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The strong and electromagnetic decays of Xð4350Þ with quantum numbers JP ¼ 0þþ and 2þþ have

been studied by using the effective Lagrangian approach. The coupling constant between Xð4350Þ and
D�

sD
�
s0 is determined with the help of the compositeness condition which means that Xð4350Þ is a bound

state of D�
sD

�
s0. Other coupling constants applied in the calculation are determined phenomenologically.

Our numerical results show that, using the present data, the possibility that Xð4350Þ is a D�
sD

�
s0 molecule

cannot be ruled out within the present model.
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I. INTRODUCTION

Recently, a hidden charm resonance named Xð4350Þwas
observed by the Belle Collaboration in the analysis of the
�� ! �J=c process [1]. The mass and natural width of
this resonance are measured to be ð4350:6þ4:6

�5:1ðstatÞ �
0:7ðsystÞÞ MeV=c2 and ð13:3þ17:9

�9:1 ðstatÞ � 4:1ðsystÞÞ MeV,
respectively. The product of its two-photon decay width
and branching fraction to �J=c is ð6:7þ3:2

�2:4ðstatÞ �
1:1ðsystÞÞ eV for JPC ¼ 0þþ, or ð1:5þ0:7

�0:6ðstatÞ �
0:3ðsystÞÞ eV for JPC ¼ 2þþ. In the literature, the structure
of Xð4350Þ has been proposed to be a c �cs�s teraquark state
with JPC ¼ 2þþ [2], a D�

sD
�
s0 molecular state [3], a

P-wave charmonium state �00
c2 [4], and a scalar �cc and

D�
s
�D�
s mixing state [5]. And concerning the quantum num-

bers of the final states J=c�, Xð4350Þ can also have
quantum numbers JPC ¼ 1�þ. In Ref. [6], it was shown
that Xð4350Þ cannot be a 1�þ exoticD�

sD
�
s0 molecular state

from the QCD sum rule calculation although a dynamical
calculation from the potential model indicates that the
S-wave D�

sD
�
s0 bound state with positive charge parity

may exist [7]. In this paper, we will accept it as a bound
state of D�

sD
�
s0 to study its strong and electromagnetic

decays in the effective Lagrangian approach in the case
of JPC ¼ 0þþ and 2þþ.

Since the mass of Xð4350Þ is about 80 MeV below the
threshold of D�

sD
�
s0 (mD�

s0
¼ 2317:8� 0:6 MeV and

mD�
s
¼ 2112:3� 0:5 MeV [8]), it is reasonable to regard

it as a bound state of D�
s0D

�
s . And because the quantum

numbers of D�
s0 and D

�
s are J

P ¼ 0þ and JP ¼ 1�, respec-
tively, to form a bound state with quantum numbers JPC ¼
0þþ or 2þþ, the coupling between Xð4350Þ and its con-
stituents should be a P wave. To determine the effective
coupling constant between Xð4350Þ and it constituents
D�

sD
�
s0, as in our previous work (for example, Ref. [9]),

we resort to the compositeness condition ZX ¼ 0 (ZX as the
wave function renormalization constant of Xð4350Þ) which
was early used in the study of a deuteron as a bound state of
a proton and a neutron [10,11] and is being widely used by
particle physicists (see the references in [9]). Recently, this

method has been applied to study the properties of some
‘‘exotic’’ hadrons [9,12–20] and some conclusions were
yielded comparing with data. For other interactions, we
write down the general effective Lagrangian and determine
the coupling constants with the help of data, theoretical
calculations, the SUð4Þ relation, or the vector meson domi-
nance (VMD).
As in our previous work [9,12–20], we introduce a

correlation function including a scale parameter �X to
illustrate the distribution of the constituents in the bound
state Xð4350Þ. The parameter �X is varied to find the
physical region where the data can be understood. In the
physical region of �X, the partial widths for strong and
electromagnetic decays are yielded.
This paper is organized as follows: In Sec. II we will

provide the theoretical framework used in this paper. We
will present the analytic forms for the radiative and strong
decay matrix elements and partial widths of Xð4350Þ in
Sec. III. And, the last section is our numerical results and
discussions.

II. THEORETICAL FRAMEWORK

In this section, we will propose the theoretical frame-
work for the calculation of the strong and electromagnetic
decays of Xð4350Þ.

A. The molecular structure of Xð4350Þ
As was mentioned above, we regard Xð4350Þ as aD�

sD
�
s0

bound state. And concerning the experimental status, we
accept the quantum numbers of Xð4350Þ as JP ¼ 0þþ and
2þþ. For the scalar case, one can write the free Lagrangian
of Xð4350Þ as

L S
free ¼ 1

2@�X@�X � 1
2m

2
XX

2; (1)

with mX as the mass of Xð4350Þ. The propagator of
Xð4350Þ can be easily written as

GFðxÞ ¼
Z d4p

ð2�Þ4
i

p2 �m2
X � i�

e�ip�x; (2)
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which satisfies

ð@2 þm2ÞGFðxÞ ¼ �i�ð4ÞðxÞ; (3)

while for tensor resonance we have the free Lagrangian as
[21]

L T
free ¼ �1

2X��D
��;	
X	
; (4)

where the symmetric tensor X�� ¼ X�� denotes the JPC ¼
2þþ field for Xð4350Þ and
D��;	
 ¼ ðhþm2

XÞf12ðg�	g�
 þ g�	g�
Þ � g��g	
g
þ g	
@�@� þ g��@	@
 � 1

2ðg�
@�@	
þ g�	@�@
 þ g�
@�@	 þ g�	@�@
Þ: (5)

The propagator for X��ð4350Þ is obtained as

G��;	
ðxÞ ¼
Z d4p

ð2�Þ4
i

p2 �m2
X � i�

P��;	
e
�ip�x;

P��;	
 ¼ 1

2
ðP�	P�
 þ P�
P�	Þ � 1

3
P��P	
;

P�� ¼ �g�� þ
p�p�

m2
X

;

D��;	
G	

�� ¼ �i

1

2
ðg��g�� þ g��g��Þ�ð4ÞðxÞ: (6)

With respect to the discussions given in the first section,
one can write the effective Lagrangian describing the
interaction between Xð4350Þ and D�

sD
�
s0 as

LS
int ¼

iffiffiffi
2

p gSXðxÞ
Z

dx1dx2C��ðx1; x2Þ�Xððx1 � x2Þ2Þ

� �ðx�!vx1 �!sx2Þ;
LT

int ¼
iffiffiffi
2

p gTX
��ðxÞ

Z
dx1dx2

�
C��ðx1; x2Þ

þ C��ðx1; x2Þ � 1

4
g��C��ðx1; x2Þ

�
�Xððx1 � x2Þ2Þ

� �ðx�!vx1 �!sx2Þ; (7)

whereLS
int is for the scalar resonance case whileL

T
int is for

the tensor resonance case. gS and gT are the effective
coupling constants for the interaction between Xð4350Þ
and D�

sD
�
s0 in the scalar and tensor resonance cases, re-

spectively. !v and !s are mass ratios which are defined as

!v ¼ mD�
s

mD�
s
þmD�

s0

; !s ¼
mD�

s0

mD�
s
þmD�

s0

: (8)

�Xððx1 � x2Þ2Þ is a correlation function which illustrates
the distribution of the constituents in the bound state. The
Fourier transform of the correlation function reads

�Xðy2Þ ¼
Z d4p

ð2�Þ4
~�Xðp2Þe�ip�y: (9)

To write down Lagrangian (7), for simplicity, we have

defined the tensor C�� as a function of the constituents

with the explicit form

C��ðx1; x2Þ ¼ D�þ
s;�ðx1Þ@�D��

s0 ðx2Þ þD��
s;�ðx1Þ@�D�þ

s0 ðx2Þ:
(10)

The coupling constants gS and gT can be determined
with the help of the compositeness condition ZX ¼ 0 with
ZX as the wave function renormalization constant of
Xð4350Þ which is defined as the residual of the Xð4350Þ
propagator, i.e.,

ZX ¼ 1� g2X
d

dp2
�Xðp2Þjp2¼m2

X
; (11)

where gX ¼ gS for the scalar case while gX ¼ gT for the
tensor case. For scalar resonance Xð4350Þ, g2S�Sðp2Þ ¼
�Sðp2Þ is its mass operator. But for the tensor resonance
Xð4350Þ, g2T�Tðp2Þ relates to its mass operator via the
relation

���;��
T ðp2Þ ¼ 1

2ðg��g�� þ g��g��Þg2T�Tðp2Þ þ � � � ;
(12)

where � � � denotes terms do not contribute to the mass
renormalization of Xð4350Þ. The mass operator of
Xð4350Þ is illustrated by Fig. 1.
Concerning the Feynman diagram depicted in Fig. 1 one

can calculate the mass operator explicitly. To get the
numerical result of the coupling constant gX, an explicit

form of ~�Xðp2Þ is necessary. Throughout this paper, we
take the Gaussian form

~� Xðp2Þ ¼ expðp2=�2
XÞ; (13)

where the size parameter �X parametrizes the distribution
of the constituents inside the molecule. In the following
calculation, we will find the physical value of �X by
comparing our calculation of the product of Xð4350Þ to
two-photon partial width and the branching fraction to
J=c� with data. It should be noted that choice (13) is

not unique. In principle any choice of ~�Xðp2Þ, as long as it
renders the integral convergent sufficiently fast in the

ultraviolet region, is reasonable. In this sense, ~�Xðp2Þ
can be regarded as a regulator which makes the ultraviolet
divergent integral well defined.
With these discussions, we can calculate the effective

coupling constant gX numerically. In the typical nonper-
turbative region �X ¼ 1:0� 2:0 GeV, using the central

FIG. 1. The mass operator for Xð4350Þ.

YONG-LIANG MA PHYSICAL REVIEW D 82, 015013 (2010)

015013-2



value of Xð4350Þ mass, our numerical result is found to be

gS ¼ 31:49–15:19; gT ¼ 62:70–34:54: (14)

In Fig. 2 we plot the �X dependence of the coupling
constants. One can see that both coupling constants de-
crease against �X. This can be understood from the mo-
mentum integral of the mass operator. For scalar Xð4350Þ,
the loop integral is quadratically divergent so the derivative
of the mass operator which is proportional to the inverse of
g2S increases against �X which means the coupling con-

stant gS decreases against �X. A similar argument can be
given for gT .

B. Effective Lagrangian for strong and electromagnetic
decays of Xð4350Þ

The effective Lagrangian for the study of strong and
electromagnetic decays of Xð4350Þ consists of two parts:
the electromagnetic part Lem and the strong part Lstr.

The electromagnetic interaction Lagrangian Lem in-
cludes five parts: LNL

em from the gauge of the nonlocal
and derivative coupling of Eq. (7), Lgauge

em from the gauge
of the kinetic terms of the charged constituentsD�

s0 andD
�
s ,

the electromagnetic interaction Lagrangian LSV
em including

D�
s0 andD

�
s ,LAV

em for electromagnetic interaction including

Ds1 and D�
s , and LAS

em for electromagnetic interaction in-
cluding Ds1 and D�

s0.

One can write LNL
em by substituting C�� in Eq. (7) with

C
gauge
��

Cgauge
�� ðx1; x2Þ ¼ e�ieIðx1;x2;PÞD�þ

s;�ðx1Þ
� ð@� þ ieA�ðx2ÞÞD��

s0 ðx2Þ
þ eieIðx1;x2;PÞD��

s;�ðx1Þð@� � ieA�ðx2ÞÞ
�D�þ

s0 ðx2Þ; (15)

where the Wilson’s line Iðx; y; PÞ is defined as

Iðx; y;PÞ ¼
Z x

y
dz�A

�ðzÞ: (16)

In our following calculation, the nonlocal vertex with one
photon is necessary. The nonlocal vertex with one photon
comes from two sources: One is from the covariant deriva-
tive and the other one is from the expansion of the Wilson’s
line. One can easily derive the Feynman rule for the non-
local vertex with one photon which comes from the cova-
riant derivative. But to derive the Feynman rule for a
photon from Wilson’s line, one may use the path-
independent prescription suggested in [22,23].
The electromagnetic vertexLgauge

em from the gauge of the
kinetic terms of the charged constituents can be easily
written as

Lgauge
em ¼ ieA�ðD��

s0 @
$
�D

�þ
s0 Þ þ ieA�½�D��

s;�@
$
�D

�þ
s;�

þ 1
2D

��
s;�@

$
�D

�þ
s;� þ 1

2D
��
s;�@

$
�D

�þ
s;��: (17)

One can generally write the effective Lagrangian LSV
em for

electromagnetic interaction including D�
s0 and D�

s as

L SV
em ¼ egD�

s0
D�

s�½ ~V�
��D

�þ
s0 � ~Vþ

��D
��
s0 �F��; (18)

where ~V�
�� is the gauged field strength tensor for D

��
s with

definition ~V�
�� ¼ ð@� � ieA�ÞD��

s;� � ð@� � ieA�ÞD��
s;�.

And similarly, the general effective Lagrangian LAV
em and

LAS
em can be written as

LAV
em ¼ egDs1D

�
s������½D�

s1;�D
�þ
s;� �Dþ

s1;�D
��
s;��F��;

LAS
em ¼ �iegDs1D

�
s0
������½D�þ

s0
~D�
s1;�� �D��

s0
~Dþ
s1;���F��:

(19)

Similar to the definition of ~V�
��, we have defined the

gauged field strength tensor for D�
s1 with definition

~D�
s1;�� ¼ ð@� � ieA�ÞD��

s1;� � ð@� � ieA�ÞD��
s1;�.

The relevant coupling constants can be determined phe-
nomenologically. Confined by the experimental status, one
cannot fix gD�

s0D
�
s� from the data, so we turn to the theo-

retical calculations (for example, Ref. [9] and references
therein). From the literature, one can see that the minimal
result of the theoretical calculation of D�

s0 ! D�
s� decay

width is 0.2 KeV. From this decay width, we get gD�
s0
D�

s� 	
3:02� 10�2 GeV�1.
The coupling constants gDs1D

�
s� and gDs1D

�
s0
� can be

determined by using the heavy quark effective theory
(HQET) and branching ratio for relevant processes. First,
let us consider the decay of Ds1 ! Ds�. The effective
Lagrangian for this process can be written as

L Ds1Ds�
em ¼ iegDs1Ds�½Dþ

s D
�
s1;�� �D�

s D
þ
s1;���F��; (20)

where Ds1;�� ¼ @�Ds1;� � @�Ds1;� and F�� ¼
@�A� � @�A�. From this Lagrangian, one can express

FIG. 2 (color online). �X dependence of the coupling constant
gX.
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the decay width as

�ðDs1 ! Ds�Þ ¼
�emg

2
Ds1Ds�

6m3
Ds1

ðm2
Ds1

�m2
Ds
Þ3: (21)

The numerical result of the decay width has been evaluated
by several groups. From the references given in Ref. [12],
we see all the results are larger than 0.6 KeV, so that we
have gDs1Ds� 	 2:67� 10�2 GeV�1. The coupling con-

stant gDs1D
�
s� relates to gDs1Ds� via HQET as

gDs1Ds�

gDs1D
�
s�

¼ 1

mDs1

ffiffiffiffiffiffiffiffiffi
mDs

p
ffiffiffiffiffiffiffiffiffi
mD�

s

p ¼ 3:92� 10�1 GeV�1; (22)

so that we have gDs1D
�
s� ¼ 6:81� 10�2. The coupling

constant gDs1D
�
s0
� can be determined by using the relevant

branching ratio given by the PDG [8]. From (19) we have

�ðDs1 ! D�
s0�Þ ¼

2�emg
2
Ds1D

�
s0
�

3m3
Ds1

ðm2
Ds1

�m2
D�

s0
Þ3: (23)

Using the central value of the branching ratio we have
�ðDs1 ! D�

s0�Þ=�ðDs1 ! Ds�Þ ’ 0:21 which leads to

gDs1D
�
s0
� ¼ 3:53� 10�2 GeV�1.

In addition to the Lagrangian (7), the strong part Lstr

involves the VVV-type Lagrangian describing the interac-
tion of three vector mesons, the SVV-type Lagrangian
describing the interaction of one scalar meson with two
vector mesons, the SSV-type Lagrangian describing the
interaction of two scalar mesons with one vector meson,
the AVV-type Lagrangian for the interaction of one axial
vector with two vector mesons, and the ASV-type
Lagrangian for axial-vector–scalar-vector meson interac-
tion, i.e.,

LVVV
str ¼ igcD�

sD
�
s
½D��

s;�ðD�þ
s;�@

$
�c �Þ þD�þ

s;�ðc �@
$
�D

��
s;�Þ

þ c �ðD��
s;�@

$
�D

�þ
s;�Þ� þ ig�D�

sD
�
s
½D��

s;�ðD�þ
s;�@

$
���Þ

þD�þ
s;�ð��@

$
�D

��
s;�Þ þ��ðD��

s;�@
$
�D

�þ
s;�Þ�; (24)

L SVV
str ¼ gcD�

s0
D�

s
½D��

s0 D
�þ
s;�� �D�þ

s0 D
��
s;���c ��

þ g�D�
s0
D�

s
½D��

s0 D
�þ
s;�� �D�þ

s0 D
��
s;������; (25)

L SSV
str ¼ �igcD�

s0D
�
s0
c �ðD��

s0 @
$
�D

�þ
s0 Þ

� ig�D�
s0
D�

s0
��ðD��

s0 @
$
�D

�þ
s0 Þ; (26)

L AVV
str ¼ �gcD�

sDs1
�����½D�

s1;�D
�þ
s;� �Dþ

s1;�D
��
s;��c ��

� g�D�
sDs1

�����½D�
s1;�D

�þ
s;� �Dþ

s1;�D
��
s;�����;

(27)

L ASV
str ¼ �igcD�

s0Ds1
���	
½D��

s0 c ��D
þ
s1;	


�D�þ
s0 c ��D

�
s1;	
�

� ig�D�
s0Ds1

���	
½D��
s0 ���D

þ
s1;	


�D�þ
s0 ���D

�
s1;	
�: (28)

Because of our less knowledge, we cannot determine
these coupling constants from data. Here, we resort to the
VMDmodel [24]. In the VMDmodel, the virtual photon in
the process e�D�þ

s0 ! e�D�þ
s0 is coupled to vector mesons

� and J=c , which are then coupled to D�þ
s0 . For zero

momentum transfer, one has relation

X
V¼�;c

�VgVD�
s0
D�

s0

m2
V

¼ e; (29)

where �V is the photon-vector-meson mixing amplitude

L V-� mixing ¼ �VV�A�; (30)

which can be determined from V ! eþe� decay width,
i.e.,

�Vee ¼ �em�
2
V

3m3
V

; (31)

where we did not include the electron mass since it is much
smaller than the vector meson mass. For the � meson,
using �ð� ! eþe�Þ ¼ 2:97� 10�4 � 4:26 MeV [8] we
have �� ¼ 23 472:3 MeV2, while �c ¼ 259 965:8 MeV2

when �ðc ! eþe�Þ ¼ 5:94%� 93:2 KeV [8] is applied.
Concerning the fact that the virtual photon sees the charge
of the charm quark in the D�þ

s0 meson through cD�
s0D

�
s0

coupling and the charge of the antistrange quark in D�þ
s0

meson through �D�
s0D

�
s0 coupling, we have relations

�c gcD�
s0
D�

s0

m2
c

¼ 2

3
e;

��g�D�
s0D

�
s0

m2
�

¼ 1

3
e: (32)

From these relations we have gcD�
s0D

�
s0
¼ 7:45 and

g�D�
s0
D�

s0
¼ 4:47. To determine coupling constants

gVD�
s0
D�

s
, we make an extension to the VMD model used

above, i.e., substituting Eq. (29) with

X
V¼�;c

�VgVDiDj

m2
V

¼ egDiDj�; (33)

where Di and Dj denote the relevant charmed-strange

mesons. Similarly, Eqs. (32) should also be extended to

�c gcDiDj

m2
c

¼ 2

3
egDiDj�;

��g�DiDj

m2
�

¼ 1

3
egDiDj�;

(34)

from which we yield the relevant coupling constants as
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gcDiDj
¼ 7:45� gDiDj�; g�DiDj

¼ 4:47� gDiDj�:

(35)

To fix the magnitude of coupling constants gVD�
sD

�
s
, we

resort to the SUð4Þ relation as was used in Ref. [25] from
which we have relations

gcD�
sD

�
s
¼ 2ffiffiffi

3
p g�D�

sD
�
s
¼ gcD�D� ¼ 7:64: (36)

To fix the relative signs for the relevant effective
Lagrangian, one can use heavy hadron chiral perturbation
theory (HHChPT) including the D�

s0 and Ds1 mesons [26].

But even with this consideration, the relative signs of LAS
em

and LASV
str to the other terms cannot be determined. We

leave this as an ambiguity and discuss different cases in the
following calculation. In summary, our framework of the
interaction Lagrangian is

Lint ¼ LNL
em þLgauge

em þLSV
em þLAV

em þLVVV
str þLSVV

str

þLSSV
str þLAVV

str þLASV
int ; (37)

L ASV
int ¼ �½LAS

em þLASV
str �: (38)

Up to now, we have fixed all the coupling constants that
are necessary for our following calculation of the electro-
magnetic and strong decays of Xð4350Þ.

III. ELECTROMAGNETIC AND STRONG DECAYS
OF Xð4350Þ

In this section, we will present the general forms of the
matrix elements and partial widths for the electromagnetic
and strong decays of Xð4350Þ and the Feynman diagrams
included in our calculation.

A. Electromagnetic decay of Xð4350Þ
The four kinds of diagrams depicted in Fig. 3 and their

corresponding crossing ones should be taken into account
to study Xð4350Þ ! 2� decay. Figures 3(a) and 3(b) are
from the final state interaction due to the exchange of D�

s ,
Ds1, and D�

s0; Fig. 3(c) arises from the gauge of the non-

local and derivative coupling between Xð4350Þ and its
constituents D�

sD
�
s0, but Fig. 3(d) is from the Lagrangian

(18).

For Xð4350Þ with quantum numbers JPC ¼ 0þþ, con-
cerning theUð1Þem gauge invariance and the transverseness
of the photon polarization vector, one can write down the
matrix element for the decay of X ! 2� as

iMem
S ¼ ie2FXs!2�

�
g�� � q2�q1�

q1 � q2
�
��ðq1Þ��ðq2Þ; (39)

while for the tensor meson Xð4350Þwith quantum numbers
JPC ¼ 2þþ, its polarization vector satisfies ��� ¼ ��� and
��� ¼ 0, so that the matrix element for electromagnetic
decay can be written as [27,28]

iMem
T ¼ ie2

�
Fð0Þ
T!2�

�
g�� � q2�q1�

q1 � q2
�
q�q�

q2

þ Fð2Þ
T!2�

��
g�� � q�q�

q2

��
g�� � q�q�

q2

�

þ
�
g�� � q�q�

q2

��
g�� � q�q�

q2

���

� ���ðpÞ��ðq1Þ��ðq2Þ; (40)

where q ¼ q1 � q2. From Eqs. (39) and (40) we express
the decay widths for Xð4350Þ as

�SðX ! 2�Þ ¼ 2�

mX

�2
emF

2
XS!2�;

�TðX ! 2�Þ ¼ �

15mX

�2
emð5Fð0Þ2

XT!2� � 4Fð0Þ
XT!2�F

ð2Þ
XT!2�

þ 32Fð2Þ2
XT!2�Þ; (41)

where the subindices S and T denote the scalar and tensor
resonance Xð4350Þ, respectively. To get the last equation,
we have applied the sum of the polarization vector for the
tensor meson [29]

X
polar

��1�1
ðpÞ���2�2

ðpÞ ¼ 1

2
ð
�1�2


�1�2
þ 
�1�2


�1�2
Þ

� 1

3

�1�1
�2�2

; (42)

where 
�� ¼ �g�� þ ðp�p�=m
2
XÞ.

B. Strong decay of Xð4350Þ
We should take into account the Feynman diagrams

illustrated in Fig. 4 in the study of the strong decay of

FIG. 3. Feynman diagrams for decay Xð4350Þ ! �� (cross diagrams should be included).
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Xð4350Þ ! J=c�. Furthermore, in addition to these dia-
grams, their crossing ones should also be included.

Compared to the electromagnetic case, the expression
for the matrix element of strong decay is more complicated
because the constraint from the gauge invariance is re-
leased. When Xð4350Þ is regarded as a scalar resonance,
the matrix element for the strong decay of X !
V�ðq1ÞV�ðq2Þ can be written as

iMstr
S ¼ i

�
GXs!V1V2

g�� þ FXs!V1V2

q2�q1�
q1 � q2

�
��ðq1Þ��ðq2Þ:

(43)

One can show that, when the gauge invariance is imposed,
GXs!V1V2

¼ �FXs!V1V2
so expression (43) becomes (39).

Similarly, without the constraint from the gauge invari-

ance, in the tensor case, one can write the matrix element
for the strong decay of X�� ! V�ðq1ÞV�ðq2Þ as

iMstr
T ¼ i½Fð1Þ

XT!V1V2
g��q�q�

þ Fð2Þ
XT!V1V2

ðg��g�� þ g��g��Þ
þ Fð3Þ

XT!V1V2
ðg��q�q1� þ g��q�q1�Þ

þ Fð4Þ
XT!V1V2

ðg��q�q2� þ g��q�q2�Þ
þ Fð5Þ

XT!V1V2
q�q�q2�q1�����ðpÞ��ðq1Þ��ðq2Þ:

(44)

One can prove that when the final vector mesons are both
massless particles and the gauge invariance is imposed the
following relations can be reduced:

Fð3Þ
XT!V1V2

¼ �Fð4Þ
XT!V1V2

¼ 1

2q1 � q2 F
ð2Þ
XT!V1V2

;

Fð5Þ
XT!V1V2

¼ � 1

q1 � q2 F
ð3Þ
XT!V1V2

� 1

2ðq1 � q2Þ2
Fð2Þ
XT!V1V2

:

(45)

So expression (40) for the electromagnetic decay matrix
element can be yielded.
With the help of (42) one can get the analytic forms for

the strong decay as

�SðX ! J=c�Þ ¼ 1

16�m3
X

	1=2ðm2
X;m

2
c ; m

2
�Þ
�
G2

Xs!V1V2
½2þ!2� � 2GXs!V1V2

FXs!V1V2
½1�!2� þ F2

Xs!V1V2

�
!� 1

!

�
2
�
;

�TðX ! J=c�Þ ¼ 1

80�m3
X

	1=2ðm2
X;m

2
c ; m

2
�Þ

X5
i	j¼1

fCijF
ðiÞ
XT!V1V2

FðjÞ
XT!V1V2

g; (46)

where ! ¼ q1 � q2=ðmcm�Þ ¼ ðm2
X �m2

c �m2
�Þ=ð2mcm�Þ. 	 is the Källen function and Cij are functions

of the relevant masses of initial and final states which will
be given in the Appendix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

With these discussions, the numerical calculation can be
performed via standard loop derivation. Since the magni-
tude of �X is unknown, we vary its magnitude from 0.5 to
4.0 GeV to find its physical region where the data can be
understood. In our estimate, we use the central value of the
total width, i.e., �X ¼ 13:3 MeV. And, because it is diffi-
cult to determine the relative signs betweenLAS

em andLASV
str

and other terms, we will consider two cases when we
do our numerical calculation, i.e., the last two terms of
Eq. (38) give positive and negative contributions to the
total Lagrangian. Our results are summarized in Tables I
and II.

From the numerical results, one can see that the possi-
bility that Xð4350Þ is a molecular state of D�

s0D
�
s cannot be

ruled out in our model. In the case that Xð4350Þ has
quantum numbers JPC ¼ 0þþ, the physical region of �X

is smaller than the tensor resonance case which means the
size of scalar Xð4350Þ is bigger than the tensor one.
We would like to point out that, because we used the

minimal values of the theoretical calculation of coupling
constants gD�

s0
D�

s� and gDs1Ds�, our final results of the partial

widths can be regarded as lower limits. This is an ambigu-

FIG. 4. Feynman diagrams for decay Xð4350Þ ! J=c� (cross
diagrams should be included).

TABLE I. Our numerical results in the case of the positive sign
of Eq. (38).

JPC
�X

(GeV)

Branch product

(eV)

�str

(KeV)

�em

(KeV)

0þþ 0.5–0.7 2.19–10.26 100.9–174.5 0.29–0.78

2þþ 1.1–1.8 1.24–2.28 285.3–973.5 0.03–0.09
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ity of the present calculation. In fact, the best way to
determine these coupling constants is from data, but be-
cause of the precision of the data, we cannot in this way.
When the magnitudes of coupling constants gD�

s0D
�
s� and

gDs1Ds� are improved, the theoretical results of the product

of the two-photon decay width and branch fraction to
J=c� should be larger than the present conclusion. In
this case, compared to the tensor Xð4350Þ, the typical
region of �X for scalar resonance can be reduced to an
unphysically small region so one can first rule out the
possibility of a scalar molecule.

Another ambiguity in our calculation of the product of
the two-photon decay width and branch fraction to J=c�
is from the total width of Xð4350Þ. Here we apply the
central value, i.e., �X ¼ 13:3 MeV. When a larger total
width is applied, the physical region of�X can be enlarged.
But this does not affect the partial widths for strong and
electromagnetic decays we predicted above in the corre-
sponding region of �X.

Finally, we conclude that, with the present data and in
the framework our model, Xð4350Þ can be interpreted as a
D�

s0D
�
s molecule.
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APPENDIX: EXPLICIT FORMS FOR THE
FUNCTIONS Cij

In this Appendix, I will present the coefficients Cij in

formula (46):

C11 ¼ 1

24m4m2
1m

2
2

½5	2ð	þ12m2
1m

2
2Þ�;

C12 ¼ �1

12m4m2
1m

2
2

½	ð5	ðm2þm2
1þm2

2Þþ24m2m2
1m

2
2Þ�;

C13 ¼ 1

12m4m2
1m

2
2

½5	2ððm2�m2
2Þ2�m4

1Þ�;

C14 ¼ �1

12m4m2
1m

2
2

½5	2ððm2�m2
1Þ2�m4

2Þ�;

C15 ¼ 1

24m4m2
1m

2
2

½5	3ðm2�m2
1�m2

2Þ�;

C22 ¼ 1

24m4m2
1m

2
2

½5	2þ44m2ðm2
1þm2

2Þ	þ528m2
1m

2
2m

4�;

C23 ¼ �1

12m4m2
1m

2
2

½	ð5	þ44m2m2
1Þðm2�m2

1þm2
2Þ�;

C24 ¼ 1

12m4m2
1m

2
2

½	ð5	þ44m2m2
2Þðm2�m2

2þm2
1Þ�;

C25 ¼ �1

24m4m2
1m

2
2

½5	2ðm4�ðm2
1�m2

2Þ2Þ�;

C33 ¼ 1

24m4m2
1m

2
2

½	2ð5	þ44m2m2
1Þ�;

C34 ¼ �1

12m4m2
1m

2
2

½5	2ðm4�ðm2
1�m2

2Þ2Þ�;

C35 ¼ 1

24m4m2
1m

2
2

½5	3ðm2�m2
2þm2

1Þ�;

C44 ¼ 1

24m4m2
1m

2
2

½	2ð5	þ44m2m2
2Þ�;

C45 ¼ �1

24m4m2
1m

2
2

½5	3ðm2�m2
1þm2

2Þ�;

C55 ¼ 1

96m4m2
1m

2
2

½5	4�; (A1)

where 	 ¼ 	ðm2; m2
1; m

2
2Þ is the Källen function and m ¼

mX, m1 ¼ mc , and m2 ¼ m�.
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