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The strong and electromagnetic decays of X(4350) with quantum numbers J© = 0** and 2** have
been studied by using the effective Lagrangian approach. The coupling constant between X(4350) and
D; Dy, is determined with the help of the compositeness condition which means that X(4350) is a bound
state of D{D7,. Other coupling constants applied in the calculation are determined phenomenologically.
Our numerical results show that, using the present data, the possibility that X(4350) is a D; D%, molecule

cannot be ruled out within the present model.
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I. INTRODUCTION

Recently, a hidden charm resonance named X(4350) was
observed by the Belle Collaboration in the analysis of the
vy — ¢J/ i process [1]. The mass and natural width of
this resonance are measured to be (4350.67%S(stat) +
0.7(syst)) MeV/c? and (13.3*179(stat) = 4.1(syst)) MeV,
respectively. The product of its two-photon decay width
and branching fraction to ¢J/¢ is (6.7733(stat) =
L1(syst) eV for JPC=0%", or (1.57%7(stat) =
0.3(syst)) eV for JP¢€ = 2% " In the literature, the structure
of X(4350) has been proposed to be a ¢¢s5 teraquark state
with JP€ =2%" [2], a D;D¥, molecular state [3], a
P-wave charmonium state x, [4], and a scalar ¢c and
D*D? mixing state [5]. And concerning the quantum num-
bers of the final states J/¢ ¢, X(4350) can also have
quantum numbers J°¢ = 1~ In Ref. [6], it was shown
that X(4350) cannotbe a 1~ exotic D; D7, molecular state
from the QCD sum rule calculation although a dynamical
calculation from the potential model indicates that the
S-wave DiD7, bound state with positive charge parity
may exist [7]. In this paper, we will accept it as a bound
state of DyD7, to study its strong and electromagnetic
decays in the effective Lagrangian approach in the case
of JF€ = 0% and 27+,

Since the mass of X(4350) is about 80 MeV below the
threshold of D{D, (mp: = 2317.8 0.6 MeV and
mp: = 2112.3 £ 0.5 MeV [8]), it is reasonable to regard
it as a bound state of D{,D{. And because the quantum
numbers of D%, and D} are J* = 0" and J© = 17, respec-
tively, to form a bound state with quantum numbers J*€ =
0"* or 27", the coupling between X(4350) and its con-
stituents should be a P wave. To determine the effective
coupling constant between X(4350) and it constituents
DiD3,, as in our previous work (for example, Ref. [9]),
we resort to the compositeness condition Zy = 0 (Zy as the
wave function renormalization constant of X(4350)) which
was early used in the study of a deuteron as a bound state of
a proton and a neutron [10,11] and is being widely used by
particle physicists (see the references in [9]). Recently, this
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method has been applied to study the properties of some
“exotic” hadrons [9,12-20] and some conclusions were
yielded comparing with data. For other interactions, we
write down the general effective Lagrangian and determine
the coupling constants with the help of data, theoretical
calculations, the SU(4) relation, or the vector meson domi-
nance (VMD).

As in our previous work [9,12-20], we introduce a
correlation function including a scale parameter Ay to
illustrate the distribution of the constituents in the bound
state X(4350). The parameter Ay is varied to find the
physical region where the data can be understood. In the
physical region of Ay, the partial widths for strong and
electromagnetic decays are yielded.

This paper is organized as follows: In Sec. II we will
provide the theoretical framework used in this paper. We
will present the analytic forms for the radiative and strong
decay matrix elements and partial widths of X(4350) in
Sec. III. And, the last section is our numerical results and
discussions.

II. THEORETICAL FRAMEWORK

In this section, we will propose the theoretical frame-
work for the calculation of the strong and electromagnetic
decays of X(4350).

A. The molecular structure of X(4350)

As was mentioned above, we regard X(4350) as a D; D,
bound state. And concerning the experimental status, we
accept the quantum numbers of X(4350) as J© = 0" " and
27" For the scalar case, one can write the free Lagrangian
of X(4350) as

LS. =10,X0,X —imix2, (1)

with my as the mass of X(4350). The propagator of
X(4350) can be easily written as

d*p i
Qm)* p?> —m% — i€

Gp(x) = e ', 2
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which satisfies
(9% + m?)Gp(x) = —idW(x), 3)

while for tensor resonance we have the free Lagrangian as
(21]

rr 1x,,Drrrox, 4

free T2 Auv

where the symmetric tensor X, = X,,, denotes the J©¢ =

2** field for X(4350) and
DrAT = (O + myf5(ghg"” + g gh7) — g#Vg"7}
+ g)\o'a,u,av + g,uVa)\ao' _ %(gvaa,u.a)\
+ g am a7 + ghu9v oM + ghrara). (5)

The propagator for X,,,(4350) is obtained as

d*p i Zip
G,uv;)\zr(x) = ,[(27T)4 p2 — mg{ — l-EP,uV;/\Ue P,

1 1
P,uv;/\zr = E(P/.L/\PI/U' + P,u,O'PV)\) 3P/.LVP)\0"
_ PuPv
P,u,V = " 8ur + m—%(r

1
DHIAIG 0P = —iz(gheg”l + g gt F)eW (). (6)
With respect to the discussions given in the first section,
one can write the effective Lagrangian describing the
interaction between X(4350) and Dy D7, as

L3, = 58sX(9) [ dx1dx,C (61, 22 () — ,)?)

X 8(x — wyux| — wxy),

i
£1Tm = ﬁgTX’“’(x)fdxldxz[cw(xl,xz)

1
+ Cppulxy, x) — gwcaa(xl,xz)]q)x(()ﬁ —x)%)

(L)S.X'z), (7)

where L3 is for the scalar resonance case while LT is for
the tensor resonance case. gg and gy are the effective
coupling constants for the interaction between X(4350)
and D{D7, in the scalar and tensor resonance cases, re-

spectively. w, and w, are mass ratios which are defined as

X 8(x — wy,x| —

mpx mp+
0w, =——"—"-, W, = - T (8)
Mp: + mp:, Mps + mpr,

®,((x; — x,)?) is a correlation function which illustrates
the distribution of the constituents in the bound state. The
Fourier transform of the correlation function reads

Dy (y?) = (Dx(lﬂ)eﬂp Y 9

(2 )4

To write down Lagrangian (7), for simplicity, we have
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defined the tensor C,, as a function of the constituents

with the explicit form
Cuv(xy, x0) = D5}, (x1)9, D (x2) + Dy, (x1)0, Dy (x2).
(10)

The coupling constants gg and gy can be determined
with the help of the compositeness condition Zy = 0 with
Zy as the wave function renormalization constant of
X(4350) which is defined as the residual of the X(4350)
propagator, i.e.,

d
Zy=1-g%——=3v(p)| 2,2, (11)
X Xdp2 X p ¥

where gy = gg for the scalar case while gy = gT for the
tensor case. For scalar resonance X(4350), g32¢(p?) =

IT4(p?) is its mass operator. But for the tensor resonance
X(4350), g23;(p?) relates to its mass operator via the
relation

H?V;Q'B(pz) = %(g’wgyﬂ + gﬂﬁgm)g%Er(Pz) +oey
(12)

where - - - denotes terms do not contribute to the mass
renormalization of X(4350). The mass operator of
X(4350) is illustrated by Fig. 1.

Concerning the Feynman diagram depicted in Fig. 1 one
can calculate the mass operator explicitly. To get the
numerical result of the coupling constant gy, an explicit
form of @X(pz) is necessary. Throughout this paper, we
take the Gaussian form

® x(p?) = exp(p?/A3), (13)

where the size parameter Ay parametrizes the distribution
of the constituents inside the molecule. In the following
calculation, we will find the physical value of Ay by
comparing our calculation of the product of X(4350) to
two-photon partial width and the branching fraction to
J/ ¥ ¢ with data. It should be noted that choice (13) is
not unique. In principle any choice of ®y(p?), as long as it
renders the integral convergent sufficiently fast in the
ultraviolet region, is reasonable. In this sense, (iJX(pz)
can be regarded as a regulator which makes the ultraviolet
divergent integral well defined.

With these discussions, we can calculate the effective
coupling constant gy numerically. In the typical nonper-
turbative region Ay = 1.0 ~ 2.0 GeV, using the central

D*

S

X(4350m X (4350)

N 7/

~ _ -

*
DSO

FIG. 1. The mass operator for X(4350).
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FIG. 2 (color online).
8x-

Ay dependence of the coupling constant

value of X(4350) mass, our numerical result is found to be

gs = 31.49-15.19, gr = 62.70-34.54. (14)

In Fig. 2 we plot the Ay dependence of the coupling
constants. One can see that both coupling constants de-
crease against Ay. This can be understood from the mo-
mentum integral of the mass operator. For scalar X(4350),
the loop integral is quadratically divergent so the derivative
of the mass operator which is proportional to the inverse of
g§ increases against Ay which means the coupling con-
stant g¢ decreases against Ay. A similar argument can be
given for gz.

B. Effective Lagrangian for strong and electromagnetic
decays of X(4350)

The effective Lagrangian for the study of strong and
electromagnetic decays of X(4350) consists of two parts:
the electromagnetic part L, and the strong part L.

The electromagnetic interaction Lagrangian L., in-
cludes five parts: LNL from the gauge of the nonlocal
and derivative coupling of Eq. (7), L5n®° from the gauge
of the kinetic terms of the charged constituents D, and Dy,
the electromagnetic interaction Lagrangian £3Y including
D%, and D, LAY for electromagnetic interaction including
Dy, and D*, and L45 for electromagnetic interaction in-
cluding Dy, and Dy,.

One can write L3 by substituting C,,,, in Eq. (7) with
Cgauge

ny
C‘%Layl/lge(xp xz) _ e_ieI(XI'XZ;P)D:;;(xl)

X (9, + ieA,(x,))D3y (x;)
+ el DIs (x))(0, — ieA, (x)
X D (x2), (15)
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where the Wilson’s line I(x, y, P) is defined as
I(x, y; P) = f dz,A*(2). (16)
y

In our following calculation, the nonlocal vertex with one
photon is necessary. The nonlocal vertex with one photon
comes from two sources: One is from the covariant deriva-
tive and the other one is from the expansion of the Wilson’s
line. One can easily derive the Feynman rule for the non-
local vertex with one photon which comes from the cova-
riant derivative. But to derive the Feynman rule for a
photon from Wilson’s line, one may use the path-
independent prescription suggested in [22,23].

The electromagnetic vertex L5n* from the gauge of the
kinetic terms of the charged constituents can be easily
written as

L& = ieA, (DY 0,D%) +ieA,[—Di,d,Dik,

+ 3D 0 Dt + D3 0, Dk ] (17)

One can generally write the effective Lagrangian L3 for
electromagnetic interaction including D}, and D5 as

L3 = esp,piy[VurDyg = ViuDig IF (18)

nv

where Vﬁ,, is the gauged field strength tensor for D}~ with
definition V3, = (3, T ieA,)Di; — (3, ¥ ieA,)Di,.
And similarly, the general effective Lagrangian L£4Y and
L4535 can be written as

AV - pEt _ pt o opEe
‘Eem - egD“D’;yE,uva,B[Dsl;MDs;V Dsl;,u,DS;V]FDZIB’

AS — __; x4+ N— _ x— 1N+
‘Eem - legDle;nye,uvaﬁ[Dso Dsl;lu,y Dso Dyl;/_“;]FaB'

(19)

Similar to the definition of V;fy, we have defined the
gauged field strength tensor for Dj; with definition
Dsil:w = (9, * ieA,)Dii;, — (9, * ieA,,)D;i;M.

The relevant coupling constants can be determined phe-
nomenologically. Confined by the experimental status, one
cannot fix g DDy from the data, so we turn to the theo-
retical calculations (for example, Ref. [9] and references
therein). From the literature, one can see that the minimal
result of the theoretical calculation of D}, — Dj7y decay
width is 0.2 KeV. From this decay width, we get g DDy =
3.02X 1072 GeV ™.

The coupling constants gp pr, and gp D7,y can be
determined by using the heavy quark effective theory
(HQET) and branching ratio for relevant processes. First,
let us consider the decay of D, — D,y. The effective
Lagrangian for this process can be written as

DgDyy __ - + -
Lo - legD.le.yy[DS Dsl;,uv

- D;D;;W]F

(20)

v

where Dy, = 0,Dg1,, — 9,Dyg1,, and F,, =

d,A, —9d,A,. From this Lagrangian, one can express
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the decay width as

2
aengl\lDl\y

I'o,, — D =
( sl ?7) 6m?bsl

(m%)xl - m2DS)3. 1)

The numerical result of the decay width has been evaluated
by several groups. From the references given in Ref. [12],
we see all the results are larger than 0.6 KeV, so that we
have gp p.,, =267 X 1072 GeV~'. The coupling con-
stant gp_p:, relates to gp p , via HQET as

8D, D, 1 mp. _ _
Dby _ 1 NP 395 % 1071 GVl (22)

8p,Dyy  mp [Aip:

s

so that we have gp p:, = 6.81 X 1072, The coupling
constant gp_ p+ ,, can be determined by using the relevant
branching ratio given by the PDG [8]. From (19) we have

2
2aeng“D*

I'(D,; — Dyyy) = 2% (m3, — mp: )% (23)

3
3myp, |

Using the central value of the branching ratio we have
I'(Dy, — Diyy)/T(Dy; — Dyy) =0.21 which leads to
8p, Dy = 353 X 1072 GeV™.

In addition to the Lagrangian (7), the strong part L,
involves the VVV-type Lagrangian describing the interac-
tion of three vector mesons, the SVV-type Lagrangian
describing the interaction of one scalar meson with two
vector mesons, the SSV-type Lagrangian describing the
interaction of two scalar mesons with one vector meson,
the AVV-type Lagrangian for the interaction of one axial
vector with two vector mesons, and the ASV-type
Lagrangian for axial-vector—scalar-vector meson interac-
tion, i.e.,

LKrVV = lgl//DfD’([DT,;L(D:;a,u. lﬁv) + DT,;(‘//VGMDT,;)

“—

+ 'ﬁp,(DT;/a,uDT,T/)] + lgq’)D;Df[DT;L(DT;a#(ﬁV)

+ D3 (¢,0,D5,) + ¢,(D5,0,D00)] (24)

g s Ou

N4 s— Pyt Pyt ok —
L str T gl//D';OD;‘[DsO Ds;/u/ Ds() Ds;,uv]{p/.w

+ g¢Dj‘)Dj[D;k()7D:;LV - DjJD?;W](ﬁ/W, (25)

SSV — _; w— 0yt
Ly = lgl/lD:ODjOIWZI/L(Dso 9, D5

—ig¢p,07, P u(D3y 9D, (26)
£?’[¥V = _ngﬁDxleuvaB[Dgl;MDﬁ;T/ - D;;#D?;;]l//aﬁ
~ 8¢piD, GMVHB[Ds_l;MD::T/ o D:—I;MD;;]d)aB’

(27)
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ASV — __ ) H— +
Lstr - lgz//DtoDSIE,uV/\a'[DSO lﬂ,uvDsl;/\a—

_ *+ -
DSO ¢MVDSI;/\0']

J— 7 o = +
lgd>D§0D\.] E/LV/\O’[Ds() d)MVDSl;/\U'

- Dt(-)'— ¢ll«VDS_1;)L(T:|' (28)

Because of our less knowledge, we cannot determine
these coupling constants from data. Here, we resort to the
VMD model [24]. In the VMD model, the virtual photon in
the process e~ Di; — e~ D%/ is coupled to vector mesons
¢ and J/, which are then coupled to D} . For zero

momentum transfer, one has relation

Z Yv8vpyD;, (29)

2 2
v=ey v

where yy is the photon-vector-meson mixing amplitude

L V-y mixing — ’)/VV,UJA,UJ (30)

which can be determined from V — ete™ decay width,
1.€.,

, (3D

where we did not include the electron mass since it is much
smaller than the vector meson mass. For the ¢ meson,
using T'(¢p — ete™) =297 X 1074 X 4.26 MeV [8] we
have y, = 23472.3 MeV?, while v, = 259965.8 MeV?
when I'(y — ete™) = 5.94% X 93.2 KeV [8] is applied.
Concerning the fact that the virtual photon sees the charge
of the charm quark in the D% meson through D% D%,
coupling and the charge of the antistrange quark in D7
meson through ¢D},D7, coupling, we have relations

Yy 8y D 2 Y& oD D" 1
m2 0750 ge’ ¢ (l’fyoDvO = _e¢. (32)
W ny 3

From these relations we have 8y, 07, = 7.45 and

g¢D:OD;O = 4.47.
gvpr,p;» We make an extension to the VMD model used

To determine coupling constants

above, i.e., substituting Eq. (29) with

Yv8vbD,D,;
2 =€ty (33)
v=oy TV

where D; and D; denote the relevant charmed-strange
mesons. Similarly, Eqs. (32) should also be extended to

Yy8yDD, 2 Y$8¢DD; 1
T3 = zegpp.y ———— = 5¢€&p.D.y
m%p 3 8D:D;y mé 3 8D:D;y

(34)

from which we yield the relevant coupling constants as
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8ypp, = 145 X gp.p y» 8¢p,p, = 44T X 8pp .y

(35)

To fix the magnitude of coupling constants gyp:p:, we
resort to the SU(4) relation as was used in Ref. [25] from
which we have relations

_ 2 = =7.64 (36)
8y D:D: \/ggqﬁD:Dg 8yD*D -04.

To fix the relative signs for the relevant effective
Lagrangian, one can use heavy hadron chiral perturbation
theory (HHChPT) including the D}, and D; mesons [26].
But even with this consideration, the relative signs of L£43
and L43V to the other terms cannot be determined. We
leave this as an ambiguity and discuss different cases in the

following calculation. In summary, our framework of the
interaction Lagrangian is

Lino = Lo + Len® + L + Loy + L&V + LYY

+ L8V + LAY+ LAY, (37)
L8V =*[L& + LEV] (38)

Up to now, we have fixed all the coupling constants that
are necessary for our following calculation of the electro-
magnetic and strong decays of X(4350).

III. ELECTROMAGNETIC AND STRONG DECAYS
OF X(4350)

In this section, we will present the general forms of the
matrix elements and partial widths for the electromagnetic
and strong decays of X(4350) and the Feynman diagrams
included in our calculation.

A. Electromagnetic decay of X(4350)

The four kinds of diagrams depicted in Fig. 3 and their
corresponding crossing ones should be taken into account
to study X(4350) — 2y decay. Figures 3(a) and 3(b) are
from the final state interaction due to the exchange of D5,
Dy, and D7,; Fig. 3(c) arises from the gauge of the non-
local and derivative coupling between X(4350) and its
constituents DD, but Fig. 3(d) is from the Lagrangian

(18).
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For X(4350) with quantum numbers J°¢ = 0%, con-
cerning the U(1),,, gauge invariance and the transverseness
of the photon polarization vector, one can write down the
matrix element for the decay of X — 27 as

_ Q2a'QIB :Iea(ql)eﬁ(qz), (39)
q2

ngm = iezFXS—Q'yl:gozﬂ
while for the tensor meson X(4350) with quantum numbers
JPC = 2% its polarization vector satisfies e*” = €’ and
€, = 0, so that the matrix element for electromagnetic
decay can be written as [27,28]

. . 920918 |9p49v
iMS™ = lez{F(Ol, [ga - :I =
! e e e
(2) [( N q,uqa)( N QVQB)
+ Frlo | Sua 8
T—2y n qz B qz
q,u,qﬁ 9v9a
" (gﬂﬂ - q2 )(gm - q2 )]}

X €,,(p)en(qr)es(qr), (40)

where ¢ = q; — ¢,. From Egs. (39) and (40) we express
the decay widths for X(4350) as

2
Ts(X —2y) = 2~ a2, F2
mX s

_>2y’
7 (0)2 (© (2
[7(X —2y) = 15y agm(SFXT—Qy - 4FXT)—’2')’FXT)_'27
+32F22 ) @D

Xr—2y

where the subindices S and 7 denote the scalar and tensor
resonance X(4350), respectively. To get the last equation,
we have applied the sum of the polarization vector for the
tensor meson [29]

1

Zl e,Ulel(p)e;k/«sz(p) = 5(0,“1#20”1’/2 + 0/’«1”20”1#2)
polar

1
3
where 0, = —g,, + (p,.p.,/m%).

0,,0 (42)

2 L Il X 2

B. Strong decay of X(4350)

We should take into account the Feynman diagrams
illustrated in Fig. 4 in the study of the strong decay of

FIG. 3. Feynman diagrams for decay X(4350) — vy (cross diagrams should be included).
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(4) (B)

FIG. 4. Feynman diagrams for decay X(4350) — J/ i ¢ (cross
diagrams should be included).

X(4350) — J/ i ¢p. Furthermore, in addition to these dia-
grams, their crossing ones should also be included.

Compared to the electromagnetic case, the expression
for the matrix element of strong decay is more complicated
because the constraint from the gauge invariance is re-
leased. When X(4350) is regarded as a scalar resonance,
the matrix element for the strong decay of X —
Va(q1)Vs(q,) can be written as

_ ) 42041
lMgtr = l[GxxﬁVlegaﬂ + FXS—’V1V2 q qf]ea(ql)éﬁ(%)-
1

(43)

One can show that, when the gauge invariance is imposed,
Gx.—v,v, = —Fx _y,v, s0 expression (43) becomes (39).
Similarly, without the constraint from the gauge invari-
|
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ance, in the tensor case, one can write the matrix element
for the strong decay of X, — V,(¢1)Vs(q>) as
st (1)
iMy" = l[FXT—vV]VZgoz,Bq,qu
2
+ Fg(y)‘_'VIVZ(g}LagVﬁ + gvag,uﬁ)
3
+ Fng)ﬁVIVZ(gﬂaQVQIﬂ + gl/aql.l,qlﬁ)
4
+ PO v, (8up00 20 + 80pdud20)
5
+ FY) v, dur 920116, (P)E0(q1)ER(02).
(44)

One can prove that when the final vector mesons are both
massless particles and the gauge invariance is imposed the
following relations can be reduced:

Fg)vvz_g)vvz l §(2)VV
T—V1iVa T—V1iVa 2ql.q2 T—V1Va
1 1
(5) - _ (3) _ (2)
FXT—>V]V2 - q] . q2 FXT—>V|V2 2(q] . q2)2 FXT—>V]V2'

(45)

So expression (40) for the electromagnetic decay matrix
element can be yielded.

With the help of (42) one can get the analytic forms for
the strong decay as

172
Fs(X—J/yo) = T AV2(m3, my, mé){Gﬁb\_—.v, v[2 + 0] = 2Gx v, v, Fx—v [l — @]+ F>2(.\.—»vlv2|:w - —] }
mmy w
: (i) ()
Lr(X—J/dd) = S0mm? N2 (m3, m3, m%) Y ACFY v v, F¥_vv.} (46)
X i=j=1
[
where w = q - q@/(mymg) = (my — mj, — m3)/ From the numerical results, one can see that the possi-

(2mymg). A is the Killen function and C;; are functions
of the relevant masses of initial and final states which will
be given in the Appendix.

IV. NUMERICAL RESULTS AND DISCUSSIONS

With these discussions, the numerical calculation can be
performed via standard loop derivation. Since the magni-
tude of Ay is unknown, we vary its magnitude from 0.5 to
4.0 GeV to find its physical region where the data can be
understood. In our estimate, we use the central value of the
total width, i.e., I'y = 13.3 MeV. And, because it is diffi-
cult to determine the relative signs between £45 and L4
and other terms, we will consider two cases when we
do our numerical calculation, i.e., the last two terms of
Eq. (38) give positive and negative contributions to the
total Lagrangian. Our results are summarized in Tables I
and II.

bility that X(4350) is a molecular state of D},D} cannot be
ruled out in our model. In the case that X(4350) has
quantum numbers J°¢ = 07, the physical region of Ay
is smaller than the tensor resonance case which means the
size of scalar X(4350) is bigger than the tensor one.

We would like to point out that, because we used the
minimal values of the theoretical calculation of coupling
constants gp- pr and gp  p,your final results of the partial

widths can be regarded as lower limits. This is an ambigu-

TABLE I.  Our numerical results in the case of the positive sign
of Eq. (38).

Ay Branch product | . | .
Jre (GeV) (eV) (KeV) (KeV)
0**  05-0.7 2.19-10.26 100.9-174.5  0.29-0.78
27t 1.1-1.8 1.24-2.28 285.3-973.5  0.03-0.09
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TABLE II.  Our numerical results in the case of the negative
sign of Eq. (38).

Ay Branch product | . | [
Jre (GeV) (eV) (KeV) (KeV)
0t 05-06 7.21-12.74 373.6-391.0  0.26-0.43
27t 1.0-1.9 0.66-2.42 166.0-915.1  0.02-0.19

ity of the present calculation. In fact, the best way to
determine these coupling constants is from data, but be-
cause of the precision of the data, we cannot in this way.

When the magnitudes of coupling constants gp- p:, and

gp,,p,y are improved, the theoretical results of the product
of the two-photon decay width and branch fraction to
J/ ¢ should be larger than the present conclusion. In
this case, compared to the tensor X(4350), the typical
region of Ay for scalar resonance can be reduced to an
unphysically small region so one can first rule out the
possibility of a scalar molecule.

Another ambiguity in our calculation of the product of
the two-photon decay width and branch fraction to J/ ¢ ¢
is from the total width of X(4350). Here we apply the
central value, i.e., I'y = 13.3 MeV. When a larger total
width is applied, the physical region of Ay can be enlarged.
But this does not affect the partial widths for strong and
electromagnetic decays we predicted above in the corre-
sponding region of Ay.

Finally, we conclude that, with the present data and in
the framework our model, X(4350) can be interpreted as a
D;,D§ molecule.
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APPENDIX: EXPLICIT FORMS FOR THE
FUNCTIONS C;;

In this Appendix, I will present the coefficients C;; in
formula (46):

C = m[ﬂzu + 12mim3)],

Cp= 124712[/\(5)1(141 +m? +m3) + 24m*mim3)],
Ciz= ﬁ[yg((’" —m3)? —m})],

Cus = Dozl 12 =i = m)

Cis =W[5)\3 (m* —m? —m3)],

Cy = ﬁ[&\2 +44m?(m3 + m3)A + 528mimim*],
Cyy= 12471[)\(5)t + d4m*m?)(m* — m? + m3)],
Cyp= ﬁ[)\(SA + 44m>m3)(m* — m3 + m?)],
Cos = Szl 120" = (0 =L

Cyy = ﬁ[)@m + d4m2m?)],

Cy= 2 2[ X (m* = (mi — m3)?)],

Css = 244—2[ A(m? —m3 +m?)],

Cuy= ﬁ[)\z(&\ + 44m2m%)]

Cys = W[S/ﬁ(rﬂ —m? +m3)],

Css= %[5)\4] (A1)

96m

where A = A(m?, m3, m3) is the Killen function and m =
my, m; = my, and m, = my,.
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