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The energies of the excited states of the nucleon,�, and� are computed in lattice QCD, using two light

quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the

light quark mass, corresponding to pion masses m� ¼ 392ð4Þ, 438(3), and 521(3) MeV. We employ the

variational method with a large basis of interpolating operators enabling six energies in each irreducible

representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying

experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to

include operators that couple to the expected multihadron states in the spectrum is clearly identified.
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I. INTRODUCTION

The theoretical determination of the spectrum of baryon
resonances from the fundamental quark and gluon degrees
of freedom is an important goal for lattice QCD. Recently a
number of groups have performed lattice computations for
Nf ¼ 2þ 1 QCD with two light-quark flavors (up and

down) and one more massive quark flavor (strange) [1–
8]. Different actions have been used and several analyses
achieve a pion mass close to the physical limit. A recent
analysis used a reweighting technique to perform calcula-
tions at the physical pion mass [9]. One focus of attention
has been the determination of the lowest baryon mass for
each isospin and strangeness. Good agreement has been
achieved between different calculations. The experimental
masses are reproduced typically with discrepancies rang-
ing from 1% to 8%.

Another focus of attention is the excited state spectrum
of baryons. Recent works have progressed beyond
quenched QCD [10,11], which omits the effects of light
quarks from the gauge ensembles. Two light-quark flavors
(Nf ¼ 2) were used in Ref. [12]. In this work we use

ensembles of gauge configurations developed in Ref. [1]
for Nf ¼ 2þ 1 QCD with dynamical light and strange

quarks.
There are ongoing experimental programs aimed at

determining the spectra and properties of excited baryons
at the Thomas Jefferson National Accelerator Facility.
Reference [13] provides an overview of some recent ex-
perimental results.

Excited baryon states can be quite massive, and a small
lattice spacing in the time direction is best for observing
their signals, which decrease exponentially with time. If

the same lattice spacing were used in spatial and time
directions the computational cost would be unnecessarily
high. The Hadron Spectrum Collaboration has undertaken
a program to solve QCD using anisotropic lattices that
have a smaller spacing, at, in the time direction. In this
work we use 163 � 128 lattices with a renormalized an-
isotropy � ¼ 3:5 [14], i.e., at ¼ as=3:5, where as is the
spatial lattice spacing. A Symanzik-improved gauge and a
clover-improved Wilson fermion action have been used to
generate gauge ensembles for Nf ¼ 2þ 1 QCD. [1] The

three ensembles used in this work have pion masses of
392(4) MeV, 438(3) MeV, and 521(3) MeV. The effects of
charm, bottom and top quarks are neglected because the
baryons under study have only light quarks in their valence
structures and the loop contributions of the neglected
quarks are suppressed by their large masses.
For families of particles with given isospin and strange-

ness, spectra are calculated in the six double-valued irre-
ducible representations (irreps) of the octahedral group.
There are three irreps for even parity that are labeled with a
g subscript (gerade) and three for odd-parity that are
labeled with a u subscript (ungerade). They are: G1g, Hg,

G2g, G1u, Hu, and G2u. Operators that transform according

to one of these irreps do not mix with those of other irreps
because of the octahedral symmetry.
A large basis of interpolating field operators is needed in

order to extract the spectrum of excited states. We have
developed many such operators for each isospin, strange-
ness and octahedral irrep in previous works [15]. In this
work we select sets of 7 to 11 operators in each irrep.
Continuum values of total angular momenta show up in
lattice simulations as patterns of degenerate energies in the
continuum limit that match the patterns in Table I for the
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subduction of spin J to the double-valued irreps of the
octahedral group.

For example, a state in one of theG2 irreps is a signal for
the subduction of continuum spin 5

2 or higher. Because spin
5
2 has six magnetic substates and the lattice G2 irrep has

dimension two, there must be four degenerate partner
states from the four-dimensionalH irrep in order to realize
the six linearly independent states that are required. For
spin 7

2 , there must be degenerate partner states in theG1,H

and G2 irreps in order to realize the total of eight magnetic
substates.

This paper is organized as follows. In Sec. II, we review
the lattices used and the basic features of the action and
quark masses, the baryon operators, the smearing of quark
fields based on eigenvectors of the gauge-covariant lattice
Laplacian, the pruning of operators to obtain suitable sets
for calculations of matrices of correlation functions and the
variational method with eigenvectors fixed at one time
value. As we have shown in previous work [12], smearing
of the source and sink operators is important for calcula-
tions of baryon spectra because it reduces contributions
from short wavelength fluctuations. We use the recently
developed distillation method of Ref. [16] in which source
and sink quark operators are smeared by applying eigen-
vectors of the gauge-covariant Laplacian, �r2.

The orthogonality of the eigenvectors produces a facto-
rization of the problem. One part consists of the smeared
baryon operators based on Neig eigenvectors of the scalar

Laplacian �r2 on each time slice for each quark. The
other consists of correlation functions corresponding to the
parallel transport of smeared quark operators formed from
the eigenvectors of the Laplacian from the source time
slice to the sink time slice. These elementary quark corre-
lation functions are called ‘‘perambulators’’ for short. They
are universal in the sense that they may be used for any
baryon or meson operators. The distillation method pro-
vides an ‘‘all-to-all’’ calculation in the sense that propa-
gators are calculated from all Neig eigenvectors of �r2 at

the source to all Neig eigenvectors at the sink.

In Sec. III we report calculations for the nucleon and
show details of the fits to obtain energies and the results for
the spectrum at the lowest pion mass, 392 MeV. In Sec. IV
we report summary results for the nucleon, � and �
spectra for all three pion masses and comparisons with

experimental resonances. The � spectrum of low-lying
excited states is interesting because little experimental
information is available. It also helps to set the overall
scale for baryon spectra, for which we use the ground state
� baryon mass at each value of m�.
Section V gives a summary of the results.

II. LATTICES, OPERATORS, AND MATRICES OF
CORRELATION FUNCTIONS

References [1,14] presented the tuning of quark masses
and other parameters for Nf ¼ 2þ 1 QCD on the aniso-

tropic 163 � 128 lattice used in this work. Reference [16]
presented the method of smearing hadronic operators using
an expansion in terms of eigenvectors of the three-
dimensional lattice Laplacian. Because those references
provide the foundation for the present work, we summarize
their findings in this section.
Table II shows the three sets of quark masses from

Ref. [1] used in this work together with values for the
pion mass, the kaon mass and the � baryon mass. The
value of the pion mass in MeV units is obtained by using
the� mass at each point to set the scale. We also show the
number of gauge configurations used. For each configura-
tion we compute correlation functions from four different
time sources and average them in order to take account of
correlations.
Baryon operators used in this work were developed in

Ref. [15]. For the baryons that we have considered, the
single-site (SS) forms of the operators are given in
Table III. Most operators incorporate gauge-covariant dis-
placements of the quarks relative to one another in order to
obtain nontrivial shapes. The displaced operators are pro-
jected to irreps of the octahedral group by summing over
all lattice rotations applied to the shapes and spins with
coefficients that project out the irrep operators. Many
operators are so obtained and in the final step they are
‘‘pruned’’ to sets of between 7 and 11 operators for each N
and � irrep. For �, we use the same operators as for �

TABLE II. Lattice parameters. Three sets of values (in tem-
poral lattice units) of the light-quark mass, m‘, the strange-quark
mass, ms and the resulting � meson, K meson and �-baryon
masses. The corresponding values of m� in MeVare given in the
last row based on using Eq. (15).

ensemble 1 2 3

m‘ �0:0840 �0:0830 �0:0808
ms �0:0743 �0:0743 �0:0743
Volume 163 � 128 163 � 128 163 � 128
Ncfgs 344 570 481

tsources 4 4 4

m� 0.0691(6) 0.0797(6) 0.0996(6)

mK 0.0970(5) 0.1032(5) 0.1149(6)

m� 0.2951(22) 0.3040(8) 0.3200(7)

m� (MeV) 392(4) 438(3) 521(3)

TABLE I. The number of occurrences of double-valued irrep
� of the octahedral group for half-integer values of continuum
spin J. N is the dimension of the irrep.

J 1=2 3=2 5=2 7=2 9=2 11=2
� N

G1 2 1 0 0 1 1 1

H 4 0 1 1 1 2 2

G2 2 0 0 1 1 0 1
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except that the number is limited to 6 in each irrep. The
operators are selected to have good signal to noise charac-
teristics and correlation matrices with low condition num-
bers at a time close to the source. Low condition number
(ratio of largest to smallest eigenvalue) is a proxy for linear
independence, which follows because two linearly depen-
dent operators would give a zero eigenvalue for a matrix of
correlation functions and an infinite condition number. A
full listing of operators is available upon request.

Table IV indicates the number and type of pruned op-
erators for each irrep for N, �, and � baryons used in this
work following the conventions of Ref. [15]. The types of
operators are: SS (single-site); SD (singly displaced) with
one quark gauge-covariantly displaced from the other two;
DDI (doubly-displaced-I) with two quarks displaced in
opposite directions from the third; and TDT (triply-dis-
placed-T) with all quarks displaced to create a T shape.

In order to reduce couplings to short-wavelength lattice
fluctuations, smearing of the operators is performed as in

Ref. [16]. The method is called ‘‘distillation’’ and it uses
the eigenvectors of the gauge-covariant, three-dimensional
Laplacian operator. The kth eigenvector depends on a color
index, a, and the spatial coordinates, x and is written as

vðkÞ
ax. It obeys the eigenvalue equation

ð�r2ÞabxyvðkÞ
b;y ¼ �kv

ðkÞ
ax; (1)

where a and b are color labels. Ordering is imposed such
that increasing k corresponds to increasing eigenvalues �k.
A sum over all M ¼ Nc � Nx � Ny � Nz eigenvectors

for a given lattice provides a decomposition of unity on
time slice t, i.e.,

XM
k¼1

vðkÞ
a;xðtÞvðkÞy

b;y ðtÞ ¼ �ab�xy : (2)

A sum over only the Neig lowest eigenvalues provides the

distillation operator on time slice t as the following pro-
jection,

hab
xy ðtÞ ¼

XNeig

k¼1

vðkÞ
a;xðtÞvðkÞy

b;y ðtÞ: (3)

Applying the projection to a quark field yields

hab
xy ðtÞqb�ðy; tÞ ¼

XNeig

k¼1

vðkÞ
a;xðtÞ~qðkÞ� ðtÞ; (4)

where the smeared field operator is defined by

~q ðkÞ
� ðtÞ ¼ vðkÞy

b;y ðtÞqb�ðy; tÞ: (5)

The smeared field operator involves a sum over repeated
indices b for color and y for space. It depends only on the
Dirac index �, the Laplacian eigenvector label k, and time
t. It is of rank Neig � N� vector on each time slice, where

N� is the number of spinor components, i.e., four. A
similar projection is used for displaced operators as dis-
cussed in Ref. [16].
Matrices of correlation functions are calculated as fol-

lows,

Cijðt; t0Þ ¼
X
xy

hBiðx; tÞBy
j ðy; t0Þi; (6)

where, using single-site operators,

TABLE IV. Numbers of operators of each type used in this
work for N, �, and � matrices are listed for each irrep. SS
denotes single-site (local) operators, SD denotes singly-
displaced operators, DDI denotes doubly-displaced-I operators,
DDL denotes doubly-displaced-L operators, and TDT denotes
triply-displaced-T operators. Gauge-covariant displacements are
used.

Baryon Operator type G1g G1u Hg Hu G2g G2u

N SS 2 1 1 1 0 0

N SD 1 1 2 1 1 2

N DDI 0 2 1 3 3 2

N DDL 2 2 4 3 3 2

N TDT 2 4 3 1 4 2

N total 7 10 11 9 11 8

� SS 0 0 1 2 0 0

� SD 3 3 2 0 4 2

� DDI 2 2 1 2 0 0

� DDL 3 3 2 2 4 4

� TDT 2 1 3 4 3 3

� total 10 9 9 10 11 9

� SS 0 0 1 2 0 0

� SD 3 3 2 0 4 2

� DDI 2 2 1 2 0 0

� DDL 1 1 2 2 2 4

� total 6 6 6 6 6 6

TABLE III. Baryons and the corresponding three-quark elemental operators. Columns 1 to 4 show the symbol, isospin, strangeness,
and the form of elemental single-site operators used. The last three columns show the numbers of embeddings of single-site operators
with irreps G1g, G2g, and Hg, respectively.

I S B��� G1g G2g Hg

N 1=2 0 ðu�d� � d�u�Þu�=
ffiffiffi
2

p
3 0 1

� 3=2 0 ðu�u�d� þ u�d�u� þ d�u�u�Þ=
ffiffiffi
3

p
1 0 2

� 0 �3 ðs�s�s� þ s�s�s� þ s�s�u�Þ=
ffiffiffi
3

p
1 0 2
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Biðx; tÞ ¼ C���
i 	abcqaf1� ðx; tÞqbf2� ðx; tÞqcf3� ðx; tÞ: (7)

Superscripts a, b, and c are color indices while f1, f2, and

f3 are quark flavor indices. Constants C���
i weight the

various Dirac components as required to form an irrep of
the octahedral group. When each quark field is projected to
the space of the Neig lowest eigenvalues of the covariant

Laplacian as in Eq. (4), the correlation function becomes
(with sums over repeated indices understood)

Cijðt; t0Þ ¼ ����
i;k‘mðtÞ

� h~qðkÞ� ðtÞ~qð‘Þ� ðtÞ~qðmÞ
� ðtÞ �~qð �kÞ�� ðt0Þ �~qð �‘Þ�� ðt0Þ �~qð �mÞ

�� ðt0Þi
���� �� ��y

j; �k �‘ �m
ðt0Þ (8)

where

����
i;k‘mðtÞ ¼ C���

i

X
x

	abcvðkÞ
a;xðtÞvð‘Þ

b;xðtÞvðmÞ
c;x ðtÞ: (9)

Further reduction of the correlation functions involves
contractions of smeared quark fields that have the same
quark flavor. That is different for each baryon but involves
the same set of contractions as for unsmeared fields. With
the smearing used here, each nonvanishing contraction
yields a ‘‘perambulator’’ in the terminology of Ref. [16],
i.e.,


k
�k

� ��ðt; t0Þ ¼ h~qðkÞ� ðtÞ �~qð �kÞ�� ðt0ÞiA
¼ vðkÞy

b;y ðtÞðM�1Þbcyz;� ��ðt; t0Þvð �kÞ
c;zðt0Þ; (10)

whereM is the Dirac matrix and h� � �iA denotes evaluation
with a single gauge configuration. The perambulators are
matrices in Neig � N� dimensions for each pair of source

and sink times, t0 and t. As shown in Ref. [16], Neig ¼ 32

provides smearing comparable to that based on Gaussian
smearing for 163 � 128 lattices. We use Neig ¼ 32 in this

work. The perambulator matrices provide the quark propa-
gation from all eigenvectors of the Laplacian at the source
time to all eigenvectors at the sink time without reference
to the operators that are used.

Matrices of correlation functions Cijðt; t0Þ are obtained

for four time slices t0. We translate each of these correla-
tion functions to t0 ¼ 0, yielding Cijðt; 0Þ, and average

them for each configuration. The average over gauge con-
figurations of Eq. (8) is calculated using the baryon opera-

tors ����
i;k‘mðtÞ and ��� �� ��y

j; �k �‘ �m
ð0Þ together with perambulators


k
�k

� ��ðt; 0Þ for the relevant contractions.
The variational method [17,18] is used to extract the

energy levels. We have exploited the fact that the matrices
of correlation functions are real-valued within noise after
removing a time-independent phase from each operator
Biðx; tÞ and the corresponding complex-conjugate phase
from �Bjðy; tÞ. Imaginary parts of the matrix elements are

therefore dropped and that helps to reduce the overall

noise. The Hermitian matrices Cijðt; 0Þ become real-

symmetric matrices.
The generalized eigenvalue problem is solved at time t�

to obtain eigenvectors of the correlation matrices. Because
matrix elements of the Hamiltonian involve an average
over configurations, we use the correlator matrix averaged
over configurations to obtain the eigenvectors as follows,

Cijðt�; 0ÞuðnÞj ðt�Þ ¼ �nðt�ÞCijðt0; 0ÞuðnÞj ðt�Þ; (11)

where t0 is the normalization time for which the eigenval-
ues obey �nðt0Þ ¼ 1. Matrix indices i and j each take Nop

values where Nop is the number of operators used. For each

gauge configuration, we then calculate matrix elements of
Cijðt; 0Þ in the basis of fixed eigenvectors determined at

time t�, defining the ensemble of effective eigenvalues as
follows,

~� nðtÞ ¼ uðnÞyi ðt�ÞCijðt; 0ÞuðnÞj ðt�Þ: (12)

At time t ¼ t�, the average over configurations of ~�nðtÞ is
equal to �nðtÞ because the average correlator matrix was

used in Eq. (11). At time t ¼ t0 both the average ~�nðtÞ and
�nðtÞ equal one for the same reason. The use of fixed
eigenvectors provides a smooth time dependence in the

diagonal correlation functions, ~�nðtÞ, and is consistent with
the fact that the eigenvectors of the Hamiltonian should be
independent of time. Differences between the fixed and
exact eigenvectors contribute at second order to the differ-

ence between ~�nðtÞ and �nðtÞ owing to the variational
nature of the calculation. The accuracy of the fixed eigen-
values analysis has been checked by comparing with the
exact eigenvalues. The two analyses agree within
uncertainties.
There are two other reasons for using fixed eigenvectors.

One is that the eigenvalue problem generally becomes ill-
conditioned at late times owing to the exponential decrease

of �nðtÞ / e�Enðt�t0Þ as t becomes large. The higher energy
states tend to zero fastest so the condition number of the

Nop � Nop matrix increases exponentially /
eðEhigh�ElowÞðt�t0Þ, where Ehigh and Elow are the largest and

smallest energies obtained from Nop operators. For the

Nop ¼ 7 to 11 operators used, the condition number be-

comes very large by t � 15. Backward propagating baryon
states can become significant also at large times. When that
happens the smallest eigenvalue can pass through zero and
become negative. The use of eigenvectors fixed at a time t�
significantly earlier that t � 15 avoids the conditioning
problem.
The second reason for using fixed eigenvectors is that at

early times the eigenvectors generally are contaminated by
contributions from states above the energy range that is
determined by Nop operators. By choosing time t0 to be as

large as possible, one reduces the contamination from
higher states in the spectrum, which are suppressed by
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factors involving e�Et0 as shown in Ref. [19]. We usually
set t� ¼ t0 þ 1 in order to diagonalize a matrix that is
effectively e�H � 1�H þ � � � , with eigenvectors domi-
nated by the Hamiltonian, H. Moreover, a long fitting
interval ðti; tfÞ is required for accurate determination of

the energies. We balance the requirements by choosing t0
to be large while keeping t� small enough to allow a well-
conditioned determination of Nop eigenvectors. The effec-

tive eigenvalues ~�nðtÞ are then fit as described in the next
section in order to extract energies.

III. ANALYSIS OF NUCLEON SPECTRA
AT m� ¼ 392ð4Þ MeV

Spectra have been calculated for the isospin 1
2 (N) states,

isospin 3
2 (�) states and strangeness �3 (�) states using

lattices with the three sets of quark masses shown in
Table II. In this section we present a detailed discussion
of our analysis for the N� states at the lightest pion mass to
show the procedure we employ and to illustrate the quality
of the data; the procedure for other cases is similar.

Table V shows the results of fitting each nucleon diago-

nal correlation function, ~�nðtÞ, by a two-exponential func-
tion of time as follows,

�fitðtÞ ¼ ð1� AÞe�Eðt�t0Þ þ Ae�E0ðt�t0Þ; (13)

where E< E0 so that E is the energy of interest at large
time. The second exponential term serves to model the
contaminations arising from higher-energy states at early
times. The fit window ðti; tfÞ is chosen such that coefficient
A is small. The values of ti and tf used are given in Table V

as are the values of t0 and diagonalization time t�.
Although the lowest five energies are shown, the number
of operators used is 7 to 11 in each irrep as shown in
Table IV. Fits are performed for a jackknife ensemble of
diagonal correlation functions calculated as in Eq. (12),
producing a jackknife ensemble of fit energies whose mean
and standard deviation are given in the table.

Plots of the nucleon effective energies, calculated as

EeffðtÞ ¼ 1

2
ln

�~�ðt� 1Þ
~�ðtþ 1Þ

�
; (14)

are shown in Fig. 1 for theG1g andG1u irreps, Fig. 2 for the

Hg and Hu irreps, and Fig. 3 for the G2g and G2u irreps.

These plots show the values of Eeff obtained from Eq. (14)
as vertical bars and Eeff calculated using the fit function of

Eq. (13) in place of ~�ðtÞ in Eq. (14) as dashed lines.
Comparison of the dashed lines with the bars from the
lattice ensembles shows the usefulness of two-exponential

fits. The term Ae�E0ðt�t0Þ models the contributions of higher
energy states at early times allowing the exponential term

ð1� AÞe�Eðt�t0Þ to be determined over a larger fit window
ðti; tfÞ than would be possible using a single exponential.

Fit energy E and uncertainty of the fit energy, �, are shown
by dashed horizontal lines at Eþ � and E� � extending
over the fit window. Note that the fits over a long time
interval provide smaller uncertainties when compared with
the variations of the effective masses. The latter have
contributions from higher states at early times and local
fluctuations at late times because they are calculated from
the correlation function at next-to-nearest times. Note also
that the statistics allow credible determinations of six
energy levels in each irrep.

TABLE V. Fit parameters for nucleon states at m� ¼
392ð4Þ MeV.

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

G1g (7,8) (7,31) 0.2085(19) 0.868(26) 0.427(42) 1.63

G1g (7,8) (7,24) 0.3545(51) 0.625(31) 0.559(14) 0.49

G1g (7,8) (5,22) 0.3675(110) 0.757(63) 0.685(44) 0.66

G1g (7,8) (5,18) 0.3831(95) 0.715(44) 0.725(28) 1.02

G1g (7,8) (4,15) 0.4205(88) 0.820(35) 0.817(34) 1.39

G1g (7,8) (4,14) 0.5320(124) 0.886(32) 0.991(51) 0.83

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

G1u (7,9) (6,25) 0.2957(30) 0.840(24) 0.576(28) 0.58

G1u (7,9) (5,25) 0.3177(41) 0.895(22) 0.672(40) 1.77

G1u (7,9) (4,14) 0.4317(164) 0.758(59) 0.808(39) 0.68

G1u (7,9) (4,15) 0.4593(382) 0.720(135) 0.821(72) 1.41

G1u (7,9) (4,17) 0.4605(50) 0.914(16) 0.917(36) 1.09

G1u (7,9) (4,15) 0.4720(99) 0.806(34) 0.883(30) 0.70

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

Hg (8,9) (7,25) 0.3541(54) 0.650(46) 0.547(17) 0.89

Hg (8,9) (7,25) 0.3643(29) 0.840(12) 0.633(12) 1.37

Hg (8,9) (7,20) 0.3735(93) 0.760(82) 0.610(52) 0.62

Hg (8,9) (5,17) 0.4053(56) 0.874(29) 0.740(36) 0.53

Hg (8,9) (5,17) 0.4092(64) 0.898(35) 0.753(54) 0.37

Hg (8,9) (5,17) 0.4129(77) 0.886(35) 0.808(54) 0.92

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

Hu (8,9) (7,25) 0.3037(34) 0.738(38) 0.485(18) 1.08

Hu (8,9) (7,25) 0.3065(44) 0.724(50) 0.481(21) 0.72

Hu (8,9) (7,24) 0.3203(25) 0.832(22) 0.578(26) 0.84

Hu (8,9) (7,24) 0.3383(61) 0.800(61) 0.589(56) 1.04

Hu (8,9) (4,18) 0.4516(102) 0.869(31) 0.855(34) 0.63

Hu (8,9) (4,18) 0.4628(81) 0.919(24) 0.900(46) 1.35

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

G2g (7,8) (5,22) 0.3870(69) 0.814(43) 0.737(45) 1.71

G2g (7,8) (5,18) 0.3930(85) 0.711(53) 0.675(29) 1.64

G2g (7,8) (5,18) 0.4006(80) 0.725(47) 0.704(29) 2.67

G2g (7,8) (4,18) 0.4278(73) 0.832(30) 0.852(33) 1.12

G2g (7,8) (4,14) 0.5405(205) 0.887(69) 1.000(112) 1.07

G2g (7,8) (4,14) 0.5701(129) 0.882(34) 1.032(49) 0.82

IR ðt0; t�Þ ðti; tfÞ E 1� A E0 �2

dof

G2u (6,8) (6,23) 0.3407(45) 0.746(42) 0.607(38) 0.70

G2u (6,8) (4,15) 0.4586(76) 0.825(28) 0.944(38) 2.41

G2u (6,8) (4,16) 0.4802(53) 0.875(23) 0.949(44) 0.69

G2u (6,8) (5,16) 0.4958(74) 0.841(26) 0.930(37) 1.60

G2u (6,8) (5,16) 0.4992(63) 0.865(19) 1.092(52) 1.23

G2u (6,8) (5,15) 0.5239(151) 0.917(56) 1.367(358) 1.96
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The same process has been used to obtain N, �, and �
energies at three values of m�. The results are given in
summary form in the next section.

IV. N, �, AND � SPECTRA AT THREE PION
MASSES

The goal of determining the spectra of baryon reso-
nances from lattice QCD requires an increasing elaborate

analysis as the limit of physical pion mass and large
volume is approached. Although all lattice states have
discrete energies at any finite volume, the energies corre-
spond to single-particle states, interacting multiparticle
states and mixtures thereof. At a minimum, one needs to
resolve all the states up to some energy and identify them
as predominantly resonances or predominantly scattering
states. The repulsion or attraction of multiparticle energy
levels at finite volume can be related to the momentum-

FIG. 1 (color online). Nucleon G1g effective energies are shown for the lowest states in the upper six graphs. The effective energy
increases from left to right along the first row and continues to increase from left to right along the second row. The lower six graphs
show nucleon G1u effective energies increasing in the same pattern. Calculations are for m� ¼ 392ð4Þ MeV. Vertical bars show the
effective energy and the curved dashed line shows the effective energy calculated from the fit function. Horizontal dashed lines show
the fit results for E� � and their extent shows the fitting interval ðti; tfÞ.
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dependent phase shifts; the (model-dependent) resonance
parameters can then be extracted through, say, a Breit-
Wigner fit to the phase shift. It also should be noted that
experimental resonances generally involve mixtures of
single-particle states and multiparticle states and in some
cases there may be a linear combination of multiparticle
states that produces features similar to those of a
resonance.

Although we have spectra for three values of m�, we
cannot clearly delineate multiparticle states in the spec-
trum and are unable to obtain the energy-dependent phase

shift; that analysis must await the introduction of a broader
basis of operators. In the following, we do not attempt to
perform a chiral extrapolation on the spectrum. The cou-
plings of the excited states are in general unknown, and we
are performing calculations in a region in which, as we will
see below, multiparticle contributions are expected.

A. Nucleon spectra

Spectra for isospin 1
2 states (N states) are summarized in

Fig. 4 for each lattice irrep and for m� ¼ 392, 438, and

FIG. 2 (color online). NucleonHg effective energies are shown for the lowest states in the upper six graphs and nucleon Hu effective
energies are shown in the lower six graphs with effective energies increasing in the same pattern as in Fig. 1. Calculations are for
m� ¼ 392ð4Þ MeV. Vertical bars show the effective energy and the curved dashed line shows the effective energy calculated from the
fit function. Horizontal dashed lines show the fit results for E� � and their extent shows the fitting interval ðti; tfÞ.
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521 MeV. We also show the isospin 1
2 two-star, three-star

and four-star experimental resonances with JP values that
have a subduction to the lattice irrep. Experimental reso-
nances [20] are shown by boxes in columns labeled by their
JP values with the height of the box equal to the full decay
width of the resonance. An inner box (color aqua) shows
the uncertainty in the Breit-Wigner resonance energy. The
lattice results are shown as colored boxes with height equal
to 2� in the columns labeled by values of m�, where � is
the statistical uncertainty of the fit energy. The lattice

energies have been converted to MeVunits by the formula,

E ¼ 1672:45

�
Eat
m�at

�
latt
: (15)

Here the ratio of a lattice energy and the lattice m� is
calculated for each value of m� and then is scaled by the
empirical mass of the �-baryon, 1672.45 MeV. Triangles
to the right of the lattice spectra for each value of m� in
Fig. 4 point to the threshold for scattering states (multi-
particle states) at that value of m�. Most of the excited

FIG. 3 (color online). Nucleon G2g effective energies are shown for the lowest states in the upper six graphs and nucleon G2u

effective energies are shown in the lower six graphs with effective energies increasing in the same pattern as in Fig. 1. Calculations are
for m� ¼ 392ð4Þ MeV. Vertical bars show the effective energy and the curved dashed line shows the effective energy calculated from
the fit function. Horizontal dashed lines show the fit results for E� � and their extent shows the fitting interval ðti; tfÞ.
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FIG. 4 (color online). Spectra for isospin 1
2 (nucleon family) at three values of m� are compared with experimental spectra. Plots in

the first row show G1g and G1u lattice irreps, plots in the second row show Hg and Hu irreps and plots in the third row show G2g and

G2u irreps. Columns labeled by m� ¼ 392, 438, and 521 show lattice spectra at those values of m�. Two, three and four-star
experimental resonances are shown in columns labeled by their JP values. Each JP value listed has a subduction to the lattice irrep
shown. Each box for an experimental resonance has height equal to the full decay width and an inner box (color aqua) showing the
uncertainty in the Breit-Wigner energy. Triangles to the right of lattice spectra point to the threshold for scattering states at that value of
m�.
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states have energies higher than the thresholds for scatter-
ing states.

As an example, we discuss the G1g plot, shown in the

upper left-hand panel of Fig. 4. The experimental spectrum
contains three low-lying 1

2
þ states together with one 7

2
þ

state. For the lattice calculation, we show the six lowest
energy states at each pion mass. Each experimental state
shown has a subduction to isospin 1

2 ,G1g, and should occur

in the lattice QCD spectrum for each value of m�. The
lattice states should correspond to subductions of contin-
uum states. The relevant continuum states consist of the
experimental resonances and scattering states with JP val-
ues that have subductions to the lattice irrep. Thresholds
for scattering states are shown in Fig. 4 and are listed in
Table VI. The listed multiparticle states are assigned to
lattice irreps following Ref. [21]. Because the spatial lat-
tice is a cube measuring about 1.96 fm on a side, the
momentum is restricted to discrete values with the smallest
nonzero one being 630 MeV. Consequently, the scattering
states with nonzero momenta occur at higher energies.

The general pattern seen in Fig. 4 is that lattice states
have high energies that decrease toward the experimental
resonances asm� is decreased. The density of lattice states
increases with increasing energy, but we restrict the analy-
sis to the lowest six states. That we are able to extract six
energies in each lattice irrep is testament to the effective-
ness of the smearing procedure based on eigenvectors of
the lattice Laplacian. Note, however, that we cannot dis-
tinguish clearly between single- and multiparticle contri-
butions to the spectrum in this calculation.

The nucleon ground state shows up as the lowest state in
the G1g lattice irrep. Its energy decreases in a regular

manner toward the experimental value shown in the 1
2
þ

column as m� decreases. The first excited state decreases
toward the Roper resonance, N�ð1440; 12þÞ but remains

above about 1900 MeV for the pion masses used in this
work.

In the negative-parity G1u spectra, there are two low-
lying states at each value of m� and they tend toward the
experimental resonances Nð1535; 12�Þ and Nð1650; 12�Þ as
m� decreases. A number of higher states also tend toward
the energy of the Nð2200; 72�Þ resonance or to scattering

states such ðN�Þs-wave, ðN�Þp-wave and so on.

Before we discuss theH andG2 states, it is worth noting
that isolated G2 states do not correspond to any physical
state. Because G2 has minimum spin 5

2 , there must be at

least six linearly independent components in the contin-
uum limit. Each G2 state must have a partner H state with
the same parity in order to have an interpretation as a
physical state. However, on the lattice discretization effects
can cause the H and G2 partner states to have different
energies at Oða2Þ.
In theHg spectra there are five experimental resonances:

Nð1720; 32þÞ and Nð1900; 32þÞ, Nð1680; 52þÞ, Nð2000; 52þÞ,
and Nð1990; 72þÞ. The lattice states tend as a group toward

these energies as m� decreases.
In the Hu spectra there are four low-lying lattice states

near 1800 MeV. The threshold for scattering states is near
the same energy as this group of lattice states. Three low-
lying experimental resonances are present: N(1530, 32

�), N
(1650, 32

�), and N(1675, 52
�).

In our Nf ¼ 2 analysis of Ref. [12], we obtained three

low-lying Hu states with larger uncertainties. Otherwise
the low-lying lattice states agree reasonably well. A test of
stability was performed by omittingHu operators to obtain
sets of Nop ¼ 6, 7, 8, and 9. Spectra were calculated for

each of these and the results show three Hu states near
2000 MeV when we use 6 or 7 operators and fourHu states
when we use 8 or 9 operators. This behavior suggests that
one state is only resolved with the larger number of opera-
tors. The operators that are responsible for the appearance
of the fourth state are of the triply-displaced-T type. We
also have studied the stability of the spectrum at m� ¼
561 MeV by varying t0, keeping t� ¼ t0 þ 1 and using all

TABLE VI. Multiparticle thresholds on the lattice for isospin I and strangeness S are shown for each value of m� in MeV. The
thresholds are based on the sum of energies of the particles with no interactions.

I S IR State m� ¼ 392 m� ¼ 438 m� ¼ 521

1
2 ,

3
2 0 G1g ðN��Þs-wave 1965(19) 2107(9) 2352(9)

1
2 ,

3
2 0 Hg ðN�Þp-wave 2089(18) 2133(7) 2220(6)

1
2 ,

3
2 0 G2g ð��Þp-wave 2361(21) 2375(9) 2446(9)

1
2 ,

3
2 0 G1u ðN�Þs-wave 1573(16) 1669(7) 1831(6)

1
2 ,

3
2 0 Hu ð��Þs-wave 1875(18) 1934(9) 2075(9)

1
2 ,

3
2 0 G2u ðN�Þd-wave 2089(18) 2133(7) 2220(6)

0 �3 G1g ð�KÞp-wave 2337(20) 2351(11) 2348(15)

0 �3 Hg ð���Þs-wave 2456(20) 2549(9) 2714(9)

0 �3 G2g ð�KÞp-wave 2337(20) 2351(11) 2348(15)

0 �3 G1u ð�KÞs-wave 1904(18) 1949(12) 1991(17)

0 �3 Hu ð��Þs-wave 2064(16) 2111(6) 2193(6)

0 �3 G2u ð�KÞd-wave 2337(20) 2351(11) 2348(15)
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FIG. 5 (color online). Spectra for isospin 3
2 (� family) at three values ofm� are compared with experimental spectra. Plots in the first

row show G1g and G1u lattice irreps, plots in the second row showHg andHu irreps and plots in the third row showG2g andG2u irreps.

Columns labeled by m� ¼ 392, 438, and 521 show lattice spectra at those values of m�. Two, three and four-star experimental
resonances are shown in columns labeled by their JP values. Each JP value listed has a subduction to the lattice irrep shown. Each box
for an experimental resonance has height equal to the full decay width and an inner box (color aqua) showing the uncertainty in the
Breit-Wigner energy. Triangles to the right of lattice spectra point to the threshold for scattering states at that value of m�.
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FIG. 6 (color online). Spectra for isospin 0, strangeness �3 (� family) at three values of m� are compared with experimental
spectra. Plots in the first row show G1g and G1u irreps, plots in the second row show Hg and Hu irreps and plots in the third row show

G2g and G2u lattice irreps. Columns labeled by m� ¼ 392, 438, and 521 show lattice spectra at those values of m�. Two, three and

four-star experimental resonances are shown in columns labeled by their JP values. Each JP value listed has a subduction to the lattice
irrep shown. For the �, the spins and parities of the experimentally observed states other than the lightest are not clearly determined;
for comparison, we assign the states to 3

2
þ, with the heights of the boxes indicating the widths. Triangles to the right of lattice spectra

point to the threshold for scattering states at that value of m�.
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operators. For t0 ¼ 2, 3, 4, 5, 6, 7, and 8 we observe four
low-lying states in the nucleon Hu spectrum. The presence
of a fourth state is robust when all operators are used.

Four low-lying Hu states are consistent with experiment
if one is a scattering state. We have not previously found
any evidence for a scattering state with our three-quark
operators, but they should be present. Work that is in
progress aims to identify the scattering states by using
operators designed to couple to them directly.

The pattern that is used to identify a spin 5
2
� state on the

lattice is a pair of states in the G2u and Hu irreps that
become degenerate in the continuum limit. A candidate for
this pattern is present in ourHu andG2u spectra: the lowest
G2u state and one of the four Hu states at essentially the
same energy. The pattern for spin- 72 is a triplet of G1, H,

and G2 states at essentially the same energy. There are
candidates for this pattern in the positive-parity spectra.
However, the presence of scattering states makes a secure
identification difficult.

B. � spectra

The � spectra are shown in Fig. 5. The general features
are the same as for the nucleon spectra: the lattice states are
high and they tend toward the experimental resonances as
m� decreases. The �ð1232; 32þÞ ground state appears as the
lowest state in the Hg spectra. The next higher Hg state is

close to the ground state but appears to tend toward the
�ð1600; 32þÞ state in the experimental spectrum.

The lowest two G1g states near 2200 MeV appear to be

somewhat high but consistent with the experimental reso-
nances �ð1910;12þÞ and �ð1950;72þÞ. Candidates for

spin-72
þ partner states are present in the 2200 MeV to

2400 MeV range in Hg and G2g spectra but the pattern is

a weak match for the expected degeneracy in the contin-
uum limit. Possibly the small volume used is causing large
splittings.

One of the two lowest Hu states corresponds reasonably
well to the �ð1700; 32�Þ resonance. The other one should

correspond to the �ð1930; 52�Þ resonance. However, a suit-
able partner state for spin 5

2
� is not seen in the G2u

spectrum: the lowest such state is near 2600 MeV. A
similar result is found in the G2g spectrum with the lowest

state being close to 2300MeV, well above the energy of the
�ð1905; 52þÞ resonance. This suggests that the volume may

be small, particularly for the G2 lattice states. In quark
models [22,23], excited states typically have larger radii.
Our lattice is about 1.8 fm in extent and a state with a radius
of more than 1 fm is not expected to be determined well.

C. � spectra

The spectra for excited� states are shown in Fig. 6. The
�ð1672; 32þÞ ground state has been used to set the scale for
baryon masses so is reproduced perfectly. Experimental
resonances above the ground state do not have spin-parity

assignments. In the quality rating of resonances of
Ref. [20], �ð2250Þ is rated as a three-star resonance while
�ð2380Þ and �ð2470Þ are rated as two-star resonances.
The strange-quark mass is at its physical value in our
calculations and the dependence on the pion mass is ex-
pected to be smaller than for other resonances. Consistent
with this the overall pattern of excited states varies little
with m�. A noteworthy exception is the first Hg excited

state, whose energy increases from about 1800 MeV to
2100 MeV as the pion mass decreases.
We have considered whether the lattice � spectra can

provide a useful guide for assignment of spins and parities.
We find 11 strangeness �3 states with energies near or
below 2500 MeV. Some of those states may be candidates
for scattering states rather than resonances. Thresholds for
scattering states are shown for each value of m� in Fig. 6.
However we cannot determine whether or not our spectra
contain scattering states.
A reasonably good agreement between the lattice and

experimental spectra is obtained if the first excited experi-
mental resonance is assigned to 3

2
þ. Beyond that there are

several possibilities. In Fig. 6 all of the experimental
resonances have been shown in the 3

2
þ column that appears

in the plot of Hg spectra. However, a convincing assign-

ment is not possible because many features of the spectra
are not explained. This issue will be revisited when good
operators for scattering states are available.

V. SUMMARY

This work represents a milestone in our long-term re-
search program aimed at determining the spectra of bary-
ons in QCD. It provides the first spectrum for N, � and �
baryons based on Nf ¼ 2þ 1 QCD with high statistics. A

large number of baryon operators is used to calculate
matrices of correlation functions. They are analyzed using
the variational method with fixed eigenvectors. The analy-
sis provides three spectra at pion masses, m� ¼
392ð4Þ MeV, 438(3) MeV, and 521(3) MeV.
The lattice volume and pion masses used give consid-

erably higher energies than the experimental resonance
energies. However, there is reasonable agreement of the
overall pattern of lattice and experimental states. One
exception is that almost all G2 states are much too high.
That may be caused by a volume that is too small for highly
excited states.
We find candidates for scattering states that have not

shown up in our previous analyses based on Nf ¼ 2 QCD

or quenched QCD. We also find more excited state con-
tamination in the effective-mass plots than was the case for
quenched QCD. We expect that when appropriate opera-
tors are used to identify multiparticle states, the spectra
will be cleaner.
The spectrum of excited states of the � baryons has

been calculated for the first time. We do not find a close
enough agreement between lattice and experimental ex-
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cited states to allow a convincing assignment of the un-
known spins and parities.

Our main conclusion is that the program to determine
baryon spectra from lattice QCD is expected to produce
reasonable explanations of the nucleon, � and � spectra
once calculations are extended to smaller pion masses,
larger volumes and operators designed to couple to scat-
tering states directly. Stochastic estimation of the quark
propagators will allow use of the distillation method with
larger volumes [24].
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