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We give a prescription to define in loop quantum gravity the electric field operator related to the scale

factor of a homogeneous and isotropic cosmological space-time. This procedure allows us to link the

fundamental theory with its cosmological implementation. In view of the conjugate relation existing

between holonomies and fluxes, the edge length and the area of surfaces in the fiducial metric satisfy a

duality condition. As a consequence, the area operator has a discrete spectrum also in loop quantum

cosmology. This feature makes the super-Hamiltonian regularization an open issue of the whole

formulation.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1] constitutes the most
compelling attempt toward a complete nonperturbative
quantum theory for the gravitational field. The key points
within this scheme are both the emergence of a local SU(2)
gauge invariance at the Hamiltonian level [2,3] and the
quantization of the corresponding holonomy-flux algebra
[4]. The most relevant issue is the prediction of discrete
spectra for geometrical operators at the kinematical level
[5]. However, a proper implementation of the dynamics
together with the characterization of semiclassical states
has not been obtained yet. A path integral formulation via
spin foam models looks promising, but several unsolved
issues remain [6].

The difficulties with the general theory for gravity can
be overwhelming in the minisuperspace models, where
some degrees of freedom are frozen out. In particular, the
quantum description of a homogeneous and isotropic cos-
mological space-time has the advantage that only one
variable, the scale factor a, parametrizes the configuration
space. At the same time, this symmetric case can be
regarded as an outstanding scenario because it aims to
describe the early Universe dynamics at least as a first
approximation (indeed, there is no indication that in the
quantum phase the Universe must be close to a isotropic
and homogeneous configuration [7]). In this respect, an
answer can be given to the most important issue that the
Friedmann-Robertson-Walker (FRW) dynamics leave un-
solved at a quantum level [8], the nature of the initial
singularity.

The first cosmological application of LQG was devel-
oped in terms of invariant connections [9], i.e. a restriction
was made to connections which respected the global ho-

mogeneity and isotropy, and this model was denoted by
loop quantum cosmology (LQC). Within this scheme, it

has been demonstrated that the inverse scale factor was
bounded from above on the zero-volume eigenstates and
that the super-Hamiltonian constraint became a nonsingu-
lar difference equation [10]. These features stand as good
indications that the singularity is removed. Indeed, the
above mentioned property of the inverse scale factor does
not hold in LQG [11], and this makes the relationship
between the fundamental and the minisuperspace theory
a tantalizing subject of investigation (see also [12]).
Then, in [13], a complete dynamical picture is realized

by restricting the edges along which holonomies are eval-
uated to straight lines in the fiducial metric, and so reduc-
ing the Hilbert space to one of quasiperiodic functions. The
regularization of the super-Hamiltonian takes place by
fixing a fundamental length for the graphs on which the
super-Hamiltonian is evaluated. Hence, the specific value
of such a length is inferred from requiring that the mini-
mum area on which the field strength of SU(2) connections
is regularized coincides with the minimum area eigenvalue
of LQG [14].
The main achievements of this procedure [15] are the

avoidance of the cosmological singularity and the predic-
tion of a bounce occurring at a certain value of matter
energy density, the so-called critical density (see [16] for a
phenomenological description).
As outlined in [17], the regularization itself produces the

bounce, rather than the quantization procedure. The justi-
fication of such a regularization via the requirement of a
minimum area spectrum moves LQC away from LQG,
where the discretization occurs already at a kinematical
level, while the regularization is intimately connected with
the definition of the super-Hamiltonian in the Hilbert space
[18] (a similar criticism is made in [19], while for a differ-
ent objection based on the investigation of inverse volume
corrections, see [20]).
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In this work, we elucidate the relationship between LQC
and LQG, by demonstrating that a proper operator corre-
sponding to p, where jpj ¼ a2, can be defined for holon-
omies along straight lines. The consistency between such
an operator and the one derived from the analysis of the
symplectic structure implies a fundamental duality be-
tween the edge length on which holonomies are evaluated
and the area of surfaces across which fluxes are defined.
Furthermore, the discretization of the geometrical opera-
tors is a direct consequence of the compactness of the
gauge group, and it has no relation at all with the existence
of a fundamental edge length. This feature prevents us
from following the regularization procedure of the super-
Hamiltonian adopted in Refs. [13,14].

Henceforth, we demonstrate that the trace operator maps
the reduced holonomy-flux algebra into the proper algebra
for quasiperiodic functions. This step concludes the deri-
vation of the kinematics of LQC from that of LQG re-
stricted to the FRW-like connections.

Finally, it is outlined how in this scenario it is possible to
relate the parameter at which the regularization of the
super-Hamiltonian occurs with the total number of vertices
of the fundamental graph underlying the classical descrip-
tion of the cosmological space-time.

II. LOOP QUANTUM COSMOLOGY

A cosmological space-time is assumed to be homoge-
neous and isotropic. The metric which is compatible with
these assumptions is the Friedmann-Robertson-Walker
one, i.e.

ds2 ¼ �dt2 þ aðtÞ2
�

1

1þ kr
dr2 þ r2d�2 þ r2sin2�d�2

�
;

(1)

where k ¼ 1; 0;�1 for a closed, flat, and open universe,
respectively. It is worth noting that the scale factor a is the
only dynamical variable, which on spatial hypersurfaces
behaves as a conformal factor for the fiducial line element

0dl2 ¼ 1

1þ kr
dr2 þ r2d�2 þ r2sin2�d�2: (2)

LQC is based on fixing Ashtekar-Barbero-Immirzi con-
nections and densitized 3-bein vectors as follows:

Aa
i ¼ c0eai ; Ei

a ¼ p
ffiffiffiffiffiffiffi
0h0

q
eia; (3)

where 0eai and 0eia denote 3-bein vectors of the fiducial
metric 0hij and their inverses, respectively, while

jpj ¼ a2; c ¼ 1

2
ðkþ � _aÞ: (4)

Within this scheme, c and p are fundamental phase
variables and the Poisson brackets between each other
are as follows (we work in units @ ¼ c ¼ 1):

fc; pg ¼ 8�G�

3V0

; (5)

V0 being the volume of the fiducial metric. Usually a

rescaling c ! V1=3
0 c, p ! V2=3

0 p is performed, such that

V0 does not appear in Poisson brackets. Here, we will not
consider such a rescaling.
The quantization is based on choosing almost periodic

functionsN� ¼ ei�c=2 as a basis in the configuration space.

The algebra generated by fN�; pg plays the role of the

holonomy-flux algebra of LQG, such that by the analogous
construction of the general case the Hilbert space turns out
to be H ¼ L2ðRBohr; d�BohrÞ, RBohr being the Bohr com-
pactification of the real line. In such a Hilbert space the
measure is given by

hN�0 jN�i ¼ ��0;�; (6)

and the action of fundamental operators reads

N̂ �c ðcÞ ¼ ei�c=2c ðcÞ;

p̂c ðcÞ ¼ �i
8��l2P

3

d

dc
c ðcÞ;

(7)

lP being the Planck length. The expression of the super-
Hamiltonian in a proper factor ordering is given by

H �� ¼ � 3V0

8��l2P ��2
p̂1=2 ^sin2 ��c; (8)

where the parameter �� is nonvanishing (the limit ofH �� as
�� goes to 0 does not exist), and this feature is taken as a
reminder of the fundamental discrete structure proper of
LQG. In fact, a possible way to fix �� consists of assuming
that the corresponding area operator, which is given by

Að ��2ÞN �� ¼ jpj ��2N ��; (9)

reproduces the minimum eigenvalue of the same operator
in LQG [5], so resulting in [14]

�� 2jpj ¼ 2
ffiffiffi
3

p
��l2P: (10)

This choice is particularly useful, since a consistent
cosmological dynamic with a bounce replacing the initial
singularity is predicted when a clocklike scalar field is
introduced. Indeed, the following alternative prescription
is present in literature [13]:

�� 2 ¼ 2
ffiffiffi
3

p
��l2P: (11)

This proposal was discarded, because in this case the
critical density depends on the momentum of the clocklike
scalar field.

III. PHASE-SPACE VARIABLES

The most general connections and momenta compatible
with the FRWmetric (1) are obtained from the expressions
in (3) by a generic SU(2) transformation. This means that
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although the metric has been partially fixed, nevertheless
the local SU(2) gauge symmetry is not lost (this is not
surprising, because such gauge transformations are related
with rotations in the tangent space).

Let us now depict a possible description of a cosmologi-
cal space-time in terms of LQG variables. Holonomies ha�
are now being evaluated along straight edges � parallel to
0eia, thus finding

ha� ¼ ei�cj�a ; (12)

� being the edge length, � ¼ R
�
0eai

d�i

dt dt, while j�a
denotes the SU(2) generator in the j representation. In
what follows, we will label the holonomies by ha�.

Similarly, the surfaces S, xi ¼ xiðu; vÞ, across which
fluxes are defined, are restricted to the surfaces whose
normal vectors coincide with 0eai , and their classical ex-
pression reads

EaðSÞ ¼ p�; � ¼
Z
S

0eia	ijk@ux
j@vx

kdudv; (13)

where � gives the flux of 0eia through S. � measures the
area of S itself in the fiducial metric, and in the following
equations it will be used as a label for Ea.

If S and � intersect each other, the flux operators act on
holonomies as follows:

Ê að�Þhb� ¼ 8��l2Ph
b
�
j�a�

a
bsgn��; (14)

where in the last relation, repeated indexes are not
summed.

Substituting the expression for EaðSÞ in terms of p, one
finds

p̂�ha� ¼ 8��l2Ph
a
�
j�asgn��; (15)

but from the Poisson bracket (5), the operator p can be
represented in the form

p̂ ¼ �i
8��l2P
3V0

d

dc
; (16)

whose action on holonomies (12) gives

p̂ha� ¼ 8��l2P�

3V0

ha�
j�a: (17)

Therefore, relations (15) and (17) are consistent when

j��j ¼ 3V0: (18)

This relation fixes a fundamental duality between the
length of the edges along which holonomies are evaluated
and the area of the surfaces across which fluxes are defined.

IV. QUASIPERIODIC FUNCTIONS

Within this scheme, it is possible to establish a clear
correspondence between the Hilbert space generated by
holonomies (12) and the one of quasiperiodic functions.

This correspondence can be realized via the trace on SU(2)
indexes.
In fact, tracing both sides of Eq. (14), one gets

tr ðEaðSÞha�Þ ¼ 2p̂j�j�j��
n¼0 cosð�cðnþ �ÞÞ

¼ 8��l2P trðha�j�aÞ
¼ �16��l2P�

j��
n¼0n� sinð�cðnþ �ÞÞ; (19)

where � ¼ 1=2; 0 for j, half-integer and integer,
respectively.
It is worth noting that after the trace has been performed,

linear combinations of quasiperiodic functions come out.
The action of p̂ on such quasiperiodic functions reads as

p̂ei ~�c ¼ 8��l2p
3V0

~�ei ~�c: (20)

In LQG, two kinds of information are present, the one
related with the edge length� and the one giving the SU(2)
quantum number n. These two notions are condensed in the
factor ~� ¼ n�, such that the SU(2) gauge structure is not
manifest. However, such information is required to infer
the area spectrum.
In fact, within this scheme, the regularized area operator

can be represented by the square root of p̂2�2; thus, its
action on quasiperiodic functions is

Âei�nc ¼
ffiffiffiffiffiffiffiffiffiffiffi
p̂2�2

q
ei�nc ¼ 8��l2p�jnjei�nc: (21)

Hence, the spectrum of the area operator is discrete and
it does not depend on the parameter �. The spectrum does
not coincide with the one of the fundamental theory [5],
which is related with the Casimir operator of the SU(2)
group.
Therefore, the procedure adopted in [13] to infer the

parameter �� required for the super-Hamiltonian regulari-
zation cannot be justified on the level of the area discrete
spectrum. By other words, the existence of a minimum
value for� is not a consequence of fundamental properties
of LQG, and this shortcoming of the previous derivation
leaves open the question about the proper implementation
of the dynamical constraint.
The regularized super-Hamiltonian takes the following

expression in LQG [18]:

H ¼ � 1

32�2�3l4P

X
v

Hv (22)

Hv ¼ �	ijk Tr½hðsijÞhðskÞ½V; h�1ðskÞ��; (23)

where the sum is on all vertices v of the graph on which H
acts. Here sij denotes the square emerging from v with the

edges along the directions ij, while sk is the edge along the
direction k. All holonomies in the expression (23) are in the
fundamental representation. V is the volume operator in the
full space.
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The restriction to an FRW space-time implies the re-

placement of V and hðsiÞ with p̂3=2V0 and h
a
��, respectively,

�� being the value at which the regularization should take
place. From Eq. (17), one finds

½V; ha��� ¼ V0½p̂3=2; ha��� ¼ 8�� ��l2Pp̂
1=21=2�ah

a
��; (24)

which reproduces the following expression when inserted
into the super-Hamiltonian (23):

H ¼ �X
v

3 ��

8�l2P�
2
p̂1=2 ^sin2 ��c: (25)

If we assume that each vertex gives the same contribu-
tion, then H can be written as

H ¼ � 3Nv ��3

8�l2P�
2 ��2

p̂1=2 ^sin2 ��c; (26)

Nv being the total number of vertices of the fundamental
graph underlying the continuous space-time manifold. It is
worth noting that the two expressions (8) and (26) coincide
if

V0 ¼ Nv ��3 ! �� ¼
�
V0

Nv

�
1=3

: (27)

Therefore, the assumption that the regularized super-
Hamiltonian retains the same expression as in [13] links
�� with the total number of vertices.

V. CONCLUSIONS

We analyzed the possibility of inferring LQC from the
general framework of LQG. In particular, we outlined that

the proper global operators could be defined as soon as the
restriction to FRW-like connections and momenta took
place. However, a fundamental condition linked the area
of the surfaces across which fluxes were defined and the
length of the edges along which holonomies were eval-
uated. Such a relation allowed us to avoid the presence of
the parameter � in the spectra of geometrical operators, so
reconciling LQC with the local character proper of the
LQG formulation. Moreover, we pointed out that by trac-
ing SU(2) indexes, the Hilbert space of quasiperiodic
functions were found.
Therefore, the findings of this work exclude the possi-

bility of connecting the regularization procedure of the
super-Hamiltonian with the kinematical properties of the
full theory.
Furthermore, the adopted procedure allowed us to infer

the super-Hamiltonian constraint from the properties of the
graph underlying the classical continuous description of
the space-time manifold. In particular, a fundamental con-
nection has been established between the parameter �� at
which the regularization took place and the total number of
vertices. This feature confirms the point of view adopted in
[20] that the regularization of the super-Hamiltonian is
deeply connected with full LQG such that �� is an ambi-
guity in LQC.
However, a different approach to defining a consistent

LQC is described in [20], where a local definition of
cosmological quantities is suggested via the introduction
of local patches. Within this scheme, in each local patch
the duality between the area of the surfaces and the edge
length would be still realized, but actually j��j ¼ VP, VP

being the patch volume in the fiducial metric.
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