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We consider a model of strong electroweak symmetry breaking in which the expectation value of an

additional, possibly composite, scalar field is responsible for the generation of fermion masses. The

dynamics of the strongly coupled sector is defined and studied via its holographic dual, and does not

correspond to a simple, scaled-up version of QCD. We consider the bounds from perturbative unitarity, the

S parameter, and the mass of the Higgs-like scalar. We show that the combination of these constraints

leaves a relatively limited region of parameter space viable, and suggests the qualitative features of the

model that might be probed at the LHC.
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I. INTRODUCTION

The physics of electroweak symmetry breaking (EWSB)
will soon be probed directly at the Large Hadron Collider
(LHC). One logical possibility is that the sector responsible
for electroweak symmetry breaking will involve new, non-
perturbative dynamics. Historically, technicolor models
have represented an attempt at constructing viable theories
of this type [1].

Conventional technicolor models, however, suffer from
a number of well-known problems. As originally proposed,
the technicolor sector was assumed to be a scaled-up
version of QCD, leading to estimates for the S parameter
that are unacceptably large [2]. In addition, an extended
technicolor (ETC) sector must be added to generate the
operators needed to account for standard model fermion
masses [3]. In many ETC models, it is impossible to
account for a heavy top quark (which requires the ETC
scale to be low) and suppress other ETC operators that
contribute to flavor-changing-neutral-current (FCNC) pro-
cesses (which requires the ETC scale to be high). Viable
and elegant ETC models have been few and far between.

Developments over the past decade in the physics of
higher-dimensional and conformal field theories, however,
have led to new possibilities in technicolor model building
[4–19]. For example, the magnitude of the S parameter in
QCD-like technicolor theories suggests one should not
exclusively study theories that are exactly like QCD (as,
for example, in Ref. [5] or Ref. [6]). A decade or so ago,
this would have been a fruitless effort. Now, the AdS/CFT
correspondence [20] provides a means of constructing a
perturbative, five-dimensional (5D) theory that is dual to a
strongly coupled technicolor theory localized on a four-
dimensional (4D) boundary [4–16]. For some values of the
parameters that define the 5D theory, the dual theory can
model a scaled-up version of QCD. However, for other
parameter choices it does not. In either case, observables

can be computed reliably in the 5D theory, which we can
think of as defining its strongly coupled dual. The freedom
to deviate from the QCD-like limit only presumes the
validity of a gauge/gravity correspondence. The evidence
for this is not insignificant, and includes holographic mod-
els of QCD phenomenology that agree remarkably well
with the low-energy data [21,22].
The problem with fermion mass generation in the con-

ventional ETC framework, on the other hand, may suggest
something about the form of the relevant low-energy ef-
fective theory. It was observed long ago that a techniquark
bound state with the same quantum numbers as a standard
model Higgs doublet can form in ETC models in which the
ETC gauge coupling becomes strong [23]; this bound state
has Yukawa couplings to the standard model fermions and
may develop a vacuum expectation value, producing fer-
mion masses. The low-energy effective theory, taken by
itself, has no problems with FCNC effects, since these
originate from scalar-exchange diagrams that are no larger
than in conventional two-Higgs doublet models. A signifi-
cant number of phenomenological studies on such ‘‘bo-
sonic technicolor’’ scenarios were motivated by the
simplicity of this low-energy effective theory [24–32].
While bosonic technicolor can arise from a (fine-tuned)
strongly coupled ETC model, the low-energy effective
theory is by no means linked uniquely to that ultraviolet
completion. For example, the same effective theory can
arise in a warped, 5D theory with a Higgs field localized
near the Planck brane and symmetry-breaking boundary
conditions on the bulk gauge fields [7]. In this setting, the
presence of a scalar in the spectrum of the theory seems far
from scandalous. The value of working with the low-
effective effective description is that one can extract robust,
low-energy predictions of the theory without being hin-
dered unnecessarily by one’s ignorance of the physics that
has decoupled in the ultraviolet.
It is such robust predictions of the low-energy effective

theory that are of interest to us in this paper. Using the
holographic approach to define our strongly coupled sec-
tor, and the associated freedom to deviate from the limit in
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which this sector is like QCD, we show that the parameter
space of the theory is nonetheless significantly constrained.
Combining the bounds on the S parameter (evaluated holo-
graphically), partial-wave unitarity in longitudinal W bo-
son scattering (with the technirho couplings evaluated
holographically) and the bound on the mass of the light
Higgs-like scalar (with a relevant chiral Lagrangian pa-
rameter evaluated holographically), we find that there is a
relatively narrow region of parameter space in which the
model is currently viable. In deforming the theory away
from its QCD-like limit, we focus primarily on varying the
ratio of the chiral symmetry breaking to the confinement
scale, as well as the amount of explicit chiral symmetry
breaking originating from the current techniquark masses.
In addition, bosonic technicolor models allow one to vary
the symmetry-breaking scale associated with the strongly
interacting sector, while holding the electroweak scale
fixed. Within the allowed parameter region, the ranges of
observable quantities are substantially restricted, suggest-
ing the qualitative features of the model that may be
relevant at the LHC. The new results presented here sug-
gest that the simplest version of holographic bosonic tech-
nicolor may be sufficiently constrained that upcoming
collider data could soon render debates on the possible
origins of the effective theory largely irrelevant.

Our paper is organized as follows. In the next section,
we review the relevant low-energy effective theory. In
Secs. III and IV, we discuss the holographic calculations
of the observable quantities that we use to constrain the
parameter space of the theory. In Sec. V, we present our
numerical results and in Sec. VI we summarize our
conclusions.

II. THE MODEL

The gauge group of the model is GTC � SUð3ÞC �
SUð2ÞW � Uð1ÞY , where GTC represents the technicolor
group. We will assume that GTC is asymptotically free
and confining. We assume two flavors of technifermions,
p and m, that transform in the N-dimensional representa-
tion of GTC. In addition, these fields form a left-handed
SUð2ÞW doublet and two right-handed singlets,

�L �
�
p
m

�
L
; pR; mR; (2.1)

with hypercharges Yð�LÞ ¼ 0, YðpRÞ ¼ 1=2, and
YðmRÞ ¼ �1=2. With these assignments, the technicolor
sector is free of gauge anomalies. With N even, the SU(2)
Witten anomaly is also absent.

The technicolor sector has a global SUð2ÞL � SUð2ÞR
symmetry that is spontaneously broken when the techni-
fermions form a condensate

h �ppþ �mmi ¼ �0: (2.2)

The electroweak gauge group of the standard model is a
subgroup of the chiral symmetry; SUð2ÞW is isomorphic to

SUð2ÞL, while Uð1ÞY is identified with the third generator
of SUð2ÞR. The condensate breaks SUð2ÞW � Uð1ÞY to
Uð1ÞEM and generates W and Z masses. However, addi-
tional physics is required to communicate this symmetry
breaking to the standard model fermions. Bosonic techni-
color models utilize the simplest possibility, a scalar field
�, that transforms as an SUð2ÞW doublet with hypercharge
Yð�Þ ¼ 1=2. The scalar has Yukawa couplings to both the
technifermions,

L �T ¼ � ��L
~�hþpR � ��L�h�mR þ H:c:; (2.3)

and to the ordinary fermions,

L �f ¼ � �LL�hlER � �QL
~�hUUR � �QL�hDDR þ H:c:;

(2.4)

where ~� ¼ i�2��. Unlike the standard model Higgs dou-
blet, the� field is assumed to have a positive squared mass.
When the technifermions condense, Eq. (2.3) produces a�
tadpole term in the scalar potential, and � develops a
vacuum expectation value, as we will see in a more
convenient parametrization below. Standard model fer-
mion masses then follow from the Yukawa couplings in
Eq. (2.4).
To be more explicit, we use the conventional nonlinear

representation of the Goldstone bosons to construct the
electroweak chiral Lagrangian. We define

� ¼ expð2i�=fÞ; � ¼ �0=2 �þ=
ffiffiffi
2

p
��=

ffiffiffi
2

p ��0=2

 !
;

(2.5)

where � represents an isotriplet of technipions, and f is
their decay constant. The � field transforms under
SUð2ÞL � SUð2ÞR as

� ! L�Ry; (2.6)

which dictates the form of the pion interactions. To include
the scalar doublet consistently in the effective theory, it is
convenient to use the matrix form

� ¼ ��0 �þ
��� �0

� �
; (2.7)

where the first and second columns show the components

of the doublets ~� ¼ ð ��0;���ÞT and � ¼ ð�þ; �0ÞT ,
respectively, with superscripts indicating the electric
charges. The technifermion Yukawa couplings can be reex-
pressed as

�� L

��0 �þ
��� �0

� �
hþ 0
0 h�

� �
�R � ��L�H�R; (2.8)

where we have defined the column vector�R � ðpR;mRÞT .
Since the underlying theory would be invariant if the
combination �H transformed as

ð�HÞ ! Lð�HÞRy; (2.9)
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one may correctly include this combination in the effective
theory by assuming it transforms in this way. The lowest-
order term in the electroweak chiral Lagrangian that in-
volves �H is

L H ¼ c14�f
3 Trð�H�yÞ þ H:c:; (2.10)

where c1 is an unknown, dimensionless coefficient; one
expects c1 to be of order 1 by naive dimensional analysis
[33] in a QCD-like theory. Henceforth, we assume that
hþ ¼ h� � h, to simplify the parameter space of the
model.

It is convenient to reexpress the� field using a nonlinear
field redefinition, similar to Eq. (2.5). Expanding about the
true vacuum,

� ¼ �þ f0ffiffiffi
2

p �0; �0 ¼ expð2i�0=f0Þ; (2.11)

where f0 is the vev of � and �0 represents its isotriplet
components. The kinetic terms for the � and � fields can
be written

L KE ¼ 1

2
@��@

��þ f2

4
TrðD��

yD��Þ

þ ð�þ f0Þ2
4

TrðD��
0yD��0Þ; (2.12)

where the covariant derivative is given by

D�� ¼ @��� igW�
a
�a

2
�þ ig0B��

�3

2
: (2.13)

In the expansion of Eq. (2.12), there are quadratic terms
that mix the gauge fields with derivatives of a specific
linear combination of the pion fields:

�a ¼ f�þ f0�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ f02

p : (2.14)

The mixing indicates that the components of �a are un-
physical and can be gauged away. On the other hand, the
orthogonal linear combination,

�p ¼ �f0�þ f�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ f02

p ; (2.15)

represents physical states in the low-energy theory. The
physical pion mass is determined from Eq. (2.10):

m2
� ¼ 8

ffiffiffi
2

p
�c1h

f

f0
v2: (2.16)

In unitary gauge, the remaining quadratic terms give the
masses of W and Z bosons,

m2
W ¼ 1

4g
2v2; m2

Z ¼ 1
4ðg2 þ g02Þv2; (2.17)

where v represents the electroweak scale

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ f02

q
¼ 246 GeV: (2.18)

In the absence of a technicolor sector, with f0 ¼ v, the�
field corresponds to the Higgs boson of the standard model.
Away from this limit, the � field is similar to a standard
model Higgs boson, but with different couplings.
Expanding the third term of Eq. (2.12), we find that the
coupling between � and the gauge bosons is given by

L �WZ ¼ 2
f0

v

m2
W

v
�Wþ�W�

� þ f0

v

m2
Z

v
�Z�Z�; (2.19)

which is reduced by a factor of f0=v compared to the result
in the standard model. The couplings of the � field to the
quarks is given by

L��qq ¼ � �c L�
hU 0
0 VCKMhD

� �
c R þ H:c:; (2.20)

where c L ¼ ðUL; VCKMDLÞ, c R ¼ ðUR;DRÞ, hU ¼
diagðhu; hc; htÞ, and hD ¼ diagðhd; hs; hbÞ. Using
Eq. (2.11), this may be written

L��qq ¼ ��þ f0ffiffiffi
2

p �c L�
0 hU 0

0 VCKMhD

� �
c R þ H:c:

(2.21)

Taking into account the leptons, the coupling of the � field
to fermions is given by

L � �ff ¼ � X
fermions

v

f0
mf

v
� �ff: (2.22)

Equation (2.22) is larger than the corresponding result in
the standard model by a factor of v=f0; this enhancement
corresponds to the larger Yukawa couplings that are re-
quired when electroweak symmetry breaking comes
mostly from the strongly coupled sector.

III. HOLOGRAPHIC CALCULATIONS

We model the technicolor sector using the AdS/CFT
correspondence [20], which allows us to numerically
evaluate the otherwise undetermined coefficients of the
electroweak chiral Lagrangian, such as the parameter c1
of Eq. (2.10). The AdS/CFT correspondence conjectures a
duality between a 5D theory in anti-de Sitter (AdS) space
and 4D conformal field theory (CFT) located on a bound-
ary. For theories like QCD that are confining, the metric is
a slice of AdS space:

ds2 ¼ 1

z2
ð�dz2 þ dx�dx�Þ; � � z � zm: (3.1)

The position in the fifth dimension z corresponds to the
energy scale in the 4D theory; branes at z ¼ � and zm
correspond to the ultraviolet (UV) and infrared (IR) cutoffs
of the dual theory. The AdS/CFT correspondence dictates
that operators in the boundary theory correspond to bulk
fields in the 5D theory. To be more precise, given an
operatorOwith the source�0ðxÞ, the generating functional
in the 4D quantum field theory, W4D, is given by the
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classical action of the 5D theory written in terms of the
boundary value of the corresponding bulk field, �ðx; zÞ:

W4D½�0ðxÞ� ¼ Sclass5D j�ðx;�Þ¼�0ðxÞ: (3.2)

In addition, the AdS/CFT correspondence identifies each
global symmetry in the boundary theory with a gauge
symmetry in the 5D theory. The 5D action that describes
the technicolor sector of our model is

S5D ¼
Z

d5x
ffiffiffi
g

p
Tr

�
� 1

2g25
ðF2

R þ F2
LÞ þ jDXj2 þ 3jXj2

�
:

(3.3)

The chiral symmetry of the technicolor sector corresponds
to the SUð2ÞL � SUð2ÞR gauge symmetry of the 5D theory,
with gauge fields AL;R ¼ Aa

L;Rt
a, where the ta are gener-

ators of SU(2) with Trtatb ¼ �ab=2. The covariant deriva-
tive and field strength tensors are defined by D�X ¼
@�X � iAL�X þ iXAR� and FL;R�� ¼ @�AL;R� �
@�AL;R� � i½AL;R�; AL;R��, where X is a complex scalar

field that transforms as a ð3; �3Þ under the SUð2ÞL �
SUð2ÞR gauge symmetry. The scalar field ð2=zÞX corre-
sponds to the operator �qRqL, while the gauge fields A

a
L;R�

correspond to the chiral currents �qL;R	
�taqL;R.

The equations of motion for the X field may be solved,
subject to the UV boundary condition 2=�Xð�Þ ¼ mq:

XðzÞ ¼ 1
2ðmqzþ �cz

3Þ � 1
2X0ðzÞ: (3.4)

The techniquark mass mq is related to the parameter h by

mq ¼ hf0=
ffiffiffi
2

p
. The coefficient �c is equal to the conden-

sate �0 [defined in Eq. (2.2)] when mq ¼ 0, as can be

shown by varying the action with respect to mq and then

taking the chiral limit. More generally, �c is a parameter
that defines the holographic theory that wewill eliminate in
terms of the technipion decay constant f, as we discuss
below.

We work with the vector and axial-vector fields V ¼
ðAL þ ARÞ=

ffiffiffi
2

p
and A ¼ ðAL � ARÞ=

ffiffiffi
2

p
, respectively. The

bulk-to-boundary propagator Vðq; zÞ is defined as the so-
lution to the transverse equations of motion with
V�ðq; zÞ? � Vðq; zÞV�ðqÞ? and Vðq; �Þ ¼ 1, where � is

the UV boundary. From Eq. (3.3), it follows that the bulk-
to-boundary propagators satisfy

@z

�
1

z
@zVðq; zÞ

�
þ q2

z
Vðq; zÞ ¼ 0; (3.5)

@z

�
1

z
@zAðq; zÞ

�
þ q2

z
Aðq; zÞ � g25X0ðzÞ2

2z3
Aðq; zÞ ¼ 0:

(3.6)

In accordance with Eq. (3.2), the vector and axial-vector
two-point functions are given holographically by [21]

�Vð�q2Þ ¼ 2

g25

1

z

@Vðq; zÞ
@z

��������z¼�
;

�Að�q2Þ ¼ 2

g25

1

z

@Aðq; zÞ
@z

��������z¼�
;

(3.7)

where

Z
d4xeiq�xhJa�V ðxÞJb�V ð0Þi � �ab

�
q�q�

q2
� g��

�
�Vð�q2Þ;

Z
d4xeiq�xhJa�A ðxÞJb�A ð0Þi � �ab

�
q�q�

q2
� g��

�
�Að�q2Þ:

(3.8)

Comparing �V with the known perturbative result for an
SUðNÞ gauge theory, valid at high q2, one finds [21]

g25 ¼
24�2

N
: (3.9)

We discuss this assumption further in the section on our
numerical results [34]. With the holographic self-energies
determined, we may compute the technipion decay con-
stant using the observation that �A ! �f2 as q2 ! 0 in
the chiral limit, as in Ref. [21]. Since we treat f as an input
parameter, this computation may be inverted to solve for
the parameter �c defined in Eq. (3.4). The holographic
model of the technicolor sector is then determined by three
free parameters: h, f, and zm.
The IR cutoff zm, however, may be eliminated in terms

of a single physical observable, the technirho mass. The
technirho corresponds to the lowest normalizable mode of
the 5D vector field. The technirho wave function c 
ðzÞ
satisfies the same equation of motion as the bulk-to-
boundary propagator in Eq. (3.5), but with different bound-
ary conditions: c 
ð�Þ ¼ 0 and @zc 
ðzmÞ ¼ 0. These

boundary conditions are satisfied when q2 ¼ m2

 (or the

squared mass of any higher vector mode). The vector
equation of motion may be solved analytically, and one
finds that zm is determined by

J0ðm
zmÞ ¼ 0; (3.10)

where J0 is a Bessel function of the first kind, of order 0.
Hence, for fixed values of h, the f-m
 plane provides a

convenient visual representation of the parameter space of
the model.
For our subsequent analysis, we will need the coupling

of the technirho to the physical pion states. Couplings
between modes may be obtained by substituting properly
normalized wave functions into the appropriate interaction
terms of the 5D theory, and then integrating over the extra
dimension. Requiring that the 4D kinetic terms of the
technirho are canonical gives us the normalization condi-
tion,

Z
ðdz=zÞc 
ðzÞ2 ¼ 1: (3.11)
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For the pions, the situation is slightly more complicated.
There is an isotriplet component � of the X field, X ¼
X0 expð2i�ataÞ; the longitudinal component of the axial-
vector field ’ is also an isotriplet, AM ¼ AM? þ @M’.
These fields satisfy the coupled equations of motion

@z

�
1

z
@z’

a

�
þ g25X

2
0ffiffiffi

2
p

z3

�
�a � ’affiffiffi

2
p
�
¼ 0;

� ffiffiffi
2

p
q2@z�

a þ g25X
2
0

z2
@z�

a ¼ 0:

(3.12)

The technipion state � corresponds to an eigensolution of
the form �ðq; zÞ ¼ �ðzÞ�ðqÞ and ’ðq; zÞ ¼ ’ðzÞ�ðqÞ,
subject to the boundary conditions ’0ðzmÞ ¼ ’ð�Þ ¼
�ð�Þ ¼ 0 [21]. Again, requiring a canonical 4D kinetic
term for the � field gives the desired normalization con-
dition

Z
dz

�
’0ðzÞ2
g25z

þ X0ðzÞ2ð�ðzÞ � ’ðzÞ= ffiffiffi
2

p Þ2
z3

�
¼ 1: (3.13)

The 
�� coupling originates from V’’, V’�, and V��
interactions in the 5D theory, evaluated on the lowest
modes:

g
�� ¼ g5ffiffiffi
2

p
Z

dzc 
ðzÞ

�
�
’0ðzÞ2
g25z

þ X0ðzÞ2ð�ðzÞ � ’ðzÞ= ffiffiffi
2

p Þ2
z3

�
: (3.14)

This result is not quite what we need since we have not
taken into account that physical pion states in the bosonic
version of the theory involve mixing between the� and�0
fields. The mass of the� field that follows from Eq. (3.12)
corresponds to the�2 part of the chiral Lagrangian term in
Eq. (2.10), allowing us to fix the coefficient c1. It follows
that the physical pion mass and the � mass are related by

m2
� ¼ m2

�

f02

v2
; (3.15)

where m2
� is the q2 eigenvalue of Eq. (3.12).

Following from the 5D Lagrangian, the generic interac-
tion between the technirho and the�a and/or�p fields is of

the form

L 
XY ¼ ig
XY

�
0 ½ð@�XþÞY� � Yþð@�X�Þ�; (3.16)

where X and Y are either a physical or absorbed pion.
Taking into account the mixing in Eqs. (2.14) and (2.15),
it follows from Eq. (3.14) that

g
�a�a
¼ f2

v2
g
��;

g
�a�p
¼ g
�p�a

¼ ff0

v2
g
��;

g
�p�p
¼ f02

v2
g
��:

(3.17)

For the masses of the technirho of interest to us later, the
�a couplings will accurately describe the coupling of the
technirho to longitudinal W bosons via the Goldstone
boson equivalence theorem.

IV. CONSTRAINTS ON THE MODEL

A. S Parameter

The size of the S parameter represents a significant
challenge for most technicolor theories [2]. Electroweak
precision tests favor a value smaller than 0.09 [35]; we use
this fact to exclude regions of the f-m
 plane. The S

parameter may be defined in terms of the self-energies
�V and �A, which are computed holographically via
Eq. (3.7):

S ¼ 4�
d

dq2
ð�Vð�q2Þ ��Að�q2ÞÞjq2!0: (4.1)

Note that the dependence of the self-energies on the ultra-
violet cutoff, 1=�, cancels between the two terms in
Eq. (4.1).1 It was shown in Ref. [6] that the value of the
S parameter may be reduced by decreasing f or increasing
m
. (The same effect has been described in a different

context in Ref. [36].) In the first case, one approaches the
limit where electroweak symmetry breaking is accom-
plished almost entirely by the � field, so the presence of
technihadronic resonances is irrelevant; in the second case,
the technihadronic resonances are decoupled, which also
reduces the result for fixed f.

B. Unitarity

In the standard model, unitarity of the WþW� !
WþW� scattering amplitude can be used to obtain a con-
straint on the Higgs boson mass [37]. In the present model,
the� field is analogous to the standard model Higgs boson,
but its coupling toWþW� is reduced by a factor of f0=v, as
we saw in Eq. (2.19). The Feynman diagrams involving
gauge fields and the � boson are shown in Fig. 1. The
corresponding amplitude is given at leading order by

Mgauge þM� ¼ 1

v2
ðsþ tÞ

� 1

v2

�
f0

v

�
2
�

s2

s�m2
�

þ t2

t�m2
�

�
(4.2)

for momenta large compared to mW . In addition, the scat-
tering amplitude also receives important contributions
from diagrams involving technirho exchanges, shown in

1Given that we extract f from�A alone, is it worth noting that
the ln� dependence in this self-energy vanishes for q2 ¼ 0 in the
chiral limit. However, for mq � 0, there is a divergence propor-
tional to m2

q ln� in �Að0Þ that we subtract. In the language of
chiral perturbation theory, this is equivalent to adding a counter-
term whose unknown finite part is of order m2

q. For the techni-
quark masses we consider, this is a negligible correction.
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Fig. 2. To evaluate these, we use the Goldstone boson
equivalence theorem and compute the technirho-exchange
contributions to �þ

a �
�
a ! �þ

a �
�
a , where �a is the linear

combination of isotriplet fields that would be absent in
unitary gauge. This will give the longitudinal W boson
scattering amplitude accurately for external momenta large
compared to theW boson mass, a criterion that will always
be satisfied in the regions of parameter space that are of
interest to us. The 
�a�a coupling is given by Eqs. (3.16)
and (3.17), with g
�� computed holographically using

Eq. (3.14). Thus, we find the technirho contribution to
the scattering amplitude,

M 
 ¼ g2
�a�a

�
sþ 2t

s�m2



þ 2sþ t

t�m2



�
; (4.3)

and the total amplitude,

M ¼ Mgauge þM� þM
: (4.4)

Note that the total amplitude is gauge invariant, as is M


separately.
The most significant constraint from unitarity can be

obtained by considering the J ¼ 0 partial wave

a0ðsÞ ¼ 1

16�s

Z 0

�s
Mdt: (4.5)

Following Ref. [38] we require jRea0ðsÞj � 1=2, over the
range of energies in which our holographic calculation is
valid. Based on what is known from holographic models of
QCD, the holographic construction is trustworthy up to the
mass of the lowest vector and axial-vector resonances, but
becomes increasingly less accurate when properties of
heavier hadronic resonances are considered. Thus, we

take the mass scale of the second vector resonance (i.e.,
the first excited state of the technirho) as a cutoff for our
effective theory. If unitarity is violated above this scale, no
conclusion can be drawn because the calculational frame-
work is suspect. If unitarity is violated below this scale, the
effective theory is excluded in its minimal form. For the �
boson taken as light as possible, the technirho cannot be
made arbitrarily heavy without violating this constraint.
However, the lower bound on the technirho mass is relaxed
when f is made small since the model mimics the standard
model in this limit.

C. Higgs mass

As mentioned in the previous section, the � field is
similar to the standard model Higgs boson, but with modi-
fied couplings. If light enough, the � boson would have
been produced at LEP via the Higgstrahlung process
eþe� ! Z� ! �Z. In the region of parameter space left
viable after the consideration of the unitarity and S pa-
rameter bounds (discussed in the next section), the �� Z
coupling is not less than�90% of its standard model value.
In this case, the LEP bound is modified in accordance with
Fig. 10 of Ref. [39], and differs negligibly from the stan-
dard model result. Note that the partial decay widths to two
fermions are slightly enhanced while the partial decay
widths to two fermions and one gauge boson (via an off-
shell gauge boson) are slightly suppressed. Hence, the
branching fraction to the primary decay channels at LEP,
namely �bb and ���, will remain practically unaffected.
Thus, we will apply the bound m� 	 114:4 GeV to con-
strain the parameter space of the model.
The possible perturbative interactions of the � field

allow us to construct a potential for �. Following the
conventions of Ref. [26],

Vð�sÞ ¼ M2

2
�2

s þ �

8
�4

s � 1

64�2
½3h4t þ 2Nh4��4

s ln

�
�2

s

�2

�

� 8
ffiffiffi
2

p
�c1f

3h�s; (4.6)

whereM2 	 0 and�s ¼ �þ f0. The third term represents
the one-loop radiative corrections from the top quark and
the techniquarks, though only the former is substantial. All
other radiative corrections can be neglected for the values
of the couplings that are relevant in the next section. In
order to remove the dependence on the renormalization
scale �, we define a renormalized coupling �r �
1=3V 0000ðf0Þ, where primes refer to derivatives with respect
to �s. It is convenient for us to work with a redefined

coupling ~�, where

~� � �r þ 11

24�2
½3h4t þ 2Nh4�: (4.7)

Since the � field has no vacuum expectation value,
V0ðf0Þ ¼ 0, from which it follows that

FIG. 2. Technirho contributions to WW ! WW scattering.

Z,

Z,

FIG. 1. Gauge and �-boson contributions to WW ! WW
scattering.
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M2f0 þ 1
2
~�f03 ¼ 8

ffiffiffi
2

p
c1�f

3h: (4.8)

The mass of � is given by V00ðf0Þ:

m2
� ¼ M2 þ

�
3

2
~�� 1

8�2
½3h4t þ 2Nh4�

�
f02: (4.9)

We can eliminate ~� using Eq. (4.8), as well as the chiral
Lagrangian parameter c1 using Eqs. (2.16) and (2.17):

m2
� ¼ 3m2

�

f2

v2
� 1

8�2
½3h4t þ 2Nh4�f02 � 2M2: (4.10)

Since the last term is no smaller than zero in the models of
interest,2 we conclude that

m2
� � 3m2

�

f2

v2
� 1

8�2
½3h4t þ 2Nh4�f02: (4.11)

The physical pion mass m� is computed holographically
following the discussion of Sec. III. For any region of the
f-m
 plane where the right-hand side of Eq. (4.11) is less

than the LEP bound, the � mass can never be any larger,
for any positive M2.

V. NUMERICAL RESULTS

A. Allowed regions

In this subsection, we present our results for the allowed
region of the model’s parameter space. We first assume
h ¼ 0:01 and that the value of g5 is the same as in an SU(4)
technicolor sector. For the unitarity calculation, we fix the
� mass at the LEP bound, 114.4 GeV; taking the � mass
higher only makes the unitarity bound on the 
 mass
stronger. The excluded regions are plotted on the f=v
versus m
 plane. We later consider how the excluded

regions change as h and g5 are varied.
Our results are presented in Fig. 3. The bound from the S

parameter eliminates the portion of the plot with large f
and small technirho masses. In this region, the mass scale
of the technihadrons is low and electroweak symmetry
breaking is primarily a consequence of technicolor dynam-
ics; one would expect this to correspond to a problematic
value of the S parameter. On the other hand, the unitarity
constraint excludes the region with large f and large
technirho masses. Here the theory is more technicolorlike,
and the technirho has a greater impact than the � boson in
unitarizing the theory. Finally, for small values of f and
small technirho masses, there is no value of M2 	 0 for
which the � boson mass is as large as the LEP bound. The
allowed region is represented by the narrow band in the
central region of Fig. 3. The intersection of the boundaries
from the S parameter and � mass bounds gives us a lower

bound on the technirho mass:

m
 	 1:6 TeV ðh ¼ 0:01Þ: (5.1)

The allowed region and the lower bound on technirho
mass can change if we vary the assumed values of h and g5.
In Fig. 4, we show the effect of increasing the techniquark
Yukawa coupling h from 0.01 to 0.05. While the unitarity
and S parameter exclusion regions are only slightly af-
fected, the boundary of the LEP-excluded region is shifted
noticeably. For a fixed point in the f=v-m
 plane, taking h

larger (i.e., making the techiquarks heavier) increases the
minimum possible mass of the � boson, by increasing the
technipion mass in the first term of Eq. (4.11). Hence, the
exclusion line shifts to lower values of the technirho mass,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.5

2

2.5

3

3.5

4

4.5

5

FIG. 3 (color online). The allowed region for h ¼ 0:01.
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3.5

4

4.5

5

FIG. 4 (color online). The allowed region as the value of h is
varied. The solid (dashed) lines correspond to h ¼ 0:01ð0:05Þ.
The unitarity exclusion lines for h ¼ 0:01 and h ¼ 0:05 coincide
and are represented by a single solid line.

2IfM2 < 0, EWSB occurs whether or not there is a technicolor
condensate, and the model is different in spirit (and arguably less
interesting) than the model we consider here. We do not discuss
this possibility further.
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where m� is again reduced. A consequence of the enlarged
allowed region is that the absolute lower bound on the
technirho mass is relaxed:

m
 	 960 GeV ðh ¼ 0:05Þ: (5.2)

One may reasonably ask what happens to the allowed
parameter space as one varies h further. For larger values

of h, mq=�
1=3
c quickly becomes of order one: the assump-

tion of approximate chiral symmetry is lost and the pre-
dictions of the holographic theory are no longer

trustworthy. If one requires mq=�
1=3
c < 1=3 everywhere

in the allowed region, then the largest possible techniquark
Yukawa coupling is h ¼ 0:18, and one finds m
 	
630 GeV. On the other hand, if h is taken smaller than
0.01, the exclusion line from the LEP bound moves toward
larger m
, while the others do not change appreciably. For

h < 1:0� 10�3, no allowed region remains.
In constructing the holographic model of the technicolor

sector, the 5D gauge coupling was chosen so that current-
current correlators would have the same high-q2 behavior
as in an SUðNÞ gauge theory. The same approach is used in
successful holographic models of QCD [21], where one
knows with certainty that the gauge theory of interest is
SU(3). In our case, this choice simply defines the class of
models that we choose to study, and allows us to make
definite phenomenological predictions. While predictivity
requires us to make somewell-motivated choice for g5, it is
still a useful study whether our predictions are sensitive to
the precise value chosen. To do so, we allow g5 to vary by
half and twice the value given in Eq. (3.9). The results are
shown in Fig. 5. One can see that the qualitative changes in
the shape of the allowed region are not particularly
dramatic.

B. Technirho decays

Since the allowed parameter space of Fig. 3 that is
within the reach of the LHC is limited, it is interesting to
see whether observable quantities vary appreciably within
this region. We focus on the 
 and technipion masses, as
well as the dominant 
 branching fractions. The technirho
couples most strongly to the technipion field �, which is
partly�p and�a. Using the fact that the technipion mass is

considerably smaller than technirho mass, the decay to
absorbed technipions is equal to the decay to longitudinal
W bosons by the Goldstone boson equivalence theorem.
The interaction Lagrangian is defined in Eqs. (3.16) and
(3.17), with the coupling g
�� calculated holographically

using Eq. (3.14). The associated decay widths are given by
[6]

��p�p
¼ 1

48�
m
g

2

�p�p

�
1� 4

m2
�

m2



�
3=2

;

�WLWL
¼ 1

48�
m
g

2

�a�a

�
1� 4

m2
W

m2



�
3=2

;

�W

L ��

p
¼ 1

48�
m
g

2

�p�a

�
1þm4

�

m4



þm4
W

m4



� 2
m2

W

m2



� 2
m2

�

m2



� 2
m2

�m
2
W

m4



�
3=2

:

(5.3)

There are many subleading decay modes that one could
also consider. Each could be evaluated by a holographic
calculation, in some cases requiring the modification of the
5D theory to include additional fields. A complete analysis
goes beyond the scope of the present work. However, we
will consider the decay to dileptons here, since this repre-
sents a particularly clean channel for searches at the LHC.
This decay proceeds via the vector-meson dominance cou-
plings of the technirho to the photon and the Z. In the 5D
theory, the gauge fields of a weakly gauged subgroup of the
global chiral symmetry of the boundary theory appear as
coefficients of the non-normalizable modes of the bulk
gauge fields [40]. Substituting these into the 5D
Lagrangian and integrating over the extra dimension yields
the desired couplings:

L ¼ �m2



f


�
eA� þ e

2s�c�
ðc2� � s2�ÞZ�

�

�: (5.4)

Here s� (c�) represents the sine (cosine) of the weak
mixing angle. The technirho decay constant is given by

f
 ¼ 1
2g5ðm
zmÞJ1ðm
zmÞ; (5.5)

where J1 is a Bessel function of the first kind, of order 1.
Since the product m
zm is fixed for the lowest vector

resonance, one finds f
 � 4:8. The decay width to a single

flavor of lepton is then straightforward to compute:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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1.5

2

2.5
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4

4.5

5

FIG. 5 (color online). The allowed region as the value of g5 is
varied. The solid, dashed, and dot-dashed lines correspond to

r ¼ 1, 0.5, and 2.0, respectively, where g5 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24�2=N

p
with

N ¼ 4.
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�eþe� ¼ 4�2
EM

3f2

m


��
Qe þ cV;e

c2� � s2�
4s2�c

2
�

m2



m2

 �m2

Z

�
2

þ
�
cA;e

c2� � s2�
4s2�c

2
�

m2



m2

 �m2

Z

�
2
�
: (5.6)

Here Qe ¼ �1, cV;e ¼ �1=2þ 2s2�, and cA;e ¼ �1=2.
The total decay width is obtained by summing the partial
widths for all decay channels. Ignoring some of the pos-
sible subleading modes only provides small corrections to
the branching fractions that we consider here.

Table I presents our results for the case h ¼ 0:01, over a
set of sample points within the allowed region of the
model’s parameter space. The location of the sample points
is shown in Fig. 6. From the Table, we see that the total
decay width depends almost solely on m
 for m
 < 5 TeV

(we do not consider larger masses, which are not likely to
be within the reach of the LHC). The branching fractions,
on the other hand, depend mostly on f=v. As f=v becomes

smaller, the branching fraction of the technirho to two
physical pions increases, since the other dominant decay
channels, WL� and WLWL, are suppressed by factors of
f=v and f2=v2, respectively. Everywhere in the allowed
parameter space the decay mode to �p�p is dominant. The

branching fraction to dileptons varies only between 5�
10�5 and 8� 10�5, always significantly suppressed com-
pared to the leading modes. We have estimated that detec-
tion of the technirho via its decays to dileptons at the LHC
would be feasible only if the dominant modes to techni-
pions were kinematically forbidden. However, this favor-
able situation only occurs in regions of parameter space
that are excluded by the bounds we have considered.

VI. CONCLUSIONS

We have shown how the combined constraints from the
S parameter, partial-wave unitarity and searches for a light
Higgs-like scalar, meaningfully limit the viable parameter
space of a simple holographic bosonic technicolor model.
The parameter space of the model itself indicates an im-
portant difference between this model and conventional,
QCD-like technicolor theories: different points in the f-m


plane have different ratios of the chiral symmetry-breaking
scale to the confinement scale. In QCD-like technicolor,
this ratio is fixed. The S parameter eliminates the region
where f is large and m
 is small. Here, technicolor dy-

namics is the primary agent responsible for electroweak
symmetry breaking. Perturbative unitarity eliminates the
region where f is large andm
 is large. Here, the technirho

is more important than the Higgs-like scalar in unitarizing
the theory. Finally, the LEP bound on the mass of the
Higgs-like scale eliminates the region where both m
 and

f are small. Below m
 < 5 TeV, a limited region of al-

lowed parameter space remains. We pointed out a number
of physical quantities (for example, the ratio of the physi-
cal pion to technirho mass and the technirho branching
fraction to two pions) that do not vary strongly within this
region. We also studied how the allowed region changes as

TABLE I. Technirho decay table for h ¼ 0:01.

No. m
 ðTeVÞ f=v m�=m
 �
=m
 BRWW ð%Þ BRW� ð%Þ BR�� ð%Þ BReþe� ð%Þ
1 1.59 0.36 0.13 0.23 1.8 23.3 74.9 5� 10�3

2 1.90 0.36 0.12 0.24 1.8 23.3 74.9 5� 10�3

3 2.21 0.36 0.12 0.24 1.8 23.3 74.8 5� 10�3

4 2.21 0.29 0.13 0.25 0.78 16.1 83.1 5� 10�3

5 2.21 0.22 0.15 0.24 0.27 9.8 89.9 5� 10�3

6 2.90 0.22 0.15 0.24 0.27 9.8 89.8 5� 10�3

7 3.50 0.22 0.15 0.25 0.27 9.8 89.8 5� 10�3

8 3.50 0.16 0.18 0.23 0.08 5.5 94.4 5� 10�3

9 3.50 0.11 0.22 0.20 0.01 2.4 97.6 6� 10�3

10 5.00 0.15 0.18 0.23 0.06 4.9 95.0 5� 10�3

11 5.00 0.10 0.22 0.21 0.01 2.4 97.6 6� 10�3

12 5.00 0.05 0.31 0.14 0.001 0.76 99.1 8� 10�3
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FIG. 6 (color online). Twelve sample points considered in
Table I. The allowed region assumes h ¼ 0:01.
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the techniquark mass and the 5D gauge coupling are
varied.

In the near future, data from the LHC may make it
possible to rule out this type of model, without recourse
to philosophical or aesthetic arguments. For example,
something as simple as a tighter lower bound on the neutral
scalar mass could substantially squeeze or eliminate the
allowed band in Fig. 3. As another example, we have found
that within the allowed region, the branching fraction of the
technirho to two physical pions varies between 75%–
100%, suggesting a channel for future collider studies.

Other decay modes that we have not considered may be
of value in excluding additional parameter space, but these
require additional holographic analysis as well as dedi-
cated collider studies.
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