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We study the character change of the pionic condensation at finite isospin chemical potential �I by

adopting the linear sigma model as a nonlocal interaction between quarks. At low j�Ij the condensation is
purely bosonic, then the Cooper pairing around the Fermi surface grows gradually as j�Ij increases. This
q- �q pairing is weakly coupled in comparison with the case of the q-q pairing that leads to color

superconductivity.
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Recent progress in computer power makes it possible to
reliably simulate quantum chromodynamics (QCD) at fi-
nite temperature T. As for finite density (usually parame-
trized by finite baryon chemical potential �B), however,
the well-known sign problem limits simulations.
Alternatively, QCD at finite isospin chemical potential
�I ¼ �u ��d (where �u and �d denoting the chemical
potential of u and d quark, respectively) as well as the
SU(2) color systems, in which the sign problem does not
exist, are studied to give insights into the actual finite �B

physics [1]. These systems are also studied extensively in
terms of effective models [2–8]. One of the most interest-
ing aspects of the finite �I systems is that they accommo-
date pion condensation for j�Ij>m� [9], with m�

denoting the mass of pions. Son and Stephanov [10] pre-
dicted that the pion condensed phase evolves to Cooper
pairing between u and �d (d and �u) for�I > 0 (< 0) at high
j�Ij, but the quantitative process of the character change of
the condensation has not been discussed.

The Bose-Einstein condensation–Bardeen-Cooper-
Schrieffer (BEC-BCS) crossover has long been expected
to occur in various quantum systems [11–13]; it was ex-
perimentally observed in ultra cold atomic gases, in which
the strength of the interaction can be tuned artificially, only
recently. At least in principle, it can occur also in systems
governed by the strong interaction, in which the strength of
the interaction cannot be tuned artificially aside from
theoretical simulations [14]. Rather, the change in the
environment, typically density, would lead to the crossover
[15]. In symmetric nuclear matter, the neutron (n)–proton
(p) pairing in the 3S1 þ 3D1 channel that leads to bound

deuteron formation was studied in Ref. [16]. The n-n and
p-p 1S0 pairing, that has attracted attention from view-

points of both nuclear structure and neutron stars, however,
does not reach the BEC [17,18]. In intermediate density
quark matter, the present author discussed that the spatial
extension of quark Cooper pairs in a color superconductor
is comparable with the mean interparticle distance [19].
Later, a wide enough density region was studied [20] and it

was shown that the diquark pairing becomes weak at
extremely high density. The properties of the pseudo gap
phase and bosonic excitations were studied in Refs. [21–
23].
Since the mechanism of the fermion-antifermion con-

densation that produces the fermion mass is essentially the
same as the BCS pairing as recognized in Nambu and Jona-
Lasinio’s celebrated paper [24], the evolution of the
charged pion condensation to q- �q Cooper pairs can be
analyzed in the context of the BEC-BCS crossover in terms
of the spatial structure of the pion condensation. To this
end, one must introduce a nonlocal interaction between q
and �q that gives momentum dependent condensations. In
the present study, we adopt the linear sigma model [25],
which respects chiral symmetry, as an interquark interac-
tion, since (1) the pion condensation occurs as a sponta-
neous symmetry breaking among three pions that have
light but nonzero masses after the chiral symmetry break-
ing between the sigma meson and the pions, and (2) the
effect of high j�Ij on it has long been studied [9,26–28]. In
Ref. [29] the BEC-BCS crossover in the diquark pairing
was studied in a boson–fermion model similar to that of the
present study but the condensation is momentum
independent.
Finite �I occurs with finite �B in the real world; with

finite T and small �B, for example, 0.04 GeV [30], in
heavy ion collisions and with (near) zero T and large �B,
for example * 1 GeV, in compact stars. In this sense, the
present study of the system with �B ¼ 0 is just the first
step to investigate the realistic systems. However, since a
signature of the BEC-BCS crossover in the chemical po-
tential dependence of the condensation is measured in a
lattice simulation for the SU(2) color system [31] that is in
a sense dual [32] to the finite �I system, the spatial
structure of the composite pions would be worth studying
even with �B ¼ 0.
When a conserved charge density N exists, the effec-

tive Lagrangian density is obtained with replacing the
Hamiltonian density H by H ��N , here � denoting
the corresponding chemical potential, in the partition func-
tion and performing momentum-field integrations [33].*matsuza@fukuoka-edu.ac.jp
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The result for the charged pion is

L eff ¼ Lð _�1 ! _�1 ���2; _�2 ! _�2 þ��1Þ: (1)

Since the isospin chemical potential �I corresponds to the
charge chemical potential in the hadronic world, this form
applies to the present purpose. This indicates that the role
of �I corresponds to that of the angular frequency in the
nonrelativistic spatial rotation, that is, to move to a ‘‘coor-
dinate frame’’ rotating in the 3 dimensional isospin space;
the zero-energy rotational motion is a physical image of the
Nambu–Goldstone mode.

The adopted effective Lagrangian for the quarks, sigma
mesons and pions is

Leff ¼ Lq þLM þLcouple;

Lq ¼ �q

�
i6@�mq þ�I

2
�0�3

�
q;

LM ¼ 1

2
ð@��@��þ @� ~� � @� ~�Þ �Uð�; ~�Þ

þ�Ið�1 _�2 � �2 _�1Þ þ�2
I

2
ð�2

1 þ �2
2Þ;

Uð�; ~�Þ ¼ �2

4
ð�2 þ ~�2Þ2 �m2

0

2
ð�2 þ ~�2Þ � c�;

m2
0 ¼ �2f2� �m2

�ð>0Þ; c ¼ f�m
2
�;

Lcouple ¼ �G �qð�þ i�5 ~� � ~�Þq; (2)

where f� andm� stand for the pion decay constant and the
pion mass, respectively. Hereafter, quantum fluctuations
are indicated by primes, such as,

�q��q ¼ h �q��qi þ ð �q��qÞ0; � ¼ h�i þ �0;

�i ¼ h�ii þ �0
i:

(3)

Since the quantum fluctuations of the quark densities and
the meson fields after subtracting the mean field couple to
each other, the normal product in Leff is understood. Note
here that charge neutrality forced by electrons are often
considered in studies of realistic �B � 0 matter expected
to exist in compact stars [34,35]. In the present study,
however, charge neutrality is not forced since the asym-
metric (�I � 0) but �B ¼ 0 system is an idealized one

from the beginning. On the other hand, the charge intro-
duced by �I is conserved among quarks and mesons.

It is well known that, in the mean field level, Ueff ¼
Uð�; ~�Þ � �2

I

2 ð�2
1 þ �2

2Þ has the minimum at

h�i ¼ f�m
2
�

�2
I

; h�i2 ¼ �2
I �m2

�

�2
þ f2� � h�i2 (4)

for j�Ij>m�, assuming h�3i ¼ 0 [9,26]. We take h�1i ¼
h�i and h�2i ¼ 0 without loss of generality. This means
that the pion condensation exists in both charge sectors
irrespective of the sign of�I. After expandingLM up to the
quadratic terms in �0 and �0

i, diagonalization of the
coupled Klein-Gordon equations for �0, �0

1, and �0
2 gives

the mass eigenvalues, one of which is zero as done in
Ref. [26]. But the meson mixing can not be calculated
since the 3� 3 mass matrix is not regular. Thus, another
approximation must be sought. Note that the meson mixing
was calculated in another model [36]. Since the essential
character of the massless meson propagation in the pion
condensed phase is the rotational motion in the isospin
space, we adopt a polar coordinate representation,

�� ¼ 1ffiffiffi
2

p ð�1 � i�2Þ ¼ 1ffiffiffi
2

p � expð�i�Þ

¼ 1ffiffiffi
2

p ðh�i þ �0Þ expð�i�Þ; (5)

without expanding the angular field. This representation
assures the conservation of the (third component of the
isospin) current of the total system seen in the ‘‘rotating’’
frame:

@�j
� ¼ @�

�
�q�� �3

2
q

�
þ @�ð�1@

��2 � �2@
��1Þ

þ�I@tð�2
1 þ �2

2Þ ¼ 0; (6)

within the quadratic terms of the fluctuating quantum
fields. In other words, the equation of motion of the angular
field assures the current conservation.
After confirming this point, we write down the coupled

Klein-Gordon equations retaining the lowest order terms in
each equation as

@�@
��0 þ ð2�2h�i2 þ�2

I Þ�0 þ 2�2h�ih�i�0 ¼ �Gð �qqÞ0;
@�@

��0 þ 2�2h�i2�0 þ 2�2h�ih�i�0 � 2�Ih�i _� ¼ �Gð �qi�5�1qÞ0;
h�i@�@�� ¼ �Gð �qi�5�2qÞ0;

@�@
��0

3 þ�2
I�

0
3 ¼ �Gð �qi�5�3qÞ0: (7)

Here we make one additional approximation to handle the set of equations: We ignore �2�Ih�i _� in the second equation
that corresponds to the Coriolis coupling. Its influence will be checked later. The obtained set contains (1) the �-�mixing
(the first and second equations), and (2) the rotational massless field (the third equation) due to the existence of the pion
condensation h�i.
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The equation of motion of the quark propagator

Gij
�	ðx� x0Þ ¼ �ih~0jTqi�ðxÞ �qj	ðx0Þj~0i; (8)

where i, j and �, 	 represent isospin and Dirac indices,

respectively, and j~0i is the pion condensed ground state, is
given by�
i6@�mq þ�I

2
�0�3

�
Gðx� x0Þ

¼ 
4ðx� x0Þ � iGh~0jTð�ðxÞ þ i�5 ~� � ~�ðxÞÞqðxÞ �qðx0Þj~0i:
(9)

After sorting the mean field terms in

�þ i�5 ~� � ~� ’ h�i þ i�5�1h�i
þ �0 þ i�5ð�1�0 þ �2h�i�þ �3�

0
3Þ (10)

to the left-hand side, we substitute Eq. (7) inverted by
diagonalizing the meson mixing to Eq. (9). Then we per-
form a one-body reduction (the Wick decomposition) such
as

h~0jT �qðyÞqðyÞqðxÞ �qðx0Þj~0i
! h~0jTqðxÞ �qðyÞj~0ih~0jTqðyÞ �qðx0Þj~0i: (11)

Note that only the Fock terms appear since the Hartree
(mean field) terms have already been sorted. Consequently
the resulting equation of motion reads�
i6@�mq �Gðh�i þ i�5�1h�iÞ þ�I

2
�0�3

�
Gðx� x0Þ

¼ 
4ðx� x0Þ � �ðx� yÞGðy� x0Þ; (12)

where �ðx� yÞ stands for the nonlocal Fock self-energy
that depends on Gðx� yÞ, and an integration over y is
understood. By a Fourier transformation and an isospin
decomposition,

Aik ¼ A0
ik þ A3�ik3 þ A��ikþ þ Aþ�ik�;

�� ¼ 1ffiffiffi
2

p ð�1 � i�2Þ;
(13)

we obtain a Gor’kov [37] type equation,

�0ð!� h��I=2Þ þ �0 � �3 �Gh�ii�5 þ ffiffiffi
2

p
��

�Gh�ii�5 þ ffiffiffi
2

p
�� �0ð!� h��I=2Þ þ �0 ��3

 !
G0 �G3ffiffiffi

2
p

G�
� �

¼ 1
0

� �
; (14)

with h ¼ � � kþ 	ðmq þGh�iÞ being the free single par-
ticle Hamiltonian with the constituent quark mass, Mq ¼
mq þGh�i. This form clearly indicates that the present
subject is a pairing problem. The upper and lower double
signs mean the u and d quark sector, respectively; both
contain the same information. In the following we take the
lower one.

In order to solve Eq. (14) and look into the spatial
structure of the composite two body system, the pair
wave function [38] given by the Bogoliubov amplitudes
is necessary. The route is parallel to the nonrelativistic case
depicted in Appendix A. This method was utilized for the
nucleon pairing in Ref. [39]. In the present case, G0 �G3

corresponds to the normal Green function and
ffiffiffi
2

p
G� does

to the anomalous one. First we express them in terms of the
densities. The relativistic free quark field of ith flavor
without pairing is expressed as

qi�ðxÞ ¼ 1ffiffiffiffi
V

p X
ks

½aiksU�ðksÞe�ikx þ biyksV�ðksÞeikx� (15)

with k0 ¼ Ek �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

q

q
. The number of single particle

states must be doubled so as to have two energy states
mixed by pairing interaction, as done by means of the
Nambu representation [40] in field theoretical terms. The
doubled states are diagonalized by means of the
Bogoliubov transformation. Then the upper half states
are regarded as unoccupied quasiparticle states while the
lower half ones are occupied quasihole states. Therefore
the particle states before transformation are regarded as
superpositions of the quasiparticle with energy Ek and the
quasihole with energy �Ek. Thus, in the present case, the
quark field that definesGðx� x0Þ is thought to be expanded
in the same form as Eq. (15) but with

k0 ¼
�þEk particle part with coefficient ui

�Ek hole part with coefficient vi;
(16)

with the Bogoliubov amplitudes specified below.
Substituting it to Eq. (8) and Fourier transformation lead to

Gij
�	ð!;kÞ ¼ X

s

U�ðksÞ �U	ðksÞ
� haiksajyksi
!� Ek þ i�

þ hajyksaiksi
!þ Ek � i�

�
þX

s

V�ð�k� sÞ �V	ð�k� sÞ

�
�hbiy�k�sb

j
�k�si

!� Ek þ i�
þ hbj�k�sb

iy
�k�si

!þ Ek � i�

�
þX

s

U�ðksÞ �V	ð�k� sÞ
� haiksbj�k�si
!� Ek þ i�

þ hbj�k�sa
i
ksi

!þ Ek � i�

�

þX
s

V�ð�k� sÞ �U	ðksÞ
� hbiy�k�sa

jy
ksi

!� Ek þ i�
þ hajyksbiy�k�si

!þ Ek � i�

�
: (17)
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Next, the densities such as haayi are expressed in terms
of the Bogoliubov amplitudes by specifying the relevant
transformation. In general, the exchange of quantum mes-
onic field produces nonlocal interactions of the type ai-ai,
bi-bi, ai-bi, ai-aj, bi-bj, and ai-bj (i � j). Therefore the
quasiparticle takes the form of Eq. (B2). To be specific,
however, here we consider ai-bj that leads to the momen-

tum dependent pionic gap function, and ai-ai and bi-bi that
lead to the Fock mass, among them. Then the two types of
quasiparticles specified in Appendix B decouple from each
other; ai and biy in qi become a constituent of different
kind of quasiparticles. Then the normal and anomalous
propagators are given as

ðG0 �G3Þ�	 ¼
�X

s

U�
�U	u

2u2� þX
s

V�
�V	v

2v2�
��

1

!� Ek þ i�
� 1

!þ Ek � i�

�
;

ffiffiffi
2

p
G�

�	 ¼
�X

s

U�
�V	u

1v2� þX
s

V�
�U	v

1u2�
��

1

!� Ek þ i�
� 1

!þ Ek � i�

�
: (18)

Note that the expectation values arisen from the commutation relation are already subtracted in the backward terms.
Substituting these expressions back to Eq. (14) and taking residues at ! ¼ Ek, finally we obtain a 4� 4 Hermitian

matrix equation at each k,

e� Ek ��I=2�m2 0 �� 0
0 eþ Ek ��I=2� ~m2 0 � ~�

�� 0 eþ Ek þ�I=2� ~m1 0
0 � ~� 0 e� Ek þ�I=2�m1

0
BBB@

1
CCCA

A
B
C
D

0
BBB@

1
CCCA ¼ 0: (19)

Here the eigenenergy is denoted by e since both the qua-
siparticle and quasihole solutions are obtained from this,
and use has been made of

hU ¼ EkU; hV ¼ �EkV: (20)

The real Bogoliubov amplitudes are defined as

A ¼ u2 ¼ h~0jad�yj~0i;
B ¼ v2 ¼ h~0jby�d�

yj~0i;
C ¼ �iv1 ¼ �ih~0jby�u�yj~0i;
D ¼ �iu1 ¼ �ih~0jau�yj~0i; (21)

and all quantities appearing in Eq. (19) are real. Among
them,

�ðkÞ ¼ �i �UðkÞð�Gh�ii�5 þ ffiffiffi
2

p
�þÞVðkÞ;

~�ðkÞ ¼ �i �VðkÞð�Gh�ii�5 þ ffiffiffi
2

p
�þÞUðkÞ;

(22)

represent the momentum dependent pionic gap functions
for the d �u and u �d condensation, respectively, while

m2ðkÞ ¼ � �UðkÞð�0 ��3ÞUðkÞ;
~m2ðkÞ ¼ � �VðkÞð�0 � �3ÞVðkÞ;
~m1ðkÞ ¼ � �VðkÞð�0 þ �3ÞVðkÞ;
m1ðkÞ ¼ � �UðkÞð�0 þ�3ÞUðkÞ

(23)

do the Fock masses. The first term in each equation in
Eq. (22) stems from the momentum independent pion
condensation h�i of the meson system, which produces a

strong momentum dependence, �U�5V ¼ Mq=Ek, and the
second one from the nonlocal Fock self-energy. This type
of 4� 4 matrix equation appears also in the cases of the
relativistic 1 flavor pairing including the Dirac sea [39] and
the nonrelativistic 2 flavor pairing [41]. Since the Fock
self-energy at a momentum k is a function of Aðk0Þ �
Dðk0Þ, the equations for all momenta are coupled.
Actually, when evaluating each matrix element of �, a 4-
momentum integration is necessary. For the energy inte-
gration among them, we make an instantaneous approxi-
mation, that is, energy transfer ! 0 as in previous works
[19,20,39]. As for the remaining 3-momentum integration,
the BCS type calculation needs a cutoff in general. In the
present case it is thought to be around the typical hadronic
scale. Therefore, we adopt that for the standard NJL model
for simplicity. Solving the coupled equations self-
consistently determines all the physical quantities: The
Bogoliubov amplitudes, quasiparticle energies, and the
mass and gap functions at each �I. Then the pair wave
functions and the coherence length are calculated from
them.
Now we proceed to numerical calculations. Parameters

used are the current quark mass mq ¼ 0:0055 GeV, the

momentum cutoff � ¼ 0:63 GeV, the pion decay constant
f� ¼ 0:093 GeV, the pion mass m� ¼ 0:138 GeV, the
potential parameter in the linear sigma model � ¼ 4:5,
and the quark–meson coupling G ¼ 3:3. The momentum
space 0 	 k 	 � is divided to 100 equi-intervals for the
coupled Newton method. Calculations are done for �I < 0
where the d �u condensation dominates. The results depend
on the parameters quantitatively but the qualitative behav-
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ior is robust; this will be confirmed later with respect to the
behavior of the coherence length, which is of direct physi-
cal relevance.

First, we check the meson masses under the present
approximation in Fig. 1. The cusp just after the transition
j�Ij ¼ m� is brought about by the neglect of the Coriolis
coupling term in Eq. (7). Definitely, the eigenvalues of the
2� 2 diagonalization after that in the polar coordinate
representation are

M2 ¼ 1
2ð2�2ðh�i2 þ h�i2Þ þ�2

I

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�2ðh�i2 � h�i2Þ þ�2

I �2 þ 16�4h�i2h�i2
q

Þ;
(24)

while two nonzero eigenvalues of the 3� 3 diagonaliza-
tion in the Cartesian coordinate representation [26] are

M2 ¼ 1
2ð2�2ðh�i2 þ h�i2Þ þ 5�2

I

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�2ðh�i2 � h�i2Þ � 3�2

I �2 þ 16�4h�i2h�i2
q

Þ:
(25)

The present result given by Eq. (24), the lower one of
which tends to 0 when h�i approaches 0, is not consistent
with the one obtained in the frame of the chiral perturba-
tion [42], but this difference is a trade-off for obtaining the
meson mixing. Practically, its influence is limited to just
after the transition.
Figure 2 shows the results at j�Ij ¼ 0:5 GeV 
 m�.

Figure 2(a) is the quasiparticle energy diagram as a func-
tion of the relative momentum k (dispersion relation). Its
unperturbed structure is quite simple: The positive and
negative energy u (d) quark levels with �Ek are shifted
upward (downward) by j�Ij=2. Then, the negative energy
u, that is the hole state of the �u, and the positive energy d
interact around the Fermi surface. This means the d �u

-1
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FIG. 2 (color online). Momentum dependence of various quantities at �I ¼ �0:5 GeV: (a) the quasiparticle energies, (b) the
Bogoliubov amplitudes, (c) the pair wave function, and (d) the gap function. Note that (b)–(d) are associated with the third (from the
bottom) solution in (a).
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FIG. 1 (color online). Meson masses given by the linear sigma
model with the approximation described in the text. Note that �
and � correspond to �1 and �2, respectively, at j�Ij<m�.
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pairing. Hereafter we name these quasiparticle (hole) lev-
els the first, second, third and fourth, from the bottom. The
third level, the lower quasiparticle, is the main interest in
the following discussion. This lower quasiparticle consists
only of A and C. In the usual pairing problem, for example,
in the case of Ref. [39], this type of 2� 2 equation can be
cast into the form of the gap equation. In the present case,
however, �ðkÞ is represented as a function of Aðk0Þ and
Cðk0Þ as

�ðkÞ ¼ � 1

2

X�
k0
ðvðk; k0Þ2Aðk0ÞCðk0Þ

þ v0ðk; k0ÞðA2ðk0Þ � C2ðk0ÞÞÞ;

2Aðk0ÞCðk0Þ ¼ �ðk0Þ
eðk0Þ � m1ðk0Þþ ~m2ðk0Þ

2

;

A2ðk0Þ � C2ðk0Þ ¼ Ek0 þ �I

2 þ m1ðk0Þ� ~m2ðk0Þ
2

eðk0Þ � m1ðk0Þþ ~m2ðk0Þ
2

: (26)

Therefore the v0 term due to the �-� mixing prevents one
from casting Eq. (19) into the form of the gap equation.
Nevertheless, the notion of the pair wave function [38] is
useful for looking into the physical contents since A2 � C2

is small around the Fermi surface. Figure 2(b) shows the
Bogoliubov amplitudes A and C. Aside from the bump
around k ¼ 0mentioned below, the hole character changes
gradually to the particle character around the Fermi surface
as the usual Cooper pairing. This leads to the peak in the
pair wave function �ðkÞ ¼ AðkÞCðkÞ [see Eq. (26)] shown
in Fig. 2(c). The bump around k ¼ 0 is a novel feature of
the present case; this is brought about by the mesonic
contribution h�i to the gap function �ðkÞ [see Eq. (22)]
as shown in Fig. 2(d). In this gap function, the mesonic and
the Cooper pair components are comparable around the
Fermi surface, whereas the former is dominant around k ¼
0 because of the k dependence / Mq=Ek.

Figure 3 shows the �I dependence of various quantities.
Figure 3(a) shows the pair wave functions at several �Is as
functions of the momentum. This shows that, leaving room
for possible error related to the discussion about Fig. 1, at
low j�Ij the peak due to the Cooper pairing cannot be seen.
Actually, q and �q are bound to each other for j�Ij< 2Mq

as shown in Fig. 3(b). Thus, we can conclude that the
pionic condensation has a mixed character: Purely bosonic
just after the appearance of the condensation, then the
Cooper pairing gradually grows as j�Ij increases with
retaining a significant bosonic component. To look into
the spatial structure of Cooper pairs more closely, we
Fourier transform �ðkÞ as

�ðrÞ ¼ 1

2�2

Z �

0
�ðkÞj0ðkrÞk2dk: (27)

The results for several �Is are shown in Fig. 3(c) as
functions of the relative distance. Obviously those for
higher j�Ij wave until longer distances. Figure 3(d) graphs

the coherence length,

 ¼
R
�
0 j d�dk j2k2dkR
�
0 j�j2k2dk

 !
1=2

; (28)

and 3(e) the gap at the Fermi surface as functions of �I.
The obtained coherence length at low j�Ij is consistent
with the value obtained by an analysis of the �-� scatter-
ing, hr2i�S ¼ 0:61� 0:04 fm2 [43]. In relation to heavy ion

collisions, this value is very close to the typical interpion
distance d at the freeze-out: An example of numbers, the
charged particle multiplicity Nc ¼ 555 [44] and the source
size V ¼ ð6:48 fmÞ3 [30], and the fact that the pion is the

most abundant, lead to d * ðV=NcÞ1=3 ¼ 0:79 fm. The
picture of a gas of bound mesons may apply to  < dwhile
that of a liquid (see also Ref. [45]) of Cooper pairs would
be appropriate for  > d although the latter realizes at
rather high j�Ij. Figure 3 clearly indicates that the
Cooper pairing becomes weakly coupled as j�Ij increases.
Comparing these figures with corresponding ones in
Ref. [19], one can see that the Cooper pairing part of the
present case is more weakly coupled than the case of color
superconductivity, as represented by the narrower peak in
�ðkÞ and longer spatial extent. Figure 3(d) also shows the
cutoff dependence; the dependence is weak.
At higher j�Ij, in the present calculation j�Ij �

0:8 GeV, a gapless pairing (e < 0) takes place. The gapless
dispersion is known to occur in the case of pairing between
particles with different masses [46]. In the present case, the
Fock term produces the difference in the mass [see the
denominator in Eq. (26)].
Finally, we look into the character of the fourth level, the

higher quasiparticle, that corresponds to the Dirac sea
pairing in Ref. [39]. This level is of almost pure u quark
particle character (DðkÞ ’ 1) for k * 0:1 GeV; but the �d
component strongly mixes around k ¼ 0 because of two
reasons: (1) h�i equally contributes to ~�ðkÞ and �ðkÞ (but
with the opposite sign), and (2) the unperturbed energy
difference between u and �d is the same as that between �u
and d at k ¼ 0.
To summarize, we have studied the momentum depen-

dence of the pionic gap function �ðkÞ that determines the
spatial structure of the condensation by adopting the linear
sigma model as an interquark interaction at finite isospin
chemical potential as a first step towards the study of the
asymmetric matter in the real world. Although confine-
ment is not taken into account in the present study, the
character of the condensation is bosonic at low j�Ij, then
the Cooper pairing gradually grows as j�Ij increases. This
q- �q pairing is weaker than the q-q pairing of the case of
color superconductivity. The spatial structure (wave func-
tion) of the composite pionic system is expected to be
measured in lattice QCD simulations as well as the �I

dependence of the magnitude of the condensation as sig-
natures of the BEC-BCS crossover. The spatial structure
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may affect the description of pions created in heavy ion
collisions.

APPENDIX A: THE GOR’KOV FORMALISM

Gor’kov [37] first proposed a field theoretical method to
describe the pairing problem. In addition to the normal
Green function Gðx� x0Þ, the anomalous Green function
Fyðx� x0Þ of hTðc yc yÞi type is introduced there. The
equation of motion of their Fourier transforms is given by

!� k �i�
i� !þ k

� �
Gð!;kÞ
Fyð!;kÞ

� �
¼ 1

0

� �
; (A1)

where k and � are the single particle energy measured
from the Fermi surface and the momentum independent
pairing gap, respectively. Its solution is

Gð!;kÞ ¼ u2k
!� Ek

þ v2
k

!þ Ek

;

Fyð!;kÞ ¼ �i�=2Ek

!� Ek

þ i�=2Ek

!þ Ek

;

u2k ¼
1

2

�
1þ k

Ek

�
; v2

k ¼
1

2

�
1� k

Ek

�
;

u2kv
2
k ¼

�
�

2Ek

�
2
; Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k þ �2

q
:

(A2)
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FIG. 3 (color online). Isospin chemical potential dependence of various quantities: (a) the k space pair wave function, (b) the twice
of the constituent quark mass, (c) the r space pair wave function, (d) the coherence length, and (e) the gap at the Fermi surface. (d) also
contains the cutoff dependence.
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Substituting them back to Eq. (A1) gives

½ð!�kÞuk��vk�uk
!�Ek

þ ½ð!�kÞvkþ�uk�vk

!þEk

i ½�uk�ð!þkÞvk�uk
!�Ek

þ i ½�vkþð!þkÞuk�vk

!þEk

0
@

1
A ¼ 1

0

� �
: (A3)

The residues at ! ¼ Ek (quasiparticle) lead to

k �
� �k

� �
uk
vk

� �
¼ Ek

uk
vk

� �
: (A4)

Those at ! ¼ �Ek (quasihole) lead to the same equation.
Therefore, the equation for the Green functions and that for
the Bogoliubov amplitudes are equivalent.

APPENDIX B: THE BOGOLIUBOV
TRANSFORMATION

Replacing the spin � ¼" = # and a�k in the nonrelativ-
istic pairing problem by the isospin u=d and b�k, respec-

tively, we obtain two Bogoliubov transformations relevant
to the present case,

au
by�d

� �
¼ u1 �v2

v2 �u1

� �
�u

�y
�d

� �
;

ad
by�u

� �
¼ u2 v1

v1 u2

� �
�d

�y�u

� �
;

(B1)

at each momentum and spin.
Since there is i�5 ~� between two flavors, here we take u1

and v1 are imaginary, u2 and v2 are real. Then the two

types of quasiparticle, �y
u and �y

d , can be represented

collectively as

�y ¼ X2
i¼1

ðuiayi þ vib�iÞ; (B2)

where i ¼ 1=2 correspond to u=d.
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