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Rondonópolis, MT, Brazil

Victor O. Rivelles†

Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05314-970, São Paulo, SP, Brazil
(Received 12 February 2010; published 15 July 2010)

We present the transition amplitude for a particle moving in a space with two times and D space

dimensions having an Spð2; RÞ local symmetry and an SOðD; 2Þ rigid symmetry. It was obtained from the

BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final

points of this amplitude to lie on some hypersurface of theDþ 2 space the resulting amplitude reproduces

well-known systems in lower dimensions. This work provides an alternative way to derive the effects of

two-time physics where all the results come from a single transition amplitude.
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Formulating physics with more than one time leads to
unsurmountable problems. However, an elegant solution
was found for the case of two times (2T) assuming the
existence of an Spð2; RÞ-gauge symmetry, involving a
space with two timelike and an arbitrary number of space-
like directions, which reduces the theory effectively to one
time after gauge fixing [1]. The simplest model we can
formulate is for a particle moving inDþ 2 dimensions in a
space with metric ð�;þ;�;þ; . . . ;þÞ in D spatial and
two-time dimensions having an SOðD; 2Þ isometry group.
It was shown in a series of works that different gauge
choices or different choices for the Hamiltonian among
the generators of SOðD; 2Þ lead to different systems, like
the massless relativistic particle in D spacetime dimension
[2], a particle in AdSD�n � Sn [3], a massive nonrelativ-
istic particle inD� 1 spatial dimensions [3], the harmonic
oscillator in D� 2 spatial dimensions [2], or the hydrogen
atom in D� 1 spatial dimensions [2]. The common char-
acteristic of these systems is that all of them share the
original SOðD; 2Þ symmetry usually realized nonlinearly in
a hidden form. The formulation of 2T physics was also
extended to the supersymmetric case [4], to curved spaces
[5], and to field theories [6] and strings [7] with the same
surprising results that different physical systems emerge
out of it [8]. As stated above, the emergence of different
systems from the 2T theory is made in different settings. Of
course, it would be desirable to have a formulation where
all of its richness could be derived in just one single
framework. This is precisely the aim of this paper. The
transition amplitude for a particle in 2T physics is found by
using the BRST quantization scheme in which only a
single gauge choice is done. We will show that amplitudes
for different lower dimensional systems are found when we
take the initial and final points of the 2T particle in differ-

ent hypersurfaces of the original Dþ 2 space. Our results
provide a more physical interpretation of 2T physics. The
motion of the 2T particle restricted to different subspaces
can be seen as a massless scalar field in Minkowski space-
time in D dimensions or a massive scalar field in AdSD or
any of the systems found in 2T physics. It provides an
alternative way to understand 2T theories and strongly
corroborates the results found earlier. Our results also
have some of the flavor of M theory in the sense that the
restriction to different corners of the Dþ 2 space reveals
completely different theories in lower dimensions.
A particle moving in 2T theory has a phase space

described by ðXM; PMÞ, M ¼ 00; 10; 0; 1; . . . ; D� 1. The
gauge symmetries are generated by the three first-class
constraints X2 ¼ XMXM, P

2 ¼ PMP
M, and PX ¼ PMX

M,
whose Poisson bracket algebra generates Spð2; RÞ [8].
Since the BRST-BFV formalism [9] is a powerful method
to deal with gauge theories [10], we performed the BRST-
BFV quantization of the 2T particle. The particle is de-
scribed by its path XMð�Þ in the 2T space where � is its
evolution parameter. The action is composed by the usual
kinetic term for a particle plus the constraints multiplied by
their corresponding Lagrange multipliers Aað�Þ, a ¼
1; 2; 3 which will enforce them. The action is written as

S ¼
Z

d�ðPM
_XM � A1X2 � A2PX � A3P2Þ; (1)

where dot means derivative with respect to �. This action is
reparametrization invariant, so its canonical Hamiltonian
vanishes identically [1]. According to the BRST-BFV pre-
scription we have to supplement the action (1) with ghosts
and momenta for the Lagrange multipliers so that the full
action is invariant under a nilpotent BRST symmetry. Then
a gauge fixing term, which is also BRST invariant, is
further added to the action. The gauge choice that was
made is A1 ¼ A2 ¼ 0, _A3 ¼ 0. The evaluation of the path
integral representing the transition amplitude for this par-
ticle is rather involved and has many subtleties. It will be
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derived in full details in another publication [11]. Here we
will just present and discuss the resulting path integral. The
transition amplitude for a particle in Dþ 2 dimensions is
given by

A ðXi; XfÞ ¼ �ðX2
i Þ�ðX2

fÞ
Z þ1

�1
d��D=2�2ei�XiXf ; (2)

where Xi ¼ Xð�iÞ and Xf ¼ Xð�fÞ are the initial and final

points of the particle, respectively. Notice that it is mani-
festly invariant under SOðD; 2Þ but not under translations.
Also, it does not depend on �i and �f. To make sure that we

have the right amplitude there are a few things we can
check. First of all, as just mentioned, it is invariant under
the SOðD; 2Þ global symmetry of the classical theory as
expected. It also has to obey Schrödinger equation HA ¼
�i@A=@�. Since the canonical Hamiltonian vanishes and
the amplitude does not depend on �, this is also verified.
Finally, it has to satisfy all three constraints [12]. The
constraint X2 ¼ 0 is trivially satisfied for both arguments.
The constraint P2A ¼ �@2A=@X2 ¼ 0 requires some
manipulations with delta functions but is also satisfied.
Finally, the last constraint has ordering problems, but we
find that the amplitude (2) satisfies the symmetric ordered
constraint ðXM @

@XM þ @
@XM XMÞA ¼ 0 [14]. In order to bet-

ter handle the delta functions, we will take the Fourier
transform of the amplitude with respect to one of the extra

coordinates. Using light-cone coordinates ðXþ0
; X�0Þ for

the sector ðX00 ; X10 Þ, we take a Fourier transform with

respect to, for example, Xþ0
, obtaining

~Aðp�0
i ; X�0

i ; X�
i ;p

�0
f ; X�0

f ; X�
f Þ

¼ exp12 f½p�0
i =X�0

i �ðX�
i Þ2 þ ½p�0

f =X�0
f �ðX�

f Þ2g
jX�0

i X�0
f j

�
Z

d��D=2�2 exp

�
i

2
�

� ffiffiffiffiffiffiffiffi
X�0
i

X�0
f

vuut X
�
f �

ffiffiffiffiffiffiffiffi
X�0
f

X�0
i

vuut X
�
i

�
2
�
;

(3)

where � ¼ 0; . . . ; D� 1 and p�0
is the Fourier trans-

formed variable.
We can now consider what happens when the initial and

final points of the particle rest on some hyperplanes of the

Dþ 2 space. So let us choose X�0 ¼ 1 and p�0 ¼ 0. We
obtain immediately that

~AðX�
i ;X

�
f Þ ¼ �Fð�X�Þ; (4)

where �F is the Feynman propagator for the massless
Klein-Gordon field in Minkowski spacetime in D dimen-
sions. So if the initial and final points in the 2T particle

amplitude reside in the surface defined by X�0 ¼ 1 and

p�0 ¼ 0, then the 2T particle behaves like the massless
relativistic particle in two dimensions less, that is, in D
spacetime dimensions. It should be remarked that (4) is not

the transition amplitude for the relativistic particle com-
puted, for instance, in the BRST formalism. The transition
amplitude for the relativistic particle, which satisfies the
relativistic particle constraint, is the Schwinger function

�ð1Þð�X�Þ, satisfying the Klein-Gordon equation [15]. As
we will see, this is a common feature for relativistic
systems. We get the propagator of some field theory and
not the transition amplitude for the associated particle. For
the nonrelativistic systems, wewill always get the quantum
mechanical transition amplitude. Another remark is that

instead of choosing X�0 ¼ 1, we could have chosen X�0 ¼
const. Then the right-hand side of (4) would be multiplied
by 1=const2 and the coefficient of the propagator would
recall its higher dimensional origin.
The next corner we are going to look at will show us the

propagator of a scalar field in AdSD. To this end we will

make the change of variables from ðX0; Xi; XD�1; X�0Þ to
ðt; xi; y; RÞ, with i ¼ 1; . . . ; D� 2, given by

X0 ¼Rt=y; Xi ¼Rxi=y; XD�1 ¼R; X�0 ¼R=y:

(5)

As we shall see, ðt; xi; yÞ will turn out to be Poincaré
coordinates for AdSD. With this choice we get

� ffiffiffiffiffiffiffiffi
X�0
i

X�0
f

vuut X�
f �

ffiffiffiffiffiffiffiffi
X�0
f

X�0
i

vuut X�
i

�
2 ¼ 2RiRfu; (6)

where u ¼ ½ð�x�Þ2 þ y2i þ y2f�=ð2yiyfÞ � 1 is the chordal

distance in AdSD. After rescaling the integration variable

by � ! �=ðRiRfÞ and choosing the hypersurface p�0 ¼ 0

and y� RD=2 ¼ 0, we can eliminate R to get for (3) (up to
numerical factors)

~Aðx�i ; yi; x�f ; yfÞ ¼
�ðD=2� 1Þ
ðuþ i�ÞD=2�1

; (7)

which is the propagator for a massive scalar field in AdSD
coupled to the background in aWeyl invariant way [16]. Its
mass is given by m2 ¼ �DðD� 2Þ and this value is, of
course, above the Breitenlohner-Freedman bound.
We can generalize the former result to a conformally flat

spacetime in a slightly different way. Let us choose p�0 ¼
0 and X�0 ¼ exp�ðx�Þ, and perform the change of varia-
bles X� ¼ exp�ðxÞx�. After the rescaling of the integra-
tion variable by � ! � exp½��ðxiÞ � �ðxfÞ�, we find that
(3) reduces to

~Aðx�i ; x�f Þ ¼ exp

��
�D

2
ð�ðxiÞ þ �ðxfÞ

��
�Fð�x�Þ;

(8)

where, as before, �F is the massless propagator of the
Klein-Gordon field in flat Minkowski spacetime in D
dimensions. Clearly exp�ðxÞ is a conformal factor. The
result (8) is proportional to the propagator of the massless
Klein-Gordon field conformally coupled to the background
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[17]. There is a factor of expðð�ðxiÞ þ �ðxfÞÞmissing in it,

so the result (8) seems to recall its higher dimensional
origin. Alternatively, we could have started with expðð1�
2=DÞ�ðxÞÞ everywhere instead of exp�ðxÞ, and the right
conformal factor would appear in (8). Our results for the
coupling to AdSD and to the conformally flat spacetime
completely agree with the ones obtained in the context of
2T field theory [6,18].

Finally, we will derive two nonrelativistic systems. The
first is the nonrelativistic massive particle in D� 1 spatial
dimensions. To that end wewill take a Fourier transform on
X0
i and X0

f in (3), with transformed variables p0
i and p0

f

respectively. We choose the hypersurface p�0 ¼ 0 and

X�0 ¼ 1=
ffiffiffiffi
m

p
with m constant. After rescaling the integral

by � ! m� and calling p0
f ¼

ffiffiffiffiffiffiffiffi
mE

p
, with E another con-

stant we get

~Að ~Xi; ~Xf; m; EÞ ¼ md=2
Z

d��d=2�2

� exp

�
i

2

�
m�� ~X2 þ E

�

��

� �ðp0
i þ

ffiffiffiffiffiffiffiffi
mE

p Þ; (9)

where d ¼ D� 1. Up to the delta function, this is the
amplitude for a nonrelativistic particle of mass m and
energy E in d spatial dimensions. This result is not so
surprising since it could have been obtained directly from
the propagator of the massless relativistic particle. The
connection between the massless relativistic particle and
the massive nonrelativistic particle is well known and is
due to the presence, again, of the SOðD; 2Þ symmetry [19].

For the last case, we will use light-cone coordinates for

the X� sector ðXþ; X�; ~XÞ. We start by taking the Fourier
transform of X�

i ; X
�
f with transformed variables pþ

i , p
þ
f ,

respectively. This Fourier transform is used to get two delta
functions, and one of them can be used to perform the
integral on �. We now change variables from

ðXþ; X�0
; pþ; p�0Þ to ðt; ~x�0

; ~pþ; ~p�0Þ, according to

Xþ ¼ et; X�0 ¼ ~x�0
e�t; pþ ¼ ~pþet; p�0 ¼ ~p�0

e�t;

(10)

and choose the hypersurface defined by ~x�0 ¼ 1 and ~pþ þ
~p�0 ¼ 0. The final result is

~Að~pþ
i ; ti; ~Xi; ~p

þ
f ; tf;

~XfÞ ¼ ð~pþ
f Þd=2�1sinh�d=2�t

� exp

�
i

2
~pþ
f

cosht

sinht

�
~X2
i þ ~X2

f �
2 ~Xi

~Xf

cosht

��

� �ð~pþ
i þ ~pþ

f Þ;

(11)

where d ¼ D� 2. Notice the appearance of hyperbolic
functions in (11). It is proportional to the transition ampli-

tude for the inverted harmonic oscillator in d spatial di-
mensions with mass ~pþ

f . The inverted harmonic oscillator

has the wrong sign for the potential, but even being un-
bounded from below, it can be quantized in order to study
unstable systems [20]. Notice that to get the amplitude for
the ordinary harmonic oscillator we should have to replace
t by it in (10), but this is not allowed by the change of
variables if they are all real. In the usual formulation of 2T
physics, an ordinary harmonic oscillator is obtained [2].
Since the parametrization of our hypersurface does not
seem to be related to the parametrization used in [2], it
appears that we are looking at a different sector of the 2T
theory.
Finally, some comments are in order. If we compare our

hypersurfaces with the gauge choices made in the usual
formulation of 2T physics [21], we see some similarity.
This is to be expected, because in the amplitude (3) we
have explicitly to use the constraints X2 ¼ 0, which is also
done when the gauge is fixed in the usual 2T formulation.
So it is natural that some components of XM and PM do
indeed coincide, but the identification is not exact in all
cases. It should also be noticed that the inverted harmonic

oscillator was the only case with a nonvanishing p�0
that

we were able to analyze. We could not find the hyper-
surfaces which give rise to other systems like the massive
relativistic particle or the hydrogen atom. It seems that the
reason is related to the inclusion of the momenta in the
definition of the hypersurface. In fact, if we make a naive
Fourier transformation to get the transition amplitude in
phase space we find that it is problematic. Work in this
direction is under way.
It is quite remarkable that a single transition amplitude

in Dþ 2 dimensions can give rise to several distinct am-
plitudes in two or three dimensions less. As fully explained
in many papers on 2T physics, they all share a common
SOðD; 2Þ symmetry. This looks like a toy-model realiza-
tion of M theory. Here we have the emergence of different
systems when we fix the initial and final points of the 2T
particle to rest on a given subspace of the Dþ 2 original
space. Even though a 2T formulation of supersymmetry
and strings is known, we cannot leave aside the deep
connection of SOðD; 2Þ and the AdS/CFT correspondence.
We are planning to extend the formalism presented here to
include supersymmetry and strings and try to shed some
new light on these matters.
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