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I. INTRODUCTION

The standard model relies on the Higgs mechanism to
realize electroweak symmetry breaking. Many variants of
the Higgs mechanism have already been suggested, but it is
not presently known what particular variant is realized in
nature.

While waiting for the LHC to give the first hints of
nature’s choice, theorists must be duly prepared to safely
interpret future LHC data. This implies, in particular, that
theorists must be aware of all essential possibilities which
can be realized within a chosen model for electroweak
symmetry breaking. Since the nonminimal Higgs sector
usually involves many free parameters, it is highly desir-
able to analyze the chosen model in its most generic
formulation, allowing for all possible degrees of freedom.
This general analysis of a specific model should show
which phenomenological consequences are universal and
which are sensitive to values of the parameters, which
symmetries can in principle arise in the model and how
they are broken, which properties hold only at the tree-
level, and which survive the perturbation series. When this
general structure of a model is well understood, one should
proceed further and restrict the model by taking into ac-
count existing experimental constraints.

Unfortunately, such an exhaustive analysis is hardly
feasible for many nonminimal Higgs sectors. A very rep-
resentative case is given by the two-Higgs-doublet model
(2HDM) [1–3]. Here, the straightforward algebra fails even
at the very first step, because the Higgs potential cannot be
minimized explicitly in the general case. As a result, for a
long time only relatively simple variants of the 2HDM
were analyzed, while the most general 2HDM remained
barely studied. In the last several years a number of tools
were developed which led to many insights into the prop-
erties of the general 2HDM. These methods were based on
the idea of the reparametrization symmetry, or basis in-
variance, of the model: a unitary transformation between
the Higgs doublets changes the parameters of the model,
but nevertheless leads to the same physical properties of

the observable particles. This idea can be implemented via
the tensorial formalism at the level of Higgs fields [4–8] or
via geometric constructions in the space of gauge-invariant
bilinears [9–13]. In the latter case the formalism was
extended to include nonunitary reparametrization transfor-
mations [14–16], which revealed interesting geometric
properties of the 2HDM in the orbit space equipped with
the Minkowskian metric.
It is a natural idea to extend these successful techniques

to N doublets. The general N-Higgs-doublet model
(NHDM) is obviously more involved than 2HDM, both
at the level of the scalar sector and Yukawa interactions
(see examples in [17–19]). Some properties of the general
NHDM were analyzed in [11,20–24], with a special em-
phasis on CP violation [6,12,25]. However, a method to
systematically explore all the possibilities offered with N
doublets was still missing.
In principle, generalization from 2HDM to NHDM is

straightforward in the tensorial formalism; however, it is
very difficult to translate tensorial invariants into physical
observables. On the other hand, the geometric approach in
the space of bilinears offers a more appealing treatment of
the Higgs potential, but the shape of the NHDM orbit space
is rather complicated and has not been fully characterized
so far. In this paper we fill this gap by studying in detail the
algebraic and geometric properties of the NHDM orbit
space. Many of these results are used in [26] where the
minimization problem and the symmetry breaking patterns
of the Higgs potential of the general NHDM are analyzed.
The paper is organized as follows. Section II is devoted

to three distinct but interrelated approaches to the descrip-
tion of gauge orbits in the space of Higgs fields. Then, in
Sec. III we construct the orbit space of NHDM as a certain
algebraic manifold and discuss at length its algebraic and
geometric properties. In Sec. IV we treat the specific case
of 3HDM in even greater detail, aiming at not only a
concise algebraic description of the orbit space but also
trying to gain an intuitive understanding of its shape. In the
final section we draw our conclusions.
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II. DESCRIBING HIGGS FIELDS IN NHDM

The scalar potential of the NHDM is constructed from
gauge-invariant bilinear combinations of the Higgs fields.
The space of these combinations can be described in three
algebraically different but closely related ways: via repre-
sentative Higgs doublets, via aKmatrix, and via a vector in
the adjoint space. In this section we describe and compare
these three ways.

A. Field space and gauge orbits

The scalar content of the general NHDM consists of N
complex Higgs doublets with electroweak isospin Y ¼
1=2:

�a ¼ �þ
a

�0
a

� �
; a ¼ 1; . . . ; N: (1)

The total dimensionality of the space of scalar fields is 4N.
Since the Higgs Lagrangian is electroweak symmetric, we
can perform any simultaneous intradoublet SUð2Þ �Uð1Þ
transformation inside all doublets without changing the
Lagrangian. If we take a generic point in the Higgs space
and apply all possible electroweak transformations, wewill
get a four-dimensional (4D) manifold called the (gauge)
orbit. Thus, the entire 4N-dimensional space of Higgs
fields is naturally ‘‘sliced’’ into nonintersecting orbits.
The resulting set of orbits is a ð4N � 4Þ-dimensional mani-
fold called the orbit space.

In principle, �a are operators. However, when minimiz-
ing the Higgs potential, we will look for vacuum expecta-
tion values of the Higgs fields h�ai, which are c numbers.
Then, we can characterize each orbit by a specific repre-
sentative point in the Higgs space:

�1 ¼
0

v1

 !
; �2 ¼

u2

v2e
i�2

 !
;

�a ¼
uae

i�a

vae
i�a

 !
; a > 2:

(2)

This point (and therefore, the entire orbit) is characterized
by 4N � 4 real parameters: N values of va, N � 1 values
of ua, a > 1, N � 1 phases �a, a > 1, and N � 2 phases
�a, a > 2.

It is well known that if at least one ua � 0, such a point
corresponds to the charge-breaking vacuum, in which the
electroweak symmetry is broken completely and the pho-
ton acquires mass. If we insist that the vacuum be neutral,
we must set all ua ¼ 0. Thus, the representative point of a
generic neutral orbit is

�1 ¼ 0
v1

� �
; �a ¼ 0

vae
i�a

� �
; a > 1: (3)

It is characterized by N parameters va and N � 1 phases
�a, making the dimensionality of the neutral orbit space

equal to 2N � 1, which is 2N � 3 units less than the
dimensionality of the entire orbit space.

B. Reparametrization freedom

So far we have mentioned only the electroweak SUð2Þ �
Uð1Þ transformations between the components of each
doublet. Since the potential is an electroweak scalar, such
transformations do not affect the parameters of the
potential.
Now consider the SUðNÞH group of transformations that

mix the doublets without affecting their intradoublet struc-
ture (index H stands for ‘‘horizontal’’). This transforma-
tion sends a given Higgs potential to another viable Higgs
potential with different coefficients. Such a transformation
is called a reparametrization transformation, or a horizon-
tal space transformation, or aHiggs-basis change. The key
property of this transformation is that although it repara-
metrizes the potential, it leaves the physical observables
invariant [4,5]. This property is known as the reparametri-
zation invariance, or the Higgs-basis invariance, of the
model. The same is true for antiunitary transformations
as well, so one can state that the reparametrization group of
the general NHDM consists of all unitary and antiunitary
transformations acting in the space CN: �a ! Uab�b and
�a ! Uab�

�
b. The antiunitary transformations are also

known as generalized CP transformations [27,28].
Reparametrization transformations link different gauge

orbits. If we pick up a specific point in the gauge orbit
space, then by applying all possible reparametrization
transformations we can reach many other points in the
orbit space. Thus, the orbit space itself becomes split into
nonintersecting SUðNÞ orbits. We will study this stratifica-
tion in more detail in Sec. III D.
For any neutral orbit parametrized by va, �a according

to (3), we can find a reparametrization transformation that
brings it to a ‘‘canonical form’’ (also known as Higgs
basis)

�1 ¼ 0
v

� �
; �a ¼ 0

0

� �
for a > 1; v2 � X

a

v2
a:

(4)

Obviously, we have N equivalent canonical forms depend-
ing on which doublet has the nonzero value. These equiva-
lent forms can be related to each other by a discrete
subgroup (permutation) of the reparametrization group.
Equivalently, any point in the charge-breaking orbit

space can be brought to its own canonical form

�1 ¼
0

v

 !
; �2 ¼

u

0

 !
; �a ¼

0

0

 !
for a > 2;

v2 � X
a

v2
a; u2 � X

a

u2a: (5)

There are NðN � 1Þ=2 such canonical choices. To avoid
double counting of equivalent canonical forms within such
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choices, we can restrict v2 � u2. The neutral orbit space
corresponds to the limit u2 ! 0. The other extremum,
u2 ¼ v2, corresponds to a rather special space of ‘‘maxi-
mally charge-breaking’’ vacua.

C. K matrix formalism

Following [10–12], we represent the electroweak-scalar
bilinears defined above as components of a complex
Hermitian N � N matrix:

Kab � ð�y
b�aÞ: (6)

Several important properties of the K matrix were proven
in [11,22]:

(i) It is a Hermitian positive-semidefinite matrix.
(ii) Its rank is 2 for a generic (charge-breaking) vacuum

and 1 for a neutral vacuum. This result stems from
the fact that we deal with electroweak doublets and
not higher representations of the gauge group.

In other words, the K matrix has at most two nonzero (and
positive) eigenvalues, while the other N � 2 eigenvalues
are zero. For the neutral vacuum, one gets only one non-
zero (positive) eigenvalue andN � 1 zeros. The maximally
charge-breaking vacua can be defined in terms of K matri-
ces by ½TrK�2 ¼ 2TrðK2Þ.

A reparametrization transformation U 2 SUðNÞH act-
ing on doublets � transforms also the K matrix according
to the adjoint transformation law:

K ! UKUy: (7)

In particular, starting from any K matrix, one can always
find such a transformation that diagonalizes it:

K ¼ diagðv2; 0; . . . ; 0Þ for neutral orbit space;

K ¼ diagðv2; u2; . . . ; 0Þ for charge-breaking orbit space:

(8)

These diagonal K matrices correspond to the ‘‘canonical’’
orbits (4) and (5).

From the observation that the K matrix is a Hermitian
and rank-2 matrix, we can also deduce the dimensions of
the neutral and charge-breaking orbit space. Let us suppose
rankðKÞ ¼ 2. Then among the N lines (columns) of K,
there are at most two linearly independent. We can arbi-
trarily choose them to be the first and second lines (col-
umns) by relabeling the doublets. The remaining lines
(columns) can be rewritten as linear combinations of lines
1 and 2, and because of Hermiticity, the expansion coef-
ficients are not arbitrary but determined by the elements of
the linearly independent lines. This fact is proved in
Appendix B. Therefore, we can choose the set

K1a ¼ �y
a�1; a ¼ 1; . . . ; N;

K2b ¼ �y
b�2; b ¼ 2; . . . ; N;

(9)

as the set of 4N � 4 algebraically independent gauge in-

variants Kab ¼ �y
b�a, noticing that K11 and K22 are real

while the rest are complex. Thus the dimension of the
charge-breaking orbit space is 4N � 4. The neutral orbit
space corresponds to the subcase of rankðKÞ ¼ 1 where we
can choose the first line (column) to be the linearly inde-
pendent line (column), which implies that the dimension of
the neutral orbit space is 2N � 1. The dimensions of the
neutral and charge-breaking orbit spaces can be also de-
duced using the isotropy groups acting on K; see details in
Sec. III D below.

D. Adjoint representation

Yet another look at the orbit space of the N-Higgs-
doublet model is offered by the adjoint representation of
the reparametrization group SUðNÞH.
Since the K matrix (6) is a Hermitian N � N matrix, it

can be decomposed as

K � r0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN � 1Þ

s
1N þ ri�i; i ¼ 1; . . . ; N2 � 1:

(10)

Here �i are generators of SUðNÞ satisfying relations

�i�j ¼ 2

N
�ij1N þ ifijk�k þ dijk�k:

The coefficient in front of the unit matrix in (10) is chosen
for future convenience. The values of r0 and ri can be
extracted from the K matrix:

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

2N

s
TrK; ri ¼ 1

2
Tr½K�i�: (11)

If the space of K matrices were generalized to the space
of all N � N Hermitian matrices, i.e., MhðNÞ, Eq. (10)
would define a linear and invertible map between MhðNÞ
and the space of all possible real vectors r� � ðr0; riÞ, i.e.,
RN2

[22], which we call the adjoint space. The notation r�

alludes to the Minkowski-space formalism similar to what
was developed for 2HDM in [12,14–16]. Since we limit
ourselves only to the (anti)unitary reparametrization trans-
formations, we are not going to use this formalism here,
although we do think that it might be useful in NHDM.
Here we use r� just as a short notation of ðr0; riÞ.
When MhðNÞ is restricted to the space of positive-

semidefinite rank-2K matrices, which we call theK space,

the mapping (10) from theK space to the adjoint spaceRN2

is no longer surjective and its image defines a manifold

embedded in RN2
which will be denoted byV� [22] (orbit

space).
The shape of V�, which we study in Sec. III below, is

rather complicated. However, to cast the first glance at it,
let us remind the reader of the situation in 2HDM. There,
the K matrix was a Hermitian 2-by-2 matrix, and the
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condition rankK � 2 was automatically satisfied. The
positive semidefiniteness led to

TrK � 0; ðTrKÞ2 � Tr½K2� � 0; (12)

which in the adjoint representation translated into

r0 � 0; r20 � ~r2; (13)

where ~r is just an index-free label for ri. Thus, in 2HDM
the orbit space was represented by (the surface and the
interior of) the forward light cone in R4.

With more than two doublets, the rank-2 requirement
generates extra conditions to be imposed in addition to
(12). These conditions are formulated as equalities (not
inequalities) among traces of powers of the K matrix up to
KN (see details in Sec. III). In the adjoint space they will
translate into a set of algebraic equations on components of
r�. The orbit space still lies on and inside the forward light
cone (13), but it occupies only a certain region inside it.

A unitary reparametrization transformation of �a keeps
r0 unchanged but leads to a rotation of the vector ~r in

RN2�1. An antiunitary reparametrization transformation
adds to that a reflection of NðN � 1Þ=2 components of ~r.
Since the map SUðNÞ ! SOðN2 � 1Þ is not surjective, not
all rotations of ~r can be induced by a reparametrization
transformation of the doublets. Thus, the reparametrization
group in the adjoint space is a certain (and rather small)
subgroup of the full rotation groupOðN2 � 1Þ. This is also
reflected in the rather complicated shape of the orbit space
itself, which is invariant only under rather special rotations.

As discussed above, the K matrix of any canonical
neutral (4) or charge-breaking (5) orbit is diagonal. Its
decomposition (10) involves only diagonal matrices �i,
i.e., the Cartan subalgebra of suðNÞ together with the
unit matrix. Thus, the canonical orbits correspond in ad-
joint space to a certain (N � 1)-dimensional section
through the root space of suðNÞ, to be discussed in
Sec. III C.

E. Higgs potential

Let us also discuss how the Higgs potential is described
within each of these approaches.

The generic Higgs potential in NHDM can be written in
a tensorial form [4,5]:

V ¼ Y �abð�y
a�bÞ þ Z �ab �cdð�y

a�bÞð�y
c�dÞ; (14)

where all indices run from 1 to N. The potential is con-

structed from N2 bilinears ð�y
a�bÞ, and therefore it can be

viewed as defined in the orbit space.1 Coefficients in the
quadratic and quartic parts of the potential are grouped into
components of tensors Y �ab and Z �ab �cd, respectively; there

are N2 independent components in Y and N2ðN2 þ 1Þ=2
independent components in Z.
Within the K matrix approach, the potential is still based

on the same tensors and can be written symbolically as

V ¼ Tr½YK� þ TrTr½ZK 	 K�; (15)

where ‘‘TrTr’’ indicates the traces over the two pairs of
indices.
In the adjoint space, one replaces a pair of doublet

indices by the index � ¼ ð0; iÞ. The Higgs potential takes
the following form:

V ¼ �M�r
� þ 1

2���r
�r�

� �ðM0r0 þMiriÞ þ 1
2ð�00r

2
0 þ 2�0ir0ri þ�ijrirjÞ:

(16)

The scalarM0 and the vectorMi are essentially Y �ab of (14)
written in the adjoint space. The total number of free
parameters in M0 and the vector Mi is 1þ ðN2 � 1Þ ¼
N2. The scalar �00, vector �0i, and symmetric tensor �ij

represent Z �ab �cd in the adjoint space; their parameter
counting gives 1þ ðN2 � 1Þ þ ðN2 � 1ÞN2=2 ¼
ðN2 þ 1ÞN2=2. We stress again that we do not use the
Minkowskian metric in this paper, so all the contractions
of pairs of indices are understood in the Euclidean sense.
Let us discuss the relation among the three ways of

describing the Higgs field configurations in NHDM.
Working in terms of fields parametrized as (2) and (3),

one can easily describe the entire orbit space available in
terms of va, ua and relative phases. The price one pays for
this simplicity is that the Higgs potential involves tensors
Y �ab and Z �ab �cd, whose properties are very far from being
intuitive. For example, even in 2HDM one must resort to
long computer-assisted algebraic manipulation in order to
formulate the explicit CP invariance of the potential [6,7].
One can expect that understanding the Higgs potential of
NHDM will be even harder.
In the adjoint r� space the description of the orbit space

becomes much more complicated. On the other hand, the
treatment of the Higgs potential is dramatically simpler.
For example, in 2HDM one could easily formulate and
prove conditions for existence of a symmetry, one could
derive theorems about the number and coexistence of
minima, etc. Remarkably, the same treatment can be ex-
tended straightforwardly to NHDM, which is the subject of
[26]. Thus, the orbit space description represents the only
essential complication on the way to understanding the
properties of the scalar sector in generic NHDM.
The K matrix formalism lies somewhere in between.

The K space resembles V� in the adjoint space, but the
Higgs potential is still written in a nonintuitive tensorial
form. However, many lines of argumentation can be started
at the level of the K matrix.

1The idea to switch to the orbit space in order to simplify the
task of a group-invariant potential minimization is rather old; see
[29] and references therein.
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F. NHDM as a quantum information-theoretic problem

It is a remarkable and perhaps an underappreciated fact
that the mathematics behind constructing the orbit space in
the N-Higgs-doublet model is very similar to what is
studied in the quantum information theory (for an intro-
duction, see recent textbooks [30,31]) and in the so-called
geometric quantum mechanics [32].

In quantum information theory one studies the quantum
evolution of interacting N-level quantum states, called
qudits (for N ¼ 2 and N ¼ 3 one speaks of qubits and
qutrits, respectively), which are not necessarily isolated
from the environment. One of the basic problems here is
to describe the space of states of a single N-level qudit. In
general, it is described by a Hermitian positive-
semidefinite N � N density matrix �̂, which satisfies cer-
tain axioms [30,31,33]. For pure states rank�̂ ¼ 1, while
for a mixed state 1< rank�̂ � N. The density matrix can
also be decomposed in the basis of the algebra suðNÞ,
similarly to (10):

�̂ ¼ 1

N
1N þ �i�i; i ¼ 1; . . . ; N2 � 1; (17)

where the coefficient in front of the unit matrix is fixed by
condition Tr�̂ ¼ 1. The vector ~� is known as the coherence
vector, or the Bloch vector. All possible Bloch vectors
occupy a region in the (N2 � 1)-dimensional space called
the (generalized) Bloch ball. It is remarkable that only
recently the structure of the Bloch ball was analyzed for
N > 2 [31,34–36].

Many of these objects have counterparts in NHDM. The
density matrix corresponds to an appropriately normalized
K matrix. The neutral vacuum of NHDM corresponds to
pure states of a qudit, while the charge-breaking vacuum
corresponds to a mixed qudit state with a rank-2 density
matrix. Higher rank density matrices do not have their
counterparts in NHDM. The coherence vector for the N
qudit is analogous to the adjoint space vector ~r, and the
generalized Bloch sphere is then just another name for the
gauge orbit space.

It is well possible that the analogy between the quantum
information theory and NHDM can be pursued further. In
any case, we believe that the elaborate mathematics of
quantum theory can generate new insights into the proper-
ties of NHDM or similar problems in particle physics.

III. ORBIT SPACE OF NHDM

A. Geometric description of the orbit space

Let us start by describing some geometric properties of
the orbit space of NHDM V� in the adjoint space of
vectors r�, which can be inferred directly from the
definitions.

Let us first note that the orbit space has a conical shape:
if point r� 2 V�, then 	r� 2 V� for any 	 � 0.
Therefore, in order to understand the shape of V�, it is

sufficient to study its r0 ¼ const section at any positive r0.
To this purpose, we switch to the (N2 � 1)-dimensional
space of normalized vectors ni � ri=r0. The neutral orbit
space then lies on the surface of the unit sphere ~n2 ¼ 1,
while the charge-breaking orbit space occupies a region
strictly inside it.
It is plain to see that a point in the neutral orbit space in

the ~n space is parametrized by N independent complex
numbers up to an overall (complex) factor. In other words,
the points of the neutral orbit space are in one-to-one
correspondence with complex rays in CN passing through
the origin, which form the (N � 1)-complex-dimensional
complex projective space CPN�1. Thus, the neutral orbit
space in the ~n space has the shape of CPN�1 embedded

into RN2�1.
The entire orbit space of NHDM can be reconstructed

from the neutral orbit space by an operation, which we call
self-join. By definition, the self-join of a set of points S in
an affine space is a union of points lying on straight line
segments drawn between all pairs of points of S. Now, let
us pick up two points from the neutral orbit space, whoseK
matrices K1 and K2 are not proportional to each other.
Consider the open interval of K matrices lying between
them:

K ¼ cK1 þ ð1� cÞK2; c 2 ð0; 1Þ: (18)

SuchK matrices are necessarily rank-2 matrices. Inversely,
any rank-2 K matrix can be written (not uniquely) as a
linear superposition with positive weights of a pair of rank-
1 K matrices. Since the map from the K space to the orbit
space is linear, the same construction holds in the r� space,
which proves that the entire orbit space is a self-join of the
neutral orbit space. In loose terms, the charge-breaking
orbit space is ‘‘stretched’’ on the wire frame of the neutral
orbit space.
Note that this construction is similar, but not completely

analogous, to the convex hull that arises in the quantum
information theory, where the density matrices can have an
arbitrary rank. It also means that the NHDM orbit space
does not possess the strict convexity.

B. Algebraic description of the orbit space

At the level of the K matrix, the defining criterion is that
the K matrix is a positive-semidefinite matrix with rank
� 2 [11,22]. In other words, it requires that there be at most
two nonzero eigenvalues, which must be positive.
Following [34,35], we write the characteristic equation
for the K matrix as

detð�1� KÞ ¼ �N þXN
j¼1

ð�1ÞjsjðKÞ�N�j: (19)

The coefficients sk can be written as products of the
eigenvalues �i, i.e., the roots of the characteristic equation,
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sn ¼
X

1�i1<���<in�N

Yn
j¼1

�ij ; (20)

as well as in terms of traces of powers of the K matrix:

snðKÞ ¼ ð�1Þn�1

n
Tr

�
Kn þ Xn�1

j¼1

ð�1ÞjsjðKÞKn�j

�
;

n ¼ 1; . . . ; N: (21)

For example, s1ðKÞ ¼ Tr½K� and s2ðKÞ ¼ 1
2 �ðTr2½K� � Tr½K2�Þ. When written without variables, the

identification sn � snðKÞ will be assumed. In general,
positive semidefiniteness of matrix K is equivalent to
non-negative values of all sn. In our case, the requirement
that the K matrix has rank � 2 is equivalent to

s1ðKÞ � 0; s2ðKÞ � 0;

snðKÞ ¼ 0 for all 2< n � N:
(22)

Since K is Hermitian and hence diagonalizable, the mini-
mal annihilating polynomial is, instead of Eq. (19),

K½K2 � s1ðKÞK þ s2ðKÞ1� ¼ 0; (23)

which automatically guarantees Eq. (22). For the neutral
orbit space we require that there be only one positive
eigenvalue, i.e.,

s1ðKÞ � 0; snðKÞ ¼ 0; for all 2 � n � N; (24)

which can be summarized by

K2 ¼ s1ðKÞK: (25)

From Eqs. (19) or (21), it is clear that the coefficients
snðKÞ are functions of K invariant by the reparametrization
group action in Eq. (7). Because of the positive semidefi-
niteness of K and rankðKÞ � 2, such action divides the

space V� 
 RN2
into SUðNÞ orbits. Each of these orbits

can be uniquely characterized by the set fs1; s2g of SUðNÞ
invariants (reparametrization invariants), since the other sn
are null. If K were allowed to be a general Hermitian
matrix, then all the set fsng of N invariants would be
necessary to characterize all the orbits. The one-to-one
correspondence between an orbit and a set of invariants
applies because they uniquely define the eigenvalues of the
matrix K, in a given order, and the set of all matrices with
the same eigenvalues are conjugated to the same diagonal-
ized matrix, forming then one orbit. The invariants can be
calculated and written in terms of r� in Eq. (10):

s1ðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

N � 1

s
r0; (26)

s2ðKÞ ¼ r20 � ~r2; (27)

s3ðKÞ ¼ 2

3
dijkrirjrk � 2ðN � 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NðN � 1Þp r0

�
~r2 � r20

3

�
; (28)

s4ðKÞ ¼ � 1

2
�ð4Þ
ijklrirjrkrl þ

1

2
~r4

þ ðN � 2ÞðN � 3Þ
NðN � 1Þ r20

�
~r2 � r20

2

�
;

..

. ..
.

(29)

where we defined the totally symmetric tensors

�ðnÞ
i1i2���in �

1

2ðn!Þ Tr½f�i1 � � ��ingþ�: (30)

The symbol fgþ denotes the sum of strings of �’s with all
possible permutations of indices i1 to in. We can easily

identify �ð2Þ
ij ¼ �ij and �

ð3Þ
ijk ¼ dijk. Notice Eq. (29) already

assumes s3 ¼ 0 in Eq. (28). Therefore, we can define the

orbit space V� as the set of vectors r� 2 RN2
that satisfy

the set of equalities and inequalities of Eq. (22), explicitly
given by

r0 � 0; r20 � ~r2 � 0;

dijkrirjrk þ N � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN � 1Þp r0ðr20 � 3 ~r2Þ ¼ 0; � � � ; (31)

where each equality sn ¼ 0, n � 3, gives an algebraic
equation of order n in r�. A systematic procedure to find
the higher order equations sn ¼ 0 is given in Appendix C.
In general, snðKÞ ¼ 0 is equivalent to

snðri�iÞ � ð�1Þn N � 2

n� 2

 !�
s1
N

�
n�2

�
~r2 � r20

�
1� 2

n

��
¼ 0;

n � 2; (32)

where the first term depends only on ~r and it can be written
as a sum of terms containing contractions of the tensors in
Eq. (30) up to order n (see Appendix C). We can see that,
for each set of values of the invariants r0 and ~r2, Eqs. (31)
and (32) lead to a set ofN algebraic equations of order n �
N that defines a manifold on RN2

. Each of these manifolds
constitutes a single SUðNÞ orbit in the orbit space because
all the available invariants s1, s2, are fixed. In particular,
the neutral orbit space is a particular SUðNÞ orbit for which
the second condition of Eq. (31) becomes an equality,

r20 � ~r2 ¼ 0; (33)

meaning that the neutral orbit space must lie on the forward
light cone.
For a complete characterization of the orbits, it remains

to specify the range of variation for fr0; ~r2g. There is no
upper bound for r0. Let us take a fixed non-null value for
r0. Then, ~r

2 can decrease continuously from ~r2 ¼ r20 to a

lower bound given by
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ð~r2Þmin ¼ r20 � ðs2Þmax; (34)

where ðs2Þmax can be calculated using a diagonal matrix
K ¼ diagðxþ; x�; 0; � � � ; 0Þ. We have to maximize s2 ¼
xþx� subjected to s1 ¼ xþ þ x� ¼ const and xþ, x� �
0. We easily find that xþ ¼ x� ¼ s1=2 maximizes s2
which yields, using Eq. (26),

ð~r2Þmin

r20
¼ a2N � N � 2

2ðN � 1Þ : (35)

In fact, we can write the two non-null eigenvalues x� of K
as

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

2ðN � 1Þ

s
r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 � a2Nr

2
0

q
: (36)

Therefore, the SUðNÞ orbits are entirely specified by the
value of ~n2 ¼ ~r2=r20 2 ½aN; 1�. In particular, ~r2 ¼ a2Nr

2
0,

instead of Eq. (33), defines the maximally charge-breaking
space.

The result (35) implies that, in the r� space, the orbit
space is restricted to a conical region between two coaxial
cones: the light cone, and the inner one defined by (35).
This observation might lead to nontrivial topological prop-
erties of the model, similar to what was described in [14].

Finally, when passing from the full to the neutral orbit
space, one might be surprised that a single algebraic con-
dition (33) reduces the dimensionality by 2N � 3 units,
from 4ðN � 1Þ (charge-breaking) to 2N � 1 (neutral). To
show how this happens, let us write s2 in terms of doublets.
We find

s2K ¼ X
1�a<b�N

zab;

where zab � ð�y
a�aÞð�y

b�bÞ � ð�y
a�bÞð�y

b�aÞ: (37)

There are NðN � 1Þ=2 quantities zab, and each of them is
non-negative due to the Schwarz lemma. Not all of zab are

independent, though. Suppose that all norms ð�y
a�aÞ are

fixed. Then, for the first three doublets, the quantities z12,
z13, and z23 are algebraically independent. However, for
any extra doublet, e.g., �q, only two of the z’s, e.g., z1q,

z2q, can be chosen independently. Any further zaq with a >

2 is not independent anymore but is linked to previous z’s
by an algebraic relation (see a proof in Appendix A). This
is a consequence of the fact that we deal with doublets, not
higher representations of the gauge group. Thus, for N
doublets we have 2N � 3 independent zab. Now, requiring
that s2 ¼ 0 automatically sets all zab ¼ 0, which means
that it is equivalent to 2N � 3 independent equalities.

C. Root space

Reparametrization transformation of the doublets,
�a ! ��a ¼ Uab�b, described by a unitary matrix Uab 2
SUðNÞ, corresponds in the adjoint space to a certain rota-
tion of the vector ~r: ri ! �ri ¼ Oijrj, where Oij ¼ OijðUÞ.

The transformation matrix Oij belongs to the group

adjSUðNÞ (adjoint representation), which is only a proper
subgroup of SOðN2 � 1Þ. It means that not all rotations in
SOðN2 � 1Þ can be induced by reparametrization
transformations.
This fact restricts the way we can manipulate the adjoint

orbit space. However, we always have a reparametrization
freedom to bring any initial K matrix to the diagonal form.
In the adjoint space, it corresponds to certain allowed
rotations of the entire orbit space that bring any point
down to the (N � 1)-dimensional root space, which de-
scribes the diagonal K matrices. In the ~n space the N
neutral orbits are represented by vertices of a regular (N �
1) simplex, while the charge-breaking orbit space is repre-
sented by the edges of this simplex, i.e., by the line seg-
ments joining the vertices. This gives the full description of
the orbit space in the root space. For example, the orbit
space restricted to the root space corresponds, for N ¼ 3,
to the vertices and edges of an equilateral triangle, while,
for N ¼ 4, it corresponds to the vertices and edges of a
regular tetrahedron. The caseN ¼ 3will be treated in more
detail in Sec. IV.
The vectors in the root space can be parametrized in a

very symmetric way in terms of N barycentric coordinates
pi constrained by

P
N
i¼1 pi ¼ 1 and pi � 0:

K

r0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

N � 1

s
diagðp1; p2; � � � ; pNÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN � 1Þ

s
1þXN

i¼1

piqi; (38)

where we defined the traceless matrices

qi �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

N � 1

s �
eii � 1

N

�
; (39)

where eii are the canonical matrices defined by ðeijÞkl ¼
�ik�jl. Additionally, we can have at most two non-null pi,

since rankK � 2. The vertices of the simplex, correspond-
ing to the neutral orbit, are given by ~p ¼ ð1; 0; . . . ; 0Þ,
ð0; 1; . . . ; 0Þ; . . . ; ð0; . . . ; 0; 1Þ. Notice the matrices qi are
not all independent but obey

P
N
i¼1 qi ¼ 0. Various geomet-

ric features can be calculated explicitly by using the coor-
dinates pi.
The orbit space in the root space has a residual discrete

symmetry with group SN , related to the permutations of the
doublets and corresponding permutations of the vertices of
the simplex. Thanks to this freedom, we conclude that any
neutral orbit can be brought to a predefined vertex, which
means that all the points in the neutral orbit space are
conjugate to each other, that is, can be mapped to each
other by a reparametrization transformation. As for the
charge-breaking points, one can always use the reparamet-
rization freedom to place it on any predefined edge of the
simplex, and even more, on any of the two symmetric
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halves of the edge. Therefore, if we are restricted to the
points not conjugated by SN, we get a line segment going
from one vertex to the middle point of an edge. Such a
minimal set is in one-to-one correspondence to the SUðNÞ
orbits in the ~n space. As we already discussed, one pa-
rameter can be chosen to characterize each point in the line
segment, i.e., j ~nj 2 ½aN; 1�. Then the whole orbit space
V� can be recovered by SUðNÞ conjugation on this line
segment and by varying r0. One can also recover the result
(35) just from the shape of the orbit space in the root space
by calculating the distance from the midpoint of an edge of
the (N � 1) simplex to its center.

D. Isotropy groups and SUðNÞ stratification
Let us also describe the isotropy groups of the charge-

breaking and neutral vacua, that is, the subgroups of the
total reparametrization group that leave invariant a given
point.

Let us take a point in the neutral orbit space and bring it
down to the root space, turning its K matrix into
diagðv2; 0; . . . ; 0Þ. It remains invariant under any UðN �
1Þ transformation that does not involve the first doublet as
well as under a Uð1Þ phase rotation of the first doublet
alone. Since the bilinear are insensitive to the overall phase
rotation, we get the isotropy group of the neutral vacuum
SUðN � 1Þ �Uð1Þ, which is a ðN � 1Þ2-dimensional Lie
group.

Since the entire reparametrization group SUðNÞ has
N2 � 1 parameters, there are 2N � 2 generators that do
shift a chosen point along mutually orthogonal directions
in the orbit space. Therefore, the neutral orbit space has
2N � 2 dimensions in the ~n space, and 2N � 1 dimensions
in the r� space. This coincides with the calculations of
Sec. II A.

Now take a generic point in the charge-breaking orbit
space, with its K matrix being diagðv2

1; v
2
2; 0; . . . ; 0Þ. It

remains invariant under UðN � 2Þ transformation of the
last N � 2 doublets as well as phase rotations of the first
two doublets. The isotropy group is therefore SUðN �
2Þ �Uð1Þ �Uð1Þ, whose dimension is ðN � 2Þ2 þ 1.
The coset space SUðNÞ=ðSUðN � 2Þ �Uð1Þ �Uð1ÞÞ has
dimension 4N � 6, which gives the dimensionality of the
charge-breaking SUðNÞ orbit, where the chosen point lies.
Since we have a one-parametric family of such orbits by
varying v2

1 and v2
2 but keeping the sum (r0) constant, we

conclude that the dimension of the charge-breaking ~n-orbit
space is 4N � 5. In the r� space, the dimension is 4N � 4,
which again coincides with the counting of Sec. II A.

Now let us take a closer look at a point lying in the
‘‘maximally charge-breaking’’ orbit space, that is, the one
with the K matrix conjugate to diagðv2; v2; 0; . . . ; 0Þ. It
corresponds to the maximally charge-breaking orbit be-
cause s2, which quantifies charge breaking, is maximum
for a fixed r0. It also corresponds to vectors ~n with the
smallest j ~nj2 possible and, therefore, lying on the surface

of the inner cone. Such a point has a larger isotropy group
than a generic charge-breaking point. Indeed, its isotropy
group is now SUðN � 2Þ � SUð2Þ �Uð1Þ of dimension
ðN � 2Þ2 þ 3; therefore the dimension of the coset space
(and of the maximally charge-breaking ~n-orbit space) is
4N � 8. When considering r�, it corresponds to a manifold
of dimension 4N � 7.
To summarize, we can group the SUðNÞ orbits into

classes of orbits according to its isotropy groups. A set of
orbits with the same isotropy group is called a stratum [37].
For our problem, we have in general three strata for a fixed
r0:
(I) ~n2 ¼ 1, one (neutral) orbit, isotropy group SUðN �

1Þ 	Uð1Þ.
(II) ~n2 2 ða2N; 1Þ, continuous set of (charge-breaking)

orbits, isotropy group SUðN � 2Þ 	Uð1Þ 	Uð1Þ.
(III) ~n2 ¼ a2N , one (maximally charge-breaking) orbit,

isotropy group SUðN � 2Þ 	 SUð2Þ 	Uð1Þ.

Notice that for N ¼ 3 the strata I and III have the same
isotropy group.
As a final remark, we note that SUðNÞ=SUðN � 1Þ, in

fact, defines the space of N-complex-dimensional vectors
of unit absolute value (i.e., sphere S2N�1). Its coset space
with respect to the group Uð1Þ of the overall phase rota-
tions, ðSUðNÞ=SUðN � 1ÞÞ=Uð1Þ ¼ SUðNÞ=ðSUðN �
1Þ �Uð1ÞÞ, is by definition the complex projective space
CPN�1. Thus, we recover the shape of the neutral orbit
space just from its isotropy group.

IV. ORBIT SPACE OF 3HDM

A. The three sets of coordinates

In this section we analyze the orbit space of the three-
Higgs-doublet model in more detail.
The Higgs field space of the 3HDM has 12 dimensions;

hence the dimensionality of the charge-breaking and neu-
tral orbit spaces is 8 and 5, respectively. They are em-
bedded in the nine-dimensional space of ðr0; riÞ,
i ¼ 1; . . . ; 8, and are limited to the interior and the surface
of the forward cone r20 � ~r2 ¼ 0. In the 8D space of

‘‘normalized’’ vectors ~n � ~r=r0, the charge-breaking and
neutral orbit spaces are 7D and 4D, respectively.
The K matrix is a Hermitian 3� 3 matrix, which is

decomposed via the unit matrix and the Gell-Mann matri-
ces �i, i ¼ 1; . . . ; 8:

K ¼ r0 � 1ffiffiffi
3

p 13 þ ri�i: (40)

The explicit expressions for the coordinates are

r0 ¼ 1ffiffiffi
3

p TrK ¼ 1ffiffiffi
3

p ð�y
1�1 þ�y

2�2 þ�y
3�3Þ; (41)
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ri ¼ 1

2
Tr½K�i�; r3 ¼ ð�y

1�1Þ � ð�y
2�2Þ

2
;

r8 ¼ ð�y
1�1Þ þ ð�y

2�2Þ � 2ð�y
3�3Þ

2
ffiffiffi
3

p ;

r1 ¼ Reð�y
1�2Þ; r2 ¼ Imð�y

1�2Þ;
r4 ¼ Reð�y

1�3Þ; r5 ¼ Imð�y
1�3Þ;

r6 ¼ Reð�y
2�3Þ; r7 ¼ Imð�y

2�3Þ:

(42)

It is also useful to group the last six real coordinates (which
we will refer to as the ‘‘transverse coordinates’’) into three
‘‘complex coordinates’’:

r12 ¼ r1 þ ir2; r45 ¼ r4 � ir5; r67 ¼ r6 þ ir7:

(43)

The same indices accompany the normalized vectors ~n.
The root space of the 3HDM is represented by the

ðn3; n8Þ plane (all the other ni ¼ 0), shown in Fig. 1, left.
The neutral manifold intersects this plane by three distinct
points P, P0, P00:

P: K / diagð0; 0; 1Þ; n3 ¼ 0; n8 ¼ �1;

P0: K / diagð1; 0; 0Þ; n3 ¼
ffiffiffi
3

p
2

; n8 ¼ 1

2
;

P00: K / diagð0; 1; 0Þ; n3 ¼ �
ffiffiffi
3

p
2

; n8 ¼ 1

2
:

(44)

The charge-breaking manifold is represented by the three
line segments joining these three points. Thus, the full orbit
space in the root plane is given by the equilateral triangle
(the 2 simplex). Note that this triangle lies in the annular
region between the circles of radii 1=2 and 1, in compli-
ance with (35).

The triangle has the S3 symmetry; however, the choice
of coordinate used to describe it, n3 and n8, breaks it. To
restore this symmetry in the description, we introduce two
additional coordinate sets on the same plane: ðn03; n08Þ and
ðn003 ; n008 Þ, which are shown in Fig. 1, right, by blue dashed

and red dash-dotted axes. These coordinate sets are ob-
tained from ðn3; n8Þ by 2
=3 and 4
=3 rotations, respec-
tively:

n03; n003 ¼ � 1

2
n3 �

ffiffiffi
3

p
2

n8; n08; n008 ¼ �
ffiffiffi
3

p
2

n3 � 1

2
n8:

(45)

Each of the points P, P0, P00 can be associated with its
‘‘natural’’ coordinate set:

P: n3 ¼ 0; n8 ¼ �1;

P0: n03 ¼ 0; n08 ¼ �1;

P00: n003 ¼ 0; n008 ¼ �1:

(46)

The coordinates n8, n
0
8, n

00
8 are closely related to the three

barycentric coordinates

p ¼ 1� 2n8
3

; p0 ¼ 1� 2n08
3

;

p00 ¼ 1� 2n008
3

; pþ p0 þ p00 ¼ 1;

(47)

which are proportional to the distances from a given point
on the root plane to the three edges of the triangle. The
three edges of the triangle, which describe the charge-
breaking orbit space on the root plane, can be naturally
parametrized by p ¼ 0, p0 ¼ 0, and p00 ¼ 0.
Thus, the points on the root plane can be described in a

symmetric fashion using either fn3; n03; n003 g with n3 þ n03 þ
n003 ¼ 0, or fn8; n08; n008 g with n8 þ n08 þ n008 ¼ 0, or

fp; p0; p00g with pþ p0 þ p00 ¼ 1.
This symmetric description can be extended to the entire

orbit space V�. Indeed, the 2
k=3 rotations on the root
plane are generated by a cyclic permutation of doublets:

f�0
1; �

0
2; �

0
3g ¼ f�2; �3; �1g;

f�00
1 ; �

00
2 ; �

00
3 g ¼ f�3; �1; �2g:

(48)

This permutation changes the transverse coordinates (43)
according to

fn012; n045; n067g ¼ fn67; n12; n45g;
fn0012; n0045; n0067g ¼ fn45; n67; n12g:

(49)

In other words, structures in the entire orbit space can be
described in an explicitly S3-symmetric way using coor-
dinates

p; p0; p00; n12; n012; n0012; where pþ p0 þ p00 ¼ 1: (50)

The unit sphere is represented in terms of these coordinates
as

3n

PP

n8

P

3n

P P

n"3

n’3
n8

P

n’8
n"8

FIG. 1 (color online). (Left) The ðn3; n8Þ plane; all other ni ¼
0. Shown are the unit circle (section of the light cone), the inner
circle (dashed line), the three points P, P0, P00, from the neutral
manifold, and the three line segments from the charge-breaking
manifold. (Right) The same plane, but with three sets of coor-
dinates: ðn3; n8Þ shown in black solid lines, ðn03; n08Þ shown in

dashed blue lines, and ðn003 ; n008 Þ shown in dash-dotted red lines.
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3ðp2 þ p02 þ p002Þ � 1

2
þ jn12j2 þ jn012j2 þ jn0012j2 ¼ 1:

(51)

The K matrix of 3HDM also takes a very symmetric form:

Kab � �y
b�a ¼ r0

ffiffiffi
3

p
p0 n�12 n0012

n12
ffiffiffi
3

p
p00 n0�12

n00�12 n012
ffiffiffi
3

p
p

0
B@

1
CA: (52)

Finally, the three quantities zab (37) can be written as

z12 ¼ 3p0p00 � jn12j2 � 0; z13 ¼ 3pp0 � jn0012j2 � 0;

z23 ¼ 3p00p� jn012j2 � 0: (53)

B. d condition

In 3HDM, the K matrix is a positive-semidefinite matrix
with zero determinant [11]; thus, the list of constraints on
the coordinates of r� truncates2 at (28), which wewill refer
to as the ‘‘d condition.’’ In the ~n space this condition can be
written as

ffiffiffi
3

p
dijkninjnk ¼ 3 ~n2 � 1

2
: (54)

In order to select out the neutral manifold, we accompany
the d condition with ~n2 ¼ 1, which makes itffiffiffi

3
p

dijkninjnk ¼ 1: (55)

Alternatively, the neutral manifold can be defined even

more compactly with the aid of the ‘‘star product’’ ð ~m �
~nÞk �

ffiffiffi
3

p
dijkminj (_ product in Ref. [12]):

~n 2 ¼ 1; ~n � ~n ¼ ~n: (56)

Let us now write the d condition (54) explicitly using the
well-known values of dijk:

3 �
ffiffiffi
3

p
2

n3ðn24 þ n25 � n26 � n27Þ � n38

þ 3 � n8
�
n21 þ n22 þ n23 �

n24 þ n25 þ n26 þ n27
2

�

þ 6 �
ffiffiffi
3

p
2

ðn1n4n6 þ n1n5n7 � n2n4n7 þ n2n5n6Þ

¼ 3 ~n2 � 1

2
: (57)

It can be rewritten in terms of symmetric coordinates (50),

pjn12j2 þ p0jn012j2 þ p00jn0012j2 � 3pp0p00

� 2ffiffiffi
3

p Reðn12n012n0012Þ ¼ 0; (58)

which exposes the S3 symmetry of the orbit space. One can
also arrive at this expression directly from detK ¼ 0 using
representation (52) for the K matrix.
For the neutral manifold, the d condition can be simpli-

fied further. Let us recall that the light cone condition (33)
implies that all three z12, z23, z31 are equal to zero. Using
(53), and denoting the sum of the phases of n12, n

0
12, n

00
12 as

�, one can cast the d condition for the neutral orbit space
into

pp0p00ð1� cos�Þ ¼ 0: (59)

C. The local properties of the orbit space

So far, we have described the shape of the orbit space on
the root plane ðn3; n8Þ, with all the transverse coordinates
n12 ¼ n45 ¼ n67 ¼ 0. Let us now gain an intuitive picture
of how the orbit space extends into the transverse space.
In principle, the entire orbit space can be reconstructed

by applying the full group of adjSUð3Þ of orthogonal trans-
formations of ~n induced by unitary SUð3Þ transformations
among the doublets to the triangle on the root plane. To
make this result more visual, let us first consider the sub-
group of adjSUð3Þ induced by SUð2Þ transformations be-
tween the first two doublets:

�a ! ��a ¼ Rab�b;

Rab ¼
cos	2 e

i� sin	2 e
�i� 0

� sin	2 e
i� cos	2 e

�i� 0
0 0 1

0
B@

1
CA: (60)

The corresponding transformation of vectors ni ! �ni
brings a point on the root plane to the point with coordi-
nates

�n1 ¼� sin	cosð���Þn3; �n2 ¼� sin	 sinð���Þn3;
�n3 ¼ cos	n3; �n8 ¼ n8; �n45 ¼ �n67 ¼ 0: (61)

The SUð2Þ subgroup of such transformations, which we
call R rotations, applied to the triangle sends it to the
surface of a 4D cone lying in the n45 ¼ n67 ¼ 0 subspace
with the apex at point P, which is schematically illustrated
by Fig. 2. Indeed, the upper edge of the triangle is mapped
to the 3D ball

n21 þ n22 þ n23 �
3

4
; n8 ¼ 1

2
; n45 ¼ n67 ¼ 0;

(62)

which serves as the base of the cone and which is nothing
else but the orbit space of the 2HDM. The two other edges
of the triangle are mapped to the lateral surface of the cone

2One can check explicitly that the higher order equations
become identities. For example, thanks to the relation dijcdckl þ
djkcdcil þ dkicdcjl ¼ ð�ij�kl þ �jk�il þ �ki�jlÞ=3, which holds

for N ¼ 3, we get �ð4Þ
ijklrirjrkrl ¼ ~r4, which makes s4ðKÞ ¼ 0

satisfied automatically.
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n21 þ n22 þ n23 ¼
ð1þ n8Þ2

3
: (63)

Note that the neutral orbit space is represented in this 4D
cone by the apex and by the ‘‘rim’’ of the base, the sphere
n21 þ n22 þ n23 ¼ 1 at n8 ¼ 1=2.

The similar constructions arise from mixing of other
pairs of the doublets. Namely, the SUð2Þ subgroup that
mixes �2 and �3 (R0 rotations) keeps point P0 invariant
and sends the triangle to a 4D cone with the base

n021 þ n022 þ n023 � 3
4; n08 ¼ 1

2; (64)

which lies in the subspace n12 ¼ n45 ¼ 0. Finally, mixing
�1 and �3 (R00 rotations) generates a similar cone with
apex at P00 lying in the subspace n12 ¼ n67 ¼ 0.

Thus, in very loose terms, the shape of the orbit space
can be described as follows: it is a manifold stretched
between three differently oriented 4D cones. However,
when visualizing this picture, one should remember that
in fact there is no distinction between the base, the lateral
surfaces of these cones, and the part of the orbit space that
is stretched between the cones. The neutral orbit space,
being nothing but CP2, is a homogeneous manifold, so it
looks the same at every point. For the charge-breaking
orbit space, rather similarly, there is a ‘‘flat face’’ going
through each point. Some additional hints for visualization
of CP2 are given in [31,38].

To make these observations more precise, let us calcu-
late the sectional curvatures along all mutually orthogonal
directions at any point in the orbit space.

We start with a point located on a charge-breaking
manifold. By an appropriate reparametrization transforma-
tion we bring it to the root plane and place it, for example,
on the upper side of the triangle, where its position is
described by n8 ¼ 1=2 and some n3. We know that this
point lies inside a flat 3D ball. Hence, there are three
directions (parallel to axes n1, n2, and n3), along which
the orbit space is flat in the vicinity of the selected point.

We are left with four other directions, along n4, n5, n6,
and n7. One can shift into these directions by performing

the small rotations introduced above. Note that from the
point of view of theR0 andR00 rotations, the upper edge of
the triangle is located at the lateral edge of the correspond-
ing cone, which brings in some curvature.
Explicitly, let us apply to a point on the upper edge the

sequence of an R0 rotation with an infinitesimal 	0 and an
R00 rotation with an infinitesimal 	00, all the other angles
�0, �0, �00, �00 being arbitrary (the order of the two trans-
formations is irrelevant for this calculation). We get shifts
of n45 and n67 linear in the small angles

n67 
 �
ffiffiffi
3

p
4

	0ei�0
�
1� 2ffiffiffi

3
p n3

�
;

n45 

ffiffiffi
3

p
4

	00ei�00
�
1þ 2ffiffiffi

3
p n3

�
;

(65)

and shifts in n3, n8 which are quadratic in small angles

�n8 
 � 3

16

�
	02

�
1� 2ffiffiffi

3
p n3

�
þ 	002

�
1þ 2ffiffiffi

3
p n3

��
;

�n3 

ffiffiffi
3

p
16

�
	02

�
1� 2ffiffiffi

3
p n3

�
� 	002

�
1þ 2ffiffiffi

3
p n3

��
:

(66)

For the charge-breaking manifold, where n3 is a flat direc-
tion, we need to keep track only of the changes in n8, for
which we get

�n8 
 � jn67j2
2R67

� jn45j2
2R4;5

; (67)

where the curvature radii along directions n6, n7 (R6;7) and

along directions n4, n5 (R4;5) are

R4;5 ¼ 1

2

�
1þ 2ffiffiffi

3
p n3

�
; R6;7 ¼ 1

2

�
1� 2ffiffiffi

3
p n3

�
: (68)

Thus, the charge-breaking orbit space has locally the shape
of an ellipsoidal cylinder, with three flat directions and two
pairs of curved directions with sectional curvature radii
R4;5 and R6;7.

We now repeat this calculation for a point at the neutral
manifold, for example, point P. We again perform two
infinitesimal rotations R0 and R00 and calculate shifts of
the coordinates. This time we must take care of shifts of all
eight coordinates ni. These rotations give linear shifts in
small 	0 and 	00 to the four transverse coordinates,

�n4 

ffiffiffi
3

p
2

	00 cos�00; �n5 

ffiffiffi
3

p
2

	00 sin�00;

�n6 

ffiffiffi
3

p
2

	0 cos�0; �n7 

ffiffiffi
3

p
2

	0 sin�0;

(69)

and quadratic shifts to the other coordinates,

3n

n8

n1,2

FIG. 2. Generating a 4D cone from the triangle by mixing the
first two doublets.
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�n12 

ffiffiffi
3

p
4

	0	00eið�00��0Þ; �n3 

ffiffiffi
3

p
8

ð	002 � 	02Þ;

�n8 
 3

8
ð	02 þ 	002Þ: (70)

The overall quadratic shift is

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�n1Þ2 þ ð�n2Þ2 þ ð�n3Þ2 þ ð�n8Þ2

q



ffiffiffi
3

p
4

ð	02 þ 	002Þ 
 j�n45j2 þ j�n67j2ffiffiffi
3

p : (71)

Thus, the curvature radius of the neutral manifold is R0 ¼ffiffiffi
3

p
=2 regardless of the direction of the shift. Since this

holds true at every point of the neutral manifold, it means
that the neutral manifold is an example of spherical space
forms (a manifold of constant sectional curvature). This
comes as no surprise: it is known that an even-dimensional
spherical space must be a sphere or a complex projective
space [39].

Note that the curvature radius R0 does not and should not
coincide with the largest curvature radius of the charge-
breaking manifold near the rim. In loose terms, the fact that
the neutral orbit space is located on the unit sphere gives to
the neutral points more curvature with respect to the ad-
jacent charge-breaking points.

D. Duality property of the orbit space

The orbit space of 3HDM has an additional duality
property, which does not hold for a generic N: if a ray
along direction ~n goes through the neutral orbit space, then
a ray in the opposite direction, � ~n, points towards a
maximally charge-breaking point. Since the charge-
breaking points lie on the sphere j ~nj ¼ 1=2, we find that
the maximally charge-breaking orbit space is homothetic
to the neutral orbit space with the scale factor of 1=2.

This property can be easily proved in the root plane: if
the neutral point is characterized by the K matrix

diagð0; 0; v2Þ ¼ v2

3 ð1�
ffiffiffi
3

p
�8Þ (j ~nj ¼ 1), then the opposite

point corresponds to the K matrix diagðv2; v2; 0Þ ¼ 2v2

3 �
ð1þ

ffiffi
3

p
2 �8Þ (j ~nj ¼ 1=2). This property clearly depends on

the number of the diagonal elements and does not general-
ize for higher N. However, at N ¼ 4 another observation
can be made: if ~n points towards a maximally charge-
breaking point, then so does � ~n. For example K ¼
diagð1; 1; 0; 0Þ is opposite to K ¼ diagð0; 0; 1; 1Þ with the
same r0. That is, the maximally charge-breaking orbit
space in the four-Higgs-doublet model is centrally
symmetric.

V. CONCLUSION

In this paper we initiated an analysis of the general N-
Higgs-doublet model. Focusing only on the scalar sector of
the model, we considered here a specific issue: how to

efficiently describe the space of gauge-invariant bilinears
of Higgs fields in NHDM (the orbit space). We character-
ized the orbit space as a certain algebraic manifold em-

bedded in the Euclidean space RN2
and studied some of its

algebraic and geometric properties. The general construc-
tion was illustrated with the case ofN ¼ 3, for which more
detailed calculations were presented.
For general NHDMs for N > 2, compared to the N ¼ 2

case, there arises a general and distinct feature of the orbit
space: the orbit space is no longer convex; i.e., for two
arbitrary points x� (K1) and y� (K2) in V� [M�

hðN; 2Þ],
the line segment joining them may not be entirely con-
tained in V� [M�

hðN; 2Þ] [22]. For example, for K1 ¼
diagðv2; v2; 0Þ and K2 ¼ diagð0; u2; u2Þ, their middle point
is 1

2 ðK1 þ K2Þ ¼ 1
2 diagðv2; v2 þ u2; u2Þ which no longer

has rank 2 or smaller. The exception is the case of two
neutral points, as explained in Sec. III A. More particularly,
we showed there is a ‘‘hole’’ in the orbit space of constant
r0, such that in ~n space it is constrained inside the annular
region of radius j ~nj ¼ 1 (light cone) and j ~nj ¼ aN (inner
cone). In other words, for r0 > 0, we cannot reach j~rj<
aNr0. This feature will bring very distinct possibilities to
the symmetry breaking patterns of the potential as well as
to the positivity constraints. Some of its consequences are
further detailed in [26].
We also commented on a remarkable similarity between

the orbit space of NHDM and the state space of an N qudit
in quantum information theory. We sketched a small ‘‘dic-
tionary’’ between some objects in these two branches of
theoretical physics, and we think that this link should be
explored further.
The next step of this analysis, the study of the NHDM

Higgs potential and its symmetries, is done in the compan-
ion paper [26]. That study is also conducted in the orbit
space and uses many of the results of the present paper. We
hope that the methods presented in these papers will boost
systematic exploration of the wealth of structures hidden in
the general NHDM.
It is clear that a very similar mathematics arises not only

in multidoublet models, but also in models with N copies
of Higgs fields in other representations (scalars, triplets,
etc.). It is therefore conceivable that even more compli-
cated Higgs sectors can be treated along these lines. Other
possible applications could be found in the condensed
matter physics, where group-invariant potentials depend-
ing on several interacting order parameters are often used
[40]. An example where the methods of 2HDM were used
to understand the general Ginzburg-Landau model with
two order parameters can be found in [41].
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APPENDIX A: RELATIONS AMONG zab

In order to show that among NðN � 1Þ=2 quantities zab
in the NHDM there are only 2N � 3 algebraically inde-
pendent quantities, we need to prove the following state-
ment. Take any four doublets, e.g., �1 to �4 with known

norms, ð�y
a�aÞ; suppose that z12, z13, z14, z23, z24 are also

known (we assume here a generic situation when all zab are
nonzero). Then z34 is not independent and can take at most
two different values. If all of z12, z13, z14, z23, z24 happen to
be zeros, then z34 ¼ 0.

We first note that the doublets are vectors in the space
C2. Therefore, if z12 � 0, all the doublets can be decom-
posed in the basis of �1 and �2:

�3 ¼ c1�1 þ c2�2; �4 ¼ d1�1 þ d2�2: (A1)

Note that the absolute value of the scalar product ð�y
1�2Þ is

known, jð�y
1�2Þj2 ¼ ð�y

1�1Þð�y
2�2Þ � z12; its phase 
12

is not. Let us now introduce the ‘‘vector’’ product of two
doublets:

½�a ��b� � �þ
a �

0
b ��0

a�
þ
b ; (A2)

where superscripts þ and 0 refer to the upper and lower
components of the doublets. One can check that

½�a ��b��½�a ��b� ¼ ð�y
a�aÞð�y

b�bÞ
� ð�y

a�bÞð�y
b�aÞ ¼ zab: (A3)

This leads to

jc1j2 ¼ z23
z12

; jc2j2 ¼ z13
z12

;

jd1j2 ¼ z24
z12

; jd2j2 ¼ z14
z12

:

(A4)

Therefore, decomposition (A1) turns into

�3 ¼
ffiffiffiffiffiffi
z23
z12

s
ei�1�1 þ

ffiffiffiffiffiffi
z13
z12

s
ei�2�2;

�4 ¼
ffiffiffiffiffiffi
z24
z12

s
ei�1�1 þ

ffiffiffiffiffiffi
z14
z12

s
ei�2�2:

(A5)

The phase differences �2 � �1 and �2 � �1 are both re-
lated to the (unknown) phase 
12:

z12ð�y
3�3Þ ¼ z23ð�y

1�1Þ þ z13ð�y
2�2Þ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
z13z23

p jð�y
1�2Þj cosð
12 þ �2 � �1Þ;

z12ð�y
4�4Þ ¼ z24ð�y

1�1Þ þ z14ð�y
2�2Þ

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
z14z24

p jð�y
1�2Þj cosð
12 þ �2 � �1Þ:

(A6)

Now, the quantity z34 can be written as

z12z34 ¼ z23z14 þ z24z13 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z23z14z24z13

p

� cosð�1 þ �2 � �2 � �1Þ: (A7)

But

cosð�1 þ �2 � �2 � �1Þ
¼ cos½ð
12 þ �2 � �1Þ � ð
12 þ �2 � �1Þ�

� cosð
12 þ �2 � �1Þ cosð
12 þ �2 � �1Þ
� j sinð
12 þ �2 � �1Þ sinð
12 þ �2 � �1Þj;

which can be expressed in terms of known cosines of 
12 þ
�2 � �1 and 
12 þ �2 � �1. This proves an algebraic re-
lation between z34 and the other quantities without the
need to know 
12. The sign ambiguity here means that
two different values of z34 can result. However, if
z23z14z24z13 ¼ 0, then z34 is uniquely determined.
Note that if all of z12, z13, z14, z23, z24 happen to be zero,

it means that all four doublets are proportional to each
other, and therefore, z34 must be zero as well.
As a remark, let us analyze in more generality the

phenomenon of multidimensional reduction imposed by a
single condition (33). A more general situation can be
envisaged. The space of N � N Hermitian matrices with
rank equal or lower than r � N, which we can denote by
MhðN; rÞ, has dimension rð2N � rÞ. To define MhðN; rÞ,
we need snðKÞ ¼ 0, r � n � N. Despite only one con-
straint sr�1ðKÞ ¼ 0 being further required to restrict
MhðN; rÞ to MhðN; r� 1Þ, the dimensionality is indeed
reduced by 2ðN � rÞ þ 1. In our case, we have r ¼ 2,
and the amount of dimensional reduction from MhðN; 2Þ
to MhðN; 1Þ is exactly 2N � 3. Therefore, any single con-
dition sr�1ðKÞ ¼ 0 necessary to restrict MhðN; rÞ to
MhðN; r� 1Þ should contain multiple independent condi-
tions in the same way s2ðKÞ ¼ 0 is equivalent to various
conditions zab ¼ 0, as proved in this appendix.

APPENDIX B: MAXIMAL SET OF GAUGE
INVARIANTS

We will show here how we can choose a maximal set of

algebraically independent gauge invariants �y
b�a ¼ Kab,

corresponding to the 4N � 4 degrees of freedom of the N

doublets�a. If all bilinears�
y
b�a, a; b ¼ 1; . . . ; N, a � b,

were functionally independent, N2 real parameters would
be necessary for parametrization.
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First, we should use the fact that a general non-null K
matrix (6) has rank 2 or 1. If it has rank 2, it is always
possible to choose a set of two linearly independent lines
(columns) of K as a basis of the space spanned by all the N
lines (columns); otherwise only one line is linearly inde-
pendent and this case can be treated easily. By appropri-
ately labeling the doublets we can choose the first and
second lines to be non-null and nonparallel. In that case,
since K is a Hermitian matrix, we can choose the set in
Eq. (9) as the minimal set of gauge invariants. It is easy to
see that they can be parametrized by 4N � 4 real parame-
ters, considering that K11, K22 are real. We should assume
K11 � 0 and K22 � 0 because, e.g., the case K11 ¼ 0
directly implies K1a ¼ Ka1 ¼ 0, a > 1. Such a property
follows directly from the fields language but it also can be
thought as a consequence of

X
a�1

jK1aj2 � K11

�X
a�1

Kaa

�
; (B1)

which follows from the Schwarz inequality. Thus any null
diagonal element implies an entire null line and column of
K.

It remains to be shown that all other Kab, with a, b � 3,
can be written entirely in terms of the set in Eq. (9). Let us
show how to calculate the elements in the third line. The
calculation of any other element follows analogously. By
hypothesis, we can write any element in the third line as a
linear combination of the corresponding element in the first
and second lines:

K3a ¼ 	K1a þ �K2a; a � 3: (B2)

But the same coefficients 	, � relate the elements in the
first and second columns as

K31 ¼ K�
13 ¼ 	K11 þ �K21;

K32 ¼ K�
23 ¼ 	K12 þ �K22:

(B3)

Equations (B3) can be rewritten as

K31 K32

� � ¼ 	 �
� �

Kð2Þ
12 ; (B4)

where Kð2Þ
ij is a 2� 2 submatrix (minor) of K containing

only the elements Kab, with a ¼ i, j and b ¼ i, j. Thus we
can invert Eq. (B4) to obtain

K3a ¼ K31 K32

� �ðKð2Þ
12 Þ�1 K1a

K2a

� �
; (B5)

or

detðKð2Þ
12 ÞK3a ¼ K31 K32

� �
adjðKð2Þ

12 Þ K1a

K2a

� �
; (B6)

where adj denotes the adjoint matrix. Notice detðKð2Þ
12 Þ ¼

z12 is non-null by hypothesis.
We can rewrite Eq. (B5) in a more compact form if we

define the two-dimensional complex vector

�T
a � K1a K2a

� �
; a ¼ 1; . . . ; N: (B7)

Then any matrix element Kab can be calculated as

Kba ¼ �y
b ðKð2Þ

12 Þ�1�a: (B8)

Surprisingly, the expression in Eq. (B8) is valid not only
for a, b � 3, but for all a; b ¼ 1; . . . ; N. However, for a,
b ¼ 1, 2, it leads to trivial identities.
Equations (B5) and (B8) are direct consequences from

the fact that any 3� 3 submatrix of K has a null determi-
nant for rankK � 2. For example, Eq. (B6) is equivalent to
calculate the determinant of a 3� 3 matrix constructed

with the blocks Kð2Þ
12 , �a, �

y
3 , K3a by cofactor expansion

along the third column.
One can identify the role of the coefficients 	, � in

Eq. (B2) if we recognize the equation as the expansion

�3 ¼ 	�1 þ ��2; (B9)

contracted to �y
a . Hence, the coefficients of the linear

expansion

�a ¼ ca1�1 þ ca2��2; (B10)

are solutions of

Ka1 Ka2

� � ¼ ca1 ca2
� �

Kð2Þ
12 : (B11)

The Hermitian conjugate of Eq. (B11) can be also written

�a ¼ c�a1�1 þ c�a2�2: (B12)

If rankK ¼ 1, we would have Kba ¼ Kb1K1a=K11,
K11 � 0, for all a; b ¼ 1; . . . ; N.

APPENDIX C: CHARACTERIZATION OF SUðNÞ
ORBITS

The vector space spanned by the N � N Hermitian

matrices, containing K, is isomorphic to RN2
, where the

vectors r� live. The mapping between these spaces was
given by Eq. (10) and it is valid even if we generalize K to
be a general N � N Hermitian matrix. The action of the
reparametrization group SUðNÞ on K is defined by Eq. (7).

Such action divides the space RN2
into SUðNÞ orbits. Each

of these orbits can be uniquely characterized by a set of N
SUðNÞ invariants’ functions skðKÞ, k ¼ 1; . . . ; N, defined
in Eq. (21). Therefore, any orbit can be represented by a
point in one connected region of a N-dimensional diagram
whose axes represent sk. There is only one connected
region because we can vary the eigenvalues continuously,
keeping, for instance, a decreasing order.
The reparametrization group action in Eq. (7), however,

defines naturally two invariant spaces (irreducible repre-
sentations) which allow the splitting

K ¼ K0 þ ~K; (C1)

where K0 � s1ðKÞ1=N and ~K ¼ K � K0 ¼ ri�i is the
traceless part of K. Hence, ~K is the component of K that
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transforms nontrivially under SUðNÞ while K0 is an invari-
ant. This means that the invariants skðKÞ, k � 2, are not
fundamental but have contributions of the trivial part K0,
already in s1ðKÞ. We can use skð ~KÞ, instead of skðKÞ, for
k � 2, which obviously are invariant and do not depend on
K0. Let us denote sk � skðKÞ and ~sk � skð ~KÞ. The relation
between the two sets fskg and f~skg, k ¼ 2; . . . ; N, can be
obtained by comparing Eq. (19) to

detð�1� KÞ ¼ detð~�1� ~KÞ ¼ ~�N þ XN
k¼2

ð�1Þk~sk ~�N�k;

(C2)

where ~� � �� s1
N . The relation between sp and ~sp, for

p � 3, is

sp � ~sp ¼ � Xp�2

k¼1

N þ k� p

k

 !��s1
N

�
k
sp�k

þ ðp� 1Þ N

p

 !��s1
N

�
p
; (C3)

¼ Xp�2

k¼1

N þ k� p
k

� ��
s1
N

�
k
~sp�k þ N

p

� ��
s1
N

�
p
: (C4)

At last, all invariants ~sk ¼ skð ~KÞ can be calculated using
Eq. (21) and written in terms of

1
2 Tr½ðri�iÞn� ¼ �ðnÞ

i1i2���inri1ri2 � � � rin ; (C5)

where the tensors �ðnÞ were defined in Eq. (30). For ex-
ample,

~s 2 ¼ �1
2 Tr½ðri�iÞ2� ¼ �~r2; (C6)

~s 3 ¼ 1
3 Tr½ðri�iÞ3� ¼ dijkrirjrk; (C7)

~s 4 ¼ �1
4 Tr½ðri�iÞ4 þ ~s2ðri�iÞ2� ¼ �1

2�
ð4Þ
ijklrirjrkrl þ 1

2
~r4:

(C8)

All ~sk can be written in terms of the terms of Eq. (C5) with
equal or lower order.
It is important to notice that for general N � N

Hermitian matrices K, not restricted to positive-
semidefinite rank-2 matrices, the characterization of the
SUðNÞ orbits would involve more than one invariant, be-
sides r0. For instance, for a value of ~r2, there would be
infinitely many distinct orbits that have to be further char-
acterized by higher order invariants.
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