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We study the equation of state at finite temperature and density in two-flavor QCD with the
renormalization group improved gluon action and the clover-improved Wilson quark action on a 163 X
4 lattice. Along the lines of constant physics at mpg/my = 0.65 and 0.80, we compute the second and
forth derivatives of the grand canonical partition function with respect to the quark chemical potential
tg = (@, + pmq)/2 and the isospin chemical potential u; = (w, — u4)/2 at vanishing chemical poten-
tials, and study the behaviors of thermodynamic quantities at finite u, using these derivatives for the case
;= 0. In particular, we study density fluctuations at nonezero temperature and density by calculating the
quark number and isospin susceptibilities and their derivatives with respect to u,. To suppress statistical
fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in
the fluctuation of the quark number when the density increased near the pseudocritical temperature,
suggesting a critical point at finite u, terminating the first order transition line between hadronic and
quark-gluon-plasma phases. This result agrees with the previous results using staggered-type quark
actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at
finite density by measuring the first and second derivatives of these quantities for various color channels of
heavy quark-quark and quark-antiquark pairs. The results suggest that, to the leading order of u,, the
interaction between two quarks becomes stronger at finite densities, while that between quark and

antiquark becomes weaker.
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L. INTRODUCTION

Heavy-ion collision experiments are taking place at
BNL aiming at the experimental studies of a new state of
matter, the quark-gluon plasma [1]. In order to extract
unambiguous signals for the QCD phase transition from
the heavy-ion collision experiments, quantitative calcula-
tions directly from the first principles of QCD are indis-
pensable. At present, the lattice QCD simulation is the only
systematic method to do so. Various computational tech-
niques have been developed to study the nature of quark
matter at finite temperature (7) and at small chemical
potentials w, and w, [2,3]. From intensive studies for
the isosymmetric case u, = py = p,, it turned out that
accurate zero-temperature simulations are important to set
the scale to achieve high precision results at finite 7 and
Mg-

Most of the lattice QCD studies at finite u, so far have
been performed using staggered-type quark actions with
the fourth-root trick for the quark determinant. However,
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the fourth-root trick makes the theory nonlocal and thus the
universality arguments fragile. It should be kept in mind
that the staggered-type quarks for two-favor QCD does not
show the scaling properties at finite 7 expected from the
three-dimensional O(4) spin model [4,5]. This may suggest
large lattice artifacts to the results of staggered-type quarks
near the transition point. Moreover, problems in the stag-
gered quark formulation at finite density are pointed out in
[6]. Since the theoretical base for the fourth-root trick is not
clear, it is indispensable to carry out simulations adopting
different lattice quark actions to control and estimate sys-
tematic errors due to the lattice discretization.

Several years ago, the CP-PACS Collaboration has
studied finite-temperature QCD using the clover-improved
Wilson quark action coupled with the renormalization
group (RG) improved Iwasaki action for gluons [7,8].
With two flavors of dynamical quarks, the phase structure,
the transition temperature, and the equation of state have
been investigated. In contrast to the case of the staggered-
type quarks, both the standard Wilson quark action [9] and
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the clover-improved Wilson quark action [7] reproduce the
expected universality around the critical point of the chiral
phase transition: the subtracted chiral condensate shows
the scaling behavior with the critical exponents and scaling
function of the three-dimensional O(4) spin model.
Moreover, extensive calculations of major physical quan-
tities such as the light hadron masses have been carried out
at T = 0 using the same action [10,11]. Therefore, it is
worth revisiting this action armed with recent techniques
for finite w,.

In the (7, u,) plane, phenomenological studies suggest
the existence of a critical point at which the first order
phase transition line separating the hadronic phase and the
quark-gluon-plasma phase terminates [12—14]. Because
the critical point has second order characteristics, the
fluctuation of the net quark number will diverge as we
approach the critical point in the (7, u,) plane, while the
fluctuation in the isospin number will remain finite [15,16].
Such hadronic fluctuations may be experimentally exam-
ined in heavy-ion collisions by an event-by-event analysis.
The Bielefeld-Swansea Collaboration reported lattice re-
sults for the quark number susceptibility (the second de-
rivative of the thermodynamic grand canonical potential
w/T* = —(VT3)~'InZ, which is proportional to the pres-
sure of the system) by the Taylor expansion method using a
p4-improved staggered quark action [17-19]: From a cal-
culation of the Taylor expansion coefficients of w/T* up to
O[(p,/T)°], they found that the quark number fluctuation
increases rapidly as w, increases in the region near the
transition temperature. This suggests indirectly the exis-
tence of the nearby critical point in the (7, u,) plane.
Moreover, 2 + 1 flavor simulations in staggered quarks
with almost physical quark masses have recently been
performed and the same behaviors in the fluctuations
have been found at finite density [20,21]. Therefore, it is
important to confirm the result using the Wilson-type
quarks.

In this paper, we study thermodynamic properties of
QCD at finite temperature and density with two flavors
of clover-improved Wilson quarks coupled with the RG-
improved Iwasaki gluons. The simulations are performed
along the lines of constant physics corresponding to the
pion and rho meson mass ratio, mpg/my = 0.65 and 0.80
at T = 0. We calculate the Taylor coefficients for the
pressure in terms of /T up to the fourth order, and study
the quark number and isospin susceptibilities at finite u,.
Since the odd derivatives vanish at Mg = 0, the fourth
derivative is the leading contribution to the u, dependence
of susceptibilities. We find that Wilson-type quarks require
much more statistics than staggered-type quarks to obtain
the susceptibilities with a comparable quality. To overcome
this problem, we introduce a couple of tricks in the evalu-
ation of the Taylor expansion coefficients. Furthermore, we
adopt a hybrid method of Taylor expansion and spectral
reweighting in which @ /T* for the reweighting is approxi-
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mated by a truncated Taylor expansion [18,22]. Since the
applicable range of the reweighting method is narrow due
to the sign problem, we introduce the Gaussian method
proposed in [23]. Using these techniques, we compute the
quark number density and the susceptibility in a relatively
wide range of u, /T, and compare the results with those
with staggered-type quarks.

We also extend our previous study of heavy-quark free
energies in various color channels at u, = 0 [24] to finite
Mg At T > T, where T, is the pseudocritical tempera-
ture, we calculate the Taylor expansion coefficients for the
heavy-quark free energies between a static quark (Q) and
an antiquark (Q) and those between Q and Q, for all color
channels up to the second order in /7. By comparing the
expansion coefficients of the free energies, we find that the
interquark interaction between Q and Q becomes weaker,
whereas that between Q and Q becomes stronger as u,
increases. The expansion coefficients of the effective run-
ning coupling a.g(T, u,) and the Debye screening mass
mp(T, u,) are also extracted by fitting the numerical re-
sults with a screened Coulomb form; we find that the
heavy-quark free energies are well reproduced by the
channel dependent Casimir factor and the channel inde-
pendent (T, u ) and mp(T, u,) at T = 2T,,.. The mag-
nitude of the second order coefficient of mp(7T, u,) does
not agree with that of the leading-order calculation in the
thermal perturbation theory.

In Sec. II, we summarize our lattice action and simula-
tion parameters, and determine the pseudocritical tempera-
ture. In Sec. IIl, we calculate the Taylor expansion
coefficients of the thermodinamic grand canonical poten-
tial in terms of the quark chemical potentials x, and wu,
and evaluate them for the isosymmetric case u, = @y =
g at p, = 0up to O(uy). In Sec. IV, we adopt the hybrid
method combined with the Gaussian method, to improve
the calculation. The static quark free energies and the
Debye screening mass are discussed in Sec. V.
Conclusions and discussions are given in Sec. VI. We
summarize properties of the pressure and the quark number
susceptibility in the free gas limit in Appendix A.
Appendix B is devoted to a description of detailed deriva-
tions of formulas for the Gaussian method. Results of the
fits of heavy-quark free energies are summarized in
Appendix C.

II. PHASE STRUCTURE AND LINES OF
CONSTANT PHYSICS AT p, =0

A. Lattice action

First, we summarize our simulation details. We adopt the
same lattice actions as in our previous study at u, = 0
[24]. We use the RG-improved Iwasaki gauge action [25]
and the N, = 2 clover-improved Wilson quark action [26]
defined by
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Here K is the hopping parameter, u = u,a is the quark
chemical potential in lattice unit, and F',,,, is the lattice field
strength, F,,, = (f,, — L)/ (8i), with f v the standard
clover-shaped combination of gauge links. For the clover
coefficient cgy, we adopt a mean field value using W'*!
calculated in the one-loop perturbation theory [25]: cgy =
(WXH)=3/4 = (1 — 0.8412871)~3/%. We denote the spatial
and temporal lattice size as N; and N,, respectively. At
u, =0, the phase diagram of this action in the (B8, K)
plane has been obtained by the CP-PACS Collaboration
[7.8].

For phenomenological applications, we need to inves-
tigate the temperature dependence of thermodynamic ob-
servables in a given physical system. On the lattice, “‘a
given physical system” corresponds to a given set of values
of dimensionless ratios of physical observables at T = 0
and p, = 0. Assuming the scaling, this forms a line in the
coupling parameter space, called the line of constant phys-
ics (LCP), along which the lattice scale (lattice spacing a)
is varied for a given physical system. On a finite-
temperature lattice with fixed N,, the temperature, 7T =
1/N,a, is varied along a LCP according to the variation
of a. In this study, we determine LCP by mypg/my (the ratio
of pseudoscalar and vector meson masses at 7= 0 and
g = 0). The bold solid line denoted as K, in Fig. 1
represents the chiral limit, i.e. mpg/my = 0. Above the
K, line, the parity-flavor symmetry is spontaneously bro-
ken [27]. The region below K. corresponds to the two-
flavor QCD with finite quark mass. We perform simula-
tions in this region. The lines of constant mpg/my are
investigated in Refs. [8,24], which is shown as thin solid
lines in Fig. 1, corresponding to mpg/my = 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, and 0.95.
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FIG. 1 (color online). Solid lines represent lines of constant
physics determined by mpg/my at T = 0 for mpg/my = 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, and 0.95. K, is the chiral limit, i.e.,
mps/my = 0. Dashed lines represent lines of constant T/T,. on
N, = 4 lattices, where T, is the pseudocritical temperature
corresponding to K,(N, = 4) shown by the thick dashed line.

The temperature 7 is estimated by the zero-temperature
vector meson mass mya(B, K) using

1

N; X mya(B, K) ©)

L (pK)=

nmy
The lines of constant T /T, is determined by the ratio of
T/my to T, /my where T, /my is obtained by 7'/my at K,
on the same LCP. We use an interpolation function,
Tpe/my = A(1 + B(mps/my)?)/(1 + C(mps/my)*) with
A = 0.2253(71), B = —0.933(17), and C = —0.820(39),
obtained in Ref. [8] to evaluate T),./my for each mpg/my.
The bold dashed line denoted as K,(N, =4) in Fig. 1
represents the pseudocritical line T/7,. = 1. The thin
dashed lines represent the results for 7/7,. = 0.8, 1.2,
14,1.6,1.8,20atN, =4.

We perform finite-temperature simulations on a lattice
with a temporal extent N, = 4 and a spatial extent N, = 16
along the LCPs at mpg/my = 0.65 and 0.80. The standard
hybrid Monte Carlo algorithm is employed to generate full
QCD configurations with two flavors of dynamical quarks.
The length of one trajectory is unity and the step size of the
molecular dynamics is tuned to achieve an acceptance rate
greater than 70%. Runs are carried out in the range 8 =
1.50-2.40 at 13 values of T/T},. ~ 0.82—4.0 for mpg/my =
0.65 and 12 values of T/T, ~ 0.76-3.0 for mpg/my =
0.80. Our simulation parameters and the corresponding
temperatures are summarized in Table I. Because the de-
termination of the pseudocritical line is more difficult than
the calculation of T /my, the dominant source for the error
of T/T,. in Table I is the overall factor T,./my. The
number of trajectories for each run after thermalization is
5000-6000. We measure physical quantities at every 10
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TABLE I. Simulation parameters for mpg/my = 0.65 (left) and mpg/my = 0.80 (right) on a
163 X 4 lattice.

B K T/Ty Traj. B K T/Ty Traj.
1.50 0.150290 0.82(3) 5000 1.50 0.143 480 0.76(4) 5500
1.60 0.150030 0.86(3) 5000 1.60 0.143749 0.80(4) 6000
1.70 0.148 086 0.94(3) 5000 1.70 0.142871 0.84(4) 6000
1.75 0.146 763 1.00(4) 5000 1.80 0.141 139 0.93(5) 6000
1.80 0.145 127 1.07(4) 5000 1.85 0.140070 0.99(5) 6000
1.85 0.143502 1.18(4) 5000 1.90 0.138 817 1.08(5) 6000
1.90 0.141 849 1.32(5) 5000 1.95 0.137716 1.20(6) 6000
1.95 0.140472 1.48(5) 5000 2.00 0.136931 1.35(7) 5000
2.00 0.139411 1.67(6) 5000 2.10 0.135 860 1.69(8) 5000
2.10 0.137833 2.09(7) 5000 2.20 0.135010 2.07(10) 5000
2.20 0.136 596 2.59(9) 5000 2.30 0.134 194 2.51(13) 5000
2.30 0.135492 3.22(12) 5000 2.40 0.133395 3.01(15) 5000
2.40 0.134453 4.02(15) 5000

trajectories. The study of heavy-quark free energies at
Mgy = 0 using the same configurations have been already
published in Ref. [24].

B. Critical temperature

We update the analysis of the pseudocritical temperature
done in Refs. [7,8], performing additional simulations at
B=6/g>=1.7and 1.8 on an N} X N, = 16 X 4 lattice
and at 1.9 and 1.95 on N} X N, = 16 X 6. The number of
trajectories for each new run is 1050—4200 after thermal-
ization. We add the new data to the data in Refs. [7,8] and
determine the pseudocritical hopping parameters K, de-
fined from the peak of the Polyakov-loop susceptibility on
16°> X 4 and 163 X 6 lattices, as a function of 8. Figs. 2 and
3 are the results of the Polyakov loop (L) and Polyakov-
loop susceptibility y;, respectively. We find a pronounced
peak in the Polyakov-loop susceptibility except for 8 =

0-25 I T I T I T I
- @p=1.70 b
m $=1.80
0.20 & (=1.85 _
A (3=1.90
« =1.925 i
v B=1.95
0.15 » 3=2.00 |

<>

0.10

0.05

0.00 | 1 | 1 | 1 |

0.140 0.150

1.90 at N, = 6. The peak position of the susceptibility (K,)
is determined by fitting three or four data near the peak
with the Gaussian form. The results are summarized in
Table II together with the values of some quantities at K, to
set a physical scale.

We use the data of the pseudoscalar and vector meson
masses at T = 0, mpg, and my,, summarized in Table IV of
Ref. [8], and interpolate them following the method dis-
cussed in Refs. [7,8]. We also calculate the current quark
mass defined through an axial vector Ward-Takahashi
identity (AWI), V,A, = 2miV'P + O(a), where P is
the pseudoscalar density and A,, the u-th component of
the local axial vector current [28,29]. Because the T de-
pendence in my™! is small, we use the data of mj™!
obtained in finite-temperature simulations at N, = 4 and
6 [7,8]. In Table II, m4™! on the K, line are obtained using a
cubic spline interpolation for each . A straight line inter-
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FIG. 2. K dependence of the Polyakov loop for N, = 4 (left) and 6 (right). Data at 8 = 1.7 and 1.8 for N; = 4 and 1.9 and 1.95 for

N, = 6 are renewed from Refs. [7,8].
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polation leads to almost identical results within statistical
errors. The values of the string tension o and the Sommer
scale r [30] are estimated by interpolating or extrapolating
the data at 8 = 1.80, 1.95, 2.10, and 2.20 [11] in the
(B, 1/K — 1/K,) parameter plane.

The results of the pseudocritical temperature are also
shown in Table II. We plot T /my as a function of
(mps/my)? in Fig. 4, and find that the results of N, = 4
and 6 agree with each other. Note that 7},. /my vanishes in
the heavy-quark limit mpg/my = 1. Figure 4 suggests
Tpe/my ~ 0.22 (T, ~ 170 MeV) in the chiral limit.

We denote the critical temperature in the chiral limit as
T.. As discussed in [7,9], the subtracted chiral condensate
[29] satisfies the scaling behavior with the critical expo-
nents and scaling function of the 3-dimensional O(4) spin
model. For the reduced temperature ¢ and external mag-

TABLE II.
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K dependence of the Polyakov-loop susceptibility for N, = 4 (left) and 6 (right).

netic field i, we adopt 1 ~ B — B and h ~ m,, where B
is the critical transition point in the chiral limit. For a
precise determination of 7., we need to deduce (. from
the data. In this study, we perform critical scaling fits
assuming that the pseudocritical temperature #,. from the
Polyakov-loop susceptibility, as well as that from the chiral
condensate, follows the scaling law 7, ~ h'/Y with the
O(4) critical exponent 1/y = 1/(868) = 0.537(7). In prac-
tice, we fit the data of B,.(K), i.e. the inverse function of
K,(B) in Table II, by
ch = ﬁct + Ahl/y (6)
with two free parameters, B and A.
For the quark mass m, ~ h in the scaling fits, we test
three variants. The firstis m,a ~ 1/K — 1/K,, where K_. is

Finite-temperature transition/crossover point K, for N, = 4 and 6. Results for mpg(T = 0)/my(T = 0), mpga(T = 0),

mi™Ma(T > 0), Tpo/my(T = 0), Ty /[T, Tyery, and mpgry, are interpolated to the K, line.

B K, K. Mps /my mpsd mypWa Tpo/my Too/Jo Tycro mpsTo
N, =4
1.700  0.15014(33) 0.151987(22) 0.509(35) 0.579(51) 0.2197(47)
1.800 0.14425(16) 0.147678(15) 0.7070(79) 0.849(18) 0.1107(77) 0.2083(21) 0.4204(29) 0.4716(42) 1.601(37)
1.850 0.14019(18) 0.145526(58) 0.7905(60) 1.031(15) 0.1864(72) 0.1917(20) 0.4359(60) 0.484(11) 1.994(55)
1.900 0.13621(15) 0.143737(48) 0.8525(39) 1.183(11) 0.2464(49) 0.1801(12) 0.4382(70) 0.484(16) 2.290(79)
1.925 0.13417(23) 0.2725(67)
1.950 0.13040(97) 0.142072(14) 0.9051(64) 1.440(66) 0.363(25) 0.1572(62)
2.000 0.12371(73) 0.140811(55) 0.945036) 1.689(39) 0.500(18) 0.1398(29)
2100 0.10921(43) 0.13902021) 09790(13) 2.196(18) 0.1114(9)
N, =6
1.950 0.14090(13) 0.142072(14) 0.591(21) 0.448124) 0.0451(51) 0.2202(44) 0.4336(40) 0.4973(58) 1.336(73)
2.000 0.13861(21) 0.140811(55) 0.725(16) 0.580(27)  0.080(10) 0.2086(53) 0.4639(77) 0.530(13) 1.842(98)
2.100 0.13365(40) 0.139020(21) 0.8635(78) 0.821(34) 0.175(13) 0.1753(58) 0.491(12) 0.570(13) 2.81(13)
2200 0.12539(25) 0.137658(53) 0.9481(19) 1.240(16) 0.3607(67) 0.1275(15)
2300 0.11963(15) 0.136513(85) 0.9724(12) 1.454(8) 0.4813(39) 0.1114(6)
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FIG. 4 (color online). T,./my vs mps/my for N, = 4 (circle)
and 6 (triangle). The lightest two points for N, =4 and the
lightest one point for N, = 6 are updated from Ref. [8].
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the chiral point at which the pion mass vanishes at 7 = 0
for each B. The second is m,a ~ (mpsa)?. The third is
mi™a, ie. the quark mass defined by the axial vector
Ward-Takahashi identity. We plot B, as a function of
1/K — 1/K. (left), (mpsa)* (center), and mj™'a (right)
in Fig. 5. The results of B, and T, are summarized in
Table III, where 7, in MeV is calculated by T, =
1/[N,a(B.)] with a from the vector meson mass my (T =
0) = m, =770 MeV at B on K. We test two fit ranges
of B for each extrapolation, which is denoted in Table III as
“B range.” We note that these O(4) fits reproduce the data
of B,. much better than a naive linear fit 8,. = B + Ah.
A tentative conclusion is that the critical temperature in the
chiral limit is in the range 171-180 MeV for N, = 4 and
160-184 MeV for N, = 6. There is still a large uncertainty
from the choice of the fit ansatz and the fit range. To
remove this, further simulations at lighter quark masses
are necessary.

0 0.2 0.4 0.6 0.8 1 0 0.5

1y
(/K -1/K )

(mPSa)Z/v (m, " a)”

FIG. 5 (color online). The pseudocritical point S, as a function of (m,a)'/* with m,a ~ 1/K — 1/K, (left), (m3sa)? (center), and
m?WIa (right) for N, = 4 (circle) and N, = 6 (square). We fit the data in two fit ranges. The solid and dashed lines are the fit results

with the long and short fit ranges, respectively.

TABLE III. The critical point (B,) and critical temperature (7T,) in the chiral limit obtained by various fitting procedures. The fit
range for § is written in ““g range.” T, in a physical unit is estimated from the vector meson mass my = m, = 770 MeV.

N, h~mya B range Bet T. (my-input) T.ry

4 1/K, — 1/K, 1.70-1.95 1.619(10) 180(3) MeV

4 1/K, — 1/K, 1.70-1.90 1.611(12) 179(3) MeV

4 (mpga)? 1.70-1.95 1.559(16) 172(3) MeV

4 (mpga)? 1.70-1.90 1.552(16) 171(3) MeV

4 myVa 1.80-1.90 1.601(20) 177(4) MeV

4 myVa 1.80-1.95 1.596(18) 176(3) MeV

6 /K, — 1/K, 1.95-2.20 1.870(6) 184(5) MeV 0.434(9)
6 1/K, — 1/K, 1.95-2.10 1.840(14) 171(4) MeV 0.401(16)
6 (mpga)? 1.95-2.20 1.835(9) 170(4) MeV 0.396(12)
6 (mpga)? 1.95-2.10 1.786(25) 160(9) MeV 0.350(23)
6 mp™a 1.95-2.20 1.835(10) 170(4) MeV 0.396(12)
6 myWVa 1.95-2.10 1.810(19) 167(4) MeV 0.372(20)

014508-6



EQUATION OF STATE AND HEAVY-QUARK FREE ENERGY ...

For a comparison with other groups, we estimate 7, in
units of the Sommer scale rq [30] at B in the chiral limit
for N, = 6. Using the data of ry/a in the chiral limit at 8 =
1.80, 1.95, and 2.10 [11], we interpolate a/ry by a qua-
dratic function and calculate T,.r, = (N,a/ry) . The esti-
mates are about 7.ry = 0.40, as listed in Table III. These
values are close to 7.ry = 0.402(29) obtained by the MILC
Collaboration using the asqtad quark action in 2 + 1 flavor
QCD [31]." On the other hand, the RBC-Bielefeld
Collaboration obtained 7.ry = 0.444(6)*1> using a 2 + 1
flavor p4fat3 improved staggered quark action [32]. From a
simulation of 2 flavor QCD using a clover-improved
Wilson action and the standard one-plaquette gauge action,
the DIK Collaboration obtained T.ry = 0.438(6)"!? at the
physical pion mass point, and the value in the chiral limit is
2% smaller than this value [33]. Our result is somewhat
smaller than these values. Finally, the Budapest-Wuppertal
group used a stout-link improved staggered fermion action
and fixed the scale by the pion decay constant f_. They
found that 7, determined by the chiral susceptibility is
T. = 151(3)(3) MeV and that by the renormalized
Polyakov loop is T, = 176(3)(4) MeV in the continuum
limit at the physical point [34]. Our result is close to their
result defined by the Polyakov loop. For further discus-
sions, see Refs. [35-37].

II1. EQUATION OF STATE AT FINITE DENSITIES
BY THE TAYLOR EXPANSION METHOD

The main difficulty in a study of QCD at finite density is
that the Boltzmann weight is complex for nonzero u,. The
quark matrix at zero density have the y5 Hermiticity MT =
vsM+ys which guarantees that the quark determinant is
real. However, at u, # 0, we have only

MT(Mq) = ’)/SM(_/“Lq)’YS’ (7)

from Eq. (4). Therefore, the quark determinant is complex
for u, # 0.

Because configurations cannot be generated with a com-
plex probability, the conventional Monte Carlo method is
not applicable at u, # 0. At present, there are three meth-
ods to study finite density QCD, all of which are applicable
for small u, regions. The simplest is the method based on a
Taylor expansion in terms of w,/T around u, =0
[17,22,38,39]. Because the simulations at wu, =0 are
free from the complex weight problem, the expansion
coefficients, i.e., derivatives of physical quantities with
respect to u,/T, can be evaluated by a conventional
Monte Carlo simulation. The second approach is the re-
weighting method [40-43]. Performing simulations at
gy = 0, expectation values at finite u, are computed
adopting a corrected Boltzmann weight. For the correction,

'Originally, T, is given in units of r, in Ref. [31]. The scale of
T, has been converted to r, using ry/r; = 1.4795 [32].
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the quark determinant at finite w, is estimated numerically.
Because fluctuations in the complex phase of the determi-
nant are large at large wu, and/or large lattice volume, a
reliable calculation of the expectation value becomes
gradually difficult off the small u, and small lattice vol-
ume region due to the sign problem [44,45]. The third
approach is the analytic continuation from simulations
with imaginary chemical potentials [46,47]. Since Eq. (7)
is generalized to M*(u,) = ysM(—pu})ys for complex
Mg» the Boltzmann weight is real and simulations are
possible when the chemical potential is purely imaginary.
Using results by the imaginary chemical potential simula-
tions, information at a real chemical potential can be
obtained by an analytic continuation. The analytic continu-
ation is usually based on a Taylor expansion in terms of u,,
around wu, = O for the study in the low density region, and
improvements of the analytic continuation have been also
discussed in [48-50] to obtain reliable results in a wide
range of real p,.

In this section, we adopt the Taylor expansion method to
study the effects of u, in the equation of state. Most of
thermodynamic quantities, such as energy density, quark
number, order parameters, and various susceptibilities, are
given by derivatives of the thermodynamic grand canonical
potential w/T* = —(InZ)/(VT?). Also, pressure, which is
given by w itself, is evaluated by integrating a derivative of
w in current studies of the equation of state. Therefore, the
calculations of the derivative of w are basic for the study of
QCD thermodynamics by lattice simulations, and the
Taylor expansion method calculating higher order deriva-
tives in w, is the most natural extension from the study at
wy = 0 to finite w,.

A. Taylor expansion of the grand canonical potential

We study pressure p and quark number densities n,, and
n; defined by derivatives of the partition function

Z(T, pus Hq):

p 1 w

LA N Py

™ v T (8)
ng 1 alnZ _ a(p/TY

P VE sy T

where w, and w, are the chemical potentials for the # and
d quarks. Let us define the quark chemical potential u, =
(w, + mg)/2 and the isospin chemical potential u; =
(m, — mg)/2. Taylor expansion coefficients of physical
quantities are given by derivatives of them in terms of
My and pg, or equivalently u, and u;. We evaluate these
coefficients at u, = u, = 0 and study the physical quan-
tities as functions of 7" and u, in the isosymmetric case

My = g = pg (ie. uy = 0).
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We define the susceptibility of quark number by

/\/q o ( d Jd )nu + ny
r* \o(w/T)  a(pa/T) T
and the susceptibility of isospin number by
d d
X—;=( = )" Ll 0
T I pu/T)  pa/T)) T

These susceptibilities correspond to the fluctuations of the
baryon number and isospin number in the medium, respec-
tively [51]. They are expected to behave quite differently
near the critical point in the (7, u,) plane.

We define the Taylor expansion coefficients of the pres-
sure p(T, u,) for the case u,, = py = p, as

P _ -« Mg\

i Cn(T)<_q>}
7~ 207

I N} 9"InZ

T)= -t _—~ =

D) = NS g STV

Here, c((T) is the pressure at u, = 0 and has been com-
puted by the CP-PACS Collaboration with the same action
on 16 X 4 and 163 X 6 lattices [7,8]. Its value in the
quenched limit is given in [52].

We also expand the quark number and isospin suscepti-
bilities for the case u, = pny = pgt

T, >
Lf‘f) — ¢, + 12c4(ﬂ) _—
T T

(11)

Kq=0

(12)
T, 2
XiTttg) ey 12c5(ﬂ) o
T T
where
gL NP O"InZ(T, g + pp, g = B1)
" n! N? a(,LL[/T)za(,u,q/T)”72 Pq=0,p;=0
(13)

1. Free quark-gluon gas at high temperature

We expect QCD in the high temperature limit is de-
scribed as free gas of quark and gluon. The pressure of the
free gas in the continuum theory is given by

87’ T 1 21 4
B ) )] o
T 45 S 60 2\T 4 \T

Note that the u,, dependence appears only through terms of
,ué and ,ufq‘. The quark number density is a cubic function
of u, too. The quark number and isospin susceptibilities

are the same for the free quark-gluon gas and are given by a
quadratic function

X 3 (g\?
o =%=Nf[1+7(4) ] (15)
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Therefore, the Taylor expansion will converge well in the
high temperature region.

2. Hadron resonace gas at low temperature

On the other hand, QCD at low temperature may be
modeled by free gas of hadron resonances [53]. The par-
tition function of the hadron resonance gas consists of
mesonic and baryonic contributions,

InZ(T,V, )= > InZM(T,V,p,)

iEmesons

+ S mZE@ Ve (6

iEbaryons

where

\% 00
nZy/*(T, V, ) = 1—2[ dkk*In(1 + z;e=*/T)
' 27 Jo
7)
with energies e7 = k* + m? and fugacities
z; = exp((3B;u,)/T) . (18)

Here B; is the baryon number: B; =1, —1 and 0O for
baryons, antibaryons, and mesons, respectively. The upper
sign in Eq. (17) is for bosons, while the lower sign for
fermions. Note that Z%f is actually independent of u,.
Expanding the logarithms in powers of fugacity, the inte-
gration over momenta, k, can be carried out:

VTm? i 1

lml'
Zy/" = 2SR a9
1

=1

where K, is a modified Bessel function. For m; > T, the
Bessel function can be approximated by K,(x)~
J7/2xe (1 + 15/8x + O(x~?)). Terms with € =2 in
the series given in Eq. (19) thus are exponentially
suppressed.

Let us study the u, dependence of the partition function.
The mesonic sector has no u, dependence because B; = 0
for mesons. On the other hand, the baryonic sector can be
approximated by the leading term in the expansion of z;,
since all baryons are heavier than a typical temperature
scale. We obtain

T T VT3

=~ F(T)[cosh(%) - 1], (20)

[InZ(T, w,) — nZ(T, 0)]

with

= 3 (3 x(y) oo

iEbaryons

Note that each term in the sum for F now counts both
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baryons and antibaryons. The quark number susceptibility
is then given by

Xq

= (22)

3
= 9F(T) cosh(ﬁ)
T
From Eq. (20), the ratios of the expansion coefficients of
p/T*in p,/T are derived,

Cont2 9
2n+2)2n+1)°

o (23)
The ratio decreases as the order becomes higher. This
means that the contribution from the higher order terms
of u,/T is small in the region of u,/T < O(1).

PHYSICAL REVIEW D 82, 014508 (2010)

near the transition point. Using u = w,a, the explicit
forms of the Taylor expansion coefficients are

N, 1
=——2A4,, =—— (A, —-3A2%,
@ 2N3 > a= gy ) o
1
I — _
= 2N3 = gy, (Be ~ BaAo),

A, =(Dy) + (DY),
Ay =(Dy) + KD;
B, =(D»),

D)) + 3(D3) + 6(D,D?) + (D},

=(Dy) + AD; D)) +(D3) + (D, Dy), (25)
3. Numerical study near the transition temperature with
The behavior near the transition temperature is nontri- 9" IndetM
vial. We expect a critical point at finite u,. The Taylor D, =Ny BV (26)
expansion must break down at that point. We perform #
numerical simulations to study the expansion coefficients i.e.,
|
oM
D, - a1 24,
I
i *M oM oM
D, = tr(M : 2) —tr(M L M! )]
ou ou ou
i P*M oM *M oM oM oM
D; =Ny tr(M 1—3) - 3tr(M_1—M_1—2) + 2tr(M—1—M— —M! )]
L d ou op o I o
i *M oM P’M M *M | OM oM ’M
D, =Ny tr(M"—4 4tr(M l—Mm! ) 3t (M 1—M ! 2) + 12t< —M"—M’l—z)
‘L ou ou ou’ o> om ou oum om
oM M oM oM
—6tr<M’1—M l—M’I—M’l—)il. (27)
o om om ou
The derivative of the fermion matrix M at u = 0 is
(anM) _ { —K((1 — y4)U4(x)8x+;Ly —(1+ M)UI(x - ) iy ) for n: odd 28)
ap" )y —K((1 — y4)U4(x)8x+;Ly +(1+ M)UI(x — ) iy ) for n: even

B. Random noise method

We apply a random noise method to evaluate the traces
in Eq. (27). As we will see later, this method is effective
when off-diagonal elements of the matrix are small.
Therefore, the method works well for traces over spatial
indices: Because the inverse of the quark matrix M~ (x, y)
decreases as a function of |x — y|, the off-diagonal ele-
ments in the spatial coordinate will be smaller than the
diagonal ones. The random noise method will work well to
suppress these small contaminations of off-diagonal ele-
ments. On the other hand, the off-diagonal elements in the
color and spinor indices at the same spatial point are not
suppressed by |x — y|, and will have the same magnitude
as the diagonal elements. Because a staggered-type quark
does not have the spinor index at a spatial point, the
number of off-diagonal elements is only 6 in the 3 X 3

[
matrix, the contamination of off-diagonal elements may

not be so serious. However, for Wilson-type quarks, be-
cause the number of the color-spinor index is 3 X 4, the
number of the off-diagonal elements in the quark matrix is
11 times larger than the diagonal one, so that the color-
spinor index should be treated more carefully with Wilson-
type quarks. In this study, we apply the random noise
method for the spatial coordinates only, repeating the
calculation for each of the color and spinor indices.

We generate noise vectors (7;,),5 = 1(i, X)8, g,
which satisfy

Nnulse

Nnome lz 77(1 )C)‘I’] (l )7) = Sxy

(29)

for large N,y We adopt U(1) random numbers as 7,
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which are complex random numbers with || = 1 and are
generated from uniform random numbers 6 € [0, 277) with
1 = e'?. For each color-spinor index (a = 1, ..., 12), we
generate N,  noise  vectors (i = 1~ Nygie)-
Then limNnniseﬁw(l/Nnoise) Zivzml‘qe Lzzl (T]i,a)x,ﬁ(n;a)y,y =
0,6 3,, hence

oMM "M
tr( M1 ..M_l)

™ o ’
1 Nnoise 12 a}’llM
~ Mo Xiw  (1=12,..), (30)
Nnoise i=1 a=1 alu“

where X;, = M~ '(a™M/du")...M~'n;,. To obtain X,
we solve equations MX, = Y, recursively with Y| = 7,
Y, = (0"M/ou™ )M 'n = (0"M/du")X,, etc.

Because N, | .3 (i, x)n*(i, ) is O(1/Npise) for x #
y, errors due to finite N, decrease as O(y/1/Npgice)-
However, these errors are produced from all off-diagonal
elements of the matrix in Eq. (30), hence these are propor-
tional to the magnitude and number of the off-diagonal
elements. Therefore, when the off-diagonal elements are
not smaller than the diagonal elements, a number of noise
vectors are needed to remove the error. This is the reason
why we do not use the random noise method for the color-
spinor index.

For a product of traces, the random noise vectors for
each trace must be independent. We compute such product
by subtracting the contribution of the same noise vector
from the naive product of two noise averages for each
trace. This effectively increases the number of noises to
Nioise (Nnoise — 1) for the products and thus suppresses their
errors due to the noise method.

We then average over configurations to evaluate the
expectation values in Eq. (25). In addition to the errors
due to the noise method, the statistical fluctuation of con-
figurations contributes to the final error. To check the
relative amount of the errors from the noise method, we
calculate the operators D, (n = 1-4) using two indepen-
dent sets of noise vectors with N, = 10 on the same
configurations. Figure 6 shows the time history of the
imaginary part of D, and the real part of D, computed
using these two sets of noise vectors. The operator D, is
real for even n and purely imaginary for odd n [22].
Therefore, the average of D, is zero because the expecta-
tion value is always real at u, = 0. We find that two results
of D, obtained by different noise sets are consistent with
each other on each configuration, while two results of D,
are sensibly different. This means that, in the evaluation of
D, with N, = 10, the error from the noise method is
larger than the error from the statistical fluctuation of
configurations. We can reduce the error from the noise
method by increasing N,... We plot the time history
with N, = 200 in Fig. 7. Two results of Im[ D), ] using
different noise sets are almost consistent, i.e., the error in
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0.004

T | T |
L Im[d(In detM)/dp N

0.002

-0.002

-0.004
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FIG. 6 (color online). Time history of D; X (NfoN,)’l (top)
and D, X (N #N3N,)~! (bottom) obtained by different noise sets
at T/Tp. = 0.925, mps/my = 0.8.

D, is now dominated by the statistical fluctuation of
configurations with this N, ;-

The required number of noise vectors depends on each
operator. Here, we note that, in the evaluation of ¢, and ci
through Eq. (25), the errors due to the error of D, is
dominant. In order to efficiently reduce the total errors of
c4 and cf, we adopt large N, only for D, keeping Njse
for other operators small. The values of N, we adopt are

0.004

T T T T T
N_ . =200 -

noise

! I T I
- Im[d(In detM)/du]
0.002

-0.002

-0.004

0.002 — _

-0.002 — —

-0.004 I | I | I | I | I
0 10 20 30 40 50

configuration no.

FIG. 7 (color online). Time history of the imaginary part (top)
and real part (bottom) of D, X (N;N3N,)~! obtained by differ-
ent noise sets at 7/T. = 0.925, mps/my = 0.8.
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TABLE IV. Results of the Taylor expansion coefficients for mpg/my = 0.65 and 0.80. The first
number in the column of N, iS Ny for the calculations of tr[(9”M/du™)M '], and the
second number for other traces. See text for details.

T/Ty cy X2 cy X 4! ch X2 ch x4 Npoise
mpg/my = 0.65
0.82(3) 0.352(59) 6.3(108) 1.189(6) 1.41(49) 400,10
0.86(3) 0.420(71) 2.6(154) 1.392(6) 1.81(46) 400,10
0.94(3) 0.963(64) 10.5(103) 1.857(10) 2.88(64) 400,10
1.00(4) 2.134(53) 24.4(107) 2.780(21) 7.83(111) 200,10
1.07(4) 4.140(27) 8.7(21) 4.396(16) 5.58(34) 200,10
1.18(4) 4.732(21) 7.8(11) 4.910(8) 4.82(19) 200,10
1.32(5) 4.938(20) 7.1(14) 5.052(6) 4.65(13) 100,10
1.48(5) 5.042(17) 5.6(12) 5.143(6) 4.72(14) 100,10
1.67(6) 5.133(15) 4.0(11) 5.229(5) 4.67(13) 100,10
2.09(7) 5.314(11) 5.0(6) 5.368(4) 4.65(8) 100,10
2.59(9) 5.447(13) 4.8(6) 5.482(4) 4.72(5) 100,10
3.22(12) 5.517(12) 6.4(7) 5.562(4) 5.05(8) 100,10
4.02(15) 5.593(12) 5.8(6) 5.618(4) 5.03(7) 100,10
mps/mv = (0.80
0.76(4) 0.066(34) 3.8(51) 0.549(4) 0.37(19) 400,10
0.80(4) 0.134(33) 1.9(39) 0.637(5) 0.35(23) 400,10
0.84(4) 0.251(35) 0.0(37) 0.776(6) 0.80(27) 400,10
0.93(5) 0.713(40) 2.0(48) 1.313(9) 1.94(34) 400,10
0.99(5) 2.071(34) 17.4(47) 2.498(17) 5.13(53) 400,10
1.08(5) 3.877(19) 8.0(10) 4.036(10) 492(18) 200,10
1.20(6) 4.403(14) 7.8(9) 4.508(7) 4.63(14) 200,10
1.35(7) 4.682(11) 5.8(5) 4.767(5) 4.50(7) 200,10
1.69(8) 4.970(10) 5.9(4) 5.048(5) 4.62(7) 200,10
2.07(10) 5.184(9) 5.8(3) 5.234(5) 4.71(5) 200,10
2.51(13) 5.315(8) 5.9(3) 5.357(4) 4.72(4) 200,10
3.01(15) 5.424(9) 6.0(3) 5.451(4) 4.83(3) 200,10

summarized in Table IV. We choose N,y = 10 for the
calculations of the operators in Eq. (25) except for the
operators tr[(0"M/ou")M~'], where n=1—4, for
which we adopt N,u. = 100400 (the first number in
the column of N, in Table 1V).

Finally, we take advantage of the knowledge that the odd
derivatives are purely imaginary and the even derivatives
are real. In the lower panel of Fig. 7, we plot Re[ D, ] which
should vanish when N, is large enough. We find that,
unlike the case of Im[ D, ] shown in the upper panel of the
same figure, Re[ D, | data from two sets of random noises
show no correlations in the time history even with small
Nyoise- Therefore, to further reduce errors from the random
noise method, we can put the real and imaginary parts of
the odd and even derivatives to zero, respectively.

C. Quark number density, quark number susceptibility,
and isospin susceptibility

We perform a series of simulations along LCPs for two
quark masses corresponding to mpg/my = 0.65 and 0.80
to calculate the expansion coefficients ¢,, ¢4, ¢, and ¢}
defined in Eq. (24). The results are summarized in
Table IV.

The results for x, /T2 and x;/T* at u, = 0 are plotted
in Fig. 8. The circle and square symbols are for y,, /T? and
X1/ T?, respectively. The short lines on the right-hand side
denote the values in the free quark-gluon gas [Stefan-
Boltzmann (SB)] limit, both for N, = 4 and in the contin-
uum (cf. Appendix A).

At p, =0, x,/T* =2c, and x;/T* = 2c}. Because
D, is a pure imaginary number, D} is negative in
Eq. (25) and thus y,;/T* will be larger than y,/T?, while
the difference should vanish in the high temperature limit
according to Eq. (14) for the free quark-gluon gas. In the
low temperature phase, x,,/ T? and y;/T? correspond to the
fluctuations of baryon and isospin numbers, respectively.
Since the fluctuation of isospin number is mainly caused by
pions, the fluctuation should be larger than that of the
baryon number. Moreover, because the pion mass is more
sensitive to the quark mass than baryon masses, y;/7? will
show more sensitivity to the quark mass than y,/ T2,

As seen from Fig. 8, both x,/T? and x,/T? increase
sharply at T}, in accordance with an expectation that the
fluctuations in the quark-gluon plasma phase are much
larger than those in the hadronic phase. We find that
x1/T? is larger than Xq/ T? at low temperatures and the
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FIG. 8 (color online). Quark number (black circles) and isospin (red squares) susceptibilities at p, = 0 for mpg /my = 0.65 (left)

and 0.80 (right).

difference vanishes in the high temperature region. Also,
the isospin susceptibility increases as mpg/my decreases
at low temperatures, while y,/ T?> does not change
very much. These results agree qualitatively with
previous results obtained with staggered-type quarks
[17,18,20,21,51].

The quark number and isospin susceptibilities are ex-
pected to show quite different behaviors near the critical
point at finite density. When the quark mass is nonzero,
isotriplet mesons are massive and thus are irrelevant to the

critical behavior. Therefore, the isotriplet susceptibility y;
will not show singularity. On the other hand, if there is a
critical point in the (T, w,) plane, scalar sectors, ¢ and
¥ yo 1, may become massless at the critical point. We then
expect divergence in the fluctuations of the chiral conden-
sate and quark number towards the critical point.

Figure 9 shows our results for 9%(x,/T%)/
G(Mq/T)2|Mq=o =24c, (circles) and  9%(x,/T?)/
I(pq/T) =0 = 24c} (squares). We also plot 9y, /T*

as a dashed line in this figure to compare with the predic-

I T I T I T I T I T I T T I T I T I
2 2 ! 2 2
o &G /THduyTY AL o S/’ |
2 2 2 2
= d (xl/f)/d(uq/r) ] ' = dOy/TyA T
my /m, =0.65 4 ',' my/m.,=0.80 I
4 10— ll —
'3 SB (N=4)
SBIN=H)  t lima 3 2 08 : 2
& e : - L SB limit
mit | g == J
1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I
0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3
/T T/T
pc pc

FIG. 9 (color online). The second derivatives of quark number (black circles) and isospin (red squares) susceptibilities at u, = 0 for
mps/my = 0.65 (left) and 0.80 (right). The dashed line is a prediction from the hadron resonance gas model: 92 Xq /0 ,u,é ~9x, /T2,
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FIG. 10 (color online). T dependence of the w,-dependent contribution to the pressure, Ap/ T4 = p(ug)/ T+ — p(0)/T*,

mps/my = 0.65 (left) and 0.80 (right). T is T}, at u, = 0.

tion from the hadron resonance gas model in Eq. (22), i.e.,
3% x,/ 0l = 9x,/T?. These results are consistent within
the error at 7 < T),..

Although the statistical errors are not quite small yet, the
two susceptibilities show quite different behaviors near
Tpe. 3*(x,/T?)/0(py/T)* near T, is more than 3 times
larger than that at high temperatures, suggesting the large
enhancement in the quark number fluctuations as the den-
sity is increased. Moreover, the peak height is larger for
smaller mpg/my. On the other hand, no such sharp peak
appears for 9%(x;/T?)/d(w,/T)?, in accordance with the

8
-

expectation that y; is analytic at the critical point. These
observations suggest the existence of the critical point.
Similar results were obtained by p4-improved staggered
fermions [17,18,20,21].

Finally, we evaluate the equation of state at finite u,,
combining the results of derivatives. Figure 10 shows the
f4-dependent contribution of the pressure, Ap/T* =
plpg)/T* = p(0)/T* = cr(py/T)* + calpny/T)?, at
mpg/my = 0.65 (left) and 0.80 (right). The truncation
error is O(u§). Ty is Tp at w, = 0. The finite density
correction for p/T* becomes the same size as p/T* at

10 T T T 10 T T T
- n /73 . - n /73 .
q q
8- — uq/T=1.2 8§ — — uq/T=1,2
_ uq/T:l.O — uq/T:l.O \/\/4
B uq/T:O.S 7 B uq/T:O.S 7
6L — uq/T=0.6 6L — uq/T=0.6 +|
T4 W\"\i/d — r=04 //
S — uq/T: 2 - L uq/T:O.Z .
4 — 4 — —
i S ﬁ
0 1 = | 1 | 1 | 0 1 |/_’|' | 1 |
0.5 1 1.5 2 0.5 1 1.5 2
T/T, T/T,

FIG. 11 (color online).

Quark number density at finite w, for mpg/my = 0.65 (left) and 0.80 (right). T is T, at u, = 0.
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FIG. 12 (color online). Quark number susceptibility at finite u, for mpg /my = 0.65 (left) and 0.80 (right).

w, = 0 around p,/T ~ O(1), and the correction Ap/T*
increases rapidly around T, in comparison with the be-
havior of p/T* at tq = 0. This suggests that the pressure
changes more sharply as u,, is increased. The quark num-
ber density, n,/T° = (n, +ny)/T> = 2¢cy(p,/T) +
4ey(py/T)? + O(uy), is shown in Fig. 11. The quark
number susceptibility and isospin susceptibility are shown
in Fig. 12 and 13, respectively. As discussed above, we find
large quark number fluctuations near 7}, when u, is
increased. On the other hand, such an enhancement around

are consistent with the observations with staggered-type
quarks and suggest a critical point at finite .

IV. EQUATION OF STATE FROM THE GAUSSIAN
APPROXIMATION

In the previous section, we have studied the equation of
state at finite density by computing the Taylor expansion
coefficients ¢, up to the fourth order, based on the calcu-
lation of D, = N/[9" IndetM /o "] for n = 4. We found,

however, that the statistical errors in n,/T* and y,/T? are

T, is not visible in the isospin fluctuations. These results ~ not small. Furthermore, the statistical errors will be larger
when we include higher order terms, cg, cg, etc.
20 T T T I T T T I
- — n/T=12
T — T 5L /T — =10
— K [ u/7=0.8
15 - e — u/T=06
s i — R /T=04 7
i o — u/1=02
— M= 10 — W/T=00 |
— 1 /7=0.0 q
10 — —
| L
5 — —
5 — —]
0 . | . | . | 0 . | . | . |
0.5 1 1.5 2 0.5 1 1.5 2
T, T,

FIG. 13 (color online).

Isospin susceptibility at finite u, for mpg/my = 0.65 (left) and 0.80 (right).
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In this connection, we recall that in a previous study,
with staggered-type quarks [23], a hybrid method of the
reweighting technique and Taylor expansion [22], com-
bined with a Gaussian approximation for the complex
phase distribution of quark determinant, has efficiently
suppressed statistical fluctuations at finite densities. We
call the method simply the Gaussian approximation. In
this section, we apply the Gaussian approximation to the
calculation of EOS with improved Wilson quarks.

In the evaluation of higher order Taylor coefficients c,
with n >4, the calculation of D, at large n is quite
demanding. However, the free quark-gluon gas leads to
D, = 0 for n >4 in the continuum limit. Therefore, we
may approximately evaluate higher order coefficients by
keeping D, for n =4 only. The approximation should
work at least at high temperatures. Therefore, we consider
the following approximate grand canonical potential,

o, puy) 1 -
- Tq = W 1n[[ DU(detM(M))Nfe Sg]
— Loz o+ L
VT3 ' VT3

N
y 1rl((de:tM(,u)) f>
detM(0) (1=0)
~ Lz + L
VT3 ’ VT3

N,
max 1
o S0, o

n=1

where w = p,a = pu,/(TN,) and N, =4. Here,
(.. )u=0) is the average over configurations at wu = 0.
This approximate grand canonical potential is equal to
the exact potential up to O(u™m=), and most of higher
order contributions are contained except for terms includ-
ing D, for n > N,,.. In this context, the method would be
better than the truncated Taylor expansion method dis-
cussed in the previous section.

A. Gaussian approximation for the @ distribution

We calculate the grand canonical potential (31) follow-
ing the method of Ref. [23]. We first rewrite the grand
canonical partition function as follows:

Z(T, pg) = Z(T, O)<<%)Nf>wq0>

= Z(T, 0)<€F(’L)€i0(“)>(ﬂq:0), (32)

where F(u) and () are the real and imaginary parts of
Ny In(detM(u)/ detM(0)), respectively, and they can be
calculated by the Taylor expansion in w. Since odd
(even) derivatives of In(detM(u)/ detM(0)) are purely
imaginary (real), we have

PHYSICAL REVIEW D 82, 014508 (2010)

F(p) = NfRe[m(%)]

= 1 0% (IndetM
= N; Z Re[ (In ; ):I w?
= 2n)! Ip (4=0)

— < 1 2n
=y G ReD,, u2". (33)

In this paper, we study terms up to u*. For the complex
phase 6, we have

6(w) = N, Im[IndetM (u)]

_ s 1 62”+1 (lndetM(M)) 2n+1
N 2 G T e -
ford ! M (n=0)
d 1
= 2 Gy P (34)
n=0 ’

We note that IndetM () is not uniquely defined for com-
plex detM(u). On the other hand, the w derivatives of
IndetM(w) are unique. We regard the Taylor expansion in
Eq. (34) as our definition of . Note that the 6 thus defined
is not restricted to be in the range — to 7, and the
maximum value of |6 is infinite in the large volume limit.
The principal value of N, IndetM(u) is recovered by iden-
tifying 6 + 2nm with 6 in the range — to 7.

Histograms of @ are shown in Fig. 14 for u,/T = 0.5
and 1.0 at (mps/my, T/T,) = (0.65,0.94) (top left),
(0.65,1.32) (top right), (0.80,0.93) (bottom left), and
(0.80,1.35) (bottom right). We find that the fluctuations in
60 become larger as u, increases. Note that the width of the
distribution is larger than 277 at T < T,.. A large fluctua-
tion in  makes the calculation of InZ(7, u,) difficult due
to a rapid change of the factor e’ This is the origin of the
sign problem. On the other hand, these figures suggest that
the distribution of € defined in this way is almost Gaussian.
In Sec. IV B, we discuss that the Gaussian approximation
corresponds to the leading-order approximation of the
cumulant expansion and confirm the validity of the
Gaussian approximation. This is a key observation to avoid
the sign problem: In a previous study with staggered
quarks, using the fact that the 6 distribution is well de-
scribed by a Gaussian form, the 6 averaging has been
carried out. The resulting errors for observables turn out
to be smaller than those with the naive averaging, and thus
the method may enable us to perform a reliable evaluation
at a wider range of u, [23].

To implement this assumption, we define the distribution
function w(F, 0) as
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FIG. 14 (color online).
(0.80, 0.93) (bottom left), and (0.80, 1.35) (bottom right).

w(F, )

[ DUSF — F(1))5(0 — 6(1))
X [detM(0)Nre™Ss
— Z(T, 0)(8(F — F())5(8 — 6(1))u—sy (35)

where 0(u) and F(u) are defined in Eq. (34) and (33). Note
that w(F, ) depend implicitly on u. Figure 15 shows a
typical distribution of (F, ) at (mpg/my, T/Ty) =
(0.80, 0.93). The Gaussian 6 distribution means that

w(F, 0) = wo(F)e~a(F)o?,

a,(F) (36)
T

With this form, it is easy to carry out the # integration as
follows:

The histogram of 6 for simulations at (mpg/my, T/T,) =

PHYSICAL REVIEW D 82, 014508 (2010)
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(0.65,0.94) (top left), (0.65, 1.32) (top right),

20T, ) = f dF j dOw(F, 0)eF e

=~ /dF[dGeFWO(F) —aZ(F)e"aef‘ZZ(F)ez,
V T

_ / dFeFywo(F)e/4a(P)

= Z(T, 0)<6F(M)e*1/(4az(F(M))>(M:0)_ (37)
In the last line we use the fact that
wo(F) = [ DUSF — F(w)[detM(0)]"r =
= Z(T, 0){8(F — F()))(n—0) (38)

holds within this assumption. Note that the problematic
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FIG. 15 (color online). The distribution in the (F, 6) plane for u,/T = 0.5 (left) and 1.0 (right) at (mps/my, T/T,.) = (0.80, 0.93).

factor e’ in Eq. (32) is now replaced by a positive definite
factor e~ /@) Thus the statistical error of Eq. (37) is
always smaller than its expectation value, i.e,. there is no
sign problem.

Of course, one may replace the Gaussian distribution
function w(F, #) with a periodic distribution function given
by

N

i + .
1\1/520 N T 1 ,,:Z:N w(F, 0 + 2mn)

(39)

However, the integral of e’ does not change simply be-
cause fe”’w(F, 0 + 27n)d0 gives the same answer as
[ e"w(F, 6)d6. Hence, the absence of the periodicity of
27 in w(F, 6) is not a problem for the integral of e,

The validity of this method can be discussed more
precisely based on the Taylor expansion of the partition
function at least in the low density region. In Appendix B
we compare the derivatives of InZ in the Gaussian ap-
proximation with the exact calculations up to O(uj). We
find that the Gaussian approximation does not affect up to
O(u2). At the fourth order in u,, (D}) of Eq. (27) is
replaced by 3(D?)? in the Gaussian case. In Ref. [54],
the effects caused by deviations from the Gaussian distri-
bution in w(F, ) are estimated assuming w(F, 6) ~
exp[—a,60% — a,6]. It turned out that the additional term
a4 does not affect the terms up to ,u,‘; as far as aq/a, =
o(1).

Now the problem is reduced to a determination of the
coefficient a,(F):

v e <92(M)_5(F — F(u)))(u=0)
2a,(F) (6(F — F(1)))(u=0)
_ I DUO*(w)8(F — F(uw))(detM (0))Vre ™S
[ DUS(F — F(w))(detM(0))Nre=S:
(40)

The distribution shown in Fig. 15 suggests that the F
dependence in (62); is mild. Unfortunately, the limitation
of the statistics makes a precise evaluation of (#%) for each
thin slices of F difficult. However, when we restrict our-
selves to calculate the equation of state up to 0(,u,2), we
only need to evaluate the first derivative of (#?); in terms
of F: Because D; and D, represent the leading
pg-dependence of 6 and F, respectively, consulting
Eq. (25), we note that the F dependence of (0?), affects
only in the (D, D7) term for the O(ug) coefficients ¢, and
ch. (See Appendix B too.) This quantity, i.c., the O(u})
contribution of (F6?), corresponds to the first derivative of
(6)r because

(0*(w)(F () = (FD)(u—0)

2
= [l — @ [5G -]
wo(F)
X Z(T.0) dF
NG
o GG @

when the F dependence in (#?) is mild. Using this rela-
tion, we then estimate the first derivative of (%) with
respect to F as

[ﬂW»] _(OAF = (F)
aF e~ (F—FD)

which is shown in Fig. 16. We find that [d{6?)/dF ] is
actually smaller than statistical errors, so that (6%)p =~
<¢92><F> is a good approximation. This point is also sug-
gested in chiral perturbation theory [55]. To include the
small F dependence of a,(F), we assume a simple ansatz
function:

(42)
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FIG. 16 (color online). (#*(F — (F)))/{(F — (F))?) for

ty/T = 0.5 and 1.0.

1
2a,(F)

where we take into account the fact that #? is positive for
all . The two parameters are sufficient for the exact
calculation up to O(u*). We thus determine fit parameters
x; and x,, by minimizing x> = ¥ ,[6? — f(F,;)]*, where the
summation is taken over configurations.

Finally, we integrate over F. The factor e in Eq. (37) is
a potential danger in the integration because it can easily
shift the central contribution for the average to a statisti-
cally poor region of F. This will be the case when u, is not
small ((F) is not small). At small u, this problem can be
removed in part by a reweighting in the 3 direction of the
coupling parameter space such that the fluctuation in ¢/
is compensated by that in the gauge action. This is possible
since F is strongly correlated with P = —S,/(6Ng./),
where the gauge action S, is defined in Eq. (3), and N =
N3 X N,. By reweighting, the expectation value of an
operator @ at B is evaluated from a simulation at 3, as

(O(P) €6N5“5('3_'BU)P>BO
<€6NS“E(’8_’B°)P>BO

= (0%)r = f(F) = explx; + x,F], (43)

(O)p,p=0) = (44)
To calculate {e"®e~1/4(F)) we adjust B such that the
value of ef'e™1/(40) oONacB=BoP ig stabilized during the
Monte Carlo steps. In practice, since e/ e~1/#a(F) = |
at u, =0, we start with 8= B, at u, =0 and find
B for finite u, at which the fluctuation of
ef e 1/(4a2) 6N (B=Bo)P = X

(X = X) (=0 (u=0)/ <X>(2,L=0), (45)

is minimized. Since F becomes larger for larger P, 8 <
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Bo- The resulting shift in B is translated to the temperature
scale using a cubic spline interpolation of the temperature
data. Because we do not shift the hopping parameter, a shift
in B leads to a slight deviation from the original LCP. In
our study, however, the shifts in B8 turn out to be smaller
than 0.03. Since these shifts are negligible in Fig. 1, we
disregard the resulting small deviation from the LCP, and
simply translate the shifts in 8 to shifts in 7" for the final
plots.
To conclude we summarize the final formulas:

Z(T, w) _ <€F(’U“)€_<02>F/2e6Nsile(B_ﬁo)P>B0
Z(T, 0) <e6Nsile(ﬁ—ﬁ0)p>ﬁ0 , 46)

<02>F = exp(xl + )CzF).

B. Gaussian approximation as the lowest order
approximation of cumulant expansion

The only difference between the Gaussian approxima-
tion (46) and its exact formula is the replacement of
(exp(i6))r by exp[ —(#?)r/2]. The meaning of the replace-
ment can be understood in the context of the cumulant
expansion,

(exp(i0)r = expl i0)c = 3(07). = 3,(0°). + 3,0,

O = g0+ -] @7
where (6"), is the n-th order cumulant, e.g.,
(0%)e =(0%)p, (%) =(0%)r — 37,
(%) = (0% — 15(0*)(07)F + 30(67);..

Note that ("), = 0 for odd n due to the symmetry under
6 — —6. Because only the odd-order cumulants are the
source of the complex phase in {(exp(if))r, the value of
(exp(if))p is guaranteed to be real and positive from this
symmetry if the cumulant expansion converges. There is
thus no source of the sign problem once we eliminate the
odd terms.

When the distribution of @ is of Gaussian, the O(6")
terms vanish for n > 2 in Eq. (47). Hence, the Gaussian
approximation is equivalent to the approximation that the
higher order cumulants are neglected except for the first
nonzero term. If one wants to improve the Gaussian ap-
proximation, it is achieved by adding higher order terms.

Moreover, the cumulant expansion can be regarded as a
power expansion in terms of w, because 6~ O(u,).
Therefore, if we take into account the cumulants up to
the nth order, the truncation error does not affect the Taylor
expansion up to O(uj). The Gaussian approximation cor-
responds to the leading nontrivial order approximation of
the Taylor expansion in u,.

On the other hand, a careful discussion about the infinite
volume (V) limit is required. Because the operator 6 is
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roughly proportional to V, the n-th order cumulant (6"),
may increase as O(V") naively. In such a case, the cumu-
lant expansion does not converge at large V. However, the
following argument suggests that the convergence property
of the cumulant expansion is independent of the volume
when the correlation length of the system is finite. Note
that, since no critical point is expected to exist in two-
flavor QCD at m, >0 and u, = 0, the correlation length
between quarks is finite.

The expansion coefficients of 6 in Eq. (34) are given
by combinations of traces of products of M~!,
d"M/d(u,/T)", and so on. For example, D, is given by
the trace of N [M~'(aM/d(u,/T))] and the diagonal
element of this matrix is the local quark number density
operator (~fyot(x)) at u, = 0. If the correlation length
of the local number density operator is much shorter than
the system size, we may decompose D, into independent
contributions from spatially separated regions. The same
discussion can be applied to higher order coefficients D,
too.

In this case, one can write the phase as § = >, 6, where
6, is the contribution from a spatial region labeled by x and
these contributions are independent. The average of
exp(if) is thus

(@ = [T = exp Z;—':<0z>c). (49)

This equation suggests that all cumulants ("), = 3 . (07).
increase in proportion to the volume as the volume in-
creases. Therefore, while the width of the distribution,
i.e., the phase fluctuation, increases in proportion to the
volume, the ratios of the cumulants are independent of the
volume. The higher order terms in the cumulant expansion
are well under control in the large volume limit.

Because 6 is O(u,) and (0"), is O(u}), the Gaussian
approximation is valid at small u, and the higher order
cumulants will become visible at large u,,. The application
range of the Gaussian approximation in terms of x, must
be checked for each analysis by calculating the ratio of
cumulants. However, the volume-dependence of the ratios
of cumulants suggests that the application range does not
change once the system size becomes larger than the
correlation length. This means that the qualification of
the Gaussian distribution on a small lattice is enough to
verify the Gaussian approximation.

We study the validity of the Gaussian approximation by
examining the relative magnitude of the fourth order cu-
mulant contribution to the leading-order contribution in

Eq. (47):
R= (%<94>C) / (%«92») - I;f;% (50)

The Gaussian approximation is valid if R < O(1) is sat-
isfied. In this paper, we will check whether R is consistent
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with zero, which is a less stringent condition when the
statistical error is large.

Here, we note a caveat in the evaluation of (?) from the
histogram. Because we calculate 6 using the random noise
method, the fluctuation of @ contains a contribution due to
the finite number of noise vectors (N,is). This makes the
width of the @ histogram wider than that of the true

distribution. True width is given by \/@ in the limit of
large N,;s.. To reduce the errors in (6%) due to finite N, s,
we adopt the subtraction method discussed in Sec. III B for
the calculation of products of traces. The expectation value
of #? is summarized in Fig. 17. Filled symbols in Fig. 17
are the results of the subtraction method. We have checked
that the N, dependence in (#?) is negligible with our
choices of N,.. We find that (%) becomes larger than
O(m?) from wy/T ~ 0.5 in the low temperature phase
while, in the high temperature phase, the complex phase
fluctuations decrease as T increases, in accordance with
our expectation that the quark determinant is real in the
high temperature limit. On the other hand, the width of the

histogram shown in Fig. 14 corresponds to V(6%) obtained
by the naive calculation without subtraction, which is
plotted with open symbols in Fig. 17. The difference
between the results by the subtraction and naive methods
decreases as N, increases but is almost the same size for
all temperatures, and the error due to finite N, is larger
than the expectation value of (#?) at high temperature.
Therefore, the subtraction is indispensable for a calculation
of the width of the 6 distribution.

We summarize the results for R in Fig. 18. The circle and
square symbols are the results for w,/7T = 0.5 and 1.0,
respectively. Filled symbols are the results of the subtrac-
tion method, while open symbols are the results of naive
calculations without the subtraction. Although errors be-
come gradually larger as u, /7 increases and are as large as
O(1) for u,/T = 1.0, the central values of R are consistent
with zero for all temperatures and u,/ T.2 However, we
need higher statistics to identify the actual magnitude of R
and to check the validity range of the Gaussian approxi-
mation in terms of g /T, which is left for future
investigations.

C. Results for the equation of state and quark number
susceptibility

In Fig. 19, we show the results for the w, dependent

contribution to the pressure, Ap/T*= p(u,)/T* -

p(0)/T*, obtained by the Gaussian approximation.

*Because the complex phase vanishes in the high temperature
limit, (%) becomes smaller as 7 increases. The small (%) causes
the large statistical error of R at large T for the subtraction
method. Where (62) is small, however, the correction due to the
phase fluctuation itself is small, and thus a deviation from the
Gaussian approximation does not affect the results.
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FIG. 17 (color online).

Comparing with Fig. 10, improvement towards larger p, is

clearly seen.
We calculate the quark number density n, and its sus-

ceptibility y, by the following numerical differentiations:
Xq N} 9*(In2)

R TP

n, _ N} 9(InZ)
7 N} a(u,/T)

Results of In[Z(T, u,)/Z(T,0)] around representative
points i, /T = 0.2,0.4, ..., 1.2 are shown in Fig. 20 where
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The expectation value of 62 for each temperature with mpg/my = 0.65 (left) and 0.80 (right).

In[Z(T, u,)/Z(T,0)] increases as T/T, increases for
each u,/T, where Ty is T at u,/T = 0. In Fig. 20,
results at the optimized values of T/T,(3) for simulations
listed in Table I are shown. We then fit the data in the range
i, /T —0.05=u,/T=j,/T+0.05 by a quadratic
function of wu,/7,

N [Z(T, uq>] _1alBg) fg X (Rg) (&

2
& +C(a,),
N L Z(T,0) ™ T 21 T) (#q)

(52)

B is optimized at each 4,/T. The value of
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FIG. 18 (color online).

The relative magnitude of the fourth order cumulant contribution to the leading-order contribution as a

function of the temperature for mpg/my = 0.65 (left) and 0.80 (right).
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FIG. 19 (color online).
0.80 (right), where T is T}, at p, = 0.

with the fit parameters n,(i&,), x,(#i,) and C(f,), for each
value of fi,/T and T/T,.

The results of n,(u,) and x,(u,) are plotted in Figs. 21
and 22. As is similar to the case of p/ T4, the statistical
errors in these figures are much smaller than the results
given in Sec. III. Moreover, although simulations at differ-
ent temperature are independent, the temperature depen-
dence in these figures is smooth and natural. The reduced
statistical fluctuations over the results of Sec. IIIC are

M 4-dependent contribution to pressure as a function of T/T, for each u q /T with mpg/my = 0.65 (left) and

mainly due to the Gaussian method for the # averaging
and the S reweighting for the F averaging.

At mpg/my = 0.65, we find a sharp peak in x,/T? near
T,.. The peak becomes higher as w, increases. These
observations are consistent with the findings in Sec. III,
and suggests a critical point at finite u,. On the other hand,
the peak is much milder at mpg/my = 0.80. This may be
explained in part by the expectation that the critical point is
located at larger u, because the quark mass is larger than

ol 1In[Z(|u)/zl(0)]I rlml,shlnvzlo.65I | | /_ ool 1In[Z(|u)/zl(0)]I IInPS/anzlo.goI | | )_

| 1 %

200_— % M — 200-— % / —_

100 (- % M M— 100 - % ; M —
. ‘ .uq/T . . . . .uq/T . .

FIG. 20 (color online).  u, dependence of In[ Z(8, u,,)/ Z(8, 0)] for each temperature. The values of In[ Z(8, u,)/Z(B, 0)] increases
as T/T, increases for each Mg /T. The left and right figures are the results at mpg/my = 0.65 and 0.80, respectively.
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/T,

FIG. 21 (color online). Quark number density for each w,/T at mps/my = 0.65 (left) and 0.80 (right). T} is T} at u, = 0.

that for mpg/my = 0.65. Further studies with increased
statistics around 7|, are needed for a more definite con-
clusion. A scaling analysis increasing the volume is also
important.

V. HEAVY-QUARK FREE ENERGY AND DEBYE
SCREENING MASS AT FINITE TEMPERATURE
AND DENSITY

In this section, we investigate the heavy-quark free
energies between the static quark (Q) and antiquark (Q),
and between Q and Q. These free energies are important
inputs in phenomenologial studies of color-singlet quarko-

niums such as charmoniums and bottomoniums in QGP
[56,57] and of color nonsinglet quark-quark states in QGP
[58]. Lattice simulations for QQ and QQ free energies in
different color channels at u, = 0 have been performed in
Ny = 2 QCD with the staggered fermion [59,60] and with
the Wilson fermion [24,61]. In these works, Coulomb
gauge fixing is employed to define the Polyakov-loop
correlations in different color channels. Furthermore, the
QQ free energy at finite M4 has been studied with the
staggered fermion by the reweighting method in the w-8
parameter plane [62] and by the Taylor expansion method
[63]. Screening masses at finite u, have also been studied

20 T T T I T T T I
X /72 — W/T=12 | X /72 — W/T=12
q q 15 ™ q _
— wJ7=10 5 — wJ7=10
u/T=0.8 u/T=0.8
5= — u/T=06 ] i — uJT=06
— u/T=04 — u/T=04
i — wT=02
— u/T=00 10 =
or \\//;
= =
0 . | . | . | 0
0.5 1 15 2 0.5
/T,

FIG. 22 (color online). Quark number susceptibility for each u,/T at mps/my = 0.65 (left) and 0.80 (right).
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in dimensionally reduced effective field theory at high
temperature [64].

Here, we extend our previous study with two flavors of
improved Wilson quarks at u, = 0 [24] to finite u, using
the Taylor expansion method. Under Coulomb gauge fix-
ing, we calculate the expansion coefficients of the heavy-
quark free energies up to the second order with respect to
w,/T for the color-singlet QQ channel, color-octet QQ
channel, color-sextet QQ channel, and color-antitriplet
QOQ channel. The effective running coupling and Debye
screening mass are also extracted by fitting the screened
Coulomb form expanded as a power series of u, /T, and
compared with a prediction of the thermal perturbation
theory.

A. Taylor expansion of heavy-quark free energy

The expectation value of an observable @ for w, =
Mg = Mg is defined as

(0),, = f DUO[detM(p)¥re=S:,  (53)

Z(T, ) (T tg)
where u = p,a. For O which does not depend on u,
explicitly, (O) u, €an be expanded as a power series of u =
pqa as follows [63]: The quark determinant is expanded as

[detM (p)]"r = [detM(0)]" (1 + M p + Myp?
+ 0(p)), (54)
with the expansion coefficients M; = D, M, = (D} +

D,), etc. using D, defined by (26). Then, using the fact
that the system is symmetric under u, — —u,, (0), can

be expanded as

_{O)y +(OM)op + (OM,)op?

— 3

O EXTATEEE
=(O)[1 + O + (=(M3)y + Or)u* + O(u?)],
(55)

where (0)y = (0),, — and O; is defined by
_ (OM;),

0,= 56
©h - 0

The heavy-quark free energies are defined by cor-
relation functions between Polyakov loops, Q(x) =
]'[ITV’:1 U,(7, x). At a fixed gauge, the QQ correlation func-
tion can be decomposed into color-singlet (1) and color-
octet (8) channels, while the QQ correlation function can

be decomposed into color-antitriplet (3*) and color-sextet
(6) channels as follows [65,66]:

Q1(r) = 1eQ T (x)Q(y), (57)

08(r) = LrQT(x)rQ(y) — 4 QT (x)Q(y), (58)

PHYSICAL REVIEW D 82, 014508 (2010)

25%(r) = LrQx)urQ(y) + 5 rQ(x)Q(y), (59)

0% (r) = LrQx)rQ(y) — LrQx)Q(y), (60)

where r = |x — y|. The free energy F*¥ for color-channel
R(R=1,8, 6,3 is defined as

o~ FRTu)/T — "), (61)

Above Ty, we introduce normalized free energies
(VL V8, V8 v¥) by dividing the right-hand side of (61)
by (L) Mq(L}’/qu for QQ free energies and <L>iq for QO free
energies, where L = trQ). VX vanishes at r — co. The
Taylor expansion of VX with respect to u /T is given by

2
VR(r, T, M) = vl + v <'U;) + vg(&) + 0(u?),

T
(62)
where
R R
vi(r, T) _ 1 ((Q >0) 63
7 "g) ©y
v g, (64)
T
vR(r, T) _ 4yl — (63 + €12)
2 T N2 (M3)o — OF) + 2631 L
(65)
for color-singlet and octet QQ channels, and
R R
vi(r, T) _ . ((Q >0) 66
7 "g) ©0
vR(r, T) R 9
1 = — —Q +2— (67)
T €’

R 2
Uz(r:T)_L(M + - QR __QR) +2é_ﬁ
T 5 < >0 ( ) 60 6%,

(68)

for color-sextet and antitriplet QQ channels. Here Q2F =
(QRM ) /{Q2R),, and the €,, is an n-th order coefficient of
the Taylor expansion of the Polyakov loop:
M 2

(L), = b+ € ( ) +e (Tq) Lo, (©9)
Note that the color-singlet and octet channels do not have
the odd orders in the Taylor expansion since the free
energies for both channels are symmetric under u, —
— My, 1., the QQ free energies are invariant under the
charge conjugation.
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FIG. 23 (color online). v(’f (left) and v§ (right) for color-singlet and octet QQ channels above T} at mpg /my = 0.65.

B. Results for expansion coefficients of normalized free
energies

Heavy-quark free energies are calculated in the high
temperature phase on the lines of constant physics at
mpg/my = 0.65 and 0.80 (see Table I). Observables are
measured every ten trajectories at each quark mass and
temperature, and the statistical errors are estimated by a
jackknife method with the bin size of 100 trajectories.

The results for the expansion coefficients of the normal-
ized free energies at mpg/my = 0.65 are shown in Fig. 23
for the color-singlet and octet QQ channels, and in Figs. 24
and 25 for the color-sextet and antitriplet QQ channels.
Those obtained at mpg/my = 0.80 are shown in Figs. 26—
28.

The v;’s shown in Figs. 23, 24, 26, and 27 are the
normalized free energies at u, = 0. The fact that, increas-

ing the distance r, v} and v} increase while v§ and v
decrease, which represents the finding of our previous

27 1.07Tpe —o—
1.32Tp(? —a—
1.67Tpc —8—

3 ) ) ) 2:59Tpc '_e._'

) 0.2 0.4 0.6 0.8 1

r Tpc

FIG. 24 (color online).

study [24] that, at u, = 0, the interquark interaction is
“attractive” in the color-singlet and antitriplet channels
and is “repulsive” in the color-octet and sextet channels.
From these figures, we note that, both around 7). and at
higher temperatures, the sign of v¥ is the same with that of
vE, whereas the sign of a v is the opposite of that of v5:

vR-v8 >0 (only for QQ free energies), (70)

vE vl <. (71)

Because v¥ is absent for QQ free energies, this means that,
in the leading order of w,, the interquark interaction
between Q and Q becomes weak at finite Mg, While that
between Q and Q becomes strong. In other words, QQ
(QQ) free energies are screened (antiscreened) by the
internal quarks induced at finite w .

0.2

1.(')7Tpc '_9'_'
1.32Tpc —A—
1.67Tpc —a8—

0 0.2 0.4 0.6 0.8 1
I‘Tpc

vE (left) and v® (right) for color-sextet and antitriplet QQ channels above Ty at mpg /my = 0.65.
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FIG. 25 (color online). vX for color-sextet and antitriplet QQ
channels above T}, at mpg/my = 0.65.
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FIG. 26 (color online).
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FIG. 27 (color online).
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C. Screening properties at finite 7 and u,

At p, = 0, the color-channel dependence in the free
energies was shown to be well absorbed in the kinematical
Casimir factor at high temperatures [24], as first noticed in
quenched studies [67,68]. Therefore, we fit the normalized
free energies by a screened Coulomb form,

(T, pg) _ .

VR T, pg) = CR—=—— ey, (72)

where the Casimir factors CR = (38_, 14 - 14), for various
color channels are given by

¥ =-3
(73)
Atsmall u,, the effective running coupling a¢(7, u,) and

the Debye screening mass mp(7, u,) are expanded by
powers of u,/T:

1.35Tpc —A—
06 L 207T]n‘ —B—
1 3.01Tpc —o—
V2
04t

Vlze(r,T) / Tp C

r Tpc

The same figures as Fig. 23 at mpg/my = 0.80.
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The same figures as Fig. 24 at mpg/my = 0.80.
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FIG. 28 (color online). The same figures as Fig. 25 at

mps/m\/ = 080
2
aur = oo + a(5) + as(B0) o) 4
T T
7 2
mp = mpgo + mD,2<7q) + 0(u%), (75)

where we use the fact that the Debye screening mass does
not have the odd powers in the Taylor expansion because it
corresponds to the self-energy of the two-point correlation
of the gauge field which is symmetric under pw, — — .
Properties of ay(T) and mp (T) are discussed in [24].
Expanding (72) with respect to w,/T using (74) and
(75), and comparing with the expansion (62) of the nor-
malized free energies, we obtain the following relations:

vo(r, T) = CR Me—mD,O(T)r,

(76)
r
0.4 T T
h R=6 —v—
R=3* —a—
03¢
o oaf |0
\5‘: Y
1l
(N R e
1 1.5 2 215 3 3.5 4

T/ Tpe

FIG. 29 (color online).

PHYSICAL REVIEW D 82, 014508 (2010)

v (nT) _ a,(T)
vo(r, T)  ay(T)

(only for QQ free energies), (77)

vy(r,T) _ an(T)

= 78
o T)  ao(T) (78)

mD,z(T)r.

Therefore, the expansion coefficients of a.y and mp for
each T can be calculated by fitting the normalized free
energies for appropriate ranges of r. We chose the fit ranges
tobe 0.5 = rT = 1.0 for Eq. (77) and 0.25 = rT = 1.0 for
Eq. (78). In Appendix C, we study the fit range dependence
of the fits, and find that the magnitude of systematic errors
in the expansion coefficients due to the fit range are at most
comparable with that of the statistical errors at 7 = 1.2T,.

The results for the first order coefficients «(7’), which
appear only for the color-sextet and antitriplet QQ chan-
nels, are shown in Fig. 29 for mpg/my = 0.65 (left) and
0.80 (right). The second order coefficients «,(7) and
mp»(T) are shown in Figs. 30 and 31 at mpg/my = 0.65
(left) and 0.80 (right), respectively. Numerical values of
these coefficients are summarized in Appendix C.

From these figures, we find that there is no significant
channel dependence in these coefficients at high tempera-
tures (T’ = 27,,,), similar to the case of a((T) and my, o(T)
studied in [24]. We note that mp,(T) is positive at T =
1.5T,. which means that the magnitude of the Debye mass
becomes larger at finite densities in the leading-order of
M4 This is qualitatively consistent with results calculated
with an improved staggered quark action for the color-
singlet channel [63]. We also find that, although a;(T)
remains finite even at 7' = 47,,., the magnitude of a,(T)
is almost zero for all color channels at T = 1.5T.
Therefore, to reduce statistical fluctuations in mp, »(7),
we may assume a,(7) = 0 in the fit (78). The results are
shown in Fig. 32. Smallness of the color-channel depen-
dence became clearer. Numerical values for a(T), a,(T),

0.4 . . .
R=6 —v—
R=3% —g—
03¢}
m
< 02¢
S V+
01t $
¥ m 9
O ........................................... -
1 1.5 2 215 3 3.5 4
T/ Tpe

a(T) at mpg/my = 0.65 (left) and 0.80 (right).
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FIG. 30 (color online). a,(T) at mpg/my = 0.65 (left) and 0.80 (right).
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FIG. 31 (color online). mp,(T) at mps/my = 0.65 (left) and 0.80 (right).
2 T T 2 - T
R=6 —v— R=6 —v—
R=8 —A— R=8 —A—
1.5} i R =3% —83— 1.5} R =3% —B—
0] R=1 —6— R=1 —e—
& 1t & 1}
S A+ S
N N
S osf $ ? é % é S 0s ; $ b g
of--Ap-F-f-mmmmr . OF |- .
A
0.5 : : : : 0.5 : : : : :
1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4
T/ Tpc T/ Tpc

FIG. 32 (color online). Results of mp,(T) assuming a,(T) = 0, at mpg/my = 0.65 (left) and 0.80 (right).
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mp(T), and mp »(T; a; = 0) are summarized in Tables V,
VI, VII, VIII, and IX together with y?/Npg for each fit,
where Npg is the number of degree of freedom.

D. Comparison with the thermal perturbation theory

The 2-loop running coupling is given by

- K Bi K
g52(k) = By IH(K)Z + Bo ln(ln(K)z), (79)
where « and A are the renormalization point and the QCD
scale parameter, respectively. In the thermal perturbation
theory the argument in the logarithms can be decomposed
as k/A = (k/T)T/Tp)(Ty./A) where we adopt A =

Aﬁ_fszz =261 MeV [69] and T, = 171 MeV [7]. We as-

sume that the renormalization point « is in the range « =
7T to 37T. Therefore, g,; can be viewed as a function of
T/T,. In the leading order of the thermal perturbation
theory, the Debye screening mass with g,; is given by

N N 1/2
w21, 1) = el (1+ )2+ )

27 (80)

Thus, the leading-order expansion coefficients are given by

N
m][)% = \’1 + ?ngI(K)T,

1 N
ps 7fgzl(K)T-
™ 1/1 + N;/6

Taking the ratio of these coefficients we find for Ny = 2

1)

LO
mps

LO
mp, 3

. 82
PR 62)

1.5 T T T -
mpg /my; = 0.65 —e—

—=gg=
R
—e—

~ - -

FIG. 33 (color online).
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In Ref. [24], we found that, at u, = 0, the leading-order
thermal perturbation theory predicts much smaller values
for mpo(T) than the lattice results. In the left panel of
Fig. 33, we compare our results of m,,(7) for the color-
singlet channel with that of the leading-order thermal
perturbation theory. Similar to the case of mpo(T), we
find that the lattice results of mp,(7T) are much larger
than the prediction of the thermal perturbation theory at
the leading order.

In Fig. 33 (right), we plot the lattice results for the ratio
mp,/mp, and compare them with (82). We find that this
ratio also deviates from the prediction of the leading-order
thermal perturbation theory. We note that, with the p4-
improved staggered quark action, the ratio mp,/mp
was reported to agree with 3/87% at T = 15T, [63]. A
similar discrepancy between Wilson and staggered-type
quark actions has been already reported for Debye screen-
ing masses at u, =0 [24]. Further investigations at
smaller lattice spacings etc. are required to clarify the
origin of the discrepancy. At p, = 0, it was shown that
the discrepancy with the thermal perturbation theory is
largely removed for mpo(T) with the improved Wilson
quark action when we include the next-to-leading-order
contributions [24]. Thus, a higher order calculation of the
thermal perturbation theory at finite u, will also be im-
portant to understand the results obtained on the lattice.

VI. CONCLUSIONS

A comparison of results obtained by different lattice
formulations is important to estimate theoretical uncertain-
ties in lattice QCD calculations. Since most lattice QCD
simulations at finite temperatures and densities have been
performed using staggered-type quark actions so far, stud-
ies with a different lattice quark action is particularly

04 " pg Iy =0.65 —6—
mpg /my; = 0.80 —B—
o
Q
g o2f
o My, S
: oo
0 ........................................... -

(Left) mp,(T) for the color-singlet channel. Dashed lines represent the prediction of the leading-order

thermal perturbation theory for k = 77T, 27T, and 37T from above. (Right) mp,/m ¢ for the color-singlet channel. The dashed line
at mp,/mpo = 3/(87?) represents the prediction from the leading-order thermal perturbation theory.
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important. In this paper, we carried out the first calculation
of the equation of state at nonzero densities with two
flavors of improved Wilson quarks. Simulations are per-
formed on a 16> X 4 lattice along the lines of constant
physics corresponding to mpg/my = 0.65 and 0.80 in the
(B, K) plane. With Wilson-type quarks, statistical fluctua-
tions of physical observables at finite density are much
severer than with staggered-type quarks. To tame the prob-
lem, we combined and developed several improvement
techniques.

Adopting the Taylor expansion method, we calculated
the derivatives of pressure with respect to the chemical
potentials u, and w; up to the fourth order. Using these
derivatives, we studied the fluctuations of quark number
and isospin densities at finite chemical potentials. A quan-
titative difference between the second derivatives of y, and
X1 was observed: y, shows a peak near T}, whose height
increases as u, increases, whereas y; does not show a
clear peak near T,.. These behaviors agree qualitatively
with the results obtained using p4-improved staggered
fermions, and are consistent with the expectation from
the effective sigma model.

With the current statistics, the statistical errors in the
results were not small with the simple Taylor expansion
method. To improve the calculation, we adopted a hybrid
method of the Taylor expansion and the reweighting tech-
niques combined with a Gaussian approximation for the
distribution of the complex phase of the quark determinant.
In a previous study with a staggered-type quark [23], this
method was shown to be efficient to suppress statistical
fluctuations at finite densities. We found that the statistical
errors in the quark number density and the susceptibility at
finite densities are reduced with the new method. Although
the simulations at different temperatures are independent,
the resulting 7 dependence in the quark number density
and the susceptibility turned out to be smooth, and the heap
in y, near T, became clearer. These results suggest that
the sign problem at finite densities is mildened by such
improvements.

We also studied the heavy-quark free energies and the
Debye screening mass at finite densities in the high tem-
perature phase. We calculated the Taylor expansion coef-
ficients of the heavy-quark free energies in all color
channels up to the second order in u,/T. We found a
characteristic difference between QQ and QQ free ener-
gies: The interquark interactions between Q and Q become
weak, while those between Q and Q become strong, as u,,
increases. We also calculated the effective running cou-
pling and the Debye screening mass for each color channel
up to the second order of u,. Both quantities show no
significant color-channel dependence at T = 2T).. The
second order coefficient of the Debye screening mass,
mp,(T), turned out to be positive, implying that the
Debye mass becomes larger as u, increases. We note
that our mp,(7) does not agree with the leading-order

PHYSICAL REVIEW D 82, 014508 (2010)

thermal perturbation theory. Higher orders are required to
explain the lattice results.
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APPENDIX A: PRESSURE AND QUARK NUMBER
SUSCEPTIBILITY IN THE FREE GAS LIMIT

In order to estimate the equation of state at nonzero
quark chemical potential, 4 = w,a in the high tempera-
ture limit, we calculate the pressure and its derivatives with
respect to w in the free quark gas limit. Because the effect
of finite quark mass becomes negligible in the high tem-
perature limit, we discuss only the case of massless quarks.

The partition function for free Wilson quarks is given by

Z (K, p) = (detM)"r, (A1)

M, =&, — KZ[(l = ¥)Ouyiy T (L + )0, 5]

— Kle#(1 = y4)8, 45, T e (1 + )8, 3,
(A2)
on an N} X N, lattice. Note that the clover term vanishes

for free quarks. We perform a unitary transformation into
momentum space (Fourier transformation):

M, = eiketibyr =yt MU, A3
HTNIN G v e
Here
— 1 ily
Uy[ == 3 e,
NN,
1
sz: e—lkx,
3
VNN (Ad)

1 .
UT U, = ix(i—k) = § i
ke Yl N%?the kl
det(UTU) = detUT detU = 1

We then calculate the partition function,
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Z (K, p) = (detM)Nr = (detM)"r, (AS)
- 1 , 3 : : : 4
My, = Ngth[e‘”““”]l - Kizl((l — el + (1 + y)e ™) — K(e*(1 — ya)e™ + e #(1 + yy)e™™)
3
X [[= 5k’]]1 - KZ(Z cosk; — 2iy; sink;) — K(2cos(ky — ip) — 2iy, sin(ky — i,u))], (A6)
i=1
where
277'le .
ku =3 Ju=0,%1,..,N/2 forpu=123, (A7)
27 (js + 1/2
ky _27Ua + 1/2) ji=0%1,...,N,/2. (A8)
N,
Introducing a 4 X 4 matrix which is defined by M;; = &, ,M(k),
—\3N,
2%, ) = ([T dewit)) ™,
K
3 3
detM (k) = det[l — K ) (2cosk; — 2iy;sink;) — K(2cos(ky — im) — 2iy4sin(k, — i,u))]
i=1
- 3 2 3 2
= (1 — ZKZcoski —2cos(ky — i,u,)) + 4K? Z sin’k; + 4K?sin?(k, — i,LL)]
- i=1 i=1
i 3 k; kg — im\\2 3 2
= _(1 — 8K + 4K[:Z1 sin2<5’) + 4Ksin2<T)> + 4K2 Zl sink; + 4K2sin?(k, — m):l
_ 3 .
.ok ks — i
= 1—8K2+8K1—8K< 2(—’)+ 2(—4 ))
_( ) ( ) FZ] sin( ) + sin 5
: ki\\2 ; ki ky —ip) | < 2
+ 4K2[<2 2. sinz(j)) - 4(2 Zl sin2(3'> - 1)sin2(—2 ) + ; sinZk,.:I:I , (A9)
where we used the identity: det(agl + ayiy; + ayiy, + asiys + aziyy) = (@3 + a} + a5 + a3 + a3)*.
In the massless quark limit K = 1/8,
~ 16 ky — i 2
detM (k) = g[A(k) + B2(k) + 4(B(k) + 1)sin2(4T’“)] , (A10)
where 1 0"(p/T? N}~ 9" InZ(T)
Cn=— e = — )
n! 8(/*l“q/T) n=0 N? aM wn=0
(A13)

3 3

A(k) =Y sin’k;, B =2) sinz(&). (A11)
i=1 i=1 2 Here, Z(T, w) and Z(T = 0, ) are the partition functions

calculated on N3 X N, and N? lattices, respectively. The

derivative of the normalization InZ(7T = 0, u = 0) in u is,

We calculate the derivatives of pressure with respect to R X
of course, zero. The derivatives of InZ at u = 0 are given

uat w =0, K = 1/8 numerically:

by
P 1 1 B B dlnZ _ . co (Dl(k))
L - Nf‘(m IZ(T, u) ~ s WZ(T = 0. = 0)), o~ N %lndetM(k) 6Nf§ )
(Al12) (Al14)
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9%InZ
T 3Nf ZlndetM k)
D, (k) D%(k))
= 6N - 2 Al5
f%(ﬂouc) DIk (13)
33 InZ
P 3Nf ZlndetM(k)
Ds(k) Dz(k) D, (k) D5 (k)
- 6Nfz(Do<k) Do Dé(k))’
(A16)
4
% = 3Nf Z Indet (k)
D, (k) Dg(k)@1(k) D3k
6Nfz<1>o<k> D6 DK
Dy(k)Di(k)  Di(k)
LR o (k)), (A17)
where
Dy = Alk) + B2(k) + 4[B(k) + 1]sin?(k,/2), (A18)
Dn: odd — _21[3(]() + l]sink4, (A]9)
D, even = —2[B(k) + 1]cosk,. (A20)
6 T T T I T I T
5 -_ o—o p/pgp(N/N=4) |
Cand CZ/CZSB
i a—acle, i
B — (N/N=8)
3+ _|
2 - |
1+ —A— —|
0 1 I 1 I 1 I 1 I 1
0 5 10 15 20 25

FIG. 34 (color online). The results of p(u = 0) (circle), ¢,
(square), and ¢, (triangle) normalized by the values of their
continuum limit.

PHYSICAL REVIEW D 82, 014508 (2010)

The odd derivatives vanish as in the case of interacting
quarks. Since ¢,, = 0 for n > 4 in the continuum limit, we
calculate p at u = 0 as well as ¢, and ¢4. The numerical
results normalized by the values of their continuum
Stephan-Boltzmann limit are plotted in Fig. 34. Circle,
square, and triangle symbols are the results of p(u = 0),
¢,, and ¢, for each N, with N;/N, = 4, respectively. The
results with N, /N, = 8 are also shown by the dashed lines.
The N, dependence is found to be negligible. However, the
results are much larger than unity for small N,, suggesting
sizable lattice discretization effects for N, < 10.

APPENDIX B: DERIVATIVES OF InZ IN THE
GAUSSIAN APPROXIMATION

We discuss the error from the Gaussian approximation
of a complex phase distribution function. We calculate the
second and forth derivatives of InZ when the Gaussian
approximation is applied, and compare with the exact
results.

Denoting the derivative of IndetM as

0" IndetM (w)

DnENf a/_,(,n

, B
n=0

the partition function with the Gaussian approximation Eq.
(37) can be expanded in a power series,

(exp[F—“i)’”])m_m

- [ exp[ 2>F]<exp(F)>FwO<F)dF
_f [ (DY pp? <D1D3>FM
3!

Z()
Z(0)

(D)rp® .. (Dy)rp® | (Dyrpt
2% (31)? ]eXp[ 2 a4
2y 4 2, 4

We then obtain the second and forth derivatives of InZ at
p = 0. The second derivative is

dlnZ _1 0%InZ
a(M2) n=0 2 a,uz =0
2

— (DY + (D) (B3)

This result is, of course, the same as the exact result. Next,
we calculate the forth derivative:
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21nZ 1 0*InZ TABLE V. Results a(T) and x?/Npg for the fit of first order
3 =—=—7 coefficients at mpg/my = 0.65 (left) and 0.80 (right). The sec-
a(p?) p=0 12 op n=0 ond parentheses in the 3* channel of a; (T) expresses the system-
_ f<<Dl D) N (D) N <D%>F B <@2>% atic errors due to the difference of the fit range.
3 12 4 4 mps/mV = 0.65
<D2>F <@2>F 2 a(T) X 10 X*/Npr
+ (—21 = ) )Wo(F)dF T/T,e R=6 3 6 3
<D2> (D,) 2 1.07 —0.01(2) 10.86(501)(42) 0.36 1.10
- ( f (TIF + %)WO(F )dF ) 118 1.64(116) 36495)54) LIl 052
! 1.32 0.92(66) 3.58(85)(2) 242 047
_(D\Dy) (D) (D) 1.48 1.07(36) 2.14(35)(21) 127 082
3 12 4 1.67 1.49(41) 0.90(16)(18) 1.04 0.86
D22 (DD 2.09 0.62(13) 0.54(11)(11) 092  1.68
+ f << 4'>F 4 '>F2< 2>F)WO(F )dF 259 0.44(9) 0.56(10)(7) 191 2.14
1 3.22 0.26(5) 0.36(5)(4) 0.48 1.25
_ Z(<D%> + <@2>)2. (B4) 4.02 0.33(5) 0.29(5)(2) 1.13 1.16
mps/mv = (0.80
Because F = D,(u?/2) + O(u*) and [(---)pO[F] X a,(T) X 10 X2/ Npp
wo(F)dF = (- - - O[F]), where O[Flis an arbitrary func-  T/T,. R=6 3 6 3
tion of F; 1.08 e 3.03(51)(40) e 0.71
1.20 1.35(67) 2.37(44)(68) 0.98 1.27
] (DD Dy)pwo(F)dF = (DiD,) + O(u?).  (B5) 135 1.35(36) 1.28(26)(22) 218 088
1.69 0.65(10) 0.92(14)(13) 105 121
Moreover, as discussed in Sec. IV B, D, i§ given by a 2.07 0.50(7) 0.36(6)(16) 1.87 2.81
sum of the local number density operator (~ ¢y, (x)) at 251 0.45(7) 0.38(4)(1) 0.70 0.38
3.01 0.23(3) 0.34(3)(1) 1.83 2.04

gy = 0. If the simulation is performed apart from a sin-
gular point, we may adopt the Gaussian approximation for
the distribution of D;. In such a case, D, satisfies

(DD = KD (B6)

Substituting this equation, the forth derivative becomes

4
% — KD, Dy} + (D) + 3(DY) + (DY)

+6(DID,) — 3(DY) + (D)% (BY)
This is the same as the exact result. In this calculation, we
assumed that the distribution function of the total quark
number, D, is Gaussian at u ¢ = 0. Within this condition,
we find that the Gaussian approximation does not affect the
calculation of the derivatives of InZ up to O(u*). A similar
discussion is also possible for the higher order terms of w
and one can find out the condition in which the Gaussian
approximation is valid for each order of .

APPENDIX C: RESULTS OF EXPANSION
COEFFICIENTS FOR a,;; AND m),

To evaluate expansion coefficients of a.;; and mp, we fit
the normalized free energies with (77) and (78). Our results
of the expansion coefficients together with the quality of
the fits are summarized in Tables V, VI, VII, VIII, and IX.
We adopt the fit ranges 0.5 = rT = 1.0 for Eq. (77) and
0.25 = rT = 1.0 for Eq. (78). These fit ranges are chosen

by examining the fit range dependence as follows. Let us
denote the fit range as R;,; = rT = Ry;,. We find that the fit
results are insensitive to Ry, when Ry, is sufficiently large.
To evaluate the sensitivity on R;,;, we introduce R;;; i, as
the next-neighboring longer distance on the lattice. For
example, when R;,; = 0.5 at N, = 4, the lattice distance
of the point is 2 and the next-neighboring longer distance is

12 4+ 12 4+ 22 = /6, and thus R, ., = +/6/4. Similarly,
when R, = 0.25 at N, =4, Ri:.» = /3/4. Then, we
estimate the systematic error due to the fit range by the
difference of the fit results between R;,; and R;,;., with
fixed Ry,. The systematic errors are shown in the second

TABLE VI. x?/Npg for the fit of 2nd order coefficients at
mpg/my = 0.65 (left) and 0.80 (right).
mps/mv = 0.65 mps/mv = 0.80
T/T,, R=1 8 6 3 T/T,, R=1 8 6 3
1.07 0.87 129 064 1.05 1.08 063 1.15 --- 1.82

1.18 043 0.85 064 1.04 120 1.00 1.70 2.17 1.46
.32 1.86 095 1.17 222 135 099 0.65 0.64 046
148 1.02 1.56 1.10 1.32 1.69 283 249 1.53 1.44
1.67 1.12 1.73 1.22 0.61 207 095 0.64 1.05 098
209 1.01 096 243 184 251 1.83 128 0.73 1.25
259 1.19 149 166 121 301 1.08 1.76 1.08 0.59
322 1.02 1.83 1.98 0.90

402 1.61 0.72 1.10 1.86
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TABLE VII.  Results of a,(T) X 10 at mpg/my = 0.65 (left) and 0.80 (right).

PHYSICAL REVIEW D 82, 014508 (2010)

mpg/my = 0.65 mpg/my = 0.80
T/T, R=1 8 6 3" T/T, R=1 8 6 3
1.07 0.05(67) 0.40(365) —0.03(5) —3.83(346) 1.08 —0.09(44)  —0.08(15) s —0.06(60)
1.18 —1.31(65) —0.30(28) —3.39(318) —1.29(88) 1.20 —0.30(34) —8.42(1002) —1.93(196) 1.03(42)
1.32 0.55(71) 0.31(91) —-0.80(161) —1.20(94) 1.35 0.21(22) 0.01(71) —0.81(58) 0.18(25)
1.48 03534) —070216) —1.66(151) —0.41(59) 169 —0.08(13) 03835  —0.04(28) 0.06(18)
1.67 0.0324) —1.91(127) —1.15(97) 0.27(28) 2.07 0.02(7) —0.55(31) 0.01(22) —0.16(9)
2.09 —0.16(13)  —0.05(56) —0.13(34) —0.24(15) 2.51 0.03(6) —0.24(20) —0.08(15) 0.01(7)
2.59 0.07(11)  —0.03(33) —0.42(22) —0.21(15) 3.01 0.01(3) 0.00(10) —0.08(7) —0.07(5)
3.22 —0.04(8) —0.20(24) —0.18(15) 0.22(9)
4.02 —0.04(7) —0.21(22) —0.28(13) —0.01(7)

TABLE VIIL.  Results of mp,(T) at mpg/my = 0.65 (left) and 0.80 (right).

expresses the systematic errors due to the difference of the fit range.

The second parentheses in the color-singlet channel

mpg/my = 0.65 mpg/my = 0.80
T/The R=1 8 6 3 T/T,, R=1 8 6 3
107 14726)(52)  001(348)  217(229) 1.0342)  1.08  1.17(15)10)  1.03(221) e 1.22(20)
118 055(19)26) —3.18(180) —0.27(71)  058(23) 120  076(13)(12) —0.41(69)  0.63(31)  0.99(13)
1.32 0.84(18)(28) —0.19(100) —0.20(57) 0.49(19) 1.35 0.69(8)(1) 0.40(37) 0.26(17)  0.68(8)
1.48 0.73(13)(2) 0.27(72) 0.06(48) 0.55(19) 1.69 0.40(7)(31) 0.73(24) 0.50(17)  0.61(9)
167 040(18)35) —0.31(55) 0.1027)  053(19) 207  045(7)(12) 030(13)  043(11)  0.37(7)
2.09 0.38(8)(22) 0.25(26) 0.14(14) 0.33(10) 2.51 0.38(6)(5) 0.27(11) 0.40(9) 0.39(7)
2.59 041(7)(27) 0.47(18) 0.13(9) 0.24(9) 3.01 0.37(4)(7) 0.31(8) 0.29(6) 0.35(4)
3.22 0.44(8)(3) 0.30(16) 0.30(12) 0.65(10)
402 04110)28)  0.41(19) 020(12)  043(8)

TABLE IX. Results of mp,(T) determined with the assumption a,(T) = 0 at mpg/my = 0.65 (left) and 0.80 (right). The second
parentheses in the color-singlet channel expresses the systematic errors due to difference of the fit range.

mpg/my = 0.65 mpg/my = 0.80
T/Tp R=1 8 6 3 T/Tp R=1 8 6 3
107 133(19)(10)  081(153)  3.09(166) 1.43(32)  1.08  L15(11)6)  —0.28(160) e 1.17(16)
1.18 0.73(15)(1) —1.84(123) —0.21(54) 0.77(18) 1.20 0.77(10)(16) 0.19(41) 0.73(20)  0.78(11)
1.32 0.70(14)(21) —0.34(58) —0.12(36) 0.52(15) 1.35 0.65(6)(9) 0.40(21) 045(11)  0.67(6)
1.48 0.6909)(1) 0.24(40) 0.41(28) 0.64(14) 1.69 0.39(7)(7) 0.28(18) 0.49(11)  0.52(8)
1.67 0.41(13)(14) 0.20(27) 0.29(19) 0.43(13) 2.07 0.44(5)(3) 0.44(10) 0.42(7) 0.40(6)
209 031(7)0) 0.27(16) 0.29(8) 037(7) 251  035(4)2) 0.34(7) 043(5)  0.40(5)
2.59 0.39(5)(6) 0.54(10) 0.34(7) 0.35(7) 3.01 0.34(4)(2) 0.25(6) 0.30(5) 0.37(3)
3.22 0.46(6)(8) 0.33(10) 0.38(8) 0.56(8)
402 0428)(1) 0.50(12) 0.33(9) 037(7)

parentheses for «(T) of the color-antitriplet channel in
Table V, for mp, ,(T) of color-singlet channel in Tables VIII
and IX. We find that the systematic errors are almost

comparable with the statistical errors, except very close

to 7.
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