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We examine the leading order noncommutative corrections to the differential and total cross sections

for eþe� ! q �q. After averaging over the Earth’s rotation, the results depend on the latitude for the

collider, as well as the direction of the incoming beam. They also depend on the scale and direction of the

noncommutativity. Using data from LEP, we exclude regions in the parameter space spanned by the

noncommutative scale and angle relative to the Earth’s axis. We also investigate possible implications for

phenomenology at the future International Linear Collider.
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I. INTRODUCTION

Motivated in part by quantum gravity [1], it has been of
recent interest to examine field theories, and, in particular,
the standard model of particle physics, on noncommutative
space-time backgrounds. Noncommutative versions of the
standard model have been proposed, which have the po-
tential of explaining its gauge algebra and fermion repre-
sentations [2]. Two popular noncommutative
generalizations of the standard model were given by
Chaichian et al. [3] and Calmet et al. [4]. In both cases
the geometry is generated by Heisenberg algebras, i.e.,

½x�;x�� ¼ i���; (1.1)

where x�, �; �; . . . ¼ 0, 1, 2, 3, are operator analogues of
space-time coordinates and ��� ¼ ���� are central ele-
ments which are independent of x�. Also, both approaches
rely on the Moyal-Weyl star product realization of the
algebra. One often distinguishes two cases: space-space
noncommutativity associated with�ij, i; j; k; . . . ¼ 1, 2, 3,
and time-space noncommutativity associated with �0i.
Then two noncommutative energy scales �SS, �TS, and
two unit vectors vi, wi can be defined using

�ij ¼ 1

2�2
SS

�ijkvk �0i ¼ 1

�2
TS

wi: (1.2)

Bounds on �SS and �TS have been obtained from atomic
physics, collider physics, and astrophysics. (See, for ex-
ample, [5].) vi and wi correspond to fixed directions in
space. If the noncommutative scales become accessible in
collider physics, then information about these directions
may be obtainable, as we shall illustrate in this article.

We first make some brief remarks about the two ap-
proaches to the noncommutative standard model men-
tioned above. In the approach of [3], one enlarges the
standard model gauge group to the noncommutative ana-

logue of Uð3Þ �Uð2Þ �Uð1Þ, thus introducing gauge bo-
sons in addition to those of the standard model. New
symmetry breakings and Higgs scalars are then also re-
quired. The model was shown to be one-loop renormaliz-
able [6]. The approach of [4] does not involve introducing
any additional gauge bosons or symmetry breakings. It
instead relies upon a map, known as the Seiberg-Witten
map [7], between commutative and noncommutative gauge
theories, from which one can obtain corrections to the
standard model interactions [8]. These corrections have
been computed up to second order in ��� [9]. In contrast
with the former model, one-loop corrections are not well
understood in this approach. Although the model is anom-
aly free up to one-loop order [10], only the pure gauge
sector of this theory has been shown to be renormalizable
at this order [11].
Here we shall follow the approach of [4], and obtain all

leading noncommutative corrections to the differential and
total cross sections for the example of eþe� ! q �q at tree
level. These corrections are second order in�0i. Assuming
that wi in (1.2) corresponds to a fixed direction relative to
some frame external to the earth, and not the lab frame, we
must average over the Earth’s rotation. (Presumably, other
effects due to the Earth’s motion relative to wi are much
smaller.) Results for the cross sections then depend on the
latitude for the collider, as well as the direction of the
incoming beam. We can obtain an analytic expression for
the averaged leading order noncommutative correction to
the total cross section in terms of these quantities, along
with the noncommutative scale �TS, and the projection wZ

of wi along the Earth’s axis. Using data from LEP, we are
then able to exclude regions in the parameter space
spanned by �TS and wZ for different detectors. Here we
also investigate possible implications of the noncommuta-
tive corrections for phenomenology at the International
Linear Collider (ILC), a future high energy eþe� linear
collider with

ffiffiffi
s

p ¼ 500 GeV–1 TeV. Since the corrections
depend on both the location of the ILC and its beam
direction, there can be an optimal site and beam direction
for observing noncommutative effects.
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Before proceeding, we comment on several works where
noncommutative corrections for the annihilation of eþe�
to fermion-antifermion pairs, and where earth rotational
effects in collider physics were already considered.
eþe� ! eþe� was examined in [12] in a version of non-
commutative QED that did not rely on the Seiberg-Witten
map. The calculations =included Z-boson exchange,
although the Z-boson vertex was not obtained from a non-
commutative standard model Lagrangian. Electron-
positron scattering was reconsidered in [13] within the
framework of the noncommutative standard model [4],
which gives a specific form for the Z-boson vertex.
Electron scattering was examined in another approach to
noncommutative QED in [14]. Earth rotation effects were
not taken into account in these works. Such effects were
considered for collider physics in [15], using the example
of Higgs pair production. Earth rotation effects were also
illustrated in [16] for e�eþ ! �� and in [17] for eþe� !
�þ��. The investigations in [15–17] were conducted
within the context of noncommutative QED, and Z-boson
exchange was not included. Scattering amplitudes were
only expanded up to first order in ��� in the above
mentioned works, although the leading order corrections
to the cross section for eþe� to fermion-antifermion pairs
are quadratic. So additional terms can contribute to the
cross section at this order. In our work, upon applying the
noncommutative standard model of [4], and not just non-
commutative QED, we shall include all second order con-
tributions to the scattering amplitude, in addition to taking
into account Earth rotational effects.

The outline for the rest of this article is as follows: In
Sec. II we compute the noncommutative corrections for
photon and Z-boson exchange. We average over the Earth’s
rotation in Sec. III and apply the results to LEP and ILC in
Sec. IV.

II. APPLICATION OF THE NONCOMMUTATIVE
STANDARD MODEL

We first give the noncommutative Feynman rules for the
relevant vertices �ff and Zff up to second order in ���.
There are no noncommutative corrections to the propaga-
tors when one uses the Moyal-Weyl star product.

The Feynman rule for vertex �ff is given by

V�ff
� ¼ ieQf��; (2.1)

where Qf denotes the fermion charge and one can expand

�� in a power series in the noncommutativity tensor ���,

�� ¼ �� þ �ð1Þ
� þ �ð2Þ

� þ . . . : (2.2)

Here and in what follows, the dots denoting terms that are
more than second order in ���. The first and second order
terms were found in [8,9], respectively, to be

�ð1Þ
� ¼ i

2
½ðk�Þ�p6 inð1� 4cð1Þc Þ þ 2ðk�Þ�k6 ðcð1ÞA � cð1Þc Þ

� ðpin�Þ�k6 � ðk�pinÞ���;
�ð2Þ
� ¼ 1

8
ðk�pinÞ½ðk�Þ�p6 inð1� 16cð2Þc Þ

þ 4ðk�Þ�k6 ðcð1ÞA � 2cð2Þc Þ � ðpin�Þ�k6 � ðk�pinÞ���;
(2.3)

where we ignore the fermion mass and take all momenta, k,
pin, and pout, to be incoming. pin and pout are associated
with incoming and outgoing fermions, respectively. We
have adopted the notation ðk�Þ� ¼ k���� and ðk�pÞ ¼
k����p

�. cð1Þc , cð1ÞA , and cð2Þc are arbitrary constants which

originate from ambiguities in the Seiberg-Witten map.
They do not appear in the vertex when the incoming and
outgoing fermions are evaluated on-shell (at energies well
above the fermion mass). In that case, the vertex reduces to

V�ff
� jon-shell ¼ ieQf��Iðpout; pinÞ; (2.4)

where

I ðpout; pinÞ ¼ 1þ i

2
ðpout�pinÞ þ 1

8
ðpout�pinÞ2 þ . . . :

(2.5)

The sign in front of the second term changes upon switch-
ing the ingoing momenta k to outgoing.
The Feynman rule for vertex Zff is obtained by replac-

ing Qf�� in (2.4) by ðcV;f � cA;f�5Þ��= sin2�W , where

cV;f ¼ 1
2ðcL;f þ cR;fÞ ¼ T3;f � 2Qfsin

2�W;

cA;f ¼ 1
2ðcL;f � cR;fÞ ¼ T3;f;

(2.6)

�W is the Weinberg angle and T3;f denotes the fermion

weak isospin. The on-shell vertex is then

VZff
� jon-shell ¼ ie

sin2�W
ðcV;f � cA;f�5Þ��Iðpout; pinÞ:

(2.7)

Up to second order, both noncommutative on-shell ver-
tices (2.4) and (2.7) are related to the commutative on-shell
vertices by the same factor Iðpout; pinÞ. It follows that
noncommutative scattering amplitudes for e�eþ ! q �q as-
sociated with � and Z exchanges are related to their
commutative counterparts by a common factor. Then the
total noncommutative scattering amplitude at tree level

MNC is related to total commutative scattering amplitude
M by

MNC ¼ Iðpout; pinÞ�Iðp0
out; p

0
inÞM; (2.8)

where the primed momenta are associated with the created
fermions, and M is the corresponding standard model
amplitude. The leading noncommutative corrections to
the squared-amplitude are second order in ���,

MANSOUR HAGHIGHAT, NOBUCHIKA OKADA, AND ALLEN STERN PHYSICAL REVIEW D 82, 016007 (2010)

016007-2



jMNCj2 ¼
�
1þ 1

2
ðpout�pinÞ2 þ 1

2
ðp0

out�p0
inÞ2

þ � � �
�
jMj2: (2.9)

Only the space-time components of ��� contribute in the

center-of-mass frame for beam on beam scattering, where

pin ¼
� ffiffiffi

s
p
2
; ~p

�
; pout ¼

� ffiffiffi
s

p
2
;� ~p

�
; (2.10)

and similarly,

p0
in ¼

� ffiffiffi
s

p
2
; ~p0

�
; p0

out ¼
� ffiffiffi

s
p
2
;� ~p0

�
: (2.11)

Then using (1.2),

ðpout�pinÞ ¼
ffiffiffi
s

p
�2

TS

~p � ~w; ðp0
out�p0

inÞ ¼
ffiffiffi
s

p
�2

TS

~p0 � ~w;

(2.12)

where ~w ¼ fwig. In terms of unit vectors p̂ ¼ ~p=jpj and
p̂0 ¼ ~p0=jp0j, one can then write the noncommutative dif-

ferential cross section d�NC=d� for eþe� ! q �q accord-
ing to

d�NC

d�
¼

�
1þ 1

8

�
s

�2
TS

�
2fðp̂ � ~wÞ2 þ ðp̂0 � ~wÞ2g þ � � �

�

� d�

d�
; (2.13)

where d�=d� is the standard model differential cross
section. This expression is valid at lowest order in pertur-
bation theory provided that�TS *

ffiffiffi
s

p
. The standard model

differential cross section and total cross section �total are
well known [18]

d�

d�
¼ Nc�

2s

16
fFðsÞð1þ cos�Þ2 þGðsÞð1� cos�Þ2g;

(2.14)

�total ¼ Nc�
2	s

3
ðFðsÞ þGðsÞÞ; (2.15)

where � denotes the scattering angle, Nc ¼ 3 is the num-
ber of colors,

FðsÞ ¼ jALLðsÞj2 þ jARRðsÞj2;
GðsÞ ¼ jALRðsÞj2 þ jARLðsÞj2;

(2.16)

AijðsÞ ¼
QeQf

s
þ ci;ecj;f

sin2�Wcos
2�W

1

s�M2
Z � iMZ�Z

;

i; j ¼ L;R; (2.17)

and we have included the correction due to the decay width
�Z for Z.

III. EARTH ROTATIONAL EFFECTS

Now we take into account Earth rotational effects. This
is necessary since p̂ and p̂0 are defined in the lab frame,
while ~w is a fixed direction in space, and so the Earth’s
rotation implies that the scalar products appearing in (2.13)
are not constant. As was reported in [15], this can lead to a
day-night asymmetry in the cross section. Since such time-
dependent experimental data are not readily available, we
shall average ðp̂ � ~wÞ2 and ðp̂0 � ~wÞ2 in (2.13) over a full day.
Following [19], denote by ðX̂; Ŷ; ẐÞ a nonrotating basis,

with Ẑ parallel to the Earth’s axis along the north direction.
To a good approximation, this basis spans an inertial frame.
The transformation to a basis ðx̂; ŷ; ẑÞ attached to a point on
the Earth’s surface at any time t was given by

x̂
ŷ
ẑ

0
@

1
A ¼

cos
 cos�t cos
 sin�t � sin

� sin�t cos�t 0

sin
 cos�t sin
 sin�t cos


0
@

1
A X̂

Ŷ
Ẑ

0
B@

1
CA;

(3.1)

where� is the Earth’s sidereal frequency and 0 � 
 � 	.
To identify the directions ðx̂; ŷ; ẑÞ, consider the cases 
 ¼ 0
and 
 ¼ 	=2, which we identify with the North Pole and

Equator, respectively. ẑ k Ẑ when 
 ¼ 0, and therefore, ẑ

points normal to the Earth’s surface. x̂ is antiparallel to Ẑ
when 
 ¼ 	=2, and thus x̂ and ŷ point south and east,
respectively.
Assuming no vertical component to the particle momen-

tum ~p in the lab frame, we have

p̂ ¼ cos�x̂þ sin�ŷ: (3.2)

Taking ~w ¼ wXX̂ þ wYŶ þ wZẐ, the time average of ð ~w �
p̂Þ2 is

hðp̂ � ~wÞ2i ¼ 1
2ðcos2�cos2
þ sin2�Þð1� w2

ZÞ
þ cos2�sin2
w2

Z; (3.3)

and so the average leading order correction to the standard
model differential cross section (2.14) is

�
�
d�

d�

�
¼

�
s

4�2
TS

�
2fðcos2�cos2
þ sin2�

þ cos2ð�þ�Þcos2
þ sin2ð�þ�ÞÞð1�w2
ZÞ

þ 2ðcos2�þ cos2ð�þ�ÞÞsin2
w2
Zg

d�

d�
: (3.4)

Note that this correction is always positive. Upon integrat-
ing this plus (2.14) over the scattering angle, we obtain the
following analytic formula for the average leading order
correction to the total cross section (2.15):
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h��totali ¼ s2

5120�4
TS

f15	rðsÞ½ð3w2
Z � 1Þ cos2


� ðw2
Z þ 1Þ� sin2�þ 32½2ðw2

Z þ 1Þ cos2�
� ð5ðcos2
þ 1Þ þ 3 cos2ð�þ 
ÞÞw2

Z

þ ð1� 3w2
ZÞ cos2ð�� 
Þ � 5 cos2


þ cos2ð�þ 
Þ þ 15�g�total; (3.5)

where

rðsÞ ¼ FðsÞ �GðsÞ
FðsÞ þGðsÞ : (3.6)

IV. NUMERICAL RESULTS FOR COLLIDER
PHYSICS

We now apply the results from LEP. Our calculations for
the corrections to total cross section of e�eþ ! q �q can be
compared to measurements made at the four detectors
ALEPH, DELPHI, OPAL, and L3, which were spaced at
90� degree intervals around the ring. Since (3.5) is un-
changed for � ! �þ 	, only two distinct answers are
obtained for the four of the detectors. Below we will apply
the results of ALEPH and OPAL.

For
ffiffiffi
s

p ’ 189 GeV, we get a contribution of �10:8 pb
to the total standard model cross section �total from q ¼ u,
c, and �10:1 pb from q ¼ d, s, b, where we have cut the
region j cos�j> 0:95 from the integration corresponding
to data analysis of LEP experiments. The latitude for
CERN is 46.234�, corresponding to 
 ¼ 0:764 radians.

200 220 240 260 280 300 320
0.0

0.2

0.4

0.6

0.8

1.0

TS GeV

w
z2

FIG. 1. Constraints on parameters �TS and w2
Z from ALEPH

(dashed line) and OPAL (solid line) data. The left-hand side of
each of the contours is excluded.
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FIG. 2 (color online). The deviations of the total cross section
from the standard model one as a function of 
 and � for
(a) w2

Z ¼ 0 (top), (b) w2
Z ¼ 0:35 (middle) and (c) w2

Z ¼ 1:0
(bottom).
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Upon taking � ’ �	=3 for the ALEPH detector, and
summing over all five quark final states, we find the devia-
tion of the total cross section from the standard model one
as

P
quarks

h��totalijALEPH
P

quarks

�total

	
�
104:6 GeV

�TS

�
4 �

�
79:5 GeV

�TS

�
4
w2

Z:

(4.1)

Similarly, if we take � ¼ �5	=6 for the OPAL detector,
we find

P
quarks

h��totalijOPAL
P

quarks

�total

	
�
105:3 GeV

�TS

�
4 �

�
84:1 GeV

�TS

�
4
w2

Z:

(4.2)

We set (4.1) equal to the error found in the ALEPH results
of 3.74% [20] and (4.2) equal to the error found in the
OPAL results of 1.35% [21].1 Fig. 1 shows contour plots

for ALEPH (dashed line) and OPAL (solid line) results,
respectively. The left-hand side of each of the contours is
excluded.
We finally investigate the implications for phenomenol-

ogy at the ILC with
ffiffiffi
s

p ¼ 500 GeV–1 TeV. The ILC, with
its high precision, can allow us to search noncommutative
effects for �TS in the range of 1–10 TeV. Since the total
cross section depends on both the location of the ILC and
its beam direction, there may be an optimal site and beam
direction for the ILC for observing noncommutative ef-
fects. As an example, we take �TS ¼ 500 GeV and we
calculate the cross section of the process eþe� ! q �q at the
ILC, with

ffiffiffi
s

p ¼ 500 GeV. In Figs. 2(a)–2(c), we show the
resulting deviations of the total cross section due to non-
commutative effects as a function of 
 and � for three
different values of wZ. (Again, we have cut the region
j cos�j> 0:95.) Figure 2(a), where w2

Z ¼ 0, shows that
the deviation is maximized for an ILC located at the poles
(
 ¼ 0; 	). On the other hand, Fig. 2(c), where w2

Z ¼ 1,
shows the deviation of the cross section is maximized for
an ILC located on the Equator (
 ¼ 	=2) and along the
direction to the north (� ¼ 0). For w2

Z ¼ 1, the deviation
tends to zero for an ILC located at the poles, which is
evident from the analytic results (3.4) and (3.5). Aside from
other inconveniences, the poles may therefore not be opti-
mal collider sites for seeing noncommutative effects.
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