to estimate the number of voids of a particular

size at a particular redshift, we use the Press-Schechter
formalism to determine the number density of voids in a
redshift bin centered at z, with Eulerian comoving radius
between RE and RE þ dRE. Simulations indicate that the
number density of voids peaks at a density contrast of � �
�0:85 [42], we shall consider all the voids to have a
density contrast of 0.8, which can be seen to correspond
to a linearly extrapolated density contrast of �2:81 using
the fitting function in Mo and White [71]. While the usual
Press-Schechter formalism matches simulations well at
redshift ranges below � 2, it fails to predict the number
of voids correctly at small scales due to the ‘‘void in cloud
problem,’’ which can be avoided if, at each redshift, we
restrict ourselves to scales larger than the nonlinearity
length scale (Lagrangian) RV inc

min ðzÞ where �ðRV inc
min ðzÞ; zÞ ¼

1 [72], where ‘‘inc’’ stands for ‘‘in cloud.’’ Then, the Press-
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FIG. 1 (color online). Left panel: the derivative of the growth function with respect to the dark energy parameters w0 and wa. The
growth function shown has been normalized to unity at a redshift of 0.01. Right panel: the theoretical distribution of the largest
ellipticity � as a function of �ðR; zÞ for �lin ¼ �2:81.
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Schechter formalism reliably predicts the number of voids
with the replacement �c ¼ 1:69 ! �v ¼ �2:81 in the
standard Press-Schechter formalism [73]. The number of
voids of a particular size can then be found by integrating
over the cosmological volume in the redshift bin, and over
the range of radii allowed:

nvðRE; zÞdRE ¼ 3

2�R3
E

P

�
�j�vðzÞj

�RE

���������
d

dRE

�j�vðzÞj
�RE

��������dRE

Nvoid ¼
Z zþ�z

z
d�dz

Z REþ�RE

RE

dRE

dV

dzd�
nvðREÞ;

(8)

where PðyÞ ¼
ffiffi
1
2

q
expð�y2=2Þ. The number density of

voids thus depends exponentially on �R and therefore the
number of voids is extremely sensitive to the minimum
radius used. Since voids are detected by observing galaxies
rather than the matter density, the number of voids detected
with small radii will be strongly affected by shot noise
(discussed in subsection IVC). We therefore only consider
voids with radii greater than a critical radius R �
Rshot
min ðz;SurveyÞ. For our purposes then, the minimum of

the range of radii of voids at a redshift z considered must be
set to the maximum of RV inc

min ðzÞ and Rshot
min ðz;SurveyÞ.

We now explain our method for computing
Rshot
min ðz;SurveyÞ, from the parameters for a survey. The

minimum radius of voids that we will consider should be
related to the average separation of galaxies observed
lsepðzÞ at the redshift z by the survey in question.We choose

this relationship to be linear Rshot
min ðz;SurveyÞ ¼ AlsepðzÞ,

and relate the average separation to the average number

density of observed galaxies n
bg
galðzÞ at that redshift for the

survey. A choice of A ¼ 2 implies that the probability that
a detected void is just due to shot noise is less than 0.5%
while such a scenario for A ¼ 1 is of the order of 50%,
though void identification algorithms can do better, since

they can exploit the contrast between voids and their higher
density environments. In any case, the interesting regime is
in between these numbers and we shall later explore the
sensitivity of constraints to this range.
This background number density of observed galaxies

nbggalðzÞ can be related to the survey parameters. The mean

number density of galaxies in the background Universe can
be calculated from the luminosity function [74] of galaxies
at the filter band used in the survey by

nbggalðzÞ ¼
Z ML

�1
dM�XðM; zÞ; (9)

where�X is the luminosity function for the filter X andML

is the limiting absolute magnitude of objects at redshift z
which are observed by the survey. It can be calculated from
the limiting apparent magnitude of the survey mL by using
the formula

ML ¼ mL � 5log10DLðzÞ þ 5� AðzÞ � KðzÞ: (10)

Here DLðzÞ is the luminosity distance to the redshift z in
units of parsec (pc), AðzÞ is the correction due to extinction
and KðzÞ is the K correction arising from the difference in
the observed luminosity of and the rest frame luminosity of
an object in a particular frequency band due to redshifting
of photons.
We note that RV inc

min depends on the cosmology, but is

independent of the survey, while Rshot
min ðz; surveyÞ also de-

pends on the survey through the filter band, and the limit-
ing magnitude. A plot of Rnoise

min and RV inc
min for surveys

considered in this paper is shown in Fig. 2. Thus, our
estimate of the number of voids identified by each survey
depends on the cosmology, the value of the proportionality
constant A, and the survey parameters.
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FIG. 2 (color online). Setting the minimum size of voids: the dashed red curve shows the RV inc
min , while the solid thin (thick) curves

show (twice) the average separation of observed galaxies for a SDSS DR7–like survey (left) and a EUCLID-like survey (right). At a
particular redshift, we only consider voids with sizes larger than both these scales.
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IV. RESULTS

A. Likelihood function and Fisher matrix

In order to study the potential constraints on cosmologi-
cal parameters, we need to write down a simple model for
the data. We assume that by applying appropriate simula-
tion algorithms, we can identify a set of voids at each
redshift bin corresponding to a particular smoothing scale.
We expect to measure the ellipticities of each of these voids
with some error. We model the error as an additive
Gaussian noise n on the ellipticity �s:

�dðR; zÞ ¼ �sðR; zÞ þ n; n�Gð0; ��Þ: (11)

�s itself is a random variable following the distribution of
the ellipticities at the relevant redshift. Then we can write
down the likelihood function, which is the probability for
finding a void with a measured largest ellipticity �d given
the cosmological parameters

Lð�dj�Þ ¼
Z

d�sPð�dj�sÞPð�sj��;�Þ: (12)

One expects that the error in measuring the ellipticities will
be set by the errors in measuring the principal axes of the
void ellipsoid. For a spectroscopic survey, the positions of
galaxies are well measured. Ignoring effects of redshift
distortion/finger-of-god effects, the precision level of the
measurement of the principal axes would be set by the
errors in the void finding algorithm. Of course, this will be
limited by the relative sizes of the void wall thickness to the
void radius �. For �� 0:1� 0:4, � � 0:2 around the
maximum for standard cosmological parameters, the error
in � is of the order of 0.1. The errors in the measurement of
each void is statistically independent. Thus the likelihood
function for an entire data set consisting of voids at differ-
ent redshifts can be computed as the product of Eq. (12) for
each void. Consequently, the logarithm of the likelihood
function Lð�dj�Þ is additive for each void.

Given the likelihood function for a single void, one can
compute the Fisher matrix F defined as an expectation over
all possible sets of data,

Fij ¼
�
@Lð�dj�; ��Þ

@�i

@Lð�dj�; ��Þ
@�j

�

¼
Z 1

0
d�dLð�dj�; ��Þ@Lð�dj�; ��Þ

@�i

@Lð�dj�; ��Þ
@�j

;

(13)

where all the derivatives are taken at a fiducial choice of the
cosmological parameters �p. Since in our model the error

in measuring the ellipticity is independent of the cosmo-
logical parameters, and the ellipticity depends on the cos-
mological parameters through the variance of the
fluctuations �2

R only, we can factorize this into a matrix
of mixed partial derivatives of �R with respect to the
cosmological parameters, and the derivatives of the log

likelihood with respect to �R. We evaluate both of these
derivatives numerically. The main contribution to the de-
rivatives comes from the regions where the probability is
smallest. However, these contributions are suppressed in
the expectation values, since these regions have low prob-
abilities. Finally, we must sum this contribution for the
Fisher matrix over all the voids in the data set. The result
thus depends critically on the number of voids in the data
set.

B. Forecasts of constraints on the CPL parameters

We consider Fisher forecasts for a cosmology with the
nonbaryonic matter assumed to be cold, neglect effects of
neutrino masses, and parametrize the evolution of the dark
energy equation of state with a CPL parametrization. The
primordial perturbations are assumed to be Gaussian dis-
tributed, and characterized by a spectrum which is a power
law with an initial amplitude As, and a scale independent
tilt ns. The distribution of ellipticities depends on both the
amplitude of primordial perturbations, and the spectral
index through the dependence of the variance on the scale
of smoothing. As is well known, these quantities As, ns are
not exactly known, and have a degeneracy with �, the
optical depth of reionization. Further, the constraints on
the equation of state parameters can depend strongly on the
knowledge of the curvature parameter [40]. We therefore
consider forecasts for constraints on the CPL parameters
w0, wa after marginalizing over all other cosmological
parameters from a maximal set shown in Table. I, along
with the fiducial values used for computing the Fisher
forecasts.
All of these parameters are not well constrained by a

single experiment. Consequently, we shall consider Fisher
forecasts using ellipticity distribution of voids from two
spectroscopic surveys: the recent SDSS DR7 and the fu-
turistic EUCLID with the survey parameters assumed
summarized in Table. II. We will assume A ¼ 1, �� ¼
0:1 Following the work in [60], we will identify the
smoothing scale as being a quarter of the radius of the
void. For CMB constraints, we will consider Fisher fore-
casts computed from PLANCK [75] The expressions for
the Fisher matrix for CMB data are given in Tegmark et al.
[34]. The survey parameters for PLANCK are taken from
Table. 1.1 of the PLANCK Bluebook [76], and are sum-
marized in Table. III. We consider Fisher forecasts of
supernovae from two surveys: for a survey like Dark
Energy Survey (DES) the number of supernovae expected

TABLE I. Parametrization of the cosmology and the fiducial
values chosen for the maximal set of parameters used in evalu-
ating the Fisher forecasts. Constraints are also discussed after
imposing flatness.

�bh
2 �ch

2 	 � �k w0 wa ns logð1010AsÞ
0.022 36 0.105 1.04 0.09 0.0 �1 0 0.95 3.13
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is of the order of 1300, and the maximum redshift is around
0.7. We model this with a redshift distribution taken from
[77] designed to be cut off at z ¼ 0:7, and assume perfect
measurement of redshift, due to plans of spectroscopic
follow-up. The errors in the magnitude are assumed to be
of the order of the intrinsic dispersion from light curve
fitting techniques today (0.15). We also consider a futur-
istic photometric supernova IA survey, Large Synoptic Sky
Survey (LSST) [78], where about 500 000 SNe IA suitable
for constraining dark energy parameters could be observed.
We model the errors by assuming magnitude errors of the
order of 0.12 from intrinsic dispersion, and photometric
errors in redshift determination of the order of �z ¼
0:01ð1þ zÞ, and assuming that this adds an error dm

dz �z

in quadrature to the intrinsic dispersion.We use the redshift
distribution in Table 1.2 of [78] to model the redshift
distribution of the LSST survey. In all cases, we will also
use the constraints on the Hubble constant H0from the
Hubble Space Telescope (HST) results.

In Fig. 3, we present the constraints on the equation of
state parameters w0, wa by combining constraints for two
sets of data, (a) data representative of current or near future
(left panels), and (b) data representative of more futuristic
data (right panels). The forecasts for one sigma constraints
using void ellipticitiesþ CMBþ HST are shown in open
circles, assuming A ¼ 1. The error in measuring the ellip-
ticities �� is taken as 0.1. The ellipses made of black ‘‘þ’’
show the constraints for SNeþ HSTþ CMB (PLANCK).
The solid, thick, blue ellipses show the constraints when
these constraint are combined [CMB ðPLANCKÞ þ
SNeþ HSTþ voids]. In the left panels of the figure, the
voids considered are from a survey like SDSS DR7, and the
SNe considered are from a survey like DES. In the right
panels the voids considered are from a futuristic survey like
EUCLID, and the SNe are from a futuristic photometric
survey like LSST. The upper panels show the constraints
marginalized over all other parameters in the maximal set,
while the lower panels show the marginalized constraints

for a flat universe. For reference, we show the thick, green
contours showing the one sigma constraints from current
SNe ðUnionÞ þ HSTþ CMB ðWMAP5Þ data from [40].
For the flat universe in the lower panels, we also show
the constraints from CMB ðPLANCKÞ þ HSTþ clusters
(Power spectrumþ number counts) from [79]. In the
lower left panel the clusters considered are from the SPT
survey, while the lower right panels show the constraints
from clusters from LSST.
First, these figures show that the inclusion of constraints

from void ellipticities significantly improves parameter
constraints and the constraints from voids along with
CMB and HST data are comparable to the joint constraints
obtained by using supernovae IA, CMB, and HST data
both in the near future and the far future. As is common,
following Albrecht et al. [30], we quantify this in terms of
a figure of merit (FOM) which is inversely proportional to
the area of the two sigma contours (i.e., proportional to the
inverse of the determinant of the w0, wa submatrix of the
inverse of the Fisher matrix). We calculate the FOM rela-
tive to the FOMwithout voids for each of the upper panels:

FOM ðexperimentsÞ ¼ detðSNeþ PLANCK

þ HSTÞ= detðexperimentsÞ;

where experiments refer to the combination of experiments
we consider the FOM for, and the SNe experiments in the
numerator refer to the DES for the left panel, and LSST for
the right panel. The relative FOM for these results is shown
in Table IV (for A ¼ 1, � ¼ 0:1). We see that the con-
straints with the use of (voidsþ CMBþ HST) is not as
good as, but somewhat comparable (relative FOM ¼ 0:6)
to the constraints due to (SNeþ CMBþ HST), but adding
the void constraints to the SNeþ CMBþ HST data offers
a moderate gain (FOM ¼ 13:3). For the futuristic case, the
use of (voidsþ CMBþ HST) is better than the corre-
sponding (CMBþ SNeþ HST) data (FOM ¼ 70:4),

TABLE III. Parameters of the PLANCK survey used in determining CMB constraints.

Frequency channel (GHz) 30 44 70 100 143 217 353

Beam width (FWHM) arc min 33 24.0 14.0 10.0 7.1 5.0 5.0

Temperature noise per pixel 2.0 2.7 4.7 2.5 2.2 4.8 14.7

Polarization noise per pixel 2.8 3.9 6.7 4.0 4.2 9.8 29.8

TABLE II. Surveys and parameters used for estimating the number of voids that can be found by the survey. We chose a survey like
SDSS DR7 as an example of a current survey, and EUCLID as an example of a futuristic survey. For reference, we show the number of
galaxies that these surveys are expected to observe.

Survey fsky Frequency band Limiting magnitude Number of voids A ¼ 2, A ¼ 1 Number of galaxies

SDSS DR7a 0.24 r 18 1292, 3104 1:7� 106

EUCLIDb 0.48 K 22 1:4� 105, 2:3� 106 5:2� 108

ahttp://www.sdss.org/dr7/coverage/index.html
bhttp://hetdex.org/other_projects/euclid.php
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while combining these constraints improves the FOM by a
factor of 2500.

We should stress that even the results for the SDSS DR7
survey (with a relative FOM of 0.6) are promising, because
they are a different way of probing the dynamics and
therefore can be potentially useful in determining consis-
tency of the underlying cosmological model. Clearly the
addition of void ellipticities as an observable for parameter
estimation increases our knowledge of the cosmological
parameters in other cases.

C. Study of possible systematics

While we have shown that our forecasted constraints are
extremely promising, we have used order of magnitude
calculations often based on first order results in semiana-
lytic models. By doing N-body simulations of large scale

structure it is possible to replace these by more accurate
calculations, and use them for estimating cosmological
parameters. This would be the goal of future work in this
direction. But is it possible that when such a rigorous
analysis is carried out the constraints might get terribly
degraded and not be interesting any more? The objective of
this subsection is to address this concern by trying to list
the major assumptions that would need to be replaced in a
rigorous calculation, and trying to obtain a sense for how
far these constraints might be degraded. We discuss the
basic assumptions and explain how we might expect these
factors to affect the forecasts.

1. Effects of shot noise on the number estimate of voids

Our constraints are obviously dependent on our estimate
of the number of voids that would be detected in a par-
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FIG. 3 (color online). Comparison of forecasts on one � constraints on the CPL parameters with standard probes using the
identification RSmooth ¼ RVoid=4, A ¼ 1, and �� ¼ 0:1: for data from the near future (left panels) and futuristic data (right panels).
PLANCK and HST priors were used in all of these forecasts. For reference, we show the current constraints [40] in the thick green
contours, and forecasted constraints from clusters ðnumber counts and power spectrumÞ þ PLANCK taken from [79].

TABLE IV. Relative figure of merit (FOM) for using voids.

SDSSþ DESþ HSTþ PLANCK EUCLIDþ LSSTþ HSTþ PLANCK

Parameters Voidsþ CMBþ HST Voidsþ CMBþ HSTþ SNe Voidsþ CMBþ HST Voidsþ CMBþ HSTþ SNe

A ¼ 1, � ¼ 0:1 1.2 16.8 8.8 331.0

A ¼ 2, � ¼ 0:1 0.6 13.3 0.5 21.3

A ¼ 1, � ¼ 0:4 0.5 7.7 0.7 27.6

Marginalized over b 0.2 3.3 0.2 104.5

RSmooth ¼ MinðfRgÞ 6.1 24.9 3.6 73.0

RSmooth ¼ R 6.1 24.7 4.8 85.2
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ticular survey. Thus, regions of space which are not true
voids but get misidentified as voids would cause a spurious
enhancement of signal. Recall that voids have been defined
as regions of space where the total matter density is low (or
minimum) but are identified by the low density of galaxies
which are biased baryonic tracers of the density field. The
lack of direct knowledge of the dark matter density field is
often addressed in the context of the Poisson sample
model, where density contrast of galaxies is described as
a Poisson point process with a mean density proportional to
the dark matter density. Thus, there is a chance of identify-
ing a region which has low density of galaxies but not dark
matter as a void. Consequently, due to shot noise, one can
only confidently infer a region of low galaxy density to be a
void if the region is large relative to the average separation

lsepðzÞ � ðnbggalÞ�1=3 of visible galaxies at that redshift. This

means that small voids might not really be voids, and the
problem is exacerbated by the fact that the number of voids
increases exponentially with smaller sizes of voids. A
sophisticated treatment of this problem would associate a
probability to describe the confidence of detection (for
example as in Neyrinck [48]) and incorporate that in the
likelihood. We use a rough model to estimate the impor-
tance of this effect by only choosing a minimum radius
Rshot
min ðz; surveyÞ of voids related to the lsepðzÞ as discussed

before. A larger value of A results in a larger values of
lsepðzÞ which leads to a higher threshold for the minimum

size of voids observed in the survey. Since the minimum
radius of voids is set by the maximum of this survey
dependent Rshot

min and the survey independent RV inc
min (void

in cloud), this changes the numbers of voids strongly where
Rshot
min is much smaller than RV inc

min . We therefore compare the

constraints for a pessimistic value of A ¼ 2 to the con-
straints obtained in Fig. 3 with A ¼ 1. In Fig. 4, we show

the Fisher forecasts for values of � assuming the same
value �� ¼ 0:1 for both cases. The red ellipse with open
circles show the constraints from voids ðSDSSÞ þ HSTþ
PLANCK in the left panel, and voids ðEUCLIDÞ þ
PLANCKþ HST (right panel) for A ¼ 1, while the open
green squares show the same constraints if A ¼ 2. When
additionally supernovae data are used: on the left panel we
have DES SNeþ HSTþ PLANCKþ SDSS voids, while
on the right panel we use LSST SNeþ HSTþ
PLANCKþ EUCLID voids. The solid, thin black ellipse
shows these constraints for A ¼ 1, while the solid thick
blue ellipse shows these constraints for A ¼ 2. For refer-
ence, we use the black ‘‘þ’’ to show the constraints from
DES SNeþ PLANCKþ HST on the left panel, and LSST
SNeþ PLANCKþ HST on the right panel. Clearly, while
the constraints change, there is no severe degradation due
to shot noise for the case based on the DR7 survey, while
this is somewhat important for the case based on EUCLID.
We summarize the degradation in terms of a relative FOM
in Table. IV.

2. Bias

Since the observations pertain to galaxies rather than the
dark matter distribution, we have no direct knowledge of
the dark matter distribution even though the galaxy distri-
bution and dark matter distribution are correlated. The
qualitative understanding of the situation is that galaxies
form due to the collapse of baryons into gravitational
potential wells of collapsed dissipationless dark matter.
The simplest popular idea of linear scale independent
bias models this by assuming that locally the dark matter
density contrast �g is proportional to the total matter

density contrast �m, and the constant of proportionality is
called the bias b. Bias different from unity affects our
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BISWAS, ALIZADEH, AND WANDELT PHYSICAL REVIEW D 82, 023002 (2010)

023002-10



forecasts in two ways: (i) first, the Lagrangian radius of the
void is estimated incorrectly as a function of �g rather than

�m. This leads to the use of a variance �R on the incorrect
scale, and second (ii) since we use the probability distri-
bution of the eigenvalues conditioned on the density con-
trast of the voids, this changes the distribution of the
eigenvalues. To address the issue of bias, we recalculate
the forecasts by adding an extra parameter, the bias b to our
set of cosmological parameters and marginalize over b as a
nuisance parameter. The Fisher constraints for the near
future are presented in the left panel of Fig. 5, while the
right panel shows the constraints for the far future. In both
cases, the red open circles show the constraints of voidsþ
PLANCKþ HST from the upper panel of Fig. 3, while the
solid thin black line shows the constraints from voidsþ
PLANCKþ HSTþ SNe, where it was assumed that b ¼
1. The green open squares show the corresponding con-
straints for voidsþ HSTþ PLANCK, and the thick blue
solid ellipses show the constraints for voidsþ HSTþ
PLANCKþ SNe, when the bias is marginalized over.

3. Void selection prescription

While the eigenvalues of the void ellipsoid are expected
to trace the eigenvalues of the tidal ellipsoid, the eigenval-
ues themselves are stochastic quantities and the connection
to theory comes from studying the distribution of these
eigenvalues. Hence it is important to select a set of voids
from the data that will accurately reflect the theoretical
distribution computed. As discussed in Colberg et al. [49],
the void finders available use different methods to identify
voids, and these result in different definitions of voids. A
number of these void finders are based on demarcating
contiguous regions of space of different shapes through
some variant of a clustering algorithm, while other void

finders like Lavaux and Wandelt [60] identify voids from a
density field smoothed at a particular length scale. On the
theoretical side, we can compute the probability distribu-
tion of the eigenvalues of the tidal tensor analytically
through the Doroshkevich formula Eq. (3), which we use
in the computations here, which is the distribution valid at
all points in space rather than at voids, in particular. One
may also compute the distribution of the eigenvalues (i) for
a void of size R identified with the size of the fluctuation at
shell-crossing as shown in subsections II B and II C, or
(ii) at the minima of the density field when smoothed at a
particular length scale (e.g. see Appendix B of Lavaux and
Wandelt [60]). Both of these are not analytic estimates, but
they can be used to construct samples of the eigenvalue
distributions using Monte Carlo methods and lend them-
selves naturally to use with the two classes of void finders,
respectively. The use of computationally intensive
Monte Carlo is beyond the scope of this paper based on
Fisher estimates. Instead we use the analytic Doroshkevich
formula which was shown to be close to both of these
distributions, but this requires us to identify the set of voids
that correspond to the voids obtained by smoothing the
density field at a particular Lagrangian scale RSmooth. If we
find a set of voids at a particular redshift of a set of different
sizes, how can we identify what smoothing scale these
voids correspond to? Given a set of point particles in space,
we understand the action of smoothing: it tends to homoge-
nize the field at scales below the smoothing scale. Thus,
one may expect that on smoothing by a scale RSmooth, one
will be left with voids with distribution such that there are
few voids of size below � RSmooth, while the smoothing
operation may slightly modify the shapes and sizes of
voids of larger size. At a particular redshift, the probability
of forming large voids is much smaller than forming
smaller voids. Consequently, the distribution of sizes of
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voids when the density field is smoothed to a scale RSmooth,
should be peaked at �RSmooth. From simulations used in
Lavaux and Wandelt [60], it appears that the distribution of
the number of voids with radius R in a density field
smoothed by a filter of size RSmooth is peaked at R �
4RSmooth and falls off rapidly above that. While this in-
spired our choice for identification of voids, it is important
to keep in mind that the distribution depends on the cos-
mological parameters through �linðR; zÞ. Consequently us-
ing an inaccurate selection criterion for voids can introduce
biases in parameter estimation, and the correct prescription
may also change the errors and constraints. In order to get a
sense for how severely the constraints might be degraded
when this is done, we compute the constraints for three
different prescriptions of identification the set of voids and
compare how far the constraints are degraded in different
cases that suggest themselves. From the right panel of
Fig. 1, we see that the distribution gets broader for larger
values of �R. Since this corresponds to lower theoretical
predictability, we should expect the parameter constraints
to get degraded as the filtering scale R becomes smaller. On
the other hand, this will lead to a larger number of voids
since there are many more smaller voids.

One may expect that when the density field is smoothed
at RSmooth, a non-negligible fraction of the voids have radii
between RSmooth and 4RSmooth. We can therefore use a
different limit R ¼ RSmooth in accordance with our calcu-
lations using the generalized excursion set formalism in
subsection. II B. Finally, if we assume that all voids larger
than a particular smoothing scale would be found, we can
take RSmooth ¼ MinðfRgÞ found in that redshift bin. This is
similar to the method adopted by Lee and Park [43]. The
corresponding constraints are shown in Fig. 6. The red
open circles show the constraints shown in Fig. 3 for the
prescription where RSmooth ¼ R=4, while the blue asterisks
show the constraints obtained for the case where RSmooth ¼

R, and the open green squares show the constraints for the
case where RSmooth ¼ MinðfRgÞ.

4. Sensitivity to error levels

As discussed before, in our method of forecasting for
Fig. 3, we have used a Gaussian likelihood with an error
�� ¼ 0:1. Indeed, this seems larger than the values of the
error levels computed in Sec. 5.3.2 of Lavaux and Wandelt
[60]. Further, in our analysis, we have assumed that the
ellipticities of the mass tensor of voids are perfect tracers
of ellipticity of the tidal tensor. More realistically, there
would be some scatter around the correlation as shown in
Sec. 5.2 of Lavaux and Wandelt [60]. It is quite possible
that scatter of this kind, or the assumptions that we have
made, might increase the level of error bars on � quantita-
tively. Therefore, we investigate the sensitivity of the con-
straints to the value of ��, the error to which the ellipticity
was assumed to be measured.
We show these constraints in Fig. 7, where the contours

with red open circles show the constraints using voidsþ
PLANCKþ HST shown in the upper panels of Fig. 3 with
A ¼ 1 and �� ¼ 0:1, while the open green squares are the
constraints where �epsilon has been increased to 0.4. The

solid lines show the constraints where the constraints are
estimated with simultaneous use of the SNe data, i.e., DES
SNe for the left panel and LSST SNe for the right panel.
The thin black solid line is for �� ¼ 0:1, while the thick
blue solid line is for �� ¼ 0:4. The contours in black ‘‘þ’’
symbols show the constraints from SNeþ PLANCKþ
HST for reference.

V. SUMMARYAND DISCUSSIONS

The growth of cosmic structures with time depends on
the background cosmology. Consequently, the growth of
structures has been used to constrain the parameters of the

−1.4 −1.2 −1 −0.8 −0.6
−2

−1

0

1

2

w
0

w
a

DES SNe
DR7 R=4R

sm

R>R
sm

R=R
sm

−1.04 −1.02 −1 −0.98 −0.96
−0.4

−0.2

0

0.2

0.4

w
0

LSST SNe
EUCLID R=4R

sm

R>R
sm

R=R
sm

FIG. 6 (color online). Sensitivity of Fisher constraints with respect to the prescription of void selection: comparison of the
constraints (red open circles) from voids shown in Fig. 3 with other prescriptions. PLANCK and HST priors were used in all these
plots. The other prescriptions lead to better constraints.
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background cosmology. Traditionally, the measures of
growth used have characterized the growth of the volume
of fluctuations. However, since the fluctuations are not
individually isotropic, there is further information about
the cosmology in the growth of asymmetry of the structures
which could be extracted from its shape. Such a quantity
parametrizing the shape of voids and its evolution was
studied in Park and Lee [42], and Lee and Park [43]. The
basic idea is that void shapes can be approximated as
ellipsoidal structures, and relative sizes of the principal
axes can be used as tracers of functions of eigenvalues of
the tidal ellipsoid. In a spectroscopic survey, all three axes
of the void ellipsoid may be measured, and thus asymmetry
parameters which describe the shape of the ellipsoid are
related to the quantities involving the eigenvalues of the
tidal tensor, which depend on the background cosmology
through the linearly extrapolated variance in fluctuations.
Such spectroscopic surveys have been planned for studying
large scale structure using traditional methods; thus the use
of shapes does not necessarily require new surveys, but
allows one to leverage data in an additional way. Lavaux
and Wandelt [60] show that recovering the tidal ellipticity
of voids to high precision is indeed feasible. To do so, they
identify voids and characterize the void tidal ellipticity
using the simulated galaxy positions derived from a nu-
merical simulation. These derived ellipticities are then
compared to the tidal ellipticity of the complete displace-
ment field given by the simulation.

In this paper, we study the constraints on dark energy
parameters from future surveys in terms of Fisher fore-
casts. The likelihood is a strong function of the linearly
extrapolated variance of fluctuations at the redshift of the
void at the scale of the Lagrangian size of the void. Since

voids expand in comoving coordinates, their Lagrangian
size is smaller than their observed (comoving) size, and the
variance of density fluctuations at this smaller scale is
larger. We assume an error model with Gaussian noise on
the measured ellipticity of the voids, and an arbitrarily
assumed error on the ellipticity. We provide explicit for-
mulas for Fisher matrices, and an estimate of the number of
voids expected to be found from planned future surveys
using semianalytic methods. By comparing these Fisher
constraints using void shapes from these surveys to the
traditional constraints from other measures, we find this
method to be promising: the constraints are quite competi-
tive with traditional probes in the near future and combin-
ing the constraints with supernovae data improves the
DETF figure of merit for the supernovae data by a factor
of about ten. For futuristic data, we find that the constraints
are close to 10 times better than supernovae data, and
combining with supernovae data, we can improve the
FOM by a factor of a few hundred.
We have used the Doroshkevich formula for the ellip-

ticity throughout, but it has been shown [60] that the
distribution of ellipticity for a minima in the density field
is slightly different. In actual parameter estimation, we will
have to account for this. We shall also have to use the
scatter in the correlation of the ellipticity of the void
ellipsoid with the real shape of the tidal tensor as obtained
from specific void identification algorithms. An issue we
have not addressed here is the alignment of voids [80] or
the ellipticity of voids that can be generated due to redshift
distortions [81,82] which would have to be modeled to
obtain unbiased parameter constraints from voids.
The Fisher constraints are computed using simple mod-

els of dynamics and a likelihood. For estimation of pa-
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rameters, each of these would need to be computed pre-
cisely. In the subsection IVC, we discuss some of the main
sources of errors and ambiguities in our forecasts. We
indicate how more rigorous, though computationally in-
tensive, calculations may be devised. We attempt to esti-
mate how the parameter constraints might be affected by
these more rigorous methods. While the constraints are
often weakened, they still remain at least competitive with
other constraints in the near future and the far future. In the
case of futuristic surveys, addition of the void ellipticity to
other constraints result in an improvement of the FOM by a
factor of at least a hundred, in spite of degradation due to
additional systematics. We therefore feel that our study
makes a strong case for pursuing this idea in greater detail.
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APPENDIX A: OTHER PARAMETRIZATIONS OF
ASPHERICITY OF FLUCTUATIONS

A popular choice [62] for density profiles, or [55,56]
expresses this in terms of ‘‘ellipticity’’ and ‘‘prolateness’’
for the tidal ellipsoid:

e ¼ ð�1 � �3Þ
2ð�1 þ �2 þ �3Þ p ¼ ð�1 þ �3 � 2�2Þ

2ð�1 þ �2 þ �3Þ : (A1)

Since this is a function of the eigenvalues f�g, there is a one
to one correspondence with the asphericity parameters
describing the void ellipsoid in Eq. (2).

APPENDIX B: GENERALIZED EXCURSION SET
FORMALISM

It should also be noted that the Doroshkevich formula is
based on conditioning on the variance within a smoothing
scale R at initial times (or equivalently Lagrangian smooth-
ing scale R), rather than the size of the structures them-
selves at later times. This seems suitable for void finders
such as Dynamical Void Analysis (DIVA) [60], which use
the variance �R as a parameter, but may be unsuitable for
use with other void finders which find voids of particular
radii at redshifts.

In order to confront data obtained from the class of void
finding algorithm based on clustering of underdense re-
gions which uses the sizes of voids as parameters, one
needs to theoretically study a distribution of shapes of
voids for different sizes. This in turn requires a theoretical
definition of the void boundary. A void expands faster than

the background universe, and this results in shell-crossing
forming the denser void wall. Accordingly, Blumenthal
et al. [83] argued that the formation of a void corresponds
to this shell-crossing and is thus directly analogous to the
collapse of a halo into a point in the spherical collapse
model. In a spherical expansion model, they found that the
linearly extrapolated density field at the time of shell-
crossing is �v ¼ �2:81. Following them, we assume a
void forms when the linearly extrapolated underdensity
inside it reaches this critical value which is analogous to
the critical overdensity of the Press-Schechter method.
Since, we are interested in the asphericity of the voids,
we use a generalized excursion set method to construct a
distribution of the ellipticity of the tidal tensor of points at
early times, given that they evolve to form the voids of
Lagrangian size R. Each point mass belongs to a void of a
certain radius at some redshift, and had an initial tidal
tensor. The goal of this method is to assign to each point
mass in Lagrangian space (a) the radius of the void to
which this point will belong at any given redshift, and
(b) the eigenvalues f�1; �2; �3g of the initial tidal tensor
at that point. We provide a brief summary of the method
and the results here.
We start with a large Lagrangian radius R, so the

smoothed variance of density fluctuations �ðRÞ is 0 and
the tidal tensor T is taken to be zero. We perform a random
walk where we decrease the radius R by steps of �R
(thereby increasing �ðRÞ at each step), and execute a six-
dimensional random walk in the independent elements of
the tidal tensor, with the probability of each element
Pð�Ti;j; RÞ at radius R depending on �ðRÞ and equal to

the probability implied by the statistics of Gaussian fields.
The random walk is stopped at the largest value of R when
the linearized density field given by the sum of the eigen-
values of the tidal tensor Ti;jðRÞ ¼

P
>R�Ti;j crosses the

critical value of �2:81, and the values of the eigenvalues
f�1; �2; �3g and R at the point of termination are taken to be
a sample of the tidal tensor eigenvalues and void size at that
initial redshift. The mass function of voids thus obtained is
identical to the mass function that would be obtained by a
spherical collapse model (without accounting for the void
in cloud problem), but it gives us a distribution of the
asphericity parameters. Repeating the process, one can
construct samples of the multivariate distribution
nðR; f�gÞ, from which one can obtain samples for any
particular asphericity parameter for voids of size R by
restricting the samples to a bin around R and marginalizing
over other the asphericity parameter.
In Fig. 8, we show the histograms of the ellipticity e and

prolateness p parameters of Eq. (A1) of protovoids that
form voids of radius R obtained from the generalized
excursion set formalism for different values of � ¼ �

� over-

plotted with the distribution implied by the Doroshkevich
formula in terms of the same parameters when smoothed
over a radius R. The figure shows good agreement between
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the two. As discussed, in Lavaux and Wandelt [60], it was
shown that the samples of the eigenvalues of the tidal
tensor of fields smoothed at a particular smoothing scale
RSmooth are similar to the Doroshkevich formula. Together,
this implies that both methods, while giving slightly differ-
ent results, are fairly consistent, increasing our confidence
in these methods.

APPENDIX C: EULERIAN EVOLUTION OF
TRIAXIAL SYSTEMS

It is well known that the Zeldovich approximation fails
to describe structure formation at small scales in the vicin-
ity of density peaks. This is because in high density re-
gions, caustics form making the Lagrangian mapping
noninvertible. The onset of this problem is characterized
by shell-crossing. Thus, at the minima of the density field
well inside a void, which is our region of interest, the
Zeldovich approximation should work well. Here, we
compare with another approximation which works reason-
ably well in the vicinity of peaks.
The evolution of a homogeneous ellipsoid of (real)

density contrast �mðtÞ in a homogeneous and isotropic
flat �CDM universe with scale factor �a and densities

mðtÞ and 
vac has been studied [64,84]. The equation of
motion of the scale factor, ai and i ¼ 1; 2; 3, of three
principal axes of the ellipsoid can be studied in terms of
a second order Taylor expansion of the gravitational po-
tential [64]:

d2

dt2
ai ¼ 4�G

3
ð2
vac � 
mðtÞÞaiðtÞ

� 4�G

3

mðtÞ�mðtÞaiðtÞ � 4�G

3

mðtÞ

�
�
3b0iðtÞ�mðtÞ

2
þ 3�0

extðtÞ
�
aiðtÞ; (C1)

where the term in the first parenthesis is the effect of the
usual background expansion in a flat �CDM model, the
second term is the effect of the perturbation as in spherical
collapse, and the third term models the effect of the
aspherical nature of the perturbation itself, and the external
tides. The quantities b0iðtÞ are defined by

b0jðtÞ ¼ a1ðtÞa2ðtÞa3ðtÞ
Z 1

0

d�

ða2j ðtÞ þ �Þða21ðtÞ þ �Þ1=2ða22ðtÞ þ �Þ1=2ða23ðtÞ þ �Þ1=2 �
2

3
; (C2)

while we use the two approximation presented in Bond and
Myers [64] for the external tidal field �0ðtÞ:

linear external tide approximation : �0
iðtÞ

¼ �iðtÞ � �ðtÞ=3; (C3)

nonlinear external tide approximation : �0
iðtÞ ¼ 5b0iðtÞ=4:

(C4)

�i are, as before, the eigenvalues of the tidal tensor and � is
the linearly extrapolated initial overdensity and they are
proportional to the linear growth factor DðtÞ.

The initial conditions are set by using the Zeldovich
approximation and are

aiðtinitÞ ¼ �aðtinitÞð1� �iðtinitÞÞ; (C5)

_a iðtinitÞ ¼ HðtinitÞaiðtinitÞ � �aðtinitÞHDðtinitÞ�iðtinitÞ; (C6)

where HD � _DðtÞ=DðtÞ.
We integrate these equations numerically to find the axis

ratios of an ellipsoid at the time of shell-crossing in terms
of its initial e and p. Figure 9 compares the result of this
calculation to the Zeldovich approximation. Here we plot
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FIG. 8 (color online). Comparison of the distribution of ellip-
ticity e (prolateness p) in the left (right) panel according to
Doroshkevich formula with the distribution obtained from gen-
eralized excursion set formalism described for different values of
� ¼ �

� .
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the smallest ratio of the principal axes � ¼ ðJ3=J1Þ1=2 at
the present time calculated from the ellipsoidal evolution
of Bond and Myers [64] (�BM) against the corresponding
ratio calculated from the Zeldovich approximation (�Zeld),

for different values of the other ratio of axes � ¼
ðJ2=J1Þ1=2 computed using the Zeldovich approximation
in different panels. The blue dots are for the linear approxi-
mation for the evolution of the outside tidal field and the
magenta dots for the nonlinear model for external tides (see
Bond and Myers [64] for a detailed discussion on these
choices). The solid line shows the curve �BM ¼ �Zeld.
Since we must have 0<�<�< 1 the dots only extend
to �<�. It shows that the ellipsoidal collapse approxi-
mation is very similar to the Zeldovich approximation for
voids.
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