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We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the

commonly used parity (Z2) symmetry. We therefore examine the potential of the colliders to distinguish

models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We

often take the latter to be a Z3 symmetry for illustration. We focus on signatures where a single particle,

charged under the DM stabilization symmetry decays into the DM and standard model (SM) particles.

Such a Z3-charged mother particle can decay into one or two DM particles along with the same SM

particles. This can be contrasted with the decay of a Z2-charged mother particle, where only one DM

particle appears. Thus, if the intermediate particles in these decay chains are off-shell, then the

reconstructed invariant mass of the SM particles exhibits two kinematic edges for the Z3 case but only

one for the Z2 case. For the case of on-shell intermediate particles, distinguishing the two symmetries

requires more than the kinematic edges. In this case, we note that certain decay chain topologies of the

mother particle which are present for the Z3 case (but absent for the Z2 case) generate a cusp in the

invariant mass distribution of the SM particles. We demonstrate that this cusp is generally invariant of the

various spin configurations. We further apply these techniques within the context of explicit models.

DOI: 10.1103/PhysRevD.82.015007 PACS numbers: 14.80.�j

I. INTRODUCTION

There is compelling evidence for the existence of dark
matter (DM) in the universe [1]. These observations can be
explained by the postulating of new stable particles. A
consensus picture of the nature of such a particle is pro-
vided by a host of astrophysical, cosmological, and direct
detection experiments: A viable DM candidate must be
electrically neutral and colorless, nonrelativistic at red-
shifts of z� 3000 and generate the measured relic abun-
dance of h2�DM ¼ 0:1131� 0:0034 [2]. Additionally a
weakly interacting massive particle (WIMP) is a very well-
motivated paradigm [1]. Consider DM particles as relics
which were once in thermal equilibrium with the rest of the
universe. It is well known that the measured relic abun-
dance is correlated with the dark matter annihilation cross
section [3] by

h2�DM ’ 0:1 pb � c
h�vi : (1)

The annihilation cross section of a pair of dark matter
particles into a two particle final state goes as

h�vi � g4

8�

1

M2
; (2)

where g denotes the couplings and M the masses of the
particles in the dark sector. This cross section is naturally
of the right value for g�Oð1Þ and M� 100 GeV.

Moreover, many extensions of the standard model (SM)
at the weak scale, most of which are invoked primarily as
solutions to other problems of the SM (most notably the
Planck-weak hierarchy problem), contain such stable
WIMPs. Because of this possibility, it may be possible to
detect DM directly via scattering off nuclei or indirectly
via detection of its (SM) annihilation products [1].
Such a scenario also makes the idea of dark matter

amenable for testing at the high-energy colliders. It is
possible to produce only DM particles directly at colliders,
but then we do not have any visible signal since the DM
particles will simply escape these detectors without inter-
acting. Instead we investigate events where the dark matter
is produced (indirectly) along with visible SM particles
from the decays of particles charged under both dark
matter stabilization (but heavier than the DM) and the
unbroken SM symmetries. The existence of such mother
particles is a feature of almost all models of physics
beyond the SM that contain stable WIMPs.
To date, a tremendous amount of effort has been made to

reconstruct such events at the upcoming Large Hadron
Collider (LHC) in order to determine the masses of the
DM, the mother particles and possibly intermediate parti-
cles in the decay chains. For example, see Refs. [4–7].
Most of this work has been for parity (Z2) stabilized dark
matter. This is because the most popular models, e.g.
supersymmetric (SUSY), little Higgs, and extra-
dimensional scenarios [8–12], all ensure the dark matter
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candidates remain stable by employing a Z2 stabilization
symmetry. Importantly these models have served as a guide
of expected signatures of dark matter at the LHC [13,14].

In this paper we emphasize that any discrete or continu-
ous global symmetry can be used to stabilize dark matter.1

Furthermore, because all fundamental particles in nature
are defined by how they transform under various symme-
tries, most of the popular (Z2) models actually consider
only one type of DM candidate. It is therefore critical to
determine experimentally, i.e., without theoretical bias, the
nature of the symmetry that stabilizes dark matter. We
embark on a program of study to distinguish models in
which the DM is stabilized by a Z2 discrete symmetry from
models in which the DM is stabilized with other symme-
tries. A beginning effort was made in Ref. [16] which
focused on signatures with long-lived mother particles,
i.e., which decay to DM and the SM particles outside of
the detector. In this paper we study the complementary
possibility of mother particles which decay to DM and the
SM particles inside of the detector.

Our main idea is that the final states and the ‘‘topology’’
of the decay of a mother particle are (in part) determined
by the DM stabilization symmetry. Thus reconstructing the
visible parts of these decay chains will allow us to differ-
entiate a model of DM stabilized with a non-Z2 symmetry
from one where DM is stabilized with a Z2 symmetry. In
this paper we begin to explore such signatures. Our con-
clusions seem generic for most stabilization symmetries
that are not parity symmetries; however, for definiteness,
we focus on the case of a Z3 symmetry. When illustrating
the signatures we will generically refer to any model
stabilized with Z2 and Z3 stabilization symmetry simply
as Z2 and Z3 models, respectively.

More specifically to see differences between Z2 and Z3

models, we focus on the kinematic edges and shapes of
invariant mass distributions of the SM particles resulting
from the decay of a single mother particle charged under
the SM and the DM stabilization symmetries. We note the
possibility of one or two DM particles in each decay chain
being allowed by the Z3 symmetry (along with SM parti-
cles which can, in general, be different in the two decay
chains). Whereas, in Z2 models, decays of a mother parti-
cle in given SM final state cannot have two DM particles in
the decay chain and hence typically has only one DM
particle. Thus,

(i) If all the intermediate particles in the two decay
chains are off-shell and the SM particles in the two
decay chains are the same, then we show that there
are two Z3 kinematic edges in the invariant mass
distribution of this SM final state at approximately
Mmother �mDM and Mmother � 2mDM. Models with
Z2 stabilized dark matter have only one endpoint
approximately given by Mmother �mDM.

In the case of on-shell intermediate particles, the decay
of such a mother in a Z3 model can similarly result in
double edges due to the presence of one or two DM in the
final state. However, in this case the endpoint also depends
on the masses of intermediate particles. Thus it is possible
to obtain multiple edges even from decay of a single
mother particle in a Z2 model due to different intermediate
particles to the same final state. Hence, multiple edges are
not a robust way to distinguish between Z3 and Z2 sym-
metries in the case of on-shell intermediate particles. For
the case of on-shell intermediate particles, we thus use
shapes of invariant mass distributions instead of edges. In
particular,
(i) We find a unique decay chain topology with two SM

particles separated by a DM particle (along with
another DM at the end of the decay chain) which is
generally present for Z3 models but absent for the Z2

case. Based on pure kinematics/phase space, this
topology leads to a cusp (i.e., derivative discontinu-
ity) in the invariant mass distribution of the SM
particles.

Of course for a generic model, it is possible to have a
‘‘hybrid’’ scenario where elements from the on-shell and
off-shell scenarios are present.
An outline of the paper is as follows: In the next section,

we begin with the case of off-shell intermediate particles in
a decay chain. There we show how differing kinematic
edges can be used to distinguish Z2 from Z3 models. In
Sec. III we move on to the case of intermediate particles
being on-shell. There we show the existence of a cusp in Z3

models for certain topologies; further we show that this
cuspy feature survives even when taking spin correlations
into consideration. We then discuss a couple of explicit
models—one based on warped extra-dimensional frame-
work [17,18] and another using DM stabilization symme-
try from spontaneous breaking [15]; see also Ref. [19] for
another example of a Z3-model. Here DM is not stabilized
by Z2 symmetries. In the second model, we show our signal
is invariant under basic detector and background cuts. We
next conclude and briefly enumerate how Z2 models can
fake signals from Z3 models. We also mention future work
to better reconstruct and distinguish Z3 from Z2 models,
e.g., using the two such decay chains present in each full
event.

II. OFF-SHELL INTERMEDIATE PARTICLES

In this paper, we mostly study the decay of a single
heavy particle, which is charged under the dark matter
stabilization and SM symmetries, into SM and dark matter
candidate(s) inside the detector. Henceforth, we denote
such heavy particles by mother particles. In this section
we assume that all intermediate particles (if any) in this
decay chain are off-shell. This off-shell scenario has been
frequently studied by the ATLAS and CMS collaborations

1Gauge symmetries alone cannot be used to stabilize dark
matter. See the discussion in Ref. [15].
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[13,14] for SUSY theories (which is an example of a Z2

model).
We consider constructing the invariant mass distribution

of the (visible) decay products. Unlike for the Z2 case, for
Z3 models a mother particle A can decay into one or two
DM particles along with (in general different) SM parti-
cles. We mostly assume, just for simplicity, that there exist
two visible particles (a, b or c, d) in the final state as shown
below (note however that the same argument is relevant to
the general cases where more than two visible particles are
emitted)2:

Here (and henceforth) the ‘‘blob’’ denotes intermediate
particles in the decay which are off-shell. Also, uppercase
letters/red/dashed lines denote particles charged under the
DM symmetry (Z3 or Z2) and lowercase letters/black/solid
lines denote SM (or ‘‘visible,’’ as opposed to DM) parti-
cles, including, for example, a W boson. Such an unstable
SM particle decays further into SM fermions, at least some
of which are observed by the particle detector.

In order to avoid any possible confusion, we would like
to explain the above diagrams. Under the Z3 symmetry, a
particle/field � transforms as

� ! � exp

�
2�iq

3

�
; (4)

where q ¼ 0 (i.e., Z3-neutral) or q ¼ 1, 2 (nontrivial
Z3-charge). Suppose the lightest of the Z3-charged parti-
cles ( labeled�0) has charge q ¼ 1 (similar argument goes
through for charge q ¼ 2 for �0). Clearly, its antiparticle
( ��0) has (a different) charge q ¼ �1 (which is equivalent
to q ¼ 2) and has same mass as �0. Then, solely based on
Z3 symmetry considerations, all other (heavier)
Z3-charged particles can decay into this lightest
Z3-charged particle (in addition to Z3-neutral particles,
including SM ones). To be explicit, a heavier Z3-charged
particle with charge q ¼ 1 can decay into either (single)
�0 or two ��0’s (and Z3-neutral particles). Taking the CP
conjugate of the preceding statement, we see that a heavier
Z3-charged particle with the other type of charge, namely
q ¼ 2, is allowed to decay into two �0’s or single ��0. Of
course, �0 cannot decay and thus is the (single) DM
candidate in this theory. We denote this DM particle and
its antiparticle by DM and �DM, respectively, in above
diagram (and henceforth), although we do not make this

distinction in the text since DM and anti-DM particles are
still degenerate.3

For simplicity, we assume that the SM (or visible) parts
of the event can be completely reconstructed.4 Considering
the invariant massesmab andmcd, which are formed by the
two SM particles a, b and c, d in each decay chain, one can
easily derive the minimum and the maximum kinematic
endpoints of the distributions of mab and mcd which are
given by [20]:

mmin
ab ¼ ma þmb; (5)

mmax
ab ¼ Mmother �mDM ½Left process of Eq: ð9Þ�;

(6)

mmin
cd ¼ mc þmd; (7)

mmax
cd ¼ Mmother � 2mDM ½Right process of Eq: ð9Þ�:

(8)

Physically, the lower limit corresponds to the case when
the two visible particles a, b (and similarly c, d) are at rest
in their center-of-mass frame so that they move with the
same velocity in any Lorentz frame. The upper limit cor-
responds to the case in which the DM particle(s) are at rest
in the overall center-of-mass frame of the final state. Both
maxima are independent of the masses of the virtual inter-
mediate particles. The point is that the upper endpoints in
the two distributions are different.

A. Double edge

An especially striking/interesting case is when the SM
particles in the two decay chains are identical:

As we show below, it is possible to obtain a double edge in
the distribution of this SM final state. We begin with
presenting a basic idea of this phenomenon, before going
on to more details.

1. Basic idea

Taking into account the fact that the visible particles of
both decays are the same and assuming that both subpro-
cesses are allowed, the experimental distribution

2See Fig. 9 for appearance of these two types of decays,
including the required interactions, in the context of an explicit
model.

3Of course, which of the two particles is denoted anti-DM is a
matter of convention. Also, as a corollary, the DM particle
should be Dirac fermion or complex scalar in a Z3 model.

4We explore the effects of basic background and detector cuts
at the LHC for a simple model in Sec. IVA2. There we show the
effects discussed in this section remain after cuts for the
background.
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ð1=�Þd�=dmab will contain events of both processes. In
such a combined distribution, clearly, the endpoint of
Eq. (8)—denoted now by m0max

ab —will become an edge in

the middle of the distribution, which along with the overall
kinematic endpoint given by Eq. (6), will give rise to a
double edge signal. Assuming the two edges are visible, it
is interesting that we can determine both the DM and
mother particle masses by simply inverting Eqs. (6) and
(8):

mDM ¼ mmax
ab �m0max

ab ; (10)

Mmother ¼ 2mmax
ab �m0max

ab : (11)

In particular, the distance between the two edges is iden-
tified as the DM mass.

In contrast to the cases just considered, in Z2 scenarios
only one or three DM particles (i.e., not two) are allowed in
a single decay chain due to Z2-charge conservation (unless
the process is triggered with an uncharged mother particle
[7]). Independently of phase-space considerations, we note
that in Z2 models the decay chain with three DM particles
should be highly suppressed with respect to the one DM
case. The reason for such an expectation is that a decay
with three DM in the final state requires a vertex with four
(in general different) Z2-charged particles which is typi-
cally absent, at least at the renormalizable level in most
models.5 Therefore, with only one possible decay process
(in terms of the number of DM in the final state) we can
only observe a single kinematic endpoint in the invariant
mass distributions in a Z2 model.

2. Details

Of course the visibility of such a signal depends on the
shapes of the distributions of each subprocess as well as
their relative decay branching fractions. The solid curve
and the dashed plot in the left panel of Fig. 1 illustrate the
generic shape of the distributions for the two processes of
Eq. (9) based only on pure kinematics, i.e., no effects of
matrix element and spin-correlations. (Such effects might
be important and we will return to this issue in the context
of specific models to show that multiple edges can still
‘‘survive’’ after taking these effects into consideration.)
Because of the phase-space structure of the processes one
realizes that the distribution in the case of 3-body decays is
more ‘‘bent’’ towards the right (i.e., larger values of invari-
ant mass) whereas for the 4-body decays the peak of the
distribution leans more towards the left (i.e., smaller values
of invariant mass). Because of this feature, the combination
of the two distributions can give rise to two visible edges
(as long as the relative branchings of the two decays are of

comparable size). This is shown in the right panel of Fig. 1
in which we show the combined invariant mass distribution
of the two visible SM particles, for three different relative
branching fractions of the two subprocesses. Based on the
location of the edges in right panel of Fig. 1 and Eqs. (10)
and (11), the mass of DM particle must be about 300 GeV
and the mass of the mother particle must be about 800 GeV,
which are of course the masses used in the example.
Whether or not the double-edge signal is clear (and

hence we can determine the DM and mother masses) also
depends on the DM mass which must be relatively sizable
compared to the mass of the mother particle. For example,
if we take a DM mass of 50 GeV instead of 300 GeV that
we assumed above, with the mother mass fixed at 800 GeV,
we observe from Fig. 2 that the plotted distribution does
not provide a good measurement of Mmother and mDM.
Let us return to the issue of the relative branching

fraction for each subprocess. The decay into two DM
particles should be generically phase-space suppressed
relative to the decay into just one DM particle, So, based
on pure phase-space suppression, the branching ratio of the
decay into two DM might be much smaller than the decay
into one DM (unlike what is chosen in the figures above).
Hence, it might be difficult to observe a double-edge
signal. However, in specific models this suppression could
be compensated by larger effective couplings so that the
two decays have comparable branching ratio, and there-
fore, the double edge is visible as in Fig. 1.
In fact, another possibility is that the two decay chains

for the Z3 case, i.e., with one and two DM particles, do not
have identical SM final states, but there is some overlap
between the two SM final states. For example,

If we assume that particle c is (at least approximately)
massless, then the maximum kinematic endpoint of mab in
the first of the above-given two reactions is still Mmother �
mDM �mc � Mmother �mDM. In this situation both the
reactions have 4-body final states and hence could be easily
have comparable rates, at least based on phase-space [cf.
Earlier we had 3-body vs 4-body by requiring the same
two-body SM final state for the two reactions found in (9)].
On the other hand, although the two rates are now compa-
rable, it might actually be harder to observe a double edge
because the shape of the two individual distributions are
both peaked towards the left (i.e., smaller values of invari-
ant mass) and even if they have different endpoints, the
combined distribution might not show as clearly a double
edge as the earlier case where the two shapes are appar-
ently distinct.

5Compare this situation to the Z3 case, where appearance of
two DM in a decay chain comes from vertex with three
Z3-charged particles which is more likely to be present, espe-
cially at the renormalizable level.
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B. Different edges in pair production

Finally, what if there are no common SM particles
between the final states of the decay chains with one and
two DM particles so that we do not obtain a double edge?
In this case, one can consider another analysis, by making
the further assumption that the same mother particle A is
pair-produced in each event, and that the decay products of
each A are now distinct and very light or massless, i.e., Here we have chosen three SM particles ða; b; cÞ in the

decay chain with one DM just so that both decay chains
involve a 4-body final state. In this situation one can restrict
to events with all five SM particles ða; . . . eÞ particles in the
final state,6 but use both sides of the event, i.e., obtain the
full invariant mass distribution of the visible particles of
each (distinct) side. In the interpretation of these results in
the context of a Z3 model, the difference between the
endpoints of each separate distribution will give the dark
matter mass, and like before, the mass of the mother
particle A can be found using a combination of the two
endpoints, i.e., mDM ¼ mmax

abc �mmax
de and Mmother ¼

2mmax
abc �mmax

de .

III. ON-SHELL INTERMEDIATE PARTICLES

In this section, we consider the case where the mother
particle decays into SM and DM via intermediate particles
which are all on-shell. Again, like in Sec. II all particles are
assumed to decay inside the detector. In this case, the0 200 400 600 800
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Combined decays: Off shell

FIG. 2 (color online). Same as the right panel of Fig. 1 but
using a smaller DM mass, mDM ¼ 50 GeV. The edge in the
middle of the distribution is no longer apparent.
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4 body and 3 body decays: Off shell
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Combined decays: Off shell

FIG. 1 (color online). Invariant mass distribution ð1=�Þd�=dmab for the processes of Eq. (9). The masses of the mother particle A
and of the DM particles are mA ¼ 800 GeV and mDM ¼ 300 GeV and the SM particles a and b are assumed to be massless. The solid
and dashed curves on the left panel represent the distributions for the 3-body decay and the 4-body decay, respectively. On the right
panel, blue/dashed (highest peaked), red/solid, and green/dot-dashed (lowest peaked) curves show the combined distributions with
branching ratios of 3-body to 4-body given by 1:3, 1:1, and 3:1, respectively.

6If we include other events which have a, b, c or d, e on both
sides, we still get the different edges that we discuss below, but
as we will mention later, such events will not allow us to get rid
of ‘‘faking’’ Z2 models.
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endpoints of invariant mass distributions will depend on
the masses of these intermediate states as well as the
masses of the mother and the final state particles. Both in
the Z2 and Z3 cases there will be more possibilities for the
upper endpoints because of the possibilities of ‘‘multiple
topologies’’ and ‘‘different intermediate particles’’ (to be
explained below) for the same visible final state. Since
even for the Z2 case it is possible to obtain multiple edges,
finding multiple edges is not anymore a robust discrimi-
nator between Z2 and Z3 unlike the off-shell decay case.
We then discuss a topology of the decay chain which does
allow us to distinguish between the two models.

A. Additional sources of multiple edges

Here we discuss how it is possible to obtain multiple
edges even if we do not combine decays of mother particle
into one and two DM particles.

1. Multiple topologies

For Z3 models we can expect multiple endpoints from
the decays of the same mother particle into a given SM
final state by combining the two decay chains with one DM
and two DM particles, respectively, just as in the case of the
decays with off-shell intermediate particles. However, this
is not the only way of obtaining multiple endpoints, i.e.,
such a combination of decay chains with one and two DM
is not essential. The reason is that there are multiple
possible topologies even with the completely identical final
state if it contains two DM, due to the various possibilities
for the locations of two DM particles relative to the other
SM particles in a decay chain. For example, for the case of
a 4-body decay process (i.e., two SM and two DM parti-
cles) there will be three different possibilities:

Note that (as above) decay cascades involve a ‘‘charged-
charged-charged’’ (under Z3 symmetry) vertex (in addition
to ‘‘charged-charged-neutral’’ vertices) in order to contain
two DM particles in the final state.

Assuming that the visible particles are massless, ma ¼
mc ¼ 0, the upper endpoints for each topology are given
by (See Appendix A for details.):

ðmmax
ca Þ2 ¼ 2ðm2

D �m2
CÞðm2

B �m2
DMÞ

m2
B þm2

C �m2
DM � �1=2ðm2

C;m
2
B;m

2
DMÞ

ðfor Eq: ð14ÞÞ
(17)

ðmmax
ca Þ2 ¼ ðm2

C �m2
BÞðm2

B �m2
DMÞ

m2
B

ðfor Eq: ð15ÞÞ
(18)

ðmmax
ca Þ2 ¼ ðm2

D �m2
CÞðm2

C �m2
BÞ

m2
C

ðfor Eq: ð16ÞÞ
(19)

where � is the well-known kinematic triangular function
given in the form of

�ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2zx: (20)

The main point is that kinematic endpoints are functions of
the masses of the mother, the DM and the intermediate
particles, and moreover, this dependence changes accord-
ing to different topologies. Thus, even if the intermediate
particles involved in these decays of a given mother parti-
cle are the same, one will still obtain multiple endpoints.7

Finally, if we combine decay chains with one and two DM
in the final state (even if the latter has just one topology),
the difference between the two endpoints will not lead to a
direct measurement of the DM mass like in the off-shell
decay case because again, the mass of intermediate parti-
cles is one of the main ingredients to determine the
endpoints.
In Z2 models the decay topologies must have a single

DM particle and that too at the end of the decay chain
because the vertices in the decay cascade are of the form
‘‘odd-odd-even’’ (under the Z2 symmetry).8 Nevertheless,
there can still be different topologies because of different
ordering of the visible states. For example:

..

.

Obviously, the endpoints for a given invariant mass distri-

7Of course, the different possible decay topologies can, in
general, have different intermediate states.

8Note that a similar argument applies to decay chains in Z3
models with only one DM in the final state.

AGASHE et al. PHYSICAL REVIEW D 82, 015007 (2010)

015007-6



bution, say mca, will be different for each of these two
topologies, and actually they can be obtained from
Eqs. (17) and (18) by just replacing mDM in the denomi-
nator of Eqs. (17) by mb and leaving Eqs. (18) unchanged
(and where ma and mc are still assumed to vanish).

2. Different intermediate particles for same final state

In addition, even if the topology and the order of visible
particles are the same, there is the possibility of multiple
paths for the same mother particle to decay into the same
(SM and DM) final state by involving different intermedi-
ate particles. We will obtain multiple endpoints in this case
because of the dependence of the endpoints on the masses
of intermediate particles (as mentioned above). This argu-
ment is valid for both the Z2 and Z3 models (and one or two
DM for the latter case): for a final state with two SM and
one DM, we can have

For example, in SUSY, the decay chain �0
2 ! lþl��0

1 can

proceed via intermediate right- or left-handed slepton.
Since the masses of intermediate right- and left-handed
sleptons are in general different, multiple endpoints are
expected.

B. Cusp topology

So far, we have learned that for on-shell intermediate
particle cases the multiple edge signal is not a good crite-
rion to distinguish Z3 from Z2. Instead, we focus on shapes
of these distributions. Consider the topology which can be
present in Z3 models (but absent in the Z2 case) with two
visible SM particles separated by a DM particle,9 i.e.,

We assume massless SM particles (i.e., ma ¼ mc ¼ 0) and
the mass hierarchy mD >mC >mB >mA. Also, we ne-
glect spin-correlation effects in this section. We sketch the
derivation of the distribution of the ac invariant mass here
and refer the reader to the Appendix A for details. The

differential distribution 1
�

@�
@m2

ac
that we want to study can be

obtained for this ‘‘new’’ topology easily by noting that the

differential distribution 1
�

@2�
@u@v must be flat, where the var-

iables are defined as follows

u ¼ 1� cos�ðCÞcDM

2
and v ¼ 1� cos�ðBÞca

2
; (25)
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0.000

0.001

0.002

0.003

0.004

0.005

0.006

mca GeV

1
d dm

ca
G

eV
1

4 body decay: Inv. mass distribution
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4 body decay: Inv. mass squared distribution

FIG. 3 (color online). The panel on the left shows the distribution in mca while the right-hand panel shows the distribution in m2
ca

from the decay chain of Eq. (24). The masses of mother particle, two intermediate particles, and DM particles are 800 GeV, 700 GeV,
400 GeV, and 200 GeV, respectively, and the SM particles are assumed massless. A cusp due to the topology of Eq. (24) is clear in both
distributions.

9Note that in general D might come from the decay of another
Z3-charged particle and similarly, at the end of the decay, A
might not be the DM, that is, it could itself decay further into
DM particles and other visible states as long as Z3-charge
conservation is respected. The ‘‘. . .’’ to the left of D and to the
right of A signify this possibility.
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with �ðBÞca being the angle between c and a in the rest frame

of B, and �ðCÞcDM being the angle between c and DM in the
rest frame of C [21]. In addition, we have 0< u, v < 1.
Thus, we can write

1

�

@2�

@u@v
¼ �ð1� uÞ�ðuÞ�ð1� vÞ�ðvÞ (26)

One further finds that

m2
ca ¼ mmax

ca ð1� �uÞv; (27)

wheremmax
ca is given in Eq. (17) withmDM in the numerator

replaced by mA, and so we can make a change of variables
from the differential distribution of Eq. (26) and obtain the

distribution 1
�

@2�
@u@m2

ca
, which can then be integrated over u to

finally obtain the distribution with respect to mca
10:

1

�

@�

@mca

¼
� 2mca

ðmmax
ca Þ2� ln

m2
C

m2
B

for 0<mca<
ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
mmax

ca

2mca

ðmmax
ca Þ2� ln

ðmmax
ca Þ2
m2

ca
for

ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
mmax

ca <mca<mmax
ca

(28)

where mmax
ca is given in Eq. (17) and

� ¼ 2�1=2ðm2
C;m

2
B;m

2
DMÞ

m2
B þm2

C �m2
DM þ �1=2ðm2

C;m
2
B;m

2
DMÞ

: (29)

From these results we can easily see that the new topology
introduces two different regions in the mca distribution
with a cusp at the boundary connecting both regions,

located at
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
mmax

ca . Figure 11 shows the same distri-
bution in both panels, but with respect to mca on the left
panel and with respect tom2

ca on the right panel. As wewill
argue later, the second option seems better suited once spin
correlations are taken into account, but in both plots, one
observes that the cuspy feature is quite clear.

1. Two visible particles

Consider first the simple case of only two visible parti-
cles in a decay chain. In the Z3 reaction of Eq. (24), D is
then the mother particle and A is DM. Clearly, we would
find a cusp in the invariant mass distribution of the two
visible particles in the Z3 model, but not for the Z2 model
since the two visible particles must always be adjacent to
each other in the latter case.11 Thus, the presence/absence
of cusp could be used to distinguish Z3 and from Z2

models.

2. Generalization to more than two SM particles in decay
chain

Of course, in general in both Z2 and Z3 models there will
be more than two visible particles with possibly some of
them being identical, and this will undoubtedly complicate
the analysis. For example, in the reaction of Eq. (24), a, c,
or both can be produced at some other place of the same
decay chain in addition to the locations shown there, e.g.,

Here a0, which is an identical particle to a, is assumed to
come from the immediate left of D, and c0, which is an
identical particle to c, is assumed to come from the imme-
diate right of A. Note that there is no DM between a0 and c
(unlike between a and c) in first reaction above (similarly
between a and c0 vs between a and c in second reaction
above), and that a and a0, and c and c0 are identical.
Therefore, in both these examples, it is clear that we will
obtain a more complicated distribution in mac than the one
studied previously.
Nevertheless, the method described previously to disen-

tangle the Z2 from the Z3 cases (when having two visible
particles), can still be generalized to the situation of many
visible particles in a decay chain. For example, let us
consider the case of three visible SM particles in the final
state for both Z3 and Z2 models. Wewill obtain a cusp even
in the Z2 case when considering the invariant mass of two
not ‘‘next-door neighbor’’ visible particles such as in mac

for the decay process in Eq. (21). The reason is that, even
though the precise topology of Eq. (24) is absent in a Z2

model, a similar one is generated by the presence of a SM
particle (i.e., b) in-between two other SM particles (i.e., a
and c) as in Eq. (21). Thus the analysis performed earlier
for Eq. (24) applies in this case, but with the DM mass set
to zero (assuming SM particle b is massless).
However, this type of degeneracy between Z2 and Z3 can

be resolved by considering all of the three possible two-
(visible) particle invariant mass distributions. In the Z3

case with two DM particles in the final state, two of these
three invariant mass distributions will have cuspy features
whereas only one such invariant mass distribution will
have a cusp in the Z2 case. The reason is again that in
the Z3 case, since one more particle is added to the decay
products compared to the Z2 case (i.e., we have two
invisible and three visible particles), there will be final
state particles (visible or not) in between the two visible
particles for two of the three pairings. This feature remains
true for more visible particles, i.e., in general we will

10Note that 1
�

@�
@m ¼ 2m 1

�
@�
@m2 .

11Note that we are considering decay of a Z3 or Z2-charged
mother. A Z2-uncharged, i.e., even, mother is allowed to decay
into two DM and can give a cusp in the invariant mass of two
visible particles from such a decay [7].
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obtain more cusps in the invariant mass distributions in a
Z3 model than in a Z2 model.

C. Spin correlations

Once spin correlations are involved, the derivative dis-
continuity (cusp) might appear unclear. Nevertheless, it
may still be possible to distinguish a Z3 model from a Z2

model by employing the fitting method which wewill show
in the rest of this section. The basic idea is that the
distribution d�=dm2

ca of three-body decays in Z2 (i.e.,
one DM particle and two visible particles) can (almost)
always be fitted into a quadratic function in m2

ca, whereas
the distribution of the new topology of Z3 cannot not be
fitted into a single quadratic function, that is, two different
functions are required for fitting each of the two subregions
of the distribution. Let us see how this works for a Z2

model (i.e., one DM and two visible particles) and a Z3

model (i.e., two DM and two visible particles) in turn.

1. Z2 case: 1 DMþ 2 visible

We can again make use of the same angular variables
considered earlier for the case of this 3-body decay cas-
cade, shown, for example, in Eq. (23). According to
Refs. [21,22], the normalized distribution including spin
correlations is given by

1

�

@�

@t
¼ �ðtÞ�ð1� tÞfðtÞ (32)

where again we have defined the variable t as

t � 1� cos�ðBÞba

2
: (33)

Here fðtÞ is a function of t and �ðBÞba is the angle between

particles a and b of Eq. (23) in the rest frame of particle B.
One then notes thatm2

ba ¼ ðmmax
ba Þ2twhich basically means

that the distribution with respect to the invariant mass m2
ba

(which is of our interest) is essentially the same as the one
with respect to t above. This means that the distribution in
m2

ba will have the functional form f. According to

Ref. [23], such spin correlation functions are just polyno-
mials of cos�ba (i.e., (1� 2t)). Moreover, if we restrict our
consideration to particles of spin-1 at most, the maximum
order in t of the polynomial is two, which means that the
most general form of f will be

fðtÞ ¼ c1 þ c2tþ c3t
2: (34)

In turn, the invariant mass distribution we are interested in
must therefore take the form (in the region between the
endpoints enforced by the �-functions)

1

�

d�

dm2
ba

¼ c01 þ c02m2
ba þ c03m4

ba: (35)

With the experimental data we can construct the invariant
mass distribution, and we will be able to determine the
three constants c01, c02, and c03 by fitting into a parabola in

the m2
ba variable. In other words, for any 3-body decay

chain, with or without spin correlation, it is always possible

to fit the invariant mass distribution 1
�

d�
dm2

ba

into a curve

quadratic in m2
ba.

2. Z3 case: 2 DMþ 2 visible

We now consider the new topology of Eq. (24) including
the possibility of spin correlations. As in Sec. III A, we use
the same angular variables u and v. However, the normal-
ized distribution with spin correlations become a little
more complicated than before

1

�

@2�

@u@v
¼ �ðvÞ�ð1� uÞgðuÞ�ðvÞ�ð1� vÞhðvÞ (36)

where again

u � 1� cos�ðCÞcDM

2
; v � 1� cos�ðBÞca

2
: (37)

Like in the previous section, gðuÞ and hðvÞ are spin-
correlation functions (cf. g ¼ h ¼ 1 without spin correla-
tion discussed earlier) and again the invariant mass squared
is given by

m2
ca ¼ ðmmax

ca Þ2ð1� �uÞv: (38)

where � is the same kinematical constant defined in
Eq. (29). As in the analysis without spin correlations, the
two types of �-functions will split the entire region into two
subregions, with a cusp at the separation point, whose
location is independent of the spin-correlation effects
(since it depends on purely kinematical constants � and
mmax

ca ). But unlike the scalar case (i.e., with no spin corre-
lations), we have now two functions gðuÞ and hðvÞ, which
can change the shape of the distribution and in principle
affect the derivative discontinuity (the cusp).
In detail, by the chain rule the previous normalized

distribution can be modified and partially integrated to
obtain

1

�

d�

dm2
ca

¼
Z umax

0

du

ðmmax
ca Þ2ð1��uÞgðuÞh

�
m2

ca

ðmmax
ca Þ2ð1��uÞ

�

(39)

where

umax ¼ Max

�
1;

1

�

�
1� m2

ca

ðmmax
ca Þ2

��
: (40)

The two possible choices in the definition of umax above

arise when integrating 1
�

@2�
@m2

ca@u
with respect to u due, in

turn, to the integration limits enforced by the � functions.
This leads to two different regions for the differential

distribution such that in the first subregion, we have 0<

mca <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
mmax

ca and umax ¼ 1, while for the second

region, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
mmax

ca < mca < mmax
ca and umax ¼

1
� ð1� m2

ca

ðmmax
ca Þ2Þ [21]. So far, most of the steps are similar to
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the case of no spin correlations except for the presence of
the factors of spin-correlation functions, g and h.

It would seem that we need to know the precise form of
g and h in order to proceed further, i.e., in order to perform
the integration in Eq. (39). However, for the purpose of
determining whether or not there is a cusp, we will show
that it is sufficient to know the fact that those spin-
correlation functions must be second order polynomials
in their argument as mentioned in the analysis of the Z2

case. Using this fact we can write down the above inte-
grand as

1

1� �u
gðuÞh

�
t

1� �u

�
¼ b1

ð1� �uÞ3 t
2 þ 1

ð1� �uÞ2

� ðb2tþ b3t
2Þ þ 1

1� �u

� ðb4 þ b5tþ b6t
2Þ

þ ðb7 þ b8tÞ þ b9ð1� �uÞ;
(41)

where we have introduced the same variable t �
m2

ca=ðmmax
ca Þ2 used for the 3-body decays and where the

kinematical constants bi will depend on the specific nature
of the couplings and particles in the decay chain (i.e., they
must be calculated on a case by case basis). The terms of
the integrand are organized as a power series in
(1� �u)—instead of in u—because of the simplicity of
the former form. Integrating then gives

1

�

d�

dt
¼

�
b01 þ b02tþ b03t2 for 0< t <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
b001 þ b002 tþ b003 t2 þ ðb004 þ b005 tþ b006 t

2Þ logt for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
< t < 1

(42)

where again, the kinematical constants b0i and b00i are
specific to each situation. Thus, even with spin correla-
tions, the functional dependence on tð/ m2

caÞ is quite sim-
ple; however, the crucial point is that it is different for each
subregion of the distribution. In particular this simple
dependence in the distribution of m2

ca (and not mca) sug-
gests that it may be more appropriate to consider the
distribution of m2

ca instead of the distribution of mca. In
Fig. 4 we show the m2

ca invariant mass distribution for the
decay chain of Eq. (24), but in the special case where
particle C has spin 1 and the intermediate particle B is a
fermion, and some of the couplings are chiral. We used
MADGRAPH [24] to generate events taking the particles a

and c to be massless and takingmDM ¼ 100 GeV. One can
compare the shape of this distribution with the one from
the right panel of Fig. 11 and see that in this case, including
the spin correlation makes the cusp even more apparent.
One of the main differences between the two subregions

is that the first one has no logarithmic dependence in t
while the second (in general) does have it. Of course, from
Eq. (41), we see that this logarithmic term could be sup-
pressed for the case b4 ¼ b5 ¼ b6 � 0. However, even in
this special case we would still have to employ different
sets of coefficients in the two subregions as follows. The
functional forms in both the regions are now quadratic in t,
i.e.,

1

�

d�

dt
¼

� b7 þ b9
2 ð2� �Þ þ

�
b2

1�� þ b8

�
tþ

�
b1ð2��Þ
2ð1��Þ2 þ b3

1��

�
t2 ð0< t <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þ
1
�

�
b2 þ b7 þ b1þb9

2 � ðb2 � b3 þ b7 � b8Þt�
�
b3 þ b8 þ b1þb9

2

�
t2
�

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
< t < 1Þ

(43)
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FIG. 4 (color online). Invariant mass distribution of particles a
and c, from the decay chain shown in Eq. (24), including spin
correlations, and such that the intermediate particle C has spin 1
and the intermediate particle B has spin 1=2, and the couplings
are chiral. The cusp in this distribution appears more defined
than in Fig. 3 where spin correlations were not considered.
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Considering just the constant terms, we see that it is
possible to obtain identical functions in the two regions
only if � ¼ 1 and b1 ¼ b2 ¼ 0. However, using Eqs. (20)
and (29), it can be shown that � is always (strictly) less
than 1. In other words, it is highly unlikely that the distri-
bution in each subregion can be fitted successfully to the
same polynomial of order two in t; the cusp will thus
survive even in this case.

In Fig. 5 we show the distribution (again obtained with
MADGRAPH [24]) for the same decay chain as in Fig. 4, but

where the chiral structure of some couplings has been
modified from before. We see that the cusp feature is
now less apparent, but one also sees that a full fit to a
polynomial of order two (left panel) is not as good as a
multiple-region fit (right panel), where the first part of the
distribution is fitted to a polynomial of order two [see first
line of Eq. (42)], and the right side of the distribution is
fitted to the functional form (with a logarithm) given in the
second line of Eq. (42).

IV. EXAMPLE MODELS

A. Stabilization symmetries from spontaneous
symmetry breaking

The most popular models of physics beyond the SM
focus on solving the weak-Planck hierarchy problem by
adding new particles at the weak scale. Some of these new
particles can be stable as a consequence of a discrete (often
a parity) symmetry that is a part of (or imposed on) the

theory. Thus these particles can have the correct thermal
relic abundance to constitute dark matter, i.e., dark matter
is then a ‘‘spin-off’’ of solving the hierarchy problem. It
may be possible, however, that the question of the origin of
dark matter is not rooted in first solving the hierarchy
problem. In this case, it is the thermal relic density which
‘‘fixes’’ the mass of the dark matter particles to the weak
scale. As well, it is also known that the dark matter and
baryon densities today are close in size

�DM � 4:7�baryon (44)

which provides a hint to a possible common origin which
may have a solution at the weak scale.
With this background, in Ref. [15], a model was intro-

duced in which a SUðNÞ gauge group is spontaneously
broken to the ZN center. There the goal was to, in part,
determine whether a ‘‘copy’’ of weak interactions could
generate a viable dark matter candidate. As is well known,
the SM electroweak gauge group is spontaneously broken
to Uð1Þem which makes the lightest electrically charged
particle (i.e., the electron stable). By analogy the SUðNÞ
gauge group in this model is broken to the ZN center that
stabilizes dark matter. The dark matter candidates which
transform, e.g., as a fundamental under the SUðNÞ are
stabilized by the ZN. A unique, testable feature of these
models is the existence of new gauge bosons that are
neutral under the SM symmetries but do not couple to
SM particles as Z bosons. These gauge bosons transform
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FIG. 5 (color online). Invariant mass distribution of particles a and c, as in Fig. 4, but with different chiral couplings. The cusp
position is less apparent in this case but one can see (left panel) that a fit to a polynomial of second order as shown in Eq. (35) is not
very good (that is, the Z2 interpretation). On the right panel we show the same distribution, with a different fitting function for the left
side of the distribution and the right side [see Eq. (42)], consistent with the existence of a cusp, i.e., the Z3 interpretation.
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as adjoints under the SUðNÞ and therefore are invariant
under the ZN center.

The fermionic dark matter candidate mentioned above
[i.e., transforming as a fundamental under SUðNÞ] would
get a mass m� �vnew. Here � is a generic Oð1Þ Yukawa
coupling. For this mass to be of order the weak scale as
required for the thermal relic abundance [15], the vacuum
expectation value (vev) that breaks the SUðNÞ must be of
order the SM Higgs vev. Thus, the SUðNÞ gauge bosons
also have weak scale masses. As a bonus (or ‘‘double-
duty’’) of the new SUðNÞ vev being similar to the Higgs
vev, at finite temperature these gauge bosons have spha-
leron solutions and nucleate additional bubbles (in analogy
with the weak interactions) that may be relevant for elec-
troweak baryogenesis.

Let us make a connection to our study of distinguishing
Z3 from Z2 using double edges described in Sec. II and new
topologies described in Sec. III. There, we chose Z3 sym-
metry mainly for illustration; in any case, the key to our
signal is the existence of ‘‘charged-charged-charged’’ cou-
plings under the dark matter stabilization symmetry in the
decay chain. Parity stabilized models have only ‘‘odd-odd-
even’’ couplings. Any model, not necessarily a Z3, that
features such coupling has the potential to generate the
signals we discussed earlier.

To this end, we take a ‘‘toy’’ limit of the model discussed
in Ref. [15]. Namely, we consider a scenario where the new
gauge bosons are long-lived and register as missing energy
(E6 T) in the detectors so that they behave effectively as dark
matter particles, i.e., as ‘‘charged’’ (even though they were
uncharged ‘‘to begin with’’). This assumption will then
‘‘convert’’ the ‘‘dark’’ SUðNÞ gauge coupling of a SUðNÞ
fundamental fermion into an effective ‘‘charged-charged-
charged’’ coupling which will result in the double kine-
matic edges as well as the new topologies discussed earlier.
The result will also be to generate a hybrid of the on- and
off-shell scenarios presented above.

Here, we simply want to make an estimate of the robust-
ness of the signal described in Secs. II and III in the
presence of basic detector and background cuts. So, the
above toy limit of model in Ref. [15] will suffice for such a
study of exploring the effects of the ‘‘charged-charged-
charged’’ coupling in a more realistic situation than con-
sidered in earlier sections.12 As a first step, following [15],
we summarize the effective lagrangian for our model.
Later we will discuss a simple production mechanism
and discuss cuts consistent with the ATLAS and CMS
collaborations. Results follow afterwards.

For simplicity we chose N ¼ 2 to make our analysis. To
break the SUð2ÞD ! Z2 we require two new additional
higgses in the dark sector which transform as an adjoint

� ¼
�2

�0

�1

0
@

1
A � ¼

�0

�1

�2

0
@

1
A: (45)

The Higgs generate the following vevs

� ¼
0
v1

0

0
@

1
A � ¼

v2

0
0

0
@

1
A: (46)

which break the SUð2ÞD to the center. A general scalar
potential does not naively generate the required breaking.
To get the correct vacuum alignment, we require a scalar
potential in the dark sector to minimizes � � �. SUð2ÞD
scalar potential is

V ¼ �1ð�2 þ �7� � �� v2
1Þ2 þ �2ð�2 þ �8� � �� v2

2Þ2
þ �3ð�2 þ �2 � v2

1 � v2
2Þ2 þ �4ð� � �Þ2

þ �5�
3 þ �6�

3: (47)

which generates three new heavy gauge bosons as well as
three additional Higgses. In addition, we add anomaly free
scalar and fermions with the quantum numbers listed in
Table I.
Constructing a supersymmetry UV completion to this

effective Lagrangian is straightforward. Although the de-
tails is beyond the scope of this paper, note a simple way to
do so would be to augment minimum supersymmetric
standard model with chiral superfields with the charges
in Table I. SUSY breaking terms would then need to be
constructed to lift the appropriate particles which will be
integrated out to generate the effective theory.

1. Production rates at the LHC

As an example of the unique decay topologies generated
by these models, we consider pair production of new exotic
heavy quarks, pp ! �QQ. The leading production mecha-
nism is via QCD

TABLE I. An effective, anomaly free particle spectrum that
fills out a ð5; 2Þ þ ð�5; 2Þ. The ‘‘s’’ prefactor denotes a scalar
particle. Here V	 are the SUð2ÞD gauge bosons. We assume the

mass of the Q and s� is heavy and integrated out. The rest of the
spectrum mediates the decay chain in Eq. (48).

Particle SUð3Þc SUð2ÞL SUð2ÞD Uð1ÞY
Q 3 1 2 1=3
sQ 3 1 2 1=3
L 1 2 2 �1=2
sL 1 2 2 �1=2
� 1 1 2 0

s� 1 1 2 0

V	 1 1 3 0

� 1 1 3 0

� 1 1 3 0

12Alternatively, extensive model building along the lines of
Ref. [15], which is not the focus of this paper, can provide a
‘‘genuine,’’ i.e., without assuming long-lived gauge bosons, ‘‘-
charged-charged-charged’’ coupling.
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pp ! sQ	sQþ X ! �q�sQþ X ! �q�q �ql ��þ X (48)

where X represents the beam remnant and other possible
hadronic activity. The first sQ decays via sQ	 ! �q� and
the second decay to sQ ! q�ll �� which is a primary decay
chain of study. The charged leptons are l ¼ e, 	. The
signal is for two isolated leptons, two light quark jets and
large amounts of 6ET . We take a mass spectrum of

mQ ¼ 700 GeV mL ¼ 650 GeV

msL ¼ 300 GeV m� ¼ 100 GeV

mV ¼ 100 GeV

(49)

The topology of the primary decay chain is shown in Fig. 6.
The partial decay widths for the sQ is

�1 ¼
�2
1MQ

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

DM

M2
Q

vuut �2 ¼
�2
2MQ

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M2

L

M2
Q

vuut (50)

In the analysis, for simplicity, we set all of the Yukawa
couplings to �1 ¼ �2 ¼ �. We assume a 100% branching
fraction of L ! lsL and sL ! l�. In this model the gauge
boson decays at one loop. sL is the lightest partner; thus,
fastest the decay rate goes as

�� g2�4

16�2

m13

M8M4
�

(51)

where m, M� and M are the masses of the gauge boson,

dark matter, and sL, respectively. Here � is the coupling
between the sL, �, and the SM lepton. We take � to have a
technically natural value of �� 0:001 so the gauge boson
is long-lived. With the masses given in Eq. (49), we have a
lifetime of about 10�8 seconds. It should be noted that
long-lived particles take about �Oð1Þ � 10�9 seconds to
transverse the larger ATLAS detector. Thus, these gauge
bosons will register as missing energy. Even though the
coupling is so small, the decay chain proceeds because of
the branching fractions. Finally, the signal is generated
with the new gauge bosons, V, being emitted from the
decay chain in Fig. 6. We list the topologies generated to
order � in Eqs. (B1)–(B5) in Appendix B. In Secs. II and
III, we have discussed the invariant mass distributions for
dark matter stabilized with a Z2 or Z3 stabilization sym-
metry with the virtual particles, respectively, off- or on-
shell. The present model presents a hybrid between the two
pictures. This is because emitting the long-lived gauge
boson forces part of the decay chain off-shell. Emitting
the new gauge boson also causes these diagram to be

suppressed because the virtual particles in the decay chain
must go off-shell. Because there are three new gauge
bosons, the overall off-shell suppression is enhanced by a
multiplicity factor for each boson emitted.

2. Extracting the signal

To get an estimate on the signal we first impose basic
acceptance cuts which are consistent with ATLAS and
CMS studies of on- as well as off-shell SUSY decay
chains. [13,14] We require

j�lj< 2:5; j�jj< 2:5; (52)

�Rll > 0:3; �Rlj;�Rjj > 0:4: (53)

where l and j are lepton and jets. �a is the pseudorapidity

of particle a. �Rab is defined as �Rab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�2

ab þ d�2
ab

q
where d�ab and d�ab is the difference in the pseudora-
pidity and transverse angle of the detector between parti-
cles ‘‘a’’ and ‘‘b.’’ As described in the previous section,
our example signal has two leptons and jets as the SM final
states. The primary SM background for this signal is �tt
decays into two leptons. Additional backgrounds include
QCD, W þ jets and Zþ jets events. ATLAS and CMS
places additional cuts to reduce this as well as other SM
backgrounds. The model allows same-sign or opposite-
sign dileptons in the final state. Since the purpose of this
section is to see the effect of the detector cuts on our signal,
we choose the more conservative opposite-sign dilepton
cuts. We adopt cuts consistent with both collaborations by
requiring
(1) Two leptons with pT > 20 GeV
(2) At least one leading jet with pT > 100 GeV and

subleading jets with pT > 50 GeV
(3) 6ET > 100 GeV and 6ET > 0:2Meff

(4) Transverse sphericity ST > 0:2.
Here the missing energy ( 6ET) is defined as

~6ET ¼ ~6pT ¼ �X
i

~piT (54)

and i runs over the transverse momentum pT of the visible
final state particles in the event. The effective transverse
mass Meff is defined as

Meff ¼
X
i

EiT þ 6ET (55)

where the sum runs over the measured transverse energy
ET from the visible particles in the event. Finally, the
transverse sphericity (ST) is defined as

ST ¼ 2�2

�1 þ �2

(56)

where �1;2 are the eigenvalues of the 2� 2 sphericity

tensor
FIG. 6 (color online). The topology of the primary decay
chain. Here DM is the � particle.
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Sij ¼
X



p
ip

j (57)

where 
 runs over the number of final state jets and leptons.
The other indices, i and j, run over the pT components of
each particle. Sij is evaluated for the final states with �<

2:5 and pT > 20 GeV. ST � 1 for approximately spherical
events; QCD events are usually back-to-back with ST � 0.
Generally, because our signal has three dark matter candi-
dates per event, these cuts could be optimized with larger
6ET cuts. For direct comparison with ATLAS and CMS, we
simulated our signal with the cuts above. The ATLAS
collaboration [13] finds the following backgrounds for
1 fb�1 of integrated luminosity (see Table II).

In addition to these backgrounds, we have an additional
irreducible background when the Z2-like signal process,
Eq. (48), emits Z boson which decay invisibly. The invis-
ible branching for Z bosons into neutrinos is 20% [25].
Finally, in our analysis we simulate calorimetry responses
for the energy measurements by adopting Gaussian smear-
ing [13] with the following parameters.

�Ee

Ee

¼ 10%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðGeVÞ

p 
 0:7%;

�Ej

Ej

¼ 50%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EjðGeVÞ

q 
 3%:
(58)

3. Results

We ran our Monte Carlo for the LHC at 14 TeV center-
of-mass energy for the signal process in Fig. 15. We used
CTEQ 4M parton distribution functions [26]; and, all
results are presented at parton level. �s is computed at
two-loop level. At zero order in the SUð2ÞD gauge cou-
pling, the model admits ‘‘Z2-like’’ topologies. We show the
kinematic edge resulting from this topology in Fig. 7. We
also include SM the dominant �tt as well as the irreducible
Z ! ��� backgrounds. To order � in the SUð2ÞD coupling,
we have six additional diagrams which generate correc-
tions. For completeness, in appendix B, we list all of the
different topologies and plot each correction before inter-
fering the diagram to get Fig. 7. Each diagram listed in the
appendix is instructive for the shape and position for each
kinematic edge. The kinematic cuts listed in Sec. IVA2 are
taken; the shapes of the distribution are generally preserved
under the cuts. The total irreducible background events
from Z ! ��� and the dilepton �tt channel for 100 fb�1 is

BZ! ��� ¼ 98:5 B�tt ¼ 56630: (59)

Additionally, total signal events (Fig. 8) for 100 fb�1

S ¼ 4440; (60)
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FIG. 7 (color online). Dilepton invariant mass (left panel) and invariant mass squared (right panel) distributions for the topology in
Fig. 6. The cuts described in Sec. IVA2 are applied.

TABLE II. SM backgrounds as computed by [13].

Background Events (1 fb�1)

t�t 81.5

W þ jets 1.97

Zþ jets 1.20

QCD 0

Total SM 84.67
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which generates the following signal-to-background ratio
and statistical significance for signal observability

S=B ¼ 0:08 S=
ffiffiffiffi
B

p ¼ 18:6: (61)

B. Warped GUT

We present another very well-motivated Z3 model: for
more details, see the original Refs. [17,18]. This model is
based on the framework of a warped extra dimension with
the SM fields propagating in it which can address both the
Planck-weak and flavor hierarchy problems of the SM [27].
In a grand unified theory (GUT) model within this frame-
work, it was shown that

(i) a viable DM particle can emerge a spin-off of sup-
pressing proton decay.

Moreover,
(ii) Z3 (rather than Z2) as the symmetry stabilizing DM

arises naturally (due to combination of SM color and
baryon number quantum numbers).
It turns out that the SM particles resulting from the decay
of mother particles in this model are mostly top quarks and
W’s. We defer an analysis of the reconstruction of these
decay chains to future work. Here we simply give a sum-
mary of this model and the relevant LHC signals.

1. Basic framework

In this framework, the SM particles are identified as
zero-modes of 5D fields, whereas the heavier modes (i.e.,
nontrivial excitations of the SM particles in the extra

dimension) are denoted by Kaluza-Klein or KK particles
and constitute the new physics. A few TeV KK mass scale
can be consistent with electroweak and flavor precision
tests, at the same time avoiding at least a severe fine-tuning
of the weak scale [27].
An extension of the SM gauge group in the bulk to GUT

gauge group is motivated by precision unification of gauge
couplings and explanation of quantization of hypercharge.
In more detail, the extra/non-SM 5D gauge bosons (de-
noted generically by X) do not have zero-modes by, for
example, an appropriate choice of boundary conditions.
However, these gauge bosons still have KK modes with a
few TeV mass (i.e., same as SM gauge KK modes), instead
of usual mass of �Oð1015Þ GeV in 4D-like GUTs. The
fermions follow a different story as follows. The 5D fer-
mion fields must of course form complete GUT multiplets.
Usually, an entire SM generation fits in such a complete
multiplet(s), for example, 16 for SOð10Þ GUT group, i.e.,
quark-lepton unification is incorporated. However, if we
attempt to identify SM fermions of one generation as zero
modes of a complete 5D GUT multiplet, then it turns out
that we will get too fast proton decay via exchange of X
between SM quarks and leptons—again, with a few TeV
mass.13
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FIG. 8 (color online). Dilepton invariant mass (left panel) and invariant mass squared (right panel) distributions but with the first
order corrections from the long-lived gauge bosons. The left panel features the double kinematic edge. The edges are roughly separated
by the 100 GeV gauge boson mass. The Z2-like signal is also plotted for comparison as well as the backgrounds described in the figure
above. All of the topologies generated by the long-lived gauge bosons are listed and individually plotted in Appendix B.

13It turns out that the couplings of X to SM quarks and leptons
are suppressed – roughly by powers of SM Yukawa couplings—
due to the nature of the profiles in the extra dimension of the
various particles, but this effect is not sufficient to allow a
few TeV mass for X to be consistent with proton decay.
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2. Split fermion multiplets

Fortunately, the breaking of GUT gauge group down to
SM gauge group by boundary condition allows ‘‘split’’
fermion multiplets ( just like for gauge bosons) as follows.
We can choose boundary conditions such that one 5D
multiplet (labeled ‘‘quark’’ multiplet) has zero-mode
only in its quark component, with the leptonlike compo-
nent having only KK mode and vice versa for another
multiplet (labeled ‘‘lepton’’ multiplet’). Thus SM quarks
and leptons originate from different 5D multiplets, avoid-
ing exchange of X gauge bosons between SM quarks and
leptons since such exchange can only couple fermions
(whether zero or KK-modes) within the same 5D fermion
multiplet. In spite of this ‘‘loss’’ of quark-lepton unifica-
tion, the explanation of hypercharge quantization is still
maintained since SM quark must still be part of a complete
GUT multiplet. In fact, such splitting of fermion multiplets
results in precision unification of couplings in the model
where the GUT group is broken down to the SM on the
Planck brane [28]. The reason for the modification relative
to the running in the SM (and hence the improvement in the
unification) is the different profiles for quarks and leptons,
especially within the third generation.

3. Additional symmetry for proton stability

It turns out that to maintain this suppression of proton
decay at higher orders, we have to impose an extra sym-
metry, for example, a gauged Uð1ÞB [commuting with the
GUT group] in the bulk as follows. The entire quark
multiplet is assigned B ¼ 1=3 (i.e., that of the zero-mode
contained in this multiplet). Thus leptonlike states from
this multiplet are ‘‘exotic’’ in the sense that they have B ¼
1=3. Similarly, the entire lepton multiplet is assigned B ¼
0, giving exotic quarklike states (i.e., with B ¼ 0). X’s are
also exotic since they are colored, but have B ¼ 0. The
exoticness is especially striking since these states cannot
decay into purely SM: explicitly, they are charged under a
symmetry

� ! e2�iðð�� ��=3Þ�BÞ� (62)

(where �, �� are the number of color, anticolor indices on a
field �), under which SM is neutral.14 Thus the lightest
Z3-charged particle (dubbed ‘‘LZP’’) is stable (others
Z3-charged particles produced in colliders or in the early,

hot universe decay into it) and a potential DM candidate,
depending on its couplings.

4. Who’s the LZP/DM?

In the model with GUT group broken to the SM on the
Planck brane which was the focus in Refs. [17,18], it turns
out that, due to profile of tR (in turn, based on heaviness of
top quark and constraint from shift in Zb �b coupling), its
exotic GUT partners are lighter that typical KK scale (say,
mass of gauge KK modes). Thus, it is very likely that LZP
resides in this multiplet. In particular, if the GUT group is
SOð10Þ, then there is a GUT partner of tR with quantum
numbers of right-handed (RH) neutrino, but with B ¼ 1=3
(denoted by �0

R and its LH Dirac partner, denoted by �̂0
R). It

has been shown that if this �0 is the LZP,15 then it is a good
DM candidate, in the sense that, in some regions of pa-
rameter space, it has the correct relic density upon thermal
freeze-out in the early universe: see Fig. 5 of Ref. [18] and
Figs. 3 and 4 of Ref. [29] (the latter reference studies a
modified version of the model outlined here) and related
discussion. Similarly, the constraints from direct detection
of DM can be satisfied: see Fig. 7 of Ref. [18] and Fig. 3 of
Ref. [29] and related discussion. Other GUT partners of tR
are then heavier than �0, but they can still be lighter than
SM gauge KK modes. And, GUT partners of other SM
particles, including X-type gauge bosons, are as heavy as
SM gauge KK modes.

5. DM partner at the LHC

As usual, in order to test this idea at colliders, we
consider producing the (other than LZP) Z3-charged par-
ticles at colliders (of course, these must be produce in
pairs) and observe their decays into SM particles and
LZP. Since colored and lightest such particles will have
largest cross-section at the LHC, a good candidate for such
a study is the GUT partner of tR with ðt; bÞL quantum
numbers, denoted by ðt0L; b0LÞ [and its conjugate by

ðt̂0L; b̂0LÞ].16 The two states t0 and b0 are degenerate before
EWSB, but will be split afterward.
We focus here on b0 due to the interesting features in its

decay channels as shown in Fig. 9. Xs, the SUð2ÞL doublet
X, Y and another SUð2ÞL doublet X0, Y0 are beyond SM
gauge bosons of SOð10Þ, with electric charges 2=3, 4=3,
and 1=3, and 2=3 and 1=3, respectively.17 First of all, the
1st decay chain of b0 into two DM (�0

R) and tW does have
the topology needed to give a cusp in the invariant mass of
SM/visible particles (of course assuming on-shell inter-

14In more detail, Uð1ÞB has to be broken to avoid zero-mode
gauge boson. We break it on the Planck brane so that 4-fermion
operators giving proton decay [i.e., violating Uð1ÞB] can only
arise on the Planck brane where they are adequately suppressed.
However, Uð1ÞB still cannot be broken arbitrarily, i.e., a sub-
group of Uð1ÞB must still be preserved in order to forbid (mass)
mixing of lepton and quark multiplets on the Planck brane which
will lead to rapid proton decay—for example, we require that the
scalar vev which breaks Uð1ÞB has B ¼ integer in which case the
above Z3 symmetry is still preserved, even if Uð1ÞB is broken.

15At leading order, all the GUT partners of tR are degenerate,
but higher-order effects can split them.
16Recall that the ðt; bÞL and conjugate of tR are contained in the
same representation, namely, 16 of SOð10Þ so that the ðt0L; b0LÞ
states with B ¼ �1=3 are indeed exotic.
17Note that only the 1st decay channel is shown in Fig. 10 of
Ref. [18].
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mediate particles; see comment below). Second, the 2nd
process above involves the same final state, but with a
different topology and thus is relevant for obtaining mul-
tiple edges (again, with on-shell intermediate particles),
even with two DM in final state. However, it is clear that
the intermediate particles (X-type gauge bosons) in the
above processes are actually off-shell so that these features
are not so useful for us here. Finally, while there does not
seem to be a decay of b0 into tW and one DM which would
be relevant for obtaining double edge with off-shell inter-

mediate particles (when combined with the 1st and 2nd
processes above with two DM), there is a decay to tWW
and one DM (i.e., with an ‘‘extra’’W) as in the 3rd process
above which might play this role. Thus, decay of b0 will
exhibit a double edge due to presence of one DM and two
DM in final state [along the lines of the discussion of
Eq. (2.1.2)]: Mb0 � 2M�0 �mt �mW (for 1st and 2nd
processes) and Mb0 �M�0 � 2mt �mW (for 3rd process).
Note that, in a nonminimal model, for example, if

SOð10Þ is broken on the TeV brane instead of the Planck
brane, the X’s bosons might be lighter so that the inter-
mediate particles in decay chains similar to those above
might be on shell. However, then we might as well study
production of the lighter X’s (instead of the exotic fermi-
ons) which are also colored and which will decay into LZP
via off-shell GUT partners of SM fermions.

V. CONCLUSIONS AND OUTLOOK

Many extensions of the SM contain stable WIMPs
which can be viable DM candidates. Most of these models
stabilize the DM with a parity (Z2) symmetry. However, in
the spirit that all fundamental particles in nature are de-
fined by how they transform under different symmetries,
these models actually correspond to one type of candidate!
On the other hand, any continuous or discrete global sym-
metry can be adopted for DM stabilization; and, DM
candidates stabilized by a parity symmetry and, e.g., a Z3

symmetry are different.
This possibility of other than Z2 symmetries stabilizing

DM is more than just of academic interest; the nature of the
stabilization symmetry has important implications on col-
lider searches for DM. At colliders other particles (heavier
than DM) which are charged under the same symmetry

FIG. 9 (color online). Different possible decay chains for b0 in
the scenario of [18]. Note the appearance of two DM states in
two of the possible decay chains, whereas only one DM particle
comes out of the third possibility.
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FIG. 10 (color online). The plots corresponding to the topology of Eq. (B1).
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which stabilizes the DM candidate(s) can be produced,
decaying into DM and SM particles. Such events will
generate decay topologies and modes that are determined,
in part, by the stabilization symmetry. Thus the analysis of
such ‘‘missing energy’’ signals will present a hint not only
for the existence of the DM but also the nature of its
stabilization symmetry.

For example, the decay of a single such mother particle
can contain one or two DM in the case of a Z3 symmetry,
but only one in the case of Z2 symmetry. We showed that in
many cases simple kinematic observables, such as invari-

ant mass distributions of the visible particles of such decay
chain, could then characterize the stabilizing symmetry.
Specifically, when a mother particle decay via off-shell
intermediate states into the same visible particles along
with one and two DM (for the case of Z3 symmetry), it may
be possible to observe a double edge in the distribution of
these visible particles (vs. single edge for Z2 symmetry). In
fact, the difference between the location of the edges will
be a direct measure of the mass of the dark matter particle
for Z3 models. On the other hand, when the intermediate
particles are on-shell, we also pointed out the possibility of

0 100 200 300 400 500
0

5. 10 6

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

mll GeV

d d
m

ll
p

b
G

eV

3502 4502 55021002 2002 3002 4002 5002
0

2. 10 8

4. 10 8

6. 10 8

8. 10 8

mll
2 GeV2

d d
m

ll2
p

b
G

eV
2

FIG. 12 (color online). The plots corresponding to the topology of Eq. (B3).
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FIG. 11 (color online). The plots corresponding to the topology of Eq. (B2).
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a very distinctive feature appearing in the invariant mass
distribution of two visible particles in the case of Z3

symmetry: a cusp dividing the distribution into two re-
gions. This happens when two DM particles emerge from
the same chain, with one of these DM particles being
situated in between the two SM particles.

A. Signal fakes

We point out that models with parity stabilized dark
matter can naively fake double kinematic edges and cusps.
An example of a faked cusp comes from a decay chain with
on-shell intermediate particles and involving a SM neu-
trino(s) in the final state. If a neutrino is emitted between
the two other, visible SM particles, then we obtain the new
topology considered above so that the invariant mass dis-
tribution of the two visible SM particles can give a cusp. As
another example, a double kinematic edge also comes from
two different mother particles charged under Z2 which
could be produced in separate events [30], but with same
visible decay products18 Also, in this paper, we considered
decays of mother particle into DM and SM particles occur-
ring inside the detector. However, a long-lived, parity odd
particle in a Z2 model that decays outside of the detector
can fake our Z3 signal. For example, a single mother can
decay into such a particle and SM particles. The same
mother can also decay to the same SM final state and the
DM. A combination of these two decay chains can gen-
erate a double edge. A closely related scenario is that there
are actually two (absolutely) stable DM particles in a Z2

model [31], again giving double edges from two decay
chains (along the lines just mentioned). Finally, if there are
more than two SM particles involved in the decay of a
single mother, the analysis of the cusp in the invariant mass
distribution will be more complicated, but nevertheless we
expect that in general the same type of arguments made
here should be able to be implemented in this case. As an
example, a possible pseudo-faking situation will arise
when three visible particles are emitted in a decay cascade
in the Z2 case. However, we mentioned how this type of
faking can be resolved by considering all possible pair
invariant masses.

B. Future considerations

Of course, in any given event, there will be two such
mother particles present19 (three mothers is a possibility in
Z3 case, but it is phase-space suppressed). The assumption
of a Z2 symmetry thus points to an eventual emergence of
two invisible particles for every new physics event in the
collider. On the other hand, models where dark matter is
stabilized with, e.g. Z3 symmetry, can have two, three, or
four dark matter candidates in an event. In an ongoing
work, we construct a variant of the mT2 and mTX variables
[4] to use the information on both decay chains in the full
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FIG. 13 (color online). The plots corresponding to the topology of Eq. (B4).

18Note that, assuming pair production, multiple mothers in Z2

cannot fake different edges in two distributions that we discussed
in Sec. II B.

19However, studying the decay of only one mother (as we have
mostly done in this paper) is still relevant, for example, if this
decay involves a ‘‘clean’’ (SM) final state (vs. a dirtier one from
the other mother). Of course, we also need to determine experi-
mentally which SM particles in the event came from this decay
chain, which is possible, for example, if this mother is boosted in
the laboratory frame so that the decay products are roughly
collimated.
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event. The goals of such techniques are to establish that the
DM is stabilized by a Z3 symmetry in other situations
which were not discussed here, e.g., when a cusplike
topology is absent, and to better eliminate the fakes of Z3

signal by Z2 models. We also are studying other techniques
to eliminate the fakes described above.

In all, we emphasize that parity symmetries are not
necessarily the only way to stabilize the DM and we
showed (via a few example cases) that models with other
stabilization symmetries generally have testable conse-

quences at the LHC, i.e., can potentially be distinguished
from the parity case. The reader should regard this work as
a first step into a more complete study of beyond Z2

stabilized dark matter scenarios.
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FIG. 14 (color online). The plots corresponding to the topology of Eq. (B5).
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APPENDIXA: THEDISTRIBUTION FORTHENEW
TOPOLOGY

Most of the intermediate steps in the derivation of the
cusp in Eq. (28) are similar to the analysis in Ref. [21] of
the reaction in Eq. (21), except for the fact that a DM (i.e.,
massive) particle is situated in between two SM particles in
the new topology [See Eq. (24)]. Based on the algebra and
the notations found in Ref. [21], we will derive a few useful
relations.

Basically, the invariant mass formed by the two SM
particles in this topology is given by

m2
ca ¼ ðpc þ paÞ2 ¼ 2EcEað1� cos�caÞ (A1)

where �ca is the opening angle between two visible parti-
cles. Note that this relation is always valid in any frame so
that we can rewrite the above relation as

m2
ca ¼ 2EðBÞ

c EðBÞ
a ð1� cos�ðBÞca Þ: (A2)

Here and henceforth the (particle) superscripts on �’s (in
this case B) imply that those angles are measured in the rest
frame of the corresponding particle. Using energy-
momentum conservation, we can easily obtain the energies
for a, DM, and c, which are measured in the rest frame of
particle B.

EðBÞ
a ¼ m2

B �m2
A

2mB

(A3)

EðBÞ
DM ¼ m2

C �m2
B �m2

DM

2mB

(A4)

EðBÞ
c ¼ ðm2

D �m2
CÞmB

m2
B þm2

C �m2
DM � �1=2ðm2

C;m
2
B;m

2
DMÞ cos�ðBÞcDM

(A5)

Inserting these relations into Eq. (A2), we obtain

m2
ca ¼ 2 � ðm2

D �m2
CÞmB

m2
B þm2

C �m2
DM ��1=2ðm2

C;m
2
B;m

2
DMÞcos�ðBÞcDM

�m
2
B �m2

A

2mB

ð1� cos�ðBÞca Þ: (A6)

We easily see that the maximum of m2
ca occurs when

cos�ðBÞcDM ¼ 1 and cos�ðBÞca ¼ �1. We want to express the
invariant mass mca in terms of variables which have flat

distributions: this is the case for cos�ðBÞca , but not for

cos�ðBÞcDM. So, we need to express cos�ðBÞcDM in terms of

cos�ðCÞcDM (i.e., the same angle in the rest frame of particle
C) for which the distribution is also flat. This relation can
be found by calculating m2

cDM in the rest frames of particle
C and B:

m2
cDM ¼ m2

DM þ 2EðCÞ
c EðCÞ

DM

� 2EðCÞ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðCÞ

DMÞ2 �m2
DM

q
cos�ðCÞcDM (A7)

¼ m2
DM þ 2EðBÞ

c EðBÞ
DM � 2EðBÞ

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðBÞ

DMÞ2 �m2
DM

q
cos�ðBÞcDM

(A8)

Again, the energy-momentum conservation in the rest
frame of C gives the following relations:

EðCÞ
DM ¼ m2

C �m2
B þm2

DM

2mC

(A9)

EðCÞ
c ¼ m2

D �m2
C

2mC

(A10)

Substitution of EDM and Ec in the rest frame of C and B

into Eq. (A7) and (A8) gives the relation between cos�ðBÞcDM

and cos�ðCÞcDM:

2m2
B

m2
C þm2

B �m2
DM ��1=2ðm2

C;m
2
B;m

2
DMÞ cos�ðBÞcDM

¼
�
1�m2

C �m2
B þm2

DM ��1=2ðm2
C;m

2
B;m

2
DMÞcos�ðCÞcDM

2m2
C

�

(A11)

Next, we introduce the variables u and v:

u � 1� cos�ðCÞcDM

2
; v � 1� cos�ðBÞca

2
(A12)

and using Eq. (A11), we express m2
ca in terms of u and v:

m2
ca ¼ ðmmax

ca Þ2ð1� �uÞv (A13)

where

ðmmax
ca Þ2 ¼ 2ðm2

D �m2
CÞðm2

B �m2
AÞ

m2
B þm2

C �m2
DM � �1=2ðm2

C;m
2
B;m

2
DMÞ

:

(A14)

Note that the differential distributions for u and v (0 � u,
v � 1) are also flat:

1

�

@2�

@u@v
¼ �ðuÞ�ð1� uÞ�ðvÞ�ð1� vÞ (A15)

where �ðxÞ is the usual step function. Replacing u and v by
u and m2

ca by using Eq. (A13) gives the differential distri-
bution

1

�

@2�

@u@m2
ca

¼ �̂

�
m2

ca

ðmmax
ca Þ2ð1� �uÞ

�
�̂ðuÞ

ðmmax
ca Þ2ð1� �uÞ

(A16)

where a ‘‘top-hat’’ function �̂ðxÞ � �ðxÞ�ð1� xÞ. The next
step is to integrate over u to find the distribution in m2

ca:
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1

�

@2�

@m2
ca

¼
Z 1

�1
1

�

@2�

@u@m2
ca

du

¼
Z 1

0
�̂

�
m2

ca

ðmmax
ca Þ2ð1� �uÞ

�
1

ðmmax
ca Þ2ð1� �uÞ du

¼
Z umax

0

1

ðmmax
ca Þ2ð1� �uÞdu

(A17)

for 0 � mca � mmax
ca , where

umax ¼ Max

�
1;

1

�

�
1� m2

ca

ðmmax
ca Þ2

��
: (A18)

Now the above integral is easy to evaluate, and we finally
obtain the distribution which was given earlier in Eq. (28):

1

�

@2�

@m2
ca

¼
8><
>:

1
ðmmax

ca Þ2� ln
m2

C

m2
B

for 0<mca <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
mmax

ca

1
ðmmax

ca Þ2� lnðm
max
ca Þ2
m2

ca
for

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
mmax

ca < mca < mmax
ca :

(A19)

APPENDIX B: SIGNAL TOPOLOGIES FROM
SEC. IVA1

In addition to the decay chain in Fig. 6 for the model
presented in Sec. IVA, there are additional corrections by
the long-lived SUð2ÞD gauge bosons. The masses are listed

in Eq. (49). As described above, the virtual particles in the
decay chain go slightly off-shell when emitting the new
gauge boson; however, because there are three of them, the
additional multiplicity factor helps to ameliorate this sup-
pression. In this appendix for each topology, we plot the
invariant mass distributions with the cuts in Sec. IVA2
(see Figs. 10–15).

Equations (B1)–(B4): Order � corrections by the SUð2ÞD gauge bosons to the decay chain in Fig. 6. See the model in
Sec. IVA.

Equation (B5): Order � corrections by the SUð2ÞD gauge bosons to the decay chain in Fig. 6. See the model in Sec. IVA.
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