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We study the gauge sector of minimal walking technicolor, which is an SUð2Þ gauge theory with nf ¼ 2

flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices

Nt � N3
s , with Ns ranging from 8 to 16 and Nt ¼ 2Ns, at fixed � ¼ 2:25, and varying the fermion bare

mass m0, so that our numerical results cover the full range of fermion masses from the quenched region to

the chiral limit. We present results for the string tension and the glueball spectrum. A comparison of

mesonic and gluonic observables leads to the conclusion that the infrared dynamics is given by an SUð2Þ
pure Yang-Mills theory with a typical energy scale for the spectrum sliding to zero with the fermion mass.

The typical mesonic mass scale is proportional to and much larger than this gluonic scale. Our findings are

compatible with a scenario in which the massless theory is conformal in the infrared. An analysis of the

scaling of the string tension with the fermion mass toward the massless limit allows us to extract the chiral

condensate anomalous dimension ��, which is found to be �� ¼ 0:22� 0:06.
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I. INTRODUCTION

A possible mechanism of electroweak symmetry break-
ing is provided by strongly interacting dynamics beyond
the standard model (BSM) [1,2]. In this picture, a new
strongly coupled gauge interaction acting at energy scales
of the order of 1 TeV is conjectured. This interaction
embeds the standard model gauge group SUð2ÞL �Uð1ÞY
and contains fermionic degrees of freedom (different from
the standard model fermions) that do not interact directly
with the latter. The chiral symmetry of the BSM interaction
breaks spontaneously at the scale of 1 TeV. This breaking
provides mass to the Z and W� bosons of the standard
model. Historically, this framework is known as techni-
color; the new bosons are referred to as technibosons and
the new fermions as technifermions. In order to give mass
to the standard model fermions, another new gauge inter-
action acting at higher energy scales (extended techni-
color) is introduced.

In the original proposals the strongly interacting BSM
dynamics was obtained by rescaling QCD. The ratio be-
tween the scale of the technicolor model and the QCD
scale can then be used to determine the mass spectrum of
the BSM theory. However, this scenario proves to be
inadequate to provide a mechanism of mass generation
for fermions without running into problems with flavor
changing neutral currents. A more refined framework that
could avoid those problems is walking technicolor [3–6].

Walking theories are realized as deformations of theo-
ries with an infrared (IR) fixed point, i.e. a point in which
the� functions for the couplings of the theory vanish [7,8].
The role played in this scenario by the fermion representa-
tion has been emphasized in Refs. [9,10]. In particular, for
theories in the two-index symmetric and adjoint represen-
tations, an IR fixed point can be reached at smaller values
of the number of fermion flavors nf than for theories

involving fundamental fermions.
Like any other BSM framework, technicolor has to

confront the stringent experimental bounds for new physics
summarized in the S and T parameters [11]. Recent re-
views of the phenomenological aspects of technicolor
theories can be found in Refs. [12–16]. It is currently an
open question whether a theoretically consistent frame-
work for electroweak symmetry breaking can be drawn
from those ideas. In particular, one would like to explore
from first principles whether SUðNÞ gauge theories with nf
fermion flavors in the fundamental or in a two-index
representation can provide a viable walking scenario for
some values of N and nf. Such theories would be natural

candidates as models of strongly interacting BSM dynam-
ics, which eventually will be tested at the LHC.
Ultimately, the issue of determining the features of a

SUðNÞ gauge theory coupled with nf fermion flavors trans-

forming according to some representation R of the gauge
group is of a nonperturbative nature, and as such it can be
studied in the framework of lattice gauge theories (see e.g.
[17] for a complementary approach based on AdS/CFT
techniques). Following the work of Ref. [18], other lattice
studies have focused on theories with fermions in two-
index representations conjectured to be relevant as models
of strongly interacting BSM dynamics: preliminary results
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have appeared for SUð2Þ with two fermions in the adjoint
representation [19–23], and SUð3Þ with two fermions in
the symmetric representation [24]. These studies found a
mass spectrum characterized by the degeneracy of the
pseudoscalar (PS) and the vector meson in a wide range
of fermion masses. Complementary investigations of the
running of the coupling [25–30], and of the exponents that
govern the scaling toward the massless limit [31–34] found
preliminary indication for the existence of an infrared fixed
point. Note that while in SUð2Þ with adjoint fermions there
seems to be a consensus that the theory has an infrared-
conformal fixed point, for SUð3Þ with sextet fermions the
study of Ref. [35] supports a QCD-like scenario, while
Refs. [36,37] favor a walking scenario. A closely related
line of research is the lattice determination of the critical
number of flavors for the onset of the conformal window in
the SUð3Þ gauge theory with fermions in the fundamental
representation [38–49]. Reference [50] provides a pertur-
bative determination of renormalization constants
relating lattice and continuum observables in SUðNÞ gauge
theories with fermions in two-index representations. A
recent account of the activity in the field is provided in
Refs. [34,51,52]. For current numerical studies of confor-
mal gauge theories, it proves to be helpful to have analyti-
cal estimates of the extent of the conformal window; recent
works on this subject are reported in Refs. [53–56].

Numerical simulations of the spectrum of candidate
theories of electroweak symmetry breaking beyond the
standard model have focused almost exclusively on the
meson spectrum (and, in particular, on the states that in
QCD are the lowest-lying particles of the meson isovector
spectrum, namely, the pseudoscalar and the vector me-
sons). Recently, investigating the case of a SUð2Þ gauge
theory with two fermion flavors in the adjoint representa-
tion (which is commonly referred to as minimal walking
technicolor), we have pointed out in Ref. [57] that a clean
signature of conformality in the chiral limit can be ob-
tained by comparing mesonic and gluonic observables. In
particular, a conformal gauge theory broken with a small
fermion mass term displays the phenomenon of hyperscal-
ing and locking, i.e. all the ratios of spectral quantities are
independent of the fermion mass if the latter is sufficiently
small. This paper has the twofold motivation of discussing
more extensively the general expectations for the spectrum
when a small mass term breaks explicitly conformal in-
variance, and of presenting the details of our analysis of the
data in the gluonic sector leading to the conclusions of
Ref. [57] about the likely existence of an infrared fixed
point, having increased the statistics at some values of the
lattice parameters. This work complements the investiga-
tion reported in Ref. [58], where our results for mesonic
observables were discussed. We shall use the evidence
found for the theory to have an infrared fixed point to
perform a scaling analysis of our observables as a function
of the fermion mass and provide an estimate for the

anomalous dimension of the condensate, whose value has
relevant phenomenological implications.
As in Refs. [57,58], the study reported here is at fixed

lattice spacing. One key issue that should be carefully
discussed is whether our results are relevant for the con-
tinuum physics. In general, the program of extracting the
values of observables in the continuum from lattice simu-
lations of BSM models is still at an early stage; in practice,
numerical results are obtained for volumes and lattice
couplings that are argued to be good approximations of
the continuum system. Assessing the reliability of lattice
simulations for continuum physics requires then a detailed
knowledge of the phase structure of the lattice theory. More
in detail, it is easy to prove analytically that deep in the
strong coupling phase a SUðNÞ lattice pure gauge theory is
always confined. This feature survives when fermions with
sufficiently high mass are added to the action. The lattice
strong coupling, also known as the bulk phase, is separated
from the continuum phase by either a phase transition or a
smooth crossover (for a study of the strong coupling re-
gime with fermions in the two-index representation, see
[59]). Note that the latter phase may or may not be con-
fining. In order to obtain a reliable continuum extrapola-
tion, only points for which the system is in the same phase
as the continuum theory must be considered. Hence, one of
the preliminary tasks of lattice simulations is to identify the
exact extent of the bulk phase. This program has been
carried out in Refs. [19–21], which have shown that the
bulk phase roughly corresponds to lattice couplings � �
2:0. However, staying clear from the bulk phase could not
be a sufficient condition for getting relevant results for the
real-world physics: another aspect that needs to be consid-
ered is the physical size of the volume, which should be
such that analytical predictions for finite-size corrections
could be reliably used to extract information from the data.
Although at first sight this issue could seem more under
control than the one related to lattice artifacts, this is a
prejudice modeled after our understanding of QCD. If the
physics of our system is conformal, QCD does not provide
a reliable guidance for analyzing the numerical results. In
fact, recent analytical and numerical arguments have
shown that, even in the continuum, the theory in a finite
box is characterized by a nontrivial phase structure in terms
of the lattice volume and of the fermion mass [60–62]. The
finite-volume phases are characterized by different behav-
iors of the order parameter related to confinement, the trace
of the Polyakov loop. In order to check for possible lattice
artifacts, we measured the Polyakov loop wrapping around
the spatial directions. We find that the bare fermion mass
can significantly affect the phase structure at fixed lattice
size. In particular, at fixed volume, when lowering the bare
fermion mass the system goes from the infinite-volume
confined phase (as shown by the presence of a nonzero
string tension) to a spatially deconfined regime. We find
that gluonic observables are strongly affected by this
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change of regime, while mesonic quantities behave
smoothly across it. This could be an effect of the separation
at finite mass of the confinement and the chiral symmetry
breaking scales in theories with adjoint fermions (observed
in Refs. [63,64]), which would be an expected feature for a
candidate model of technicolor that has a large-distance
dynamics different from the QCD one.

This work is organized as follows. Section II discusses
the hyperscaling and locking phenomena, which arises
when an infrared-conformal gauge theory is deformed
with a small mass term. In Sec. III we define the discretized
theory and set the notations. Results for the phase structure,
the string tension extracted via Polyakov loop correlators,
the string tension extracted from expectation values of
Wilson loops, and glueball masses are reported in
Secs. IV, V, VI, and VII. A comparison between the dy-
namical and the quenched simulations performed keeping
the string tension and the pseudoscalar mass fixed at the
values dictated by the dynamical theory is then provided,
and from this comparison hyperscaling and locking are
shown to take place in the model studied in this work
(Sec. VIII). Section IX illustrates our scaling analysis
aimed to determine the chiral condensate anomalous di-
mension ��. Finally, Sec. X reports our conclusions and
possible future directions of our work.

II. MASS-DEFORMED INFRARED-CONFORMAL
GAUGE THEORIES

For technical reasons which depend on the specific
fermion discretization, lattice simulations can only be
performed with a nonvanishing mass term for the fermions.
In particular Wilson fermions break chiral symmetry ex-
plicitly even for vanishing bare mass, so that the massless
limit is only obtained by fine-tuning the parameters in the
Lagrangian. Moreover, it is impossible to simulate at arbi-
trarily small masses if the lattice spacing and the volume
are kept constant, since small eigenvalues of the Dirac
operator are generated, the simulation algorithm becomes
unstable and unphysical phases can appear. The extrapo-
lation from a region of small enough masses (but still in a
safe region of parameters) to the chiral limit can be per-
formed only under the guidance of an analytical picture.

For QCD-like theories, chiral perturbation theory (in the
infinite volume, in the epsilon and delta regimes) allows
one to extrapolate physical quantities from a region of
small enough masses to the chiral limit.

The natural question is what should we expect if we
deform an IR-conformal theory with a small mass term,
and how do we recover the chiral limit? Hence, before
illustrating the details of our simulations, we set the frame
for the picture in the latter case.

A. Renormalization group analysis

A gauge theory with massless fermions (in the contin-
uum) depends on a single parameter, the running coupling

gð�0Þ at some reference scale �0, or alternatively the
renormalization group (RG)-invariant parameter �. This
is valid for both confining and IR-conformal theories. In
confining theories the particle masses (except the
Goldstone bosons) are proportional to the parameter � in
the chiral limit. In the case of IR-conformal theories, where
the spectrum is made of unparticles, � is not associated to
particle masses, but sets the energy scale at which the
crossover between the asymptotically free and conformal
regimes occurs. An explicit definition of � is not relevant
for our discussion and will then be omitted.
When the IR-conformal theory is deformed by a mass

term for the fermions, a particle spectrum with a mass gap
is expected to be generated. The theory depends now on
one more parameter, the running mass mð�0Þ at the refer-
ence scale �0; alternatively, an RG-invariant parameter M
can be suitably defined. Close enough to the chiral limit (in
the scaling region), the particle masses are expected to be
independent of �. We will see that under a regularity
hypothesis, those masses are expected to be proportional
to M. This result is standard in the statistical-mechanics
analysis of second-order phase transitions, but it will be
presented here using the language of quantum field theory.
The running of the renormalized mass is computed by

solving the RG equation (in a mass-independent renormal-
ization scheme):

�
dm

d�
ð�Þ ¼ ��ðgð�ÞÞmð�Þ; (1)

which yields

mð�Þ ¼ mð�0Þ exp
�
�

Z gð�Þ

gð�0Þ
�ðzÞ
�ðzÞ dz

�

� Zmð�;�0;�Þmð�0Þ: (2)

As we are going to show, the function Zmð�;�0;�Þ can be
rewritten in a more convenient form. The theory we are
interested in is asymptotically free in the UV. The � and �
functions close to the UV fixed point are

g ! 0: �ðgÞ ’ ��0g
3; (3)

�ðgÞ ’ �0g
2; (4)

where the lowest order coefficients come from a one-loop
computation [TR and C2ðRÞ are the generator normaliza-
tion and the Casimir of the fermionic representation]:

�0 ¼ 1

ð4�Þ2
�
11

3
N � 4

3
TRnF

�
; (5)

�0 ¼ 6C2ðRÞ
ð4�Þ2 : (6)

From now on, we will be interested only in the IR-
conformal scenario. Close to the IR fixed point we assume
a regular behavior for the RG functions:
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g ! g�: �ðgÞ ’ ��ðg� g�Þ; (7)

�ðgÞ ’ ��; (8)

where �� and ��, which are scheme-independent quanti-
ties, are in general not accessible by a perturbative
expansion.

Integrating the RG equation �dg=d� ¼ �ðgÞ close to
the fixed points, the asymptotic running-coupling behavior
is derived:

� ! 1: gð�Þ ’ 1

2�0 logð�=�Þ ; (9)

� ! 0: gð�Þ ’ g� � Ag

�
�

�

�
��
: (10)

We separate now the singular behaviors close to the
fixed points in the multiplicative renormalization function
of the mass:

Zmð�;�0;�Þ ¼ exp

�
�
Z gð�Þ

gð�0Þ

�
�ðzÞ
�ðzÞ �

��
��ðz� g�Þ þ

�0

�0z

�
dz

�
exp

�
�
Z gð�Þ

gð�0Þ
��

��ðz� g�Þdz
�
exp

�Z gð�Þ

gð�0Þ
�0

�0z
dz

�

¼ ~Zmð�=�Þ
~Zmð�0=�Þ ; (11)

where the function

~Zmð�=�Þ ¼ ½g� � gð�Þ��ð��=��Þgð�Þ�0=�0

� exp

�Z g�

gð�Þ

�
�ðzÞ
�ðzÞ �

��
��ðz� g�Þ þ

�0

�0z

�
dz

�

(12)

is defined in such a way that the integral in the exponential
is finite both for � ! 0 and � ! 1.

An RG-invariant fermionic mass M can be defined by
means of the condition mðMÞ ¼ M. Plugging Eq. (11) in
Eq. (2), and choosing �0 ¼ M we get the relationship:

~Zmð�=�Þ�1mð�Þ ¼ ~ZmðM=�Þ�1M: (13)

If the RG-invariant mass M is much larger than �, the
following asymptotic behavior can be easily shown to hold
by using the previous relationship:

mð�Þ ¼ A1 ~Zmð�=�ÞM
�
log

M

�

�
�0=�0

: (14)

At fixed energy scale �, the running mass diverges as M
goes to infinity. The fermions decouple and the theory is
effectively described by a pure Yang-Mills (YM) theory
with a scale �YM ’ �. At leading order in �=M, the
parameter M coincides with the quark pole mass. In fact,
if SðpÞ is the quark propagator in a fixed gauge, the
perturbative expansion yields

SðpÞ�1 ¼
�
1þ X1

n¼1

An

��p2

�2
;
mð�Þ
�

�
g2nð�Þ

�

�
�
p6 �mð�Þ � X1

n¼1

Bn

��p2

�2
;
mð�Þ
�

�
g2nð�Þ

�
;

(15)

where the pole mass �m is defined in such a way that the
quark propagator has a pole for�p2 ¼ �m2. The pole mass
is RG invariant; therefore it can be computed for an arbi-

trary value of �. It is convenient to choose � ¼ M:

�m ¼ Mþ X1
n¼1

Bn

�
�m2

M2
; 1

�
g2nðMÞ: (16)

At large masses M 	 �, the terms in the sum are sup-
pressed since the running coupling goes to zero, and �m ’
M. In this regime, the meson masses are just twice the
quark pole mass, while the glueball masses are the same as
in the pure Yang-Mills theory:

Mmes ¼ 2M; (17)

Mglue ¼ Bglue�: (18)

On the other hand, the chiral limit is reached for values
of M much smaller than �. In this case, Eq. (13) becomes

mð�Þ ¼ A0
~Zð�=�Þ����M1þ�� ; (19)

producing the power law that is characteristic of the IR
fixed point deformed with a small fermionic mass.
Consider now a physical massMX in a channel X (it can

be the mass of a particle or other physical quantities like
the square root of the string tension). As every observable,
this will be a function of the renormalized coupling gð�Þ,
the mass mð�Þ, and the subtraction scale �. However a
physical quantity must be RG invariant:

MX½�; gð�Þ; mð�Þ� ¼ MX (20)

for every value of�. The RG equation forMX has a simple
solution in terms of the RG-invariant quantities � and M:

MX ¼ MFXðM=�Þ; (21)

where FX is a generic function of the ratio M=�. In
particular, if FXðxÞ ¼ �=x, we get MX ¼ �� which is an
RG-invariant quantity, but does not vanish in the chiral
limit.
The hyperscaling hypothesis, which is assumed in the

standard discussion of second-order phase transitions (see
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e.g. Ref. [65]), asserts the regularity of masses (or corre-
lation lengths in the language of statistical mechanics) with
respect to the irrelevant couplings. Consider Eq. (20) for
� ¼ M 
 �:

MX ’ MX½M;g� � AgðM=�Þ�� ;M�
¼ MX½1; g� � AgðM=�Þ�� ; 1�M
’ MX½1; g�; 1�M � AXM; (22)

where we used dimensional analysis for the second line,
and regularity with respect to g in the last one. Under the
hyperscaling hypothesis, RG-invariant IR quantities de-
pend only on M (and not on �) close enough to the chiral
limit. The hyperscaling hypothesis constrains the FX func-
tion defined in Eq. (21) to be regular in the chiral limit:

lim
x!0

FXðxÞ ¼ AX: (23)

Since a mass gap is expected to be generated at nonzero
values of M, AX must be different from zero.

Combining Eqs. (19) and (22) we get the power law for
physical masses close to the chiral limit:

MX ¼ AXM

¼ AX½A0
~Zð�=�Þ��1=ð1þ��Þ���=ð1þ��Þmð�Þ1=ð1þ��Þ:

(24)

We remind one that this expression is valid for every value
of � as long asM 
 �. In particular, the independence of
MX of � is manifest at values � 
 �:

MX ¼ AX�
��=1þ��mð�Þ1=1þ�� : (25)

If we interpret the RG in the Wilsonian sense and choose
� ¼ a�1 to be the cutoff, Eq. (24) yields the power law
dependence of physical masses on the bare quark mass

aMX / ðam0Þ1=1þ�� .

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX

defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a
given channel X as the range of x ¼ M=� around x ¼ 0,
where the function FXðxÞ deviates from its asymptotic
behavior by a small relative amount �:��������FXðxÞ � AX

AX

��������<�: (26)

In the scaling region, the mass MX obeys the power law
(24) as a function of the running mass up to corrections of
order �. The extension of the scaling region will depend on
the size of the discarded subleading contributions to for-
mula (24) in the chosen channel.

Consider now the square root of the fundamental string
tension M� ¼ ffiffiffiffi

�
p

(which is well defined for dynamical
fermions in the adjoint representation) and the lightest

isovector meson (which is always the pseudoscalar one),
with mass MPS. A finite value x ¼ �x exists, below which
both these channels are in the scaling region. This means
that below the mass Mlock ¼ �x�, the corrections to the
hyperscaling behavior ofM� andMPS masses are relatively
smaller than �. Also the ratioMPS=M� for every fermionic
mass below Mlock will be very similar to its asymptotic
value APS=A�: ��������MPS

M�

� APS

A�

��������<Oð�Þ: (27)

The dynamics is dramatically different below and above
the mass Mlock. In the large-mass region, M 	 �, the
gluonic and mesonic masses are parametrically indepen-
dent. All the gluonic masses are proportional to �, while
all the mesonic masses are equal to 2M:

MPS ¼ 2M; (28)

M� ¼ B��: (29)

The ratio MPS=M� goes to infinity in the large-mass limit.
For masses below Mlock the two masses MPS andM� enter
the scaling region, becoming both independent of � and
proportional to M. The ratio MPS=M� is locked to its
asymptotic value APS=A�. We will refer to Mlock as the
locking mass.
The behavior of the masses in between the large-mass

and scaling regions and the actual value of �x depend on the
details of the dynamics. However if the dynamics is such
that the locking occurs at a value �x ¼ Mlock=� 	 1, then
both M� and MPS at the locking scale are still approxi-
mately the same as in the large-mass region:

B� ’ M�ðM ¼ MlockÞ
�

’ A�Mlock

�
¼ A� �x; (30)

APS ’ 2; (31)

and the ratio MPS=M� is locked at a very large value:

APS

A�

’ 2�x

B�

	 1: (32)

Mesons are much heavier than the square root of the
string tension for every value of M. Choosing an inter-
mediate energy scale E such that M� 
 E 
 MPS, the
effective theory describing the gluonic degrees of freedom
at energies below E is a pure Yang-Mills plus power-
suppressed corrections coming from the propagation of
heavy quarks in the loops. In order to write the effective
Lagrangian in this regime, we need all the gauge-invariant
scalar operators of dimension 6 that are invariant under
parity, and charge conjugation. These can be written as
linear combinations of the following independent operators
(a similar analysis on the lattice was carried on in
Ref. [66]):

INFRARED DYNAMICS OF MINIMAL WALKING TECHNICOLOR PHYSICAL REVIEW D 82, 014510 (2010)

014510-5



S1 ¼
X
�;�;	

trðJ��	J
��	Þ; (33)

S2 ¼
X
�;�;	

trðJ��	J�
�	Þ; (34)

S3 ¼
X
�;�;	

trðJ��	J
��	Þ; (35)

where J��	 ¼ @�F�	 � i½A�; F�	�. Thus the effective

Lagrangian can be written as

L eff ¼ � 1

2g2
trðF��F

��Þ þ X
i¼1;2;3

ai
M2

Si þOðM�4Þ:

(36)

The scale �YM of this low-energy pure Yang-Mills
theory is in general a function of � and M and can be
computed by matching the square root of the string tension
of the low-energy effective theory with the same quantity
computed in the dynamical theory:

B��YM

�
1þO

�
�YM

M

�
2
�
¼ M� ¼ MF�ðM=�Þ; (37)

which implies that trivially �YM ’ � for M 	 �, while
for M<Mlock then

�YM ’ M�

B�

’ A�M

B�

’ M

�x
: (38)

In the scaling region the scale �YM of the low-energy pure
Yang-Mills theory slides with the RG-invariant fermionic
mass M.

A comment is mandatory at this point. At fixed value of
the fermionic mass, the low-lying spectrum of a mass-
deformed IR-conformal theory with �x 	 1 cannot be dis-

tinguished by the low-lying spectrum of a confining theory
with heavy quarks, since they both are described by the
same effective Lagrangian (36). However in a genuine
heavy-quark phase the low-energy spectrum is almost
independent of the mass M, while the sliding of the low-
energy scale described in Eq. (38) and (equivalently) the
locking of the gluonic spectrum to the mass M are ulti-
mately a very clean signature of IR conformality.
Summarizing:
(i) We define the locking mass Mlock as the mass below

which both the lowest isovector meson and the string
tension are approximately in the chiral scaling
region.

(ii) The value of �x ¼ Mlock=� is determined by the
detailed dynamics of the theory. If �x 	 1 then the
mesons are always much heavier than the square
root of the string tension. The low-energy effective
theory is a pure Yang-Mills plus small corrections,
with a scale �YM which depends on both � and M.
For M>Mlock 	 � then the fermions completely
decouple and �YM ’ �, while for M<Mlock the
only effect of the fermions in the dynamical theory
is to make the low-energy scale slide with the
fermionic mass �YM ’ M= �x.

(iii) The case where �x 	 1 is realized if the fixed point
is perturbative [67,68]. In fact, in this case

�x ¼ exp

�
1

2�YM
0 g2�

�
: (39)

The described scenarios are illustrated in the sketches in
Fig. 1.

MMlock

MX
V
PS

2++

0++

σ

MMlock

MX
V
PS

2++

0++

σ 1/21/2

FIG. 1 (color online). Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0þþ and
2þþ glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the other
particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy-quark effective
theory provides a good description of the relevant degrees of freedom. This case is realized close to the Banks-Zacks point, but is
possible in principle also if a strongly coupled IR fixed point is present.
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III. THE LATTICE MODEL

Consider a four-dimensional Euclidean torus Lt � L3
s ,

where Lt and Ls are the lengths, respectively, of the
temporal and spatial directions. The space-time is discre-
tized by introducing a lattice with spacing a, and withNt ¼
Lt=a and Ns ¼ Ls=a sites, respectively, in the temporal
and spatial directions. Lattice sites are identified by four-
coordinate dimensionful vectors x ¼ ðx0; x1; x2; x3Þ.
Therefore x0=a is an integer number running from zero
to Nt � 1, and xi=a with i ¼ 1, 2, 3 are integer numbers
running from zero to Ns � 1. In some cases it is useful to
separate the temporal coordinate from the spatial vector;
we write x ¼ ðt; rÞ, and r is the modulus of r. Lattice
directions are indicated with a Greek symbol and run
from 0 to 3. The temporal direction is chosen as the zeroth
direction. We will use the same Greek symbol both for the
direction index and for the vector of length a along the axis
direction (the meaning of the symbol will be always clear
from the context). The spatial directions are closed with
periodic boundary conditions (PBC) for all fields, while the
boundary conditions in the temporal direction are periodic
for gauge fields and antiperiodic (ABC) for fermion fields.

The action of a SUðNÞ gauge theory with fermions can
be decomposed as

S ¼ Sg þ Sf; (40)

where Sg is the discretized Yang-Mills action and Sf is the

fermionic contribution. Various choices for the lattice ac-
tion are possible, differing from each other by corrections
that vanish in the continuum limit. At finite lattice spacing
different choices are differently affected by lattice artifacts.
In particular, as the lattice spacing is increased, a transition
to a phase not connected with the continuum (the bulk
phase) takes place. A careful exploration of the phases of
the system on a lattice as a function of the lattice parame-
ters is then mandatory.

For the gauge part, we use the Wilson action:

Sg ¼ �
X

x;�<�

�
1� 1

N
Re trP��ðxÞ

�
; (41)

where P��ðxÞ is the parallel transport of the link variable

Uðx;�Þ 2 SUðNÞ along the elementary square of the lat-
tice identified by the point x and the pair of directions
ð�; �Þ. � is related to the bare coupling g20 by � ¼ 2N=g20.
The value of the coupling determines the physical value of
the ultraviolet cutoff, the lattice spacing a. Note that inde-
pendently of the fermion representation, the link variables
are in the fundamental representation of SUðNÞ.

The fermion part of the action for a spinorial field c ðxÞ
defined on sites x and transforming in the representation R
can be written as

Sf ¼ a4
Xnf
k¼1

�c kðxÞDmc kðxÞ; (42)

where Dm is the Dirac operator, in the Wilson discretiza-
tion:

Dmðx; yÞ ¼
�
4

a
þm0

�

x;y

� 1

2a

X
�

fð1� ��ÞURðx;�Þ
x;y��

þ ð1þ ��ÞURðy;�Þy
x;yþ�g; (43)

whereUR are the link variables in the representation R, and
m0 is the bare mass.
The functional integral is given by

Z ¼
Z
ðDUÞðD �c ÞðDc Þe�S ¼

Z
ðDUÞðdetDmÞnfe�Sg

(44)

and the vacuum expectation value of an operator
OðU; c ; �c Þ by

hOi ¼ 1

Z

Z
ðDU�ÞðD �c ÞðDc ÞOe�S; (45)

where once again it is possible to integrate over the fermion
fields and obtain an expression that involves only an in-
tegral over the link variables. For further details on the
lattice formulation, we refer to Refs. [19,58].
We performed numerical simulations for SUð2Þ gauge

theory with nf ¼ 2 Wilson fermions in the adjoint repre-

sentation at a fixed value of � ¼ 2:25, different values of
the bare mass, and different lattices, the smallest one being
a 16� 83 lattice, and the largest one being 32� 163. We
used the rational hybrid Monte Carlo (RHMC) algorithm
[69] as implemented in the HIREP code, which is described
and benchmarked in detail in Ref. [19]. The full list of the
parameters we used in our simulations can be found in
Tables I, II, and III. In this work we are mainly interested in
gluonic observables. For every choice of the parameters we
compute:
(i) the traced Polyakov loops in every direction, in order

to identify the regime of the theory, as described in
Sec. IV;

(ii) the string tension by means of correlators of spatial
and temporal Polyakov loops, as described in
Sec. V;

(iii) the static force and potential, as described in
Sec. VI;

(iv) the glueball masses, as described in Sec. VII.

We follow the convention that lattice observables are di-
mensionful, with the same dimension of the corresponding
continuum observable. Of course we can measure only
dimensionless ratios. For instance given a mass m, only
the dimensionless quantity am can be extracted from lat-
tice simulations. Determining að�Þ, and ultimately the
physical value m, requires one to set the physical scale
using an appropriate observable. We will not perform the
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TABLE II. As Table I, for the simulations on the 24� 123 lattice.

Spatial center String tension from Polyakov correlators

Lattice V �am0 Nconf Realization a�1=2
t a�1=2

s �s ¼ �t

B0 24� 123 0.95 9501 S 0.225(11) 0.2181(23) Yes

B1 24� 123 1 7951 S 0.1785(57) 0.1882(40) Yes

B2 24� 123 1.05 5620 ? 0.1491(73) 0.1597(24) Yes

B3 24� 123 1.075 4987 A 0.1398(63) 0.1461(20) Yes

B4 24� 123 1.1 4194 A 0.1205(56) 0.1427(21) No

B5 24� 123 1.125 4001 A 0.1130(54) 0.1338(5) No

B6 24� 123 1.15 1500 A 0.0829(26) 0.1337(9) No

B7 24� 123 1.175 5001 A 0.0918(36) 0.1333(6) No

B8 24� 123 1.18 4490 A 0.0944(36) 0.1333(11) No

B9 24� 123 1.185 4335 A 0.0834(29) 0.1425(47) No

B10 24� 123 1.19 4336 A 0.0851(34) 0.1380(37) No

TABLE III. As Table I, for the simulations on the 32� 163 lattice.

Spatial center String tension from Polyakov correlators

Lattice V �am0 Nconf Realization a�1=2
t a�1=2

s �s ¼ �t

C0 32� 163 1.15 6145 ? 0.0790(34) 0.1029(19) No

C1 32� 163 1.175 1871 A 0.0966(78) 0.10057(65) Yes

C2 32� 163 1.18 1500 A 0.0648(33) 0.1086(13) No

C3 32� 163 1.185 1419 A 0.0612(36) 0.09953(13) No

C4 32� 163 1.19 1609 A 0.0703(40) 0.1021(13) No

TABLE I. Results for the Polyakov loop distribution and the string tension, for all the simulations on the 16� 83 lattice. We
analyzed the Polyakov loop distribution by using the number of configurations quoted in the 4th column (for the three lowest masses
we could not safely discard the thermalization). In the 5th column, ‘‘S’’ indicates that the distribution has a single maximum in zero,
‘‘A’’ indicates that a double peak or an asymmetric peak is visible, and ‘‘?’’ indicates that we cannot clearly distinguish between the
two cases. The temporal (6th column) and spatial (7th column) string tensions computed from correlators of Polyakov loops are
quoted. In the 8th column, ‘‘yes’’ indicates that the data for the temporal and spatial string tensions have an overlap at 1�.

Spatial center String tension from Polyakov correlators

Lattice V �am0 Nconf Realization a�1=2
t a�1=2

s �s ¼ �t

S0 16� 83 �0:5 8000 S � � � � � � � � �
S1 16� 83 �0:25 8000 S 0.4085(57) 0.393(11) Yes

S2 16� 83 �0 8000 S 0.3998(57) 0.388(11) Yes

S3 16� 83 0.25 8000 S 0.328(23) 0.358(12) Yes

S4 16� 83 0.5 8000 S 0.3576(46) 0.347(11) Yes

S5 16� 83 0.75 8000 S 0.282(13) 0.2784(75) Yes

S6 16� 83 0.90 8000 S 0.227(11) 0.2452(67) Yes

A0 16� 83 0.95 8000 S 0.1974(83) 0.2218(35) No

A1 16� 83 0.975 8000 ? 0.2066(97) 0.2094(49) Yes

A2 16� 83 1 8000 ? 0.1960(85) 0.2252(62) No

A3 16� 83 1.025 8000 A 0.1689(44) 0.2109(46) No

A4 16� 83 1.05 8000 A 0.1679(47) 0.2074(38) No

A5 16� 83 1.075 6400 A 0.1629(27) 0.20680(94) No

A6 16� 83 1.1 6400 A 0.1553(28) 0.20443(82) No

A7 16� 83 1.125 � � � � � � 0.1462(26) 0.20423(87) No

A8 16� 83 1.15 � � � � � � 0.1368(20) 0.20402(67) No

A9 16� 83 1.175 � � � � � � 0.1310(19) 0.2067(11) No
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step of reinstating physical units, but shall leave a (which
is fixed in our case) as a parameter. However, the reader
must bear in mind that knowing the value of a in terms of
the quantities entering the dynamics in the continuum is
important in order to confidently assess the relevance of a
lattice simulation for continuum physics. For this inves-
tigation, following the detailed exploration of the phase
structure of the theory performed in Ref. [21], we argue
that large discretization artifacts are ruled out and we
postpone to future studies a systematic investigation of
these effects.

IV. CENTER SYMMETRIES AND POLYAKOV
LOOPS

For a SUðNÞ gauge theory with fermions in the adjoint
representation, the action has a Z4

N invariance, where each
of the ZN factors is associated with one direction of the
system. An observable that is not invariant under the ZN

factor of the symmetry group associated with the direction

	 is the Polyakov loop operator in the fundamental repre-
sentation wrapping around 	:

�P 	 ¼ X0

x

YN	�1

n¼0

Uðxþ n	; 	Þ; (46)

where the primed sum runs over all points of the lattice
slice at x	 ¼ 0. Consider the system in a Euclidean mani-

fold R3 � S1, in which the direction 	 is compactified on
the S1 circle and the other three directions extend to
infinity. At given radius of the S1, the ZN symmetry asso-
ciated with 	 might either be a symmetry of the system or
could be spontaneously broken. For simplicity, let us take
	 to be the temporal direction; the inverse radius of the S1

has then the natural interpretation of the temperature of the
system. In this case, if the system is symmetric, the trace of
�P	 is equal to zero and the system is confined at the given

temperature. Conversely, a nonzero htr �P	i signals the

breaking of the ZN symmetry associated with the direction
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FIG. 2 (color online). Some distributions of Polyakov loops in the temporal and spatial directions. The distributions have been
symmetrized by hand. At fixed volume, the distribution of the spatial Polyakov loop shows a single peak at zero at the higher mass, and
it develops two peaks at the lower mass in some of the spatial directions. At fixed mass, it shows a single peak on the larger lattice, and
it develops double peaks on the smaller lattice in some of the spatial directions.
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	 and the system is deconfined. Analogously, if 	 is a
spatial dimension, we call the broken phase spatial
deconfinement.

Even if the theory is conformal in the chiral limit, a
small mass drives it off the attraction basin of the IR fixed
point, generating a mass gap. As for the pure gauge system,
at finite temperature the theory is expected to undergo a
deconfinement transition as the temporal direction is re-
duced down to a critical value. Because of the periodic
boundary conditions for fermions in space, the reduction of
a single spatial direction is more subtle. Recent numerical
simulations [61] have shown that in a SUð3Þ theory with
two staggered Dirac adjoint fermions the center symmetry
(which is intact at infinite volume) is first broken and then
restored again as the radius of a compactified spatial
direction is shrunk. The symmetry restoring transition
happening when the radius is shrunk from values that set
the system in the broken phase is expected from the one-
loop perturbative calculation of Ref. [70]. The critical radii
for the symmetry breaking and symmetry restoring tran-
sitions depend in general on the mass. Although the differ-
ent discretization choice and the different gauge group
might affect the phase structure, it is possible that a similar
behavior characterizes SUð2Þ with two adjoint Dirac fla-
vors of Wilson fermions.

When the system is in a compact domain, nontrivial
phases can be observed only at large N. In this case, a
rich phase structure can exist, since more than one ZN can
be broken at the same time. For the pure gauge theory at

large N, as the hypercubic volume is reduced from large
values, a cascade of phase transitions takes place [71].
Each phase can be characterized by the number of the
ZN factors that are spontaneously broken to the trivial
element of the group. The case of a large-N SUðNÞ gauge
theory with adjoint fermions on a compact domain has an
even richer phase structure [72].
If the three spatial directions have a finite extension and

N is finite, no phase transition can occur at any size of the
system. However one can still investigate whether the
distribution of the Polyakov loop in a given spatial direc-
tion has a single peak in zero (S, symmetric phase) or two
separate peaks symmetric around zero (A, asymmetric
phase), keeping in mind that at infinite volume the
Polyakov loop distribution should display a single peak.
The S phase is the finite volume and finite N equivalent of
the thermodynamic phase in which the system is symmet-
ric under the ZN symmetry related to the direction wrapped
by the Polyakov loop, while the A phase is the finite
volume and finite N equivalent of the broken phase. We
stress once again that at finite N and on a finite volume
there are no distinct phases, but only different regimes. The
terminology here is used only for convenience.
Wemeasure the distributions of the Polyakov loops in all

the directions. In all the lattices we consider, we always
find a temporal S phase, which means that we are correctly
simulating the confined thermal phase of the infinite-
volume system. In lattices with geometry Nt � N3

s , we
are not interested in separating the equivalent spatial di-
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FIG. 3 (color online). Histories and distributions of Polyakov loops in the temporal (with fermionic antiperiodic boundary
conditions, ABC) and spatial directions (with fermionic periodic boundary conditions, PBC), for bare mass �1:125 on the 24�
24� 122 lattice. The distributions have been symmetrized by hand.
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rections. Hence we will say that the system is in a spatial
S phase if all the spatial directions show a single peak
distribution centered in zero.

For the 16� 83 lattice, we find the spatial A phase
below am0 � �0:975. The crossover from the S phase to
the A phase is very smooth. A summary of the realization
of the spatial center in the 16� 83 can be found in Table I.
The two maxima of the spatial distributions are better
defined on the 24� 123 lattice, for which the spatial
A phase is found below am0 ¼ �1:05 (see Table II for a
summary). For the 32� 163 lattice, all the simulated
masses show distinct maxima in the distribution of the
spatial Polyakov loops, except at the higher mass where
we find a broad distribution with a flat region in the middle
(see Table III for a summary). We show some distributions
for the 24� 123 and 32� 163 lattices in Fig. 2. We also
simulated a 24� 24� 122 lattice at am0 ¼ �1:125. In
this case the large spatial direction is in the S phase, while
the smaller ones are in the A phase. In Fig. 3 we plot the
histories and the distributions for all the Polyakov loops for
the 24� 24� 122 lattice.

In Fig. 4, we also report the absolute value of the
Polyakov loop on the 16� 83 and 24� 123 lattices. As
the mass is decreased, this quantity undergoes a crossover
from a lower value to a higher one. This crossover moves to
a noticeably lower mass when the lattice size is increasing,
indicating that the A phase disappears in the large-volume
limit.

The crossover from the S phase to the A phase as the
spatial volume is decreased is a clear indication that at least
our S phase is not in the femto-world regime, which is in
the nearby of the zero-volume limit, and which is a pos-
sible source of large systematic errors in a lattice simula-
tion [43]. Our data are actually consistent with the picture
that the S phase is connected with the infinite-volume limit.
However, as we shall show in detail, we still have large

finite-volume effects for several of the measured
observables.

V. STRING TENSION FROM CORRELATORS OF
POLYAKOV LOOPS

For a SUðNÞ gauge theory in the confined phase, a static
quark-antiquark pair in the fundamental representation at
large separation R is bound by the potential

VðRÞ ¼ �R; (47)

where the string tension � is the dynamically generated
scale of the system. � is the string tension in an effective
string theory describing the low-energy dynamics of con-
fining flux tubes connecting the quark and the antiquark.
Contrary to the adjoint string tension (and to the funda-
mental string tension in QCD), the chromoelectric field
between two fundamental sources in a gauge theory with
adjoint matter is not screened. Hence, the asymptotic fun-
damental string tension is a well-defined quantity.
It is easy to prove analytically on the lattice that any

gauge theory has a nonzero string tension at strong cou-
pling and large fermion masses. The relevant question for
the system under study is whether a region in bare parame-
ter space exists, which is analytically connected with the
continuum limit, and where the string tension is zero in the
massless limit, as it should be if the theory is conformal.
The string tension can be extracted from correlators of

Polyakov loops. In particular, consider the plane defined by
x0 ¼ 0 and a fixed transverse coordinate in one arbitrary
spatial direction (e.g. we can consider the case of constant
coordinate x1 in the first direction), and let us define

P0ðx1Þ ¼ 1

N2
s

X
x2;x3

1

N
Tr

�YNt�1

n0¼0

Uðan0; r; 0Þ
�
; (48)

where r is the spatial vector with coordinates ðx1; x2; x3Þ.
For the vacuum-subtracted correlator of this quantity one
finds

hP0ðx1ÞyP0ðx1 þ X1Þi � jhP0ðx1Þij2

¼ X1
n¼0

jcnðLtÞj2e�EnðLtÞX1 ; En > 0 8 n; (49)

where the sum runs over all states jni of the Hamiltonian
with nonvanishing overlap cn ¼ h0jP0ðx1Þjni. At large X1

the sum is dominated by the term jc0ðLtÞj2e�E0ðLtÞX1 asso-
ciated with the exponential with the lowest decay rate,
E0ðLtÞ, which is the energy of the ground state in the
fundamental string sector. For a confining theory, up to
subleading corrections one finds [73]

E0ðLtÞ ¼ �Lt � c�ðD� 2Þ=ð6LtÞ; (50)

where c depends on the number of massless fermionic and
bosonic modes propagating along the string and D is the
dimension of the system (D ¼ 4 in our case). Analogously,
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FIG. 4 (color online). Absolute value of the Polyakov loop on
the 16� 83 and 24� 123 lattices.
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if the Polyakov loop wraps a spatial direction, its vacuum-
subtracted zero-momentum correlators in the temporal
direction define the so-called spatial string tension. For a
confined theory at zero temperature, the spatial and the
temporal string tensions coincide if the system is the
S phase.

In SUðNÞ Yang-Mills theories, the effective theory de-
scribing the large-distance dynamics of the confining flux
tube is a bosonic string theory [74–77]. General arguments
lead to the following expansion of E0 [78]:

E0ðLtÞ ¼ �Lt � �ðD� 2Þ
6Lt

� 1

2

�
�ðD� 2Þ

6

�
2 1

�L3
t

þ �Ltc6 þ � � � ; (51)

where c6 is a term Oðð1=ð�3L6
t ÞÞ. Note that Eq. (51) is the

truncation to second order in 1=ð�L2
t Þ of the ground state

energy of a bosonic string of the Nambu-Goto type:

E0ðLtÞ ¼ �Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðD� 2Þ

3�L2
t

s
: (52)

This might suggest that the effective string theory describ-
ing the large-distance dynamics of the confining flux tube
is actually of the Nambu-Goto type. These considerations
do not generalize immediately to the case of dynamical
fermions in the adjoint representation. In fact differently
from SUðNÞ pure Yang-Mills theory, in this case it is
possible to construct explicitly fermionic open-string
states. Hence, it could be that the effective theory is not
bosonic, in which case the firmest result available is given
by Eq. (50), with c (unknown a priori) counting the zero
modes of the effective string. In our analysis, we will
assume that the effective theory is bosonic and the string
tension will be obtained from the correlator of Polyakov
loops assuming Eq. (52). This assumption is justified
a posteriori by two crucial observations: first, the string
tension obtained in this way is in complete agreement with
the static potentials and forces computed by Wilson loops
(Sec. VI), for which no effective string theory is assumed;
in addition, the low-energy dynamics will be found to be an
effective Yang-Mills theory with small corrections (ac-
cordingly to the discussion in Sec. II B) for all the simu-
lated masses, which shows that the choice of Eq. (52) is
self-consistent.

For a theory that confines at zero temperature and under-
goes a deconfinement phase transition at some critical
temperature, the correlator in Eq. (49) still decays expo-
nentially with the distance in the deconfined phase, pro-
vided the sources are screened; however, the inverse of the
corresponding energy is now associated with a screening
length, the Debye screening length. Hence, the exponential
decay of Polyakov loop correlators by itself does not imply
the existence of a string tension. In order to see that the
theory is confining, the validity of Eq. (52) as Lt is varied
needs to be proved. Alternatively, one has to show that the

static potential (Sec. VI) is asymptotically linear and the
slope of the linear part is related to the ground state mass
extracted from Polyakov loop correlators via Eq. (52).
In general, extracting numerically the string tension

from the correlator (49) proves to be technically hard, since
the signal-over-noise ratio decays exponentially with the
separation. A good degree of success is achieved if the
zero-momentum Polyakov line is replaced by a fuzzy
operator, and a reliable signal can be obtained if a varia-
tional procedure that involves different fuzzy operators is
set up. There are several ways of achieving this; here we
follow Refs. [79,80]. In practice, a recursive procedure is
implemented, which allows one to obtain smeared links at
step lþ 1 from the fuzzy links at l via the relationship

Uðlþ1Þðx;�Þ ¼ ProjðUðlÞðx;�Þ þ �SðlÞðx;�Þ
þ 
DðlÞðx;�ÞÞ; (53)

where SðlÞðx;�Þ is the sum of the four length three non-
backtracking lattice paths from x to xþ a�̂ (staple) and

DðlÞðx;�Þ is the sum of the 16 length-five nonbacktracking
paths with the same start and end points (only the direc-
tions that are orthogonal to the direction in which correla-
tions are taken enter the sums). The constants � and 
 are
fixed empirically in such a way that the signal is optimal.
Since the (weighted) sum of the paths is not an element of
the group, to obtain an object that can be interpreted as a
fuzzy link this sum needs to be reprojected onto SUðNÞ;
this is the meaning of the operator Proj() in Eq. (53). After
k steps of smearing, consecutive pairs of smeared links
going in the same direction can be multiplied to produce
blocked links. The combination of smearing and blocking

yields the link set fUðbÞðx;�Þg at blocking level b, which
can be used to compute the fuzzy Polyakov loop operator

PðbÞ
0 ðxÞ ¼ 1

N2
s

X
y;z

1

N
Tr

�YNt=b

n0¼0

UðbÞðan0; r; 0Þ
�
; (54)

and analogously for the other directions. For sake of def-
initeness, we discuss the case of Polyakov loops winding in
time, but similar conclusions hold for Polyakov loops
wrapping around the other directions. The element bc of

the correlation matrix ~CðX1Þ is then defined as

~CbcðX1Þ ¼ hPðbÞ
0 ðx1ÞyPðcÞ

0 ðx1 þ X1Þi � hPðbÞ
0 ðx1ÞiyhPðcÞ

0 ðx1Þi:
(55)

As functions of X1, diagonal correlators involving the
eigenvectors associated with the largest eigenvalues of
~C�1ð0Þ ~Cð1Þ decay as single exponentials with energies
E0; E1; . . . already at distances of a few lattice spacings.
The negligible contamination from excited states elimi-
nates the need to go to large distances to identify the
stringy state with the lowest energy; at the same time,
this procedure provides an estimate of energies of excited
states, associated to the single-exponential behavior of
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diagonal correlators of eigenvectors corresponding to
smaller eigenvalues, although the reliability of the excited
spectrum depends on how large the variational basis is. The
efficiency of the variational procedure is manifest in the
overlap of the vacuum with the lowest-lying stringy state
[i.e. the equivalent of the coefficient jc0j2 in Eq. (49)],
which would be one in the ideal case in which the varia-
tional procedure identified the exact state we are interested
in. In the considered fuzzying scheme, with a careful
choice of the parameters � and 
 it is possible to reach
overlaps of the order of 0.9–0.95, which makes the con-
tribution of excited states negligible already at distances of
the order of two lattice spacings. Physically, the process of
blocking and smearing allows us to build variational trial
states on the scale of physical distances, while simple
Polyakov loop correlators probe the physics on the scale
of the lattice spacing, which is sensitive to ultraviolet
fluctuations.

We remind one that we use Eq. (52) for extracting the
string tension from E0.

1 Our results for the string tension
are plotted in Fig. 5. For the smearing and blocking pro-
cedures, we have used� ¼ 0:4 and 
 ¼ 0:16. As expected,
at high mass the spatial and the temporal string tensions
agree and are independent of the lattice size. The signal
provided by the Polyakov loop correlator is clean and the
overlap jc0j2 is of order 0.9–0.95. As am0 is reduced, on the
smaller lattices the spatial and the temporal string tensions
depart, and the overlap becomes of order 0.8. The disagree-
ment between the temporal and the spatial string tensions is
an indication that finite-size effects are starting to play a
major role. As a matter of fact, if we simulate at fixed
values of am0 on increasingly larger lattices, we find that
the spatial and the temporal string tensions eventually
agree, and that they also agree with the temporal string
tension of the smaller lattices. This shows that the temporal
string tension is less affected by finite-size effects. This is
hardly surprising, since the onset of the departure between
the spatial and temporal string tension arises where the
system goes from the S to the A phase. This also confirms
that in the A regime strictly speaking it is not correct to talk
about a spatial string tension, since the mass of the
Polyakov loop is not associated with confining strings.
However, for convenience we shall still use the string
language. For a given volume, if the mass is lowered below
the onset of spatial deconfinement, the agreement of the
temporal string tension and the string tensions computed
on larger volumes is lost, and the former flattens out. This
kind of finite-size effects appears when the correlation
length associated with the string tension becomes of the
order of the spatial lattice size. In fact, for the plateau
values we find a2�t ’ 4N�2

t ¼ N�2
s . Taken at face value,

this would imply that in the thermodynamic and chiral
limit a

ffiffiffiffiffi
�t

p ¼ 0. However, since these results have been

obtained in a phase where finite-size artifacts play a major
role, a confirmation of this statement on larger lattices is
necessary before we can conclude that there is no asymp-
totic string tension in the massless limit.
We estimate the string tension at infinite volume by

choosing the determinations that are reasonably safe
from finite-volume effects. Our strategy is based on the
following observations. At fixed mass and in the infinite-
volume limit, the temporal and spatial string tensions must
coincide. At fixed volume we observe that at large enough
mass, the temporal and spatial string tensions coincide. In
general the spatial string tension can be determined more
accurately, since correlators of shorter Polyakov loops
have smaller relative errors. On the other hand, the tem-
poral string tension is less affected by finite-volume effects
and, in particular, is always well defined. Whenever the
spatial and temporal string tensions agree within 1 standard
deviation, we consider the weighted average of the two:

ffiffiffiffi
�

p ¼
ffiffiffiffi
�s

p
ð� ffiffiffiffi

�s
p Þ2 þ

ffiffiffiffi
�t

p
ð� ffiffiffiffi

�t
p Þ2

1
ð� ffiffiffiffi

�s
p Þ2 þ 1

ð� ffiffiffiffi
�t

p Þ2
; (56)

�
ffiffiffiffi
�

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð� ffiffiffiffi
�s

p Þ2 þ 1
ð� ffiffiffiffi

�t
p Þ2

q : (57)

In the A phase, where the temporal and spatial string
tensions do not agree anymore, the correct string tension
to be considered is the temporal one. At those values of the
mass, for which more than one volume is available, the
result on the largest volume has been considered.
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32 x 16
3
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FIG. 5 (color online). Spatial and temporal string tensions at
various lattice sizes as a function of am0. Also shown is the
infinite-volume estimate.

1Alternatively, Eq. (51) can be used, since it gives results that
are compatible well within errors with Eq. (52); on the contrary,
Eq. (50) gives discrepancies of up to 20% for loops winding the
spatial directions.
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More in detail, at the mass am0 ¼ �1 both the 24� 123

and 16� 83 lattices are available, and the two temporal
string tensions (plus the spatial string tension on the larger
volume) are in agreement at the 1� level. For this mass and
larger ones we therefore expect that the temporal string
tension, as determined on the 24� 123 and 16� 83 latti-
ces, is affected by smaller finite-volume effects than the
statistical indetermination. In particular, the string tensions
on the 24� 123 lattice at masses am0 ¼ �1 and �0:95,
and on the 16� 83 lattice at masses am0 ¼ �0:975,�0:9,
�0:75, �0:5, �0:25, 0, 0.25 are good estimates for the
infinite-volume limit.

Moreover, at the mass am0 ¼ �1:15 both the 32� 163

and 24� 123 lattices are available, and the two temporal
string tensions agree at the 1� level. Repeating the argu-
ment above, the string tensions on the 32� 163 lattice at
mass am0 ¼ �1:15, and on the 24� 123 lattice at masses
am0 ¼ �1:125, �1:1, �1:075, �1:05 are good estimates
of the infinite-volume limit. Below mass am0 ¼ �1:15 we
have no control on the finite-volume effects, so we just
discarded those points.

The choices described above, and the results for the
estimate of the string tension at infinite volume are sum-
marized in Table IV. All the measured string tensions and
the infinite-volume estimates are also plotted in Fig. 5.

VI. STATIC FORCE AND POTENTIAL FROM
WILSON LOOPS

A different way to compute the string tension is via the
expectation values of Wilson loops. The advantage of this
method is that it can show whether the mass extracted via

Polyakov loop correlators is in fact related to the existence
of an asymptotic string tension at fixed lattice geometry. As
we will see, the disadvantage is that the numerical results
for the string tension extracted from Wilson loops gener-
ally have larger statistical errors.
We consider the generic off-axis Wilson loop WðT;RÞ,

describing a quark-antiquark pair separated by a spatial
distanceR ¼ ðX; Y; ZÞ and propagating in a straight line in
the temporal direction. It will be useful to schematically
decompose the close parallel transport in its spatial
Us½t; r ! rþR� and temporal Ut½t ! tþ T; r� compo-
nents:

WðT;RÞ ¼ TrfUt½t ! tþ T; r�yUs½t; r ! rþR�
�Ut½t ! tþ T; rþR�
�Us½tþ T; r ! rþR�yg: (58)

The off-axis component Us½t; r ! rþR� is computed
following the algorithm in Ref. [81]. In order to reduce
the noise in the static potential, we build the Wilson loops
with smeared link variables. We choose a single step of
hypercubic (HYP) smearing [82]; the smeared link vari-
able is a function of all the links belonging to the unit
hypercubes adjacent to the original link. We found the
HYP smearing effective enough for our purposes, even
not implementing a variational method. The main disad-
vantage is that it deforms the static potential at short
distances; however it does not affect the determination of
the string tension, which is our main goal.
In the Hamiltonian gauge [Uðx; 0Þ ¼ 1], the expectation

value of WðT;RÞ becomes the time correlator for the

TABLE IV. This table shows the infinite-volume estimate for the string tension (2nd column). Where different volumes are available
for the same bare mass, the larger one has been chosen. If the temporal and spatial string tensions agree within 1 standard deviation, a
weighted average (w.a.) between the two has been chosen, as explained in the text. Otherwise the temporal string tension (s.t.) has been
chosen. For the bare mass am0 ¼ �1, the temporal string tensions on the 16� 83 and 24� 123 lattices agree at the 1� level: this
suggests that for all the string tensions computed at this and higher masses on the 16� 83 lattice, finite-volume effects are negligible.
Also the temporal string tension computed on the 32� 163 lattice at am0 ¼ �1:15 coincides at 1� with the one computed on the
24� 123 lattice.

�am0 Inf. volume estimate of a�1=2 Method Static potential & force

-0.25 0.4053(51) w.a. on 16� 83 (S1) data � � �
0 0.3976(51) w.a. on 16� 83 (S2) data � � �
0.25 0.352(11) w.a. on 16� 83 (S3) data � � �
0.5 0.3561(42) w.a. on 16� 83 (S4) data � � �
0.75 0.2794(63) w.a. on 16� 83 (S5) data � � �
0.9 0.2405(58) w.a. on 16� 83 (S6) data � � �
0.95 0.2184(23) w.a. on 24� 123 (B0) data 24� 123

0.975 0.2066(97) Temporal s.t. on 16� 83 (A1) � � �
1 0.1851(33) w.a. on 24� 123 (B1) data 24� 123

1.05 0.1587(23) w.a. on 24� 123 (B2) data 24� 123

1.075 0.1455(19) w.a. on 24� 123 (B3) data 24� 123

1.1 0.1205(56) Temporal s.t. on 24� 123 (B4) 24� 123

1.125 0.1130(54) Temporal s.t. on 24� 123 (B5) 24� 24� 123

1.15 0.0790(34) Temporal s.t. on 32� 163 (C0) 32� 163
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operator MðRÞ ¼ �QðrÞUs½r ! rþR�QðrþRÞ which
creates a heavy quark-antiquark pair connected by a string:

hWðT;RÞi ¼ 1

ZðLtÞ Tr½e
�ðLt�TÞHMðRÞye�THMðRÞ�

¼ 1

ZðLtÞ
X
nm

jhn;RjMðRÞjmij2

� e�LtEme�T½VnðRÞ�Em�; (59)

where we have inserted the gauge-invariant states jmi with
energy Em, and the states in the presence of a quark-
antiquark pair jn;Ri with energy VnðRÞ. The energy
V0ðRÞ of the fundamental state in the presence of the
quark-antiquark pair is the static potential. ZðLtÞ is the
partition function, which can be decomposed in terms of
the gauge-invariant states jmi:

ZðLtÞ ¼ Tre�LtH ¼ X
m

e�LtEm : (60)

If the temporal extension Lt is large enough, we can
identify three regimes for the Wilson loops while T
changes:

(1) Small values of T with respect to the temporal
extension (T 
 Lt). This is the usual zero tempera-
ture limit. In this case only the vacuum survives
among the jmi states:

hWðT;RÞi ’ X
n

j�nðRÞj2e�T½VnðRÞ�E0�;

with
X
n

j�nðRÞj2 ¼ 2; (61)

where the relationship for the coefficients �n comes
from hWð0;RÞi ¼ 2. It is interesting to notice that,
since hWðT;RÞi � 2 for each value of T, VnðRÞ
must be larger than the vacuum energy E0 for each
value of R> 0 (because of the lattice discretization,
the potential is bounded from below). Therefore in
this regime, the Wilson loop is decreasing in T at
every fixed R.

(2) Values of T comparable with the temporal extension
(Lt � T 
 Lt). In this case only the j0;Ri survives
among the states with external charges:

hWðT;RÞi ’ e�Lt½V0ðRÞ�E0�
X
m

j�mðRÞj2

� e�ðLt�TÞ½Em�V0ðRÞ�: (62)

Assume that the sum is dominated by somem. If the
quantity Em � V0ðRÞ is positive, the Wilson loop at
fixed R is increasing as T approaches Lt, toward its
extremal value hWðLt;RÞi ’ P

mj�mðRÞj2 � 2. If
the quantity Em � V0ðRÞ is negative, the Wilson
loop at fixed R is decreasing toward its extremal
value. Notice that, since the states propagating
around the torus are not the same as the ones prop-
agating inside the Wilson loop, the Wilson loop is

not symmetric in T around Lt=2 as usually happens
for other correlators.

(3) Intermediate values of T (a 
 T 
 Lt). In this case
the Wilson loop reduces to a single exponential:

hWðT;RÞi ’ AðRÞe�T½V0ðRÞ�E0�: (63)

This is the useful regime which we will try to
identify in our numerical simulations to extract the
static potential.

The first and second regions are always visible if the
temporal length T of the Wilson loop is too small or too
large. With the extra difficulty that theWilson loops are not
symmetric in T ! Lt � T, the computational problem for
the static potential is similar to the one for other correla-
tors: it is important to have a large enough lattice in such a
way that the third region opens up in the middle. An
effective potential is therefore defined, with the property
that it shows a plateau in the third region (if visible), and
the value of the plateau is actually the static potential. We
use two different methods to extract the effective potential
from the Wilson loops.

(i) Potential 1: The easiest method consists of defining
an effective potential as

VeffðT;RÞ ¼ � 1

a
log

hWðT þ a;RÞi
hWðT;RÞi : (64)

If we can see a plateau in the effective potential as a
function of T, it means that we can isolate the single-
exponential region. The value VðRÞ is then extracted
by fitting the plateau of the effective potential with a
constant. Notice that since the lattice breaks rota-
tional invariance, we consider the potential as a
function of R, and not of its module only. An un-
biased estimate for the average of the potential and
an estimate of its error are obtained by applying
Eq. (64) to a set of bootstrap ensembles.

(ii) Potential 2: When the single-exponential region is
not visible, we use the Prony’s method [83] for
taking into account also the first excited state. We
refer to the literature for the general idea, while we
summarize here the used formulas. Having chosen a
value of R, for every value of T we solve the
following second-order equation:

½WðT;RÞWðT þ 2a;RÞ �WðT þ a;RÞ2�x2 (65)

þ ½WðT þ a;RÞWðT þ 2a;RÞ
�WðT;RÞWðT þ 3a;RÞ�x (66)

þ ½WðT þ a;RÞWðT þ 3a;RÞ
�WðT þ 2a;RÞ2� ¼ 0: (67)

If x0 is the largest solution (but smaller than 1), we
define an effective potential as
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VeffðT;RÞ ¼ � 1

a
logx0: (68)

As for the previous method, the value VðRÞ is
extracted by fitting the plateau of the effective po-
tential with a constant. The whole procedure is
implemented via a bootstrap, in order to get an
unbiased estimate for the average of the energies,
and an estimate of its error.

Whenever we can compute the potential with both
methods we observe that they always give compatible
results, but slightly smaller errors and better determina-
tions of the plateaus are obtained with the method
Potential 2. Even though the string tension can be in
principle extracted from a linear fit of the static potential
in a large-distance region, it is instructive to determine it
also from the force F ¼ � dV

dR . At large R, F
 �. For the

determination of F, we use the following methods.

(i) Force 1: We use generalized Creutz ratios to define
an effective force with off-axis Wilson loops:

FeffðT;R; anÞ

¼ � 1

a2jnj log
hWðT þ a;Rþ anÞihWðT;RÞi
hWðT;Rþ anÞihWðT þ a;RÞi : (69)

We use n vectors of the form (1,0,0), (1,1,0), and
(1,1,1) and permutations. We identify the plateau of
the effective force as a function of T, and we fit it
with a constant FðRIÞ. The statistical error is deter-
mined by a bootstrap procedure. The improved dis-
tance RI is defined as in Ref. [84] to be

RI ¼
��������4�GðRþ nÞ �GðRÞ

ajnj
��������

�1=2

; (70)

where GðRÞ is the three-dimensional free-scalar
propagator on the lattice.

(ii) Force 2: Plateaus in the Creutz ratios are visible
only in a region where only a single exponent
dominates in the expansion of the Wilson loop. In
most of the cases we need to take into account the
first excited state. An effective force can be defined
by using the effective potentials computed by the
method Potential 2:

FeffðT;R; anÞ ¼ �VeffðT;Rþ anÞ � VeffðT;RÞ
ajnj :

(71)

We identify the plateau of the effective force as a
function of T, and we fit it with a constant FðRIÞ.
Expectation value and error of FðRIÞ are estimated
by means of a bootstrap procedure.

The static potentials presented in this section have been
computed with the method Potential 2. In Fig. 6, two
typical effective potentials are shown, together with the
fit range and the result of the constant fit.

The static potentials for all the simulations listed in the
last column of Table IV are plotted in Fig. 7. The corre-
sponding forces are separately plotted in Fig. 8. Although
in principle the static potential or the force can be used to
extract the string tension, in practice a reliable result
cannot be obtained from those quantities, the most likely
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FIG. 6 (color online). Effective potentials at R ¼ ð4a; 0; 0Þ
and R ¼ ð6a; 6a; 6aÞ computed on the 32� 163 lattice at bare
mass am0 ¼ �1:15. Plateaus have been chosen in the white
regions. The red lines represent the values of the potential (with
errors), obtained by fitting the effective potential with a constant
in the white region. Errors have been computed with a bootstrap
procedure.
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FIG. 7 (color online). Static potentials computed with the
method Potential 2 (see Sec. VI) from Wilson loops with HYP
smearing. Data for bare masses �0:95, �1, �1:05, �1:075, and
�1:1 are obtained on a 24� 123 lattice; data for bare mass
�1:125 are obtained on a 24� 24� 122 lattice; data for bare
mass �1:15 are obtained on a 32� 163 lattice. Superimposed is
the function VðRÞ ¼ �Rþ�þ c=R, where � has been taken
from Table IV (the two curves correspond to ���� and �þ
��), while � and c have been obtained with a fit in the region
R � 3a.
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FIG. 8 (color online). Forces computed with the method Force 2 (see Sec. VI). Superimposed is the string tension from Table IV.
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explanation being either that our data are not accurate
enough or that the lattice sizes explored are too small for
the plateau to be free from systematic errors. A variational
procedure like the one used for extracting the string tension
from correlators of Polyakov loops (described in Sec. V)
might be helpful also for the static potential computation.
Although we are unable to perform a comparison between
the string tensions extracted with the two different meth-
ods, we can still check that the static potentials and the
forces are compatible with the string tensions reported in
Table IV.

We fit the static potential with the function:

VðRÞ ¼ �Rþ�þ c

R
; (72)

assuming the string tensions shown in Table IV, in the
range R � 3a. The results of the fits are shown in Fig. 7.
Since we do not want to assume at this stage a particular
effective string theory (and anyhow the HYP smearing
introduces spurious 1=R effects), the coefficient of the
1=R term becomes an extra parameter in the fitting proce-
dure. In all the cases we have investigated, the string
tension computed via Polyakov loop correlators captures
correctly the large-distance behavior of the static potential.

In Fig. 8, the forces are plotted together with the values
of the string tension. Although the errors on the force are in
some cases quite large and only qualitative statements are
possible, it can be seen also in this case that the string
tension computed via Polyakov loop correlators always
captures the large-distance behavior of the force itself.
The force always shows plateaus at large distances, with
a central value often in striking agreement with the string
tension computed from Polyakov loop correlators. This
might indicate that our analysis overestimates the statisti-
cal errors.

VII. GLUEBALLS

Glueball masses are extracted from a variational proce-
dure similar to the one used for Polyakov loops and based
on the same fuzzying scheme. At the link level, we con-
sider a collection of closed elementary loops transforming
according to the irreducible representations of the symme-
try group of the cube, to which rotational symmetry is
broken on the lattice [85]. The variational procedure is
then built by replacing the original links with those ob-
tained after smearing and blocking. Then, in each channel
a matrix of connected correlators is constructed, whose
eigenvectors with the highest eigenvalues are almost the
pure eigenstates of the Hamiltonian with the lowest
masses. We have implemented this technique using as
starting operators the plaquette and the length-six planar
closed contour to build the A, E, and T irreducible repre-
sentations of the cubic group. The lowest-lying state in the
A channel corresponds to the lightest 0þþ glueball in the
continuum limit, while both the E and the T lightest states
give the lightest 2þþ glueball mass in the continuum limit.

Our results for the 0þþ glueball are illustrated in Fig. 9.
We discuss only the results on the 16� 83 and the 24�
123 lattices, since on the 32� 163 lattice for all values of
the simulated bare fermion masses our system is in the
A phase. As it can be seen from the plot, as am0 is
decreased, in the S phase aM0þþ monotonically decreases.
When the system starts to develop double peaks for the
Polyakov loop distribution in a spatial direction, the mass
of the 0þþ glueball first goes to a short plateau and then
moderately increases, to drop dramatically to much lower
values at lower am0. The overlap between the masses
measured on the two lattices at am0 ¼ �0:95 suggests
that as long as we stay in the symmetric phase, finite-size
effects are under control. Hence, as our best estimate for
the infinite-volume limit of aM0þþ , we take the values on
the 16� 83 lattice for am0 >�0:95 and the values on the
24� 123 lattice for �1:05 � am0 � �0:95. Since for
am0 <�1:05 in both cases our system is in the A phase,
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FIG. 9 (color online). The mass of the 0þþ glueball in lattice
units, aM0þþ , measured at various values of bare quark mass
am0 on a 16� 83 and on a 24� 123 lattice.
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FIG. 10 (color online). The mass of the 2þþ glueball in lattice
units, aM2þþ , measured at various values of bare quark mass
am0 on a 16� 83 and on a 24� 123 lattice.
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we do not take into account the corresponding values of
am0þþ in the following analysis.

The mass of the 2þþ glueball as a function of am0 is
shown in Fig. 10. These results have been obtained using
operators transforming according to the E representation of
the cubic group. Our analysis in the T channel gives
compatible results in all cases. Our data show that the
2þþ glueball is heavier than the 0þþ in the symmetric
phase, but dramatically decreases to very low values of the
mass (well below the mass of the 0þþ) at the onset of the
A phase. Deeper in the A phase, the two states appear to be
degenerate. As the figure shows, no good control over
finite-size effects can be reached on our lattices for the
2þþ mass. For the sake of completeness, we still provide
an estimate for its mass at infinite volume, but this is likely
to be quite rough. Hence, the 2þþ glueball will play a
marginal role in the interpretation of our results.

Our numerical estimates of aM0þþ and aM2þþ in the
infinite-volume limit are reported in Table V. The degen-
eracy between the two states at m ¼ �1:05 together with
the impossibility of establishing whether the system is in
the S phase (see Table II) would suggest to disregard
glueball masses at this value of the bare mass. However,
since this point was part of our analysis in Ref. [57], where
the lower statistics masked the issue, in order to facilitate a
comparison with our previous work, we chose to keep it
also in our current analysis. The reader should bear this in
mind for the discussion of our results.

VIII. HYPERSCALING SCENARIO AND LOCKING
SCALE

Our infinite-volume estimates for the PS (at each value
of the bare mass, we choose the PS mass computed on the
largest volume in [58]), the 0þþ and the 2þþ glueball

masses, and �1=2 as a function of the partially conserved
axial current (PCAC) mass am (see Refs. [19,58] for a
definition of this quantity) are reported in Fig. 11. As
noticed in Ref. [57], the data show a clear hierarchy in
the spectrum, with the mesonic scale well above the
gluonic scale. Since over the range of investigated masses

a�1=2 changes by a factor of 5, the effect of the fermion

determinant as the mass is decreased is an essential com-
ponent of the dynamics in this theory. Hence, the simple
quenched scenario, according to which the theory would be
QCD like and the hierarchy in the spectrum is due to large
fermion masses, can be excluded. In fact, the spectrum
looks similar to the hyperscaling scenario at high locking
mass Mlock sketched in Fig. 1 (right panel). In this section
we shall show that indeed that scenario provides the right
description of the spectrum of this theory.
Up to subleading corrections, the hyperscaling scenario

implies the independence of ratios of physical quantities
from the fermion mass in the scaling region. In Fig. 12 we

plot the ratio MPS=�
1=2. This quantity shows a plateau

MPS=�
1=2 ’ 7:5 for aMPS � 1:25, supporting the idea

that gluonic and fermionic masses are not parametrically
independent in this region but are both proportional to the
RG-invariant fermion mass M (again, this is what we are
calling locking). The independence from M of the ratio of

TABLE V. Infinite-volume estimates of aM0þþ and aM2þþ .
Values extracted on a 16� 83 lattice have been used for am0 >
�0:95 and values extracted on a 24� 123 lattice for am0 �
�0:95.

�am0 aM0þþ aM2þþ

�0:25 1.159(98) 2.18(22)

0.25 1.108(97) 1.92(22)

0.5 1.045(70) 1.93(19)

0.75 0.919(63) 1.27(12)

0.9 0.666(44) 0.874(77)

0.95 0.793(41) 1.129(85)

1 0.658(56) 0.886(73)

1.05 0.510(33) 0.513(35)
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FIG. 11 (color online). The spectrum of the theory as a func-
tion of the PCAC mass am. The mass of the vector is not shown,
since on the scale of the figure this state appears to be degenerate
with the PS.
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1=2 as a function of MPS.
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spectral quantities in the scaling region can be observed
also in the ratio MV=MPS (Fig. 13). Again a plateau devel-
ops for aMPS � 1:25. The existence of these plateaus is a
clear indication of the spectrum behaving as predicted by

hyperscaling. Moreover, the value of both MPS=�
1=2 and

MV=MPS in the scaling region suggests that the locking
scale Mlock is large. If this is the case, SUð2Þ gauge theory
with two adjoint Dirac fermions should look like a heavy
fermion system for all values of the fermion mass.

In order to verify this scenario, we can compare our
dynamical results with results obtained in the quenched
theory. In this process, a crucial point is to match properly
the bare parameters in the two theories, since the physics
of the dynamical and quenched systems is expected to
be equivalent once the physical scale is matched [see
Eq. (32)]. For this reason, we need to tune the bare pa-
rameters of the quenched simulations, namely, the gauge

coupling �ðqÞ, and the mass of the valence fermion amðqÞ
0 ,

so that we can match two independent quantities between
the two theories. For this matching, it is convenient to
choose two observables with a sharp dependency on each
of the bare parameters, in order to achieve the best possible
tuning between the two theories. In our study, we have

required the quantities a�1=2 and aMPS to be equal in the
dynamical and in the quenched systems. Given that in the
dynamical theory with adjoint fermions the fundamental
string cannot break, this quantity is a natural candidate to

fix the coupling �ðqÞ in the quenched simulation. As far as

the valence quark mass amðqÞ
0 is concerned, we chose to

determine the quenched value by fixing the pseudoscalar
mass, because in the fermionic sector this is the quantity
we have the best control over.
The procedure to compare the quenched and dynamical

theories requires the following steps:

(1) find the value �ðqÞ of the coupling for the quenched
theory, in such a way that the string tension in lattice
units matches the dynamical value;

(2) find the value amðqÞ
0 of the bare fermion mass for the

quenched theory, in such a way that the PS meson
mass matches the dynamical value aMPS;

(3) compute the rest of the spectrum, for example, the
ratio of the PS and V meson masses or the glueball
masses, in the dynamical theory with bare parame-
ters ð�; am0Þ and in the quenched theory with bare

parameters ð�ðqÞ; amðqÞ
0 Þ, and compare the results.

In practice the program as outlined above requires a fine-
tuning of the bare parameters, and turns out to be a highly
expensive computational task. Instead of an exact match-
ing of the parameters, we have performed a scan in the
parameters of the quenched theory. The lattice parameters
at which quenched simulations have been performed are

reported in Table VI. The range of the scan of �ðqÞ is
chosen in order to include all the string tension values of
our dynamical simulations. The upper bound of this win-
dow is simply given by � � 2:25, the value of � for our
dynamical simulations. This is a consequence of the string

0.5 1.0 1.5 2.0 2.5

a MPS

1.00

1.02

1.04

1.06
M

V
/M

P
S

quenched
dynamical

FIG. 13 (color online). Comparison of the ratio MV=MPS as a
function of aMPS in the quenched and the dynamical theory. The
dynamical ratio approaches the infinite-mass value of 1 at large
aMPS and develops a plateau (signaling hyperscaling) at aMPS �
1:25.

TABLE VI. Bare parameters and volumes used for quenched simulations. For each �ðqÞ we report also the measured string tension.

�ðqÞ a�1=2 V amðqÞ
0

2.25 0.423 1(25) 24� 123 �1:65, �1:6, �1:55, �1:5, �1:45, �1:4, �1:35, �1:3, �1:25, �1:2,
�1:175, �1:15, �1:125, �1:1, �1:075, �1:05, �1:025, �1:0,

�0:75, �0:5, �0:25, 0.0, 0.25, 0.5
2.4265 0.238 8(9) 24� 123 �1:2, �1:175, �1:15, �1:125, �1:1, �1:075, �1:05,

�1:025, �1:0, �0:75, �0:5, �0:25, 0.0, 0.25, 0.5
2.5115 0.176 8(8) 24� 123 �1:2, �1:175, �1:15, �1:125, �1:1, �1:075, �1:05, �1:025,

�1:0, �0:75, �0:5, �0:25, 0.0, 0.25, 0.5
2.6 0.133 95(62) 24� 123 �1:2, �1:175, �1:15, �1:125, �1:1, �1:075, �1:05,

�1:025, �1:0, �0:75, �0:5, �0:25, 0.0, 0.25, 0.5
2.62 0.125 8(7) 24� 123 �1:3, �1:25, �1:2, �1:15, �1:1, �1:05, �1:0,

�0:75, �0:5, �0:25, 0.0, 0.25, 0.5
2.68 0.103 5(7) 32� 323 �1:25, �1:2, �1:15, �1:1, �1:05, �1, �0:95,

�0:9, �0:85, �0:8, �0:75, �0:5
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tension being an increasing function of the bare fermion
mass, so an infinite-mass simulation corresponds to a string
tension of a pure gauge system at the same � � 2:25.

For each choice of �ðqÞ we measure the string tension
and the 0þþ and 2þþ glueball masses (following e.g.
Ref. [74]). Quenched glueball masses have been interpo-
lated using the ansatz

MG

�1=2
¼ A0 þ A1a

2�; (73)

with A0 and A1, respectively, the leading (constant) and
subleading [Oða2Þ] coefficients in the extrapolation to the
continuum limit.

On the same gauge configurations, we measure the
quenched PS mass and the MV=MPS ratio, for a set of

values of amðqÞ
0 covering the entire interval of PS masses

appearing in the dynamical calculation. We then create an
interpolating function for the central value of the ratio
MV=MPS.

To obtain an error on this estimate, we create two other
interpolating functions for the maximal and the minimal
value of the quenched estimate MV=MPS set by the statis-
tical error, so that for each choice of the pair ðMPS; �Þ, we
can read the corresponding range of values for MV=MPS.
To take into account the indetermination in our estimate of
aMPS and a

2�, we consider a region within 1� around the
central value for those quantities: in this region the differ-
ence between the maximum value of the maximal inter-
polating function and the minimum of the minimal
interpolating function provides us with an estimate for
the error on MV=MPS in the quenched theory.

By means of the interpolating functions, we can read the
value of MG=

ffiffiffiffi
�

p
and MV=MPS in the quenched simula-

tions at values of a
ffiffiffiffi
�

p
and aMPS (the latter being relevant

only for the MV=MPS ratio) obtained in the dynamical
simulations.

In Table VII we report the values of the mass of the
glueballs for the quenched theory at the values of the string

tension obtained in the dynamical theory. In Fig. 14 we
show the comparison between the dynamical glueball val-
ues and the interpolating functions obtained from the
quenched theory. Except for the last point, for which, as
discussed in Sec. VII, the dynamical simulations are proba-
bly in the A phase, the agreement between the quenched
and dynamical spectra at the same physical scale (in units
of the ultraviolet cutoff) is striking. This supports the idea
that the low-energy dynamics of the theory with dynamical
fermions is well described by a pure Yang-Mills theory,

TABLE VII. The results of the interpolation procedure for the
quenched data of the mass of the glueballs at the values of a�1=2

equal to the ones found in the dynamical simulations. The errors
in the third column have been obtained from the variation of the
numerical results on the maximal and the minimal interpolating
functions.

a�1=2 aMðqÞ
0þþ aMðqÞ

2þþ

0.4053(51) 1.30(4) 2.13(15)

0.352(11) 1.18(5) 1.89(14)

0.3561(42) 1.185(35) 1.90(11)

0.2794(63) 0.975(35) 1.53(8)

0.2405(58) 0.855(35) 1.325(65)

0.2184(23) 0.785(15) 1.21(4)

0.1851(33) 0.675(25) 1.025(35)

0.1587(23) 0.585(15) 0.885(25)

0.15 0.20 0.25 0.30 0.35 0.40
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FIG. 14 (color online). Comparison of the masses of glueballs
of the dynamical theory with the interpolating functions of the
quenched theory. Among the plotted data, the dynamical points
at a�1=2 ¼ 0:2405ð58Þ and a�1=2 ¼ 0:1587ð23Þ correspond to
the lightest masses, respectively, on the 16� 83 and 24� 123

lattices. Hence, the glueball masses for those string tensions are
affected by the largest finite-size effects.

TABLE VIII. The results of the interpolation procedure for the

quenched data of MðqÞ
V =MðqÞ

PS at the values of a�1=2 and aMPS

equal to the ones found in the dynamical simulations. The errors
in the third column have been obtained from the variation of the
numerical results on the maximal and the minimal interpolating
functions.

a�1=2 aMPS MðqÞ
V =MðqÞ

PS

0.4053(51) 2.6546(47) 1.003 03(32)

0.3976(51) 2.4936(57) 1.004 42(38)

0.352(11) 2.3120(68) 1.006 93(30)

0.3561(42) 2.0939(80) 1.011 52(44)

0.2794(63) 1.8172(95) 1.019 83(59)

0.2405(58) 1.579(12) 1.030 4(11)

0.2184(23) 1.4748(24) 1.035 5(27)

0.2066(97) 1.4094(42) 1.038 9(40)

0.1851(33) 1.3493(28) 1.037 9(21)

0.1587(23) 1.1874(28) 1.041 9(37)

0.1455(19) 1.0811(31) 1.046 4(30)

0.1205(56) 0.9613(35) 1.039 6(70)

0.1130(54) 0.8017(41) 1.053(13)
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which is evidence for a locking mechanism with a large
Mlock taking place in this theory.

The relevant interpolated quenched results for the ratio
MV=MPS as a function of MPS are reported in Table VIII
and compared with the dynamical results in Fig. 13. The
quenched and dynamical data have a remarkable overlap
for all the points except for the last one, where strong finite-
size effects are expected to affect both the quenched and
the dynamical simulations. Together with the plateau in the
ratio developing for aMPS � 1:25, the comparison con-
firms once again a locking mechanism taking place at large
Mlock.

IX. THE CHIRAL CONDENSATE ANOMALOUS
DIMENSION

The hyperscaling scenario supported by our data seems
to imply the existence of an infrared fixed point. However,
since the evidence for the hyperscaling and the locking of
the mesonic and gluonic spectra is still over a small range
of am, simulations at smaller masses and large volumes are
needed to confirm the trend identified so far.

If the theory is IR conformal, all the spectral quantities
scale as m	 for a unique value of 	 ¼ 1=ð1þ ��Þ, with ��
the anomalous dimension of the condensate. Hence, in this
case �� is physically well defined.

In order to build phenomenologically viable technicolor
models, a large anomalous dimension is generally re-
quired. From a purely theoretical point of view 0 � �� �
2, where �� ¼ 0 corresponds to the noninteracting case
and �� ¼ 2 is the bound imposed by unitarity; a value
�� � 1 might reconcile technicolor with high-precision
data for the standard model. The determination of �� is
then one of the goals of lattice simulations of BSM strong
dynamics.

In order for us to be able to extract a scaling exponent,
the simulations must be performed in a region of suffi-
ciently small masses. The exact extent of the scaling region
(which also depends on the observable being analyzed) is
only known a posteriori. On the lattice, the problem is
complicated by the explicit breaking of conformal invari-
ance due to the finite size of the system. This can however
be turned into a powerful tool for determining the exponent
of the scaling with the mass using a technique commonly
known in statistical bechanics as finite-size scaling (FSS).
FSS states that the dimension of the system is a relevant
scaling variable with mass dimension �1. Hence, the
asymptotic scaling formula

aMX / ðamÞ	; 	 ¼ 1=ð1þ ��Þ; (74)

where MX is a spectral quantity of the system, on a finite
lattice of spatial extension Ls ¼ aNs and in the regime
Ls ! 1 and m ! 0 becomes

MXLs ¼ fðxÞ; x ¼ NsðamÞ	; (75)

i.e. the product MXLs is a universal function of the scaling

variable x. A simple consequence is that the ratio of two
spectral quantities is expected to be a universal function of
MXLs for any spectral quantity MX. Note that this is true
for both the S and the A phases of the system. In Fig. 15 we

show the ratio �1=2
t =MPS as a function of MPSLs. The

universality of the ratio is verified up to values ofMPSLs ’
12.
If the system is in the scaling region (for which we have

support from our data) and the infinite-volume estimates
for spectral quantities are correct, Eq. (74) can be used for
determining ��. We have shown in Sec. V that our deter-
mination of the string tension is reasonably under control.

Hence, we perform a fit of our data for �1=2 using Eq. (74).
With a good quality of the fit (see Fig. 16), we find �� ¼
0:22ð6Þ. Both horizontal and vertical data errors have been
taken into account by implementing a bootstrap procedure.
The fit has been performed on the lightest four points, and
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FIG. 15 (color online). The ratio �1=2
t =MPS as a function of

MPSLs at various lattice sizes. In the shaded region the crossover
between the S and the A phase takes place.
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FIG. 16 (color online). a�1=2 as a function of am. A fit of the
data to Eq. (74) is also shown. In particular, the two lines
represent the extremal values �� ¼ 0:16 and �� ¼ 0:28.
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then progressively increasing the fitting region to include
ten points (all but the last three in Fig. 16). No systematic
trend has been observed when enlarging the fitting region.
The quoted value of �� is a conservative estimate compat-
ible with all the values obtained using the fitting procedure
described above.

The value we find for �� is compatible with determina-
tions obtained in the same theory using other quantities
(e.g. related to mesonic physics [58]) or independent tech-
niques like the Schröedinger functional [29]. These results
clearly favor the existence of a genuine IR fixed point for
this theory. The fact that independent measurements of ��
fall all in the same window of values is a clear message for
model building.

X. CONCLUSIONS

In this work, using numerical simulations of the lattice
model for several sizes of the system and a wide range of
fermion masses, we have shown that at sufficiently low
masses the spectrum of minimal Wwalking technicolor is
consistent with the existence of an infrared fixed point. In
particular, for this specific realization of locking, the theory
at large distances is isospectral to a Yang-Mills SUð2Þ
theory, where the dynamically generated scale of the
pure gauge theory is determined by the fermion mass in
minimal walking technicolor, and turns out to be smaller
than the latter. To confirm this scenario would require one
to extend our study to much smaller fermion masses, down
to values that are not accessible at present to lattice simu-
lations. Another technical limitation of our study is the
simulation at a fixed value of �: in order to verify that
lattice artifacts are not distorting the physical picture,
further studies closer to the continuum limit should be
performed.

Assuming the existence of the IR fixed point, we have
determined the anomalous dimension of the condensate,
which is found to be �� ¼ 0:22ð6Þ. This value is in agree-
ment with other independent determinations, which
strengthen the conclusions that the theory is infrared con-
formal. The value of �� for this theory is probably too
small for conventional technicolor scenarios, although al-

ternative scenarios compatible with a small anomalous
dimension can be devised (see e.g. [86]). It would be
desirable to include larger lattices in our FSS analysis.
Finally, we notice that a FSS analysis performed in a

SUð3Þ gauge theory with two fermion flavors in the two-
index symmetric representation [which for SUð2Þ coin-
cides with the adjoint representation] finds �� ’ 0:5 [31].
Assuming that, as stated in Refs. [24,25], this theory is
infrared conformal (however, see Refs. [35,36] for alter-
native scenarios), this might imply that �� for two-index
symmetric fermions is an increasing function of the num-
ber of colorsN. If this is the case, it would be interesting to
determine whether �� becomes of order 1 for large enough
values of N and whether �� also increases with N for
adjoint fermions.
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