
Discriminating between a stochastic gravitational wave background and instrument noise

Matthew R. Adams and Neil J. Cornish

Department of Physics, Montana State University, Bozeman, Montana 59717, USA
(Received 8 February 2010; published 14 July 2010)

The detection of a stochastic background of gravitational waves could significantly impact our

understanding of the physical processes that shaped the early Universe. The challenge lies in separating

the cosmological signal from other stochastic processes such as instrument noise and astrophysical

foregrounds. One approach is to build two or more detectors and cross correlate their output, thereby

enhancing the common gravitational wave signal relative to the uncorrelated instrument noise. When only

one detector is available, as will likely be the case with the Laser Interferometer Space Antenna (LISA),

alternative analysis techniques must be developed. Here we show that models of the noise and signal

transfer functions can be used to tease apart the gravitational and instrument noise contributions. We

discuss the role of gravitational wave insensitive ‘‘null channels’’ formed from particular combinations of

the time delay interferometry, and derive a new combination that maintains this insensitivity for unequal

arm-length detectors. We show that, in the absence of astrophysical foregrounds, LISA could detect

signals with energy densities as low as�gw ¼ 6� 10�13 with just one month of data. We describe an end-

to-end Bayesian analysis pipeline that is able to search for, characterize and assign confidence levels for

the detection of a stochastic gravitational wave background, and demonstrate the effectiveness of this

approach using simulated data from the third round of Mock LISA Data Challenges.
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I. INTRODUCTION

One of the most exciting prospects for the Laser
Interferometer Space Antenna (LISA) observatory is the
possibility of detecting a stochastic gravitational wave
background from the early Universe. Just as studies of
the cosmic microwave background have revolutionized
our understanding of cosmology [1], the detection of a
gravitational wave background would provide unique in-
sight into the processes that shaped the early Universe [2–
7].

The challenge lies in separating a stochastic background
from instrument noise and foreground sources. When mul-
tiple independent detectors are available, as is the case with
the ground-based interferometers, the signal from one
interferometer can be used as a (noise corrupted) template
for a second interferometer. The common gravitational
wave signal will combine coherently, while the contribu-
tions from instrument noise will average to zero [8–10].

With a single detector, such as LISA, the cross correla-
tion technique will not be available. The key to detecting a
stochastic background with LISA is the development of a
detailed understanding of how instrument noise and gravi-
tational wave signals manifest in the various interferometry
channels. Here we show how a model for the six cross
spectra of the time delay interferometry (TDI) [11,12]
channels can be used to tease apart a stochastic background
from instrument noise. Key to this approach are the very
different geometrical transfer functions that affect the in-
strument noise and a stochastic gravitational wave back-
ground. While the instrument noise spectra could in
principle conspire to mimic the geometrical transfer func-

tions of the signal, or vice versa, this is unlikely to occur in
practice as the signal and noise models have very distinct
and complicated transfer functions. The robustness of our
approach can be enhanced by developing informative pri-
ors for the noise and signal spectra. This can be done
through a combination of preflight testing, on-orbit com-
missioning studies, and theoretical modeling. We use the
TDI cross spectra to compute a likelihood function, which
is multiplied by the priors to yield the posterior distribu-
tions for the parameters describing the instrument noise
and cosmological background.
Models for the TDI cross spectra have previously been

considered in the context of LISA instrument noise deter-
mination [13], and the insensitivity of certain TDI varia-
bles to gravitational wave signals have been put forward as
a technique for discriminating between a stochastic back-
ground and instrument noise [11–13]. Our approach ex-
tends the noise characterization study of Sylvestre and
Tinto [13] to include the signal cross spectra, and improves
upon the simple estimator used by Hogan and Bender [14]
by using an optimal combination of all six cross spectra.
Our approach is able to detect stochastic signals buried
well below the instrument noise.
In the remainder of the paper we describe our noise and

signal models for both equal arm and unequal arm LISA
interferometers, and develop an end-to-end Bayesian
analysis pipeline that is able to search for, characterize
and assign confidence levels for the detection of a stochas-
tic gravitational wave background. We apply our approach
to simulated data from the third round of the Mock LISA
Data Challenge (MLDC), and show that we are able to
accurately recover the stochastic signal and independently
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measure the position and acceleration noise levels in each
arm of the interferometer. We carry out our analysis using a
noise orthogonal A, E, T set of TDI channels. In this basis,
and for equal arm lengths, the T channel is insensitive to
gravitational wave signals at low frequencies. For the first
time, we show that a modified signal insensitive T channel
can be found for unequal arm lengths.

We close with a discussion of how our approach can be
extended to account for the galactic foreground. While
several tens of thousands of galactic sources can be indi-
vidually resolved and regressed from the data, the remain-
der will form a confusion noise for LISA [15]. We discuss
how the anisotropy of this foreground signal, along with
prior information about the spectral amplitude provided by
the resolved systems, can be used to separate the galactic
foreground from an isotropic background, but defer a de-
tailed analysis to a future publication.

II. EQUAL ARM LISA

A. Noise model

The LISA constellation will be composed of three sat-
ellites in an approximately equilateral triangle configura-
tion. Laser beams will be transmitted between each pair of
satellites, and interferometry signals will be formed using
these beams. Each of the three satellites will have two
proof masses, one for each of the two incoming laser
beams. We are looking to detect variations in the light
travel time, or equivalently, the distance, between the proof
masses along each arm of the interferometer. Noise enters
the measurement when the proof masses move in response
to local disturbances, and in the process of measuring the
phase of the laser light. The various LISA noise sources are
discussed in several references [16–18].

As is commonly done, we group all the noise sources
into two categories, position and acceleration. Each proof
mass will have a position and an acceleration noise asso-
ciated with it, making a total of six position and six
acceleration noise levels. These 12 noise levels will be
the parameters in our noise model. We assume that we
understand the noise spectra of each of the instrument
components, through some combination of prelaunch test-
ing, onboard instrument characterization and theoretical
modeling. In reality it may be necessary to include addi-
tional parameters in the noise model to account for un-
certainties in the spectral shape of the individual noise
spectra. However, if the priors on these additional parame-
ters are narrowly peaked, there will be little impact on our
ability to detect a stochastic background signal.

For this study we adopted the model used for the Mock
LISA Data Challenges [19]. The position noise affecting
each proof mass is assumed to be white, with a nominal
spectral density of

SpðfÞ ¼ 4� 10�42 Hz�1: (1)

The acceleration noise is taken as white above 0.1 mHz,
with a red component below this frequency. Integrated to
give an effective position noise, the proof mass disturban-
ces on each test mass have a nominal spectral density of

SaðfÞ ¼ 9� 10�50

�
1þ

�
10�4 Hz

f

�
2
��
mHz

2�f

�
4
Hz�1:

(2)

The precise level of each contribution is to be determined
from the data. A more realistic model for the noise con-
tributions would include a parameterized model for the
frequency dependence, with the model parameters to be
inferred from the data. Allowing for this additional free-
dom would weaken the bounds that can be placed on the
contribution from the stochastic background.
We derive here the transfer functions describing how

these 12 noise levels enter the data stream. We start by
writing down the phase output�ijðtÞ, for the link connect-
ing spacecraft i and j:

�ijðtÞ ¼ Ciðt� LijÞ � CjðtÞ þ c ijðtÞ þ npij

� x̂ij � ð ~naijðtÞ � ~naijðt� LijÞÞ: (3)

Here the Ci are the laser phase noises, c ij is the gravita-

tional wave strain, and npij and ~naij denote the position and

acceleration noise. The laser phase noise is canceled by
using the TDI variables developed by Armstrong,
Estabrook, and Tinto [11,12]. The gravitational wave strain
is assumed to be uncorrelated with the noise and will have
an expectation value of zero when multiplied by anything
other than itself.
A Michelson signal can be formed at any of the three

vertices by combining the phase at that detector with the
time delayed signal from the two detectors at the ends of
the two adjacent arms:

M1ðtÞ ¼ �12ðt� L12Þ þ�21ðtÞ ��12ðt� L13Þ ��31ðtÞ:
(4)

The TDI channels which cancel laser phase noise for an
equal arm LISA (Lij ¼ L ¼ 5 � 106 km) are formed by

subtracting a time delayed Michelson signal as follows:

XðtÞ ¼ M1ðtÞ �M1ðt� 2LÞ: (5)

Moving to the frequency domain, the signal at vertex 1 can
be written as

XðfÞ ¼ 2i sin

�
f

f�

�
ef=f� ½ef=f� ðnp13 � np12Þ þ np31 � np21�

þ 4i sin

�
2f

f�

�
e2f=f�

�
ðna12 þ na13Þ

� ðna21 þ na31Þ cos
�
f

f�

��
: (6)

Here f� ¼ c=ð2�LÞ. The other TDI channels, Y and Z, are
given by permuting indices in the expression for the X
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channel. Alternative combinations of the phase measure-
ments can be used to derive noise orthogonal TDI variables
[20]. Here we use a different set of noise orthogonal
channels formed from combinations of the X, Y, and Z
channels:

A ¼ 1

3
ð2X� Y � ZÞ; E ¼ 1ffiffiffi

3
p ðZ� YÞ;

T ¼ 1

3
ðX þ Y þ ZÞ:

(7)

We calculate the six cross spectral densities for these
channels in the appendix. As an example, we quote here
the position and acceleration noise contributions to hAA�i:

hAA�
pi ¼ 4

9
sin2

�
f

f�

��
cos

�
f

f�

�
½4ðSp21 þ Sp12 þ Sp13 þ Sp31Þ

� 2ðSp23 þ Sp32Þ� þ 5ðSp21 þ Sp12 þ Sp13 þ Sp31Þ
þ 2ðSp23 þ Sp32Þ

�
(8)

and

hAA�
ai ¼ 16

9
sin2

�
f

f�

���
cos

�
f

f�

�
½4ðSa12 þ Sa13 þ Sa31 þ Sa21Þ

� 2ðSa23 þ Sa32Þ� þ cos

�
2f

f�

��
1

2
ðSa12 þ Sa13 þ Sa23

þ Sa32Þ þ 2ðSa31 þ Sa21Þ
�
þ 9

2
ðSa12 þ Sa13Þ

þ 3ðSa31 þ Sa21Þ þ
3

2
ðSa23 þ Sa32Þ

�
; (9)

where SijðfÞ ¼ hnijðfÞn�ijðfÞi. Our model for the noise

depends on the 12 noise spectral density levels, which we
assume fully describe the LISA instrument noise. Note that
the sums of the noise contributions in each arm of the
interferometer, such as ðSa23 þ Sa32Þ, that are strongly con-

strained. The differences are very weakly constrained by
the model. Figure 1 compares our model spectra to simu-
lated LISA noise spectra from the MLDC training data.

B. Stochastic background model

In this section we rederive the LISA response to a
stochastic gravitational wave background. We later extend
this calculation to take into account the effect of unequal
arm lengths. We begin by expanding the gravitational wave
background in plane waves:

hijðt; ~xÞ ¼
X
P

Z 1

�1
df

Z
d�~hðf; �̂Þe�2�fðt��̂� ~xÞ�Pijð�̂Þ:

(10)

Here the �ij are the components of the polarization tensor

and P sums over the two polarizations. The polarization
tensors are formed by using the basis vectors û and v̂ and

the sky location vector �̂,

û ¼ cos� cos�x̂þ cos� sin�ŷ� sin�ẑ;

v̂ ¼ sin�x̂� cos�ŷ;

�̂ ¼ sin� cos�x̂þ sin� sin�ŷþ cos�ẑ:

(11)

The polarization tensors are formed as

�þð�̂; c Þ ¼ eþð�̂Þ cosð2c Þ � e�ð�̂Þ sinð2c Þ (12)

and

��ð�̂; c Þ ¼ eþð�̂Þ sinð2c Þ þ e�ð�̂Þ cosð2c Þ; (13)

where c is the polarization angle and eþ and e� are given
by

eþ ¼ û � û� v̂ � v̂ (14)

and

e� ¼ û � v̂þ v̂ � û: (15)

The response registered in an interferometry channel can
be written as

SiðtÞ ¼ Dið�̂; fÞ: hðf; ~xÞ; (16)

where

Dið�̂; fÞ ¼ 1
2ðr̂ij � r̂ijÞT ðr̂ij � k̂; fÞ
� 1

2ðr̂il � r̂ilÞT ðr̂il � k̂; fÞ
and

T ¼ 1

2
sinc

�
!

2!ij

ð1� �̂ � r̂ijðtiÞ
�
exp

�
i
!

2!ij

ð3þ �̂ � r̂ijÞ
�

þ1

2
sinc

�
!

2!ij

ð1þ �̂ � r̂ijðtiÞ
�
exp

�
i
!

2!ij

ð1þ �̂ � r̂ijÞ
�
:
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FIG. 1 (color online). Our model for the noise in the A and T
channels compared to smoothed spectra formed from the MLDC
training data.
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The signal cross spectra are given by

hSiðfÞ; SjðfÞi ¼ ShðfÞRijðfÞ; (17)

where

RijðfÞ ¼
X
P

Z d�

4�
FP
i ð�̂; fÞFP�

j ð�̂; fÞ (18)

and

ShðfÞ ¼ 3H2
0

4�2

�gwðfÞ
f3

: (19)

Here �gwðfÞ is the energy density in gravitational waves

per logarithmic frequency interval, scaled by the closure
density. We assumed a simple power law behavior:
�gwðfÞ ¼ ðf=1 mHzÞn�gw, where �gw denotes the level

at 1 mHz and n is the spectral index.
The beam pattern functions are given by

FP
i ð�̂; fÞ ¼ Dið�̂; fÞ: ePð�̂Þ: (20)

In general, the integral in (18) must be performed numeri-
cally, though we can develop analytic expressions in the
low-frequency limit

RAA ¼ REE

¼ 4sin2
�
f

f�

��
3

10
� 169

1680

�
f

f�

�
2 þ 85

6048

�
f

f�

�
4

� 178273

159667200

�
f

f�

�
6 þ 19121

24766560000

�
f

f�

�
8 þ . . .

�
(21)

and

RTT ¼ 4sin2
�
f

f�

��
1

12 096

�
f

f�

�
6 � 61

4 354 560

�
f

f�

�
8

þ . . .

�
: (22)

The A,E, and T channels were created to be noise orthogo-
nal, but they also happen to be signal orthogonal in the
equal arm case. All of the cross terms in the response
function RAE, RAT etc. are zero in the equal arm-length
limit. Sensitivity curves for the various channels are gen-
erated by plotting

hK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SKKðfÞ
RKKðfÞ

s
; (23)

where SKK and RKK are the noise and signal spectral
densities in the K channel. Figure 2 shows the sensitivity
curves for the A, E and T channels along with a scale
invariant gravitational wave background with �gw ¼
10�10. We see that T channel is insensitive to the gravita-
tional wave background for f < f�.

III. SEARCH AND CHARACTERIZATION

For Gaussian signals and noise, the likelihood of mea-
suring cross spectra hXiXji is given by

pðXj ~xÞ ¼ �
1

ð2�ÞN=2jCj expðXiC
�1
ij XjÞ; (24)

where C is the noise correlation matrix, Xi ¼ fA; E; Tg, N
is the number of samples in each channel and ~x !
ðSai ; Spj ;�gw; nÞ denotes the parameters in our model. The

noise correlation matrix is given by

Cij ¼
hAAi hAEi hATi
hEAi hEEi hETi
hTAi hTEi hTTi

0
@

1
A: (25)

Combined with a prior for the model parameters, pð ~xÞ, we
are able to generate samples from the posterior distribu-
tions function pð ~xjXÞ ¼ pðXj ~xÞpð ~xÞ=pðXÞ using a paral-
lel tempered Markov chain Monte Carlo algorithm [21].
Lacking a detailed instrument model or relevant experi-
mental data, we choose to use uniform priors for the 12
instrument noise levels, allowing a factor of 10 variation
above and below the nominal levels. The energy density
was taken to be uniform in lnð�gwÞ across the range

½�30;�24:5�. We considered two models for the spectral
slope, either assuming a scale invariant background and
fixing n ¼ 0, or allowing the spectral index n to be uniform
in the range ½�1; 1�.
For the proposal distribution we used a mixture of

uniform draws from the full prior range, and draws from
a multivariate Gaussian distribution computed from the
Fisher information matrix [21]. Correlations between the
parameters, and the frequency dependence of the spectra
complicate the computation of the Fisher matrix, but the
basic idea can be understood by considering zero mean
white noise with variance �. The relevant question is, how
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FIG. 2 (color online). The sensitivity curve for the A, E and T
channels, showing the insensitivity of the T channel to a gravi-
tational wave signal.
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well can the noise level �2 be determined from N noise
samples? The likelihood of observing the data fxig is

L ¼ 1

ð2�ÞN=2�N
exp

�
�

P
N
i¼1 x

2
i

2�2

�
; (26)

which yields a maximum likelihood estimate for the noise
level of �̂2 ¼ P

ix
2
i =N. The Fisher matrix has a single

element:

��� ¼ �
�
@2 lnL
@�2

	
ML

¼ 2N

�̂2
: (27)

Thus, ð��Þ2 ¼ ��1
�� ¼ �̂2=ð2NÞ, and the error in the esti-

mated noise level is ��2 ¼ 2�̂�� ¼ �̂2=
ffiffiffiffiffiffiffiffiffi
N=2

p
. We see

that the fractional error in the noise level estimate scales
inversely with the square root of the number of data points.
The same is true for the more complicated colored spectra
in our LISA noise model. Noting that the acceleration
noise dominates below �1 mHz, while the position noise
dominates above �3 mHz, it follows that the effective
number of samples available to constrain the acceleration
noise is of order Na � 1 mHz� Tobs. The position noise is
far better constrained, with order Np � fN � Tobs samples,

where fN is the Nyquist frequency of the data. As men-
tioned earlier, only the sum of the instrument noise levels
in each arm are strongly constrained, so the Fisher matrix
approach leads to very large jumps being proposed in the
noise level differences in each arm. To maintain a good
acceptance rate, we capped the variance in the weakly
constrained directions to be 10 times the variance in the
well constrained directions.

Our model for the instrument noise assumes that the
contributions from each subcomponent (accelerometer,
phase meter, etc.) are stationary and Gaussian with a
particular spectral shape. Only the overall level of the noise
is allowed to vary. More realistic models would include
parameters that describe the spectral shape, and parameters
that allow for deviations from Gaussianity [22].
Nonstationarity can be addressed by switching to a time-
frequency description, and allowing the noise levels to vary
as a function of time. Because our simple noise model has
many less parameters than will likely be needed in a more
realistic analysis, our conclusions will tend to be overly
optimistic. The degree to which the bounds are weakened
by nonstationarity and non-Gaussianity will depend on the
quality of the LISA data and the prior constraints that can
be placed on the noise model though preflight testing and
on-orbit characterization.

IV. MOCK LISA DATA CHALLENGE

We are able to test our analysis technique on simulated
data from the third round of the Mock LISA Data
Challenge. Specifically, Challenge 3.5 provides month
long training and blind data sets of 220 samples with 2 s
sampling. An isotropic gravitational wave background was

injected with a level that is approximately 10 times the
nominal noise levels at 1 mHz, corresponding to �GW ¼
8:95� 10�12 � 1:66� 10�11 for a Hubble constant of
H0 ¼ 70 km=s=Mpc. The noise levels were drawn from
a range within �20% of the nominal values. Note that we
used prior ranges far wider range than this as we wanted to
test our approach in a more realistic setting.

A. Training data results

We found that the signal transfer functions in the train-
ing data did not match our analytic model. We traced the
problem to the time-domain filters that were used to gen-
erate the data sets, which introduced additional transfer
functions in the frequency domain. Since the analytic form
for these transfer functions have not been published, we
used the training data to estimate the transfer functions and
update our signal model.
We used the Bayesian analysis algorithm described

above and recovered the posterior distribution function
for the 10 noise parameters and the stochastic energy
density amplitude shown in Figs. 3–6, respectively. As
mentioned earlier, only the sums of the noise contributions
in each arm are constrained (the acceleration and position
noise contributions can be separated though as they have
very different transfer functions). Figure 3 provides an
example of this by showing that the sums Spji þ Spij are

well constrained, while the differences Spji � Spij are poorly

constrained. Also note that the position noise levels are far
better determined than the acceleration noise levels, as
expected from our Fisher matrix analysis.

B. Detection limits

Having established that our algorithm can faithfully
recover a stochastic background level of �gw � 10�11
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FIG. 3 (color online). Histograms showing the posterior dis-
tribution functions for the position noise levels, scaled by the
nominal level. On the left are the sums along each arm, and on
the right are the differences. The vertical lines denote the
injected values.
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with one month of data, we next turned to the problem of
determining the LISA detection limit for an approximately
scale invariant stochastic gravitational wave background.
To do this we generated a new set of simulated data sets by
rescaling the gravitational wave contribution to the MLDC
training data, and used Bayesian model selection to com-
pare the evidence for two models, M0—the data is de-
scribed by instrument noise alone, and M1—the data is
described by instrument noise and a stochastic gravita-
tional wave background. Following the approach described
in Ref. [21], we computed the evidence for each model
using thermodynamic integration [23]. Plots of the Bayes
factor, or evidence ratio, as a function of�gw are shown in

Fig. 7. We performed multiple runs with different random
number seeds as a way to estimate the numerical error in

our Bayes factors. Our detection confidence becomes very
strong (a Bayes factor of 30) for a background level of
�gw ¼ 6� 10�13 with one month of data. With 1 yr of

data the limit improves to �gw ¼ 1:7� 10�13.

It is interesting to note that the detection limit does not
change if we include the spectral slope of the background
as a model parameter. At first this seems a little surprising,
as the simulated data has a spectral slope of n ¼ 0, so we
would expect the simpler model with n ¼ 0 to be favored
over the more complicated model with n as a free parame-
ter. Further investigation revealed that the more compli-
cated model was able to provide a slightly better fit to the
data, and that this was enough to compensate for the addi-
tional complexity of the model in the calculation of the
model evidence. Our hypothesis is that our signal model is
imperfect because of the need to use numerical fits to the
transfer functions introduce by the simulation software,
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FIG. 4 (color online). Histograms showing the posterior dis-
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nominal level. On the left are the sums along each arm, and on
the right are the differences. The vertical lines denote the
injected values.
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and that the freedom to adjust the spectral slope of the
background is able to compensate for this imperfection.

C. The role of null channels and 4-link operation

Previous analyses of stochastic background detection
with LISA have emphasized the importance of the gravi-
tational wave insensitive null channel that can be formed
from the Sagnac or Michelson interferometry channels (to
be precise these channels are only null in the zero fre-
quency limit, at nonzero frequencies they do respond
weakly to gravitational signals because of finite arm-length
effects). Hogan and Bender showed how this null channel
could be used to construct a statistic that measures the
amplitude of the stochastic background. The importance
of null channels has also been emphasized in the context of
searches for unmodeled gravitational wave signals in
ground and space based detectors. For example, in the
LIGO-Virgo searches for unmodeled gravitational wave
bursts, it has been shown that the sensitivity can be im-
proved by using the sums and differences of the output
from the two ðH2Þ and four ðH1Þ kilometer detectors at the
Hanford site. The null channel H� ¼ H1�H2 is insensi-
tive to gravitational waves, and has proven useful as a tool
to distinguish between instrumental artifacts and gravita-
tional wave signals [24,25].

It may therefore seem a little surprising that the null ‘‘T’’
channel plays no privileged role in the present analysis.
The reason is simple: when using a Gaussian likelihood
function the coordinate transformation in signal space that
produces the null channel leaves the likelihood unchanged.
For example, when we repeat our analysis using the cross
spectra for the fX; Y; Zg channels we get results that are
identical to what we found with the fA; E; Tg channels. It is
only when the instrument noise is not well understood, and
there are significant departures from stationarity and
Gaussianity that null channels become important. It would
be naive to assume that the LISA data will be perfectly
stationary and Gaussian, and we expect the T channel will
play a key role in detector characterization studies. That is
our motivation for the calculation described in the next
section, where we derive a new version of the T channel
that is insensitive to gravitational waves for unequal arm
lengths.

With the current baseline design for LISA, the failure of
one proof mass leaves us with a single interferometry
channel. In most instances, it is then possible to configure
the array to produce a single X type TDI channel (alter-
natively we can work with a single Beacon, Monitor, or
Relay channel). With one channel the number of cross
spectra drops from 6 to 1, and the null direction in signal
space (the T channel) is lost. On the other hand, the number
of noise variables drops from 12 to 8 (the effective dimen-
sion of the noise model drops from 6 to 4 since only the
sums of noise contributions along each arm can be inferred
from the gravitational wave data). To study these compet-

ing effects we repeated our analysis using a single X type
TDI channel. We performed runs on each of the X, Y and Z
channels to see how the particular noise and signal real-
ization in each channel impacted our ability to detect a
stochastic background signal. The results of this study are
shown in Fig. 8. We see that the detection threshold for a
single channel is roughly a factor of 2 worse than when all
links are operational. This result appears to contradict the
usual statement that LISA can only detect stochastic back-
grounds when the null channel is available, but it should be
remembered that we are using the very strong assumption
that the instrument noise is stationary and Gaussian, and
the individual noise sources have known spectral shape.
With these assumptions we find that the high frequency
portion of the spectrum fixes the shot noise levels to very
high precision, so any deviations in the total spectrum in
the 1 ! 10 mHz range caused by a scale invariant stochas-
tic background stand out in stark relief.
In future studies it would be interesting to see how the

detection limits are affected by relaxing the assumptions in
our noise model. It would also be interesting to have a
better sense of how well component level engineering
models, ground testing and in-flight commissioning studies
can constrain the instrument noise model.

V. NULL CHANNEL FOR UNEQUAL ARM LISA

The various null channels that have been identified for
LISA—the symmetric Sagnac channel; the Sagnac T chan-
nel and the Michelson T channel—are only null if the arm
lengths of the detector are equal. The orbits of the LISA
spacecraft cause the arm lengths to vary by a few percent
over the course of a year. In practice the arm lengths will
never be equal. For unequal arm lengths we find that the
Michelson T channel has exactly the same sensitivity curve
as the A or E channels, at least for low frequencies. We
found that it is possible to restore the relative insensitivity
of the T channel by forming a new, time delayed combi-
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nation of the X, Y, and Z channels. Since the arm lengths
will be approximately equal we write

La ¼ Lð1þ �aÞ; Lb ¼ Lð1þ �bÞ;
Lc ¼ Lð1þ �cÞ;

(28)

with j�ij 	 1. Here an ‘‘a’’ subscript denotes the ‘‘12’’
arm, ‘‘b’’ the ‘‘23’’ arm, and ‘‘c’’ the ‘‘13’’ arm. In the
frequency domain we define a modified T channel:

T ¼ 1
3ðX þ �Y þ �ZÞ: (29)

Working to leading order in �i and expanding � and � in a
Taylor series in f=f�, we are able to set the response
function RTT to zero out to order f8 (the same as in the
equal arm-length limit) with the coefficients

� ¼ 1þ �

�
j0 þ ij1

�
f

f�

�
þ j2

�
f

f�

�
2 þ j4

�
f

f�

�
4
�
;

� ¼ 1þ �

�
k0 þ k2

�
f

f�

�
2
�
;

(30)

where j0, j1, j2, j4, k0, and k2 are given by

j0 ¼ �a � �b

j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð�a � �bÞ2 þ 1

2
ð�b � �cÞ2 þ 1

2
ð�a � �cÞ2;

s

j2 ¼ 1

3
ð�b � �aÞ; j4 ¼ 17

3780
ð�b þ �c � 2�aÞ;

k0 ¼ �c � �b; k2 ¼ 1

3
ð�b � �cÞ:

(31)

The � and � coefficients define delay operators in the time
domain.

Figure 9 shows the sensitivity curves for unequal arm
LISA. We see that at low frequencies, the original T
channel has identical sensitivity to the A and E channels,

while the new T channel restores the usual low-frequency
insensitivity to a stochastic gravitational wave background.

VI. NEXT STEPS

We have shown that with a well-constrained instrument
noise model, and absent astrophysical foregrounds, LISA
could detect a scale invariant stochastic gravitational wave
background as low as �gw ¼ 6� 10�13 with just one

month of data. One line of future study is to investigate
how this limit is affected by weakening the assumptions
that went into the instrument noise model. Another line of
future study is to see how the limit is affected by astro-
physical foregrounds, such as the confusion noise from
unresolved white dwarf binaries in our galaxy.
It has been shown that �20 000 of the brighter galactic

binaries can be individually identified and regressed from
the LISA data [15], but this still leaves behind a significant
unresolved foreground signal. It should be possible to
separate this signal from an isotropic cosmological sto-
chastic background by using the time-modulated response
to the anisotropic galactic foreground. Figure 10 shows the
time-domain response to the galactic foreground compo-
nents. Notice that at certain times of the year, the galactic
confusion noise dips below the instrument noise for almost
a full month. One approach would be to restrict the analysis
to these quiet periods, and achieve sensitivities comparable
to what we found with a one-month data set. A more
sophisticated approach is to generalize our model of the
cross spectra to include a time-frequency representation of
the response to the galactic foreground. The parameters for
this model may include the bulge and disk scale heights
and radii, and the number density of unresolved signals as a
function of frequency. Information from the resolved com-
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FIG. 10 (color online). The time-domain A-channel response
to the full galactic foreground (red, large amplitude variation);
the unresolved component of the galactic foreground (green,
smaller amplitude variation) and the instrument noise (blue,
uniform amplitude). The signals were passband filtered between
0.1–10 mHZ.

MATTHEW R. ADAMS AND NEIL J. CORNISH PHYSICAL REVIEW D 82, 022002 (2010)

022002-8



ponent could be used to place priors on this model. Work
on this problem is currently underway, and simulated data
sets with a full galactic foreground and an isotropic sto-
chastic background have been generated for the fourth
round of the Mock LISA Data Challenge [26].

Estimates of the extra-galactic white dwarf confusion
noise [27] predict �gwðfÞ � 3� 10�12 at f� 2–3 mHz,

which should be detectable even with the galactic fore-
ground to contend with. The extra-galactic astrophysical
foreground will likely set the floor for detecting stochastic
backgrounds of cosmological origin, preventing us from
reaching the limits that the LISA observatory is theoreti-
cally capable of.
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APPENDIX: CROSS SPECTRA

The noise cross spectra are given by
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