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We demonstrate a method for calculating the neutral B-meson decay constants and mixing matrix

elements in unquenched lattice QCD with domain-wall light quarks and static b-quarks. Our computation

is performed on the ‘‘2þ 1’’ flavor gauge configurations generated by the RBC and UKQCD

Collaborations with a lattice spacing of a � 0:11 fm (a�1 ¼ 1:729 GeV) and a lattice spatial volume

of approximately ð1:8 fmÞ3. We simulate at three different light sea quark masses with pion masses down

to approximately 430 MeV, and extrapolate to the physical quark masses using a phenomenologically-

motivated fit function based on next-to-leading order heavy-light meson SU(2) chiral perturbation theory.

For the b-quarks, we use an improved formulation of the Eichten-Hill action with static link-smearing to

increase the signal-to-noise ratio. We also improve the heavy-light axial current used to compute the

B-meson decay constant to Oð�spaÞ using one-loop lattice perturbation theory. We present initial results

for the SU(3)-breaking ratios fBs
=fBd

and � ¼ fBs

ffiffiffiffiffiffiffiffi
BBs

p
=fBd

ffiffiffiffiffiffiffiffi
BBd

p
, thereby demonstrating the viability of

the method. For the ratio of decay constants, we find fBs
=fBd

¼ 1:15ð12Þ and for the ratio of mixing

matrix elements, we find � ¼ 1:13ð12Þ, where in both cases the errors reflect the combined statistical and

systematic uncertainties, including an estimate of the size of neglected Oð1=mbÞ effects.
DOI: 10.1103/PhysRevD.82.014505 PACS numbers: 12.38.Gc, 12.15.Hh, 14.40.Nd

I. INTRODUCTION

Neutral B-meson mixing is a sensitive probe of quark
flavor-changing interactions. When combined with experi-
mental measurements of the B0

d and B
0
s oscillation frequen-

cies, precise QCD determinations of the B0
d and B

0
s-mixing

hadronic matrix elements allow clean determinations of the
Cabibbo-Kobayashi-Maskawa (CKM) [1,2] matrix ele-
ments jVtdj and jVtsj with all sources of systematic uncer-
tainty under control. In the standard model, the mass-
difference of the neutral B-meson mass eigenstates �mq

(often called the oscillation frequency) is given by [3,4]

�mq ¼ G2
Fm

2
W

16�2mBq

jV�
tqVtbj2S0ðxtÞ�BMq; (1)

where q 2 fd; sg. Both the Inami–Lim function S0ðxtÞ with
xt ¼ m2

t =m
2
W [5] and the QCD coefficient �B can be

computed in perturbation theory [3]. The hadronic contri-
bution to the �B ¼ 2 mixing matrix element,

M q ¼ h �B0
qj½ �b��ð1� �5Þq�½ �b��ð1� �5Þq�jB0

qi; (2)

must be calculated nonperturbatively from first principles
using lattice QCD.
The hadronic matrix element Mq is conventionally

parametrized as

M q ¼ 8
3m

2
Bq
f2Bq

BBq
; (3)

where mBq
is the mass of the B-meson, fBq

is the B-meson

decay constant, and BBq
is the B-meson bag parameter.

Many statistical and systematic uncertainties from lattice
calculations cancel in the SU(3)-breaking ratio Ms=Md,
which would be one in the limit md ! ms. It is therefore
convenient and conventional to introduce the quantity
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� � fBs

ffiffiffiffiffiffiffiffi
BBs

p
fBd

ffiffiffiffiffiffiffiffi
BBd

p : (4)

Given improved lattice calculations of the nonperturbative
factor �, recent experimental measurements of the oscil-
lation frequencies �md and �ms to about 1% accuracy [6–
9] now allow the possibility of precisely determining the
ratio of the CKM matrix elements jVtdj=jVtsj (see, for
example, Ref. [10]).

The ratio jVtdj=jVtsj constrains the apex of the CKM
unitarity triangle [11,12]. It is likely that new physics
would give rise to new quark-flavor-changing interactions
and additional CP-violating phases; these would manifest
themselves as apparent inconsistencies among different
measurements of quantities which should be identical
within the standard CKM picture. Thus a precise determi-
nation of the ratio � will help to constrain physics beyond
the standard model. Furthermore, possible indications of
new physics in B0

d-mixing at the �2:7-� level [13] make

the lattice calculation of B-meson mixing parameters
timely.

Recently, the HPQCD Collaboration published the first
unquenched determination of � with an accuracy of 2.6%
[14], and the Fermilab Lattice and MILC Collaborations
expect to have a result with similar errors soon [15]. The
HPQCD calculation employs a nonrelativistic QCD
(NRQCD) action for the heavy b-quark [16], while the
Fermilab/MILC calculation uses the relativistic
‘‘Fermilab’’ action for the b-quark [17]. Both of these
computations, however, rely on the same ‘‘2þ 1’’ flavor
asqtad-improved staggered ensembles generated by the
MILC Collaboration [18], which include the effects of
two degenerate light quarks and one heavier close-to-
strange quark in the sea sector.

For such a phenomenologically important quantity as �,
it is valuable to have an independent cross check using
different formulations of the lattice action for both the light
and heavy quarks. Our calculation employs the 2þ 1
flavor dynamical domain-wall ensembles generated by
the RBC and UKQCDCollaborations with a lattice spacing
of a � 0:11 fm (a�1 ¼ 1:729 GeV) [19]. The use of
domain-wall fermions [20–22] has the advantage over
other light-quark formulations that the chiral perturbation
theory expressions needed to extrapolate domain-wall lat-
tice results to the physical u- and d-quark masses are closer
to the continuum forms and have fewer parameters than in
the Wilson or staggered cases [23,24]. We compute the
b-quarks in the static limit (mb ! 1), which leads to
correlation functions that are noisier than those with prop-
agating b-quarks such as in the Fermilab [17] or NRQCD
actions [16]. We therefore use the static-quark formulation
of Refs. [25,26] with either APE [27,28] or HYP [29]
smearing of the static-quark gauge links to increase the
signal-to-noise ratio and reduce scaling violations (for
some quantities) as compared to the Eichten-Hill action

[30]. Furthermore, the approximate chiral symmetry of the
domain-wall action combined with the spin symmetry of
the static action simplifies the lattice-to-continuum opera-
tor matching as compared to the Wilson case by reducing
the number of additional lattice operators which appear
[31,32]. The results of this work extend an earlier study
with two flavors of dynamical quarks and heavier light-
quark masses in Ref. [33].
The primary purpose of this paper is to demonstrate the

viability of our method for computing the B-meson decay
constants and �B ¼ 2 mixing matrix elements. We there-
fore use the small-volume (163) ensembles with only one
lattice spacing and have relatively heavy light-quark
masses and limited statistics. A novel feature of this
work is the use of SU(2) heavy-light meson chiral pertur-
bation theory (HM�PT) to extrapolate Nf ¼ 2þ 1 lattice

QCD results for B-meson quantities to the physical quark
masses. This follows the approach taken by the RBC and
UKQCD Collaborations in the light pseudoscalar meson
sector in Ref. [34], and differs from the calculations of
HPQCD and Fermilab/MILC, both of whom use SU(3)
HM�PT for their chiral and continuum extrapolations
[14,15]. The use of SU(2) �PT is based on on the fact
that the strange quark is much heavier than the up and
down quarks, and can therefore be integrated out of the
chiral effective theory. Because lattice QCD simulations at
the physical strange-quark mass are possible via tuning,
interpolation, or reweighting, SU(3) �PT is generally not
needed to extrapolate the strange quark to its physical
value. When the masses of the light valence and sea quarks
are sufficiently small such that SU(2) chiral perturbation
theory is applicable, SU(2) �PT for light pseudoscalar
meson masses and decay constants converges more rapidly
than SU(3) �PT [34–37]. Although we do not have enough
data or sufficiently light quark masses to perform a thor-
ough comparison of SU(2) and SU(3) HM�PT in this
work, we believe that the use of SU(2) HM�PT provides
a promising alternative to SU(3) and warrants further study
when better data is available.
In this work we compute both the ratio of decay con-

stants, fBs
=fBd

, and the ratio of �B ¼ 2 matrix elements,

�. We focus on the SU(3)-breaking ratios because both the
statistical and systematic errors are smaller and under
better control than for the individual decay constants and
mixing matrix elements. Our results have large total un-
certainties compared to those of HPQCD and Fermilab/
MILC. Within errors, however, our results for the SU(3)-
breaking ratios are consistent with the values presented in
the literature and we expect to improve upon them and
present values for the individual decay constants and ma-
trix elements in a future work.
This paper is organized as follows. First, in Sec. II, we

present the actions and parameters used in our lattice
simulations. Next, in Sec. III, we briefly discuss the per-
turbative matching of the heavy-light current and the four-
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fermion operators; the details of the lattice perturbation
theory calculation will be presented in another publication
[38]. We compute 2-point and 3-point lattice correlation
functions and extract the decay constants and mixing ma-
trix elements in Sec. IV, and extrapolate these results to the
physical light-quark masses using a phenomenologically-
motivated function based on next-to-leading order (NLO)
SU(2) heavy-meson chiral perturbation theory in Sec. V. In
Sec. VI we estimate the contributions of the various sys-
tematic uncertainties to fBs

=fBd
and �, discussing each

item in the error budget separately. We present our final
results and conclude in Sec. VII.

This paper also contains four appendices. Appendix A
specifies the SU(3) projection methods that are used in our
APE and HYP-smeared gauge links. In Appendix B some
details of the perturbative formulas used to match from
continuum QCD to HQETas well as for the HQET running
are presented. Appendix C discusses the large ground state
degeneracy present in HQETand how it can be exploited to
compute B-meson mixing matrix elements using localized
sources and sinks. The SU(3) and SU(2) NLO HM�PT
expressions for the B-meson decay constants and mixing
matrix elements relevant for Nf ¼ 2þ 1 domain-wall lat-

tice simulations are provided in Appendix D; some of these
results have not been presented previously in the literature.

II. LATTICE ACTIONS AND PARAMETERS

In this section we briefly describe our numerical lattice
simulations. We use the unquenched lattices generated by
the RBC and UKQCD Collaborations which include the
effects of 2þ 1 dynamical flavors of domain-wall quarks
[19]. We calculate the decay constants and matrix elements
on configurations with a lattice spacing of a�1 ¼
1:729ð28Þ GeV [34] and an approximate spatial volume
of L3 � ð1:8 fmÞ3. For each ensemble, the masses of the up
and down sea quarks are degenerate and the mass of the
strange sea quark is slightly larger than its physical value.
In order to distinguish the dynamical quark masses used in
our simulations from the physical u, d, and s-quark masses,
we denote the lighter sea quark mass byml and the heavier
sea quark mass by mh. Our lightest pion mass is approxi-

mately 430 MeV. Table I summarizes the parameters of the
dynamical domain-wall ensembles used in our analyses.
In Sec. II A we present the domain-wall fermion action

used for both the valence and sea light u, d, and s quarks.
Next, in Sec. II B, we show the Iwasaki gauge action used
for the gluon fields. Finally, we discuss the static action
used for the heavy b quarks in Sec. II C.

A. Light-quark action

We use the five-dimensional domain-wall fermion ac-
tion [21,22] for the light u, d, and s quarks in both the
valence and sea sectors:

SDW ¼ a4
� XLs�1

s;s0¼0

X
x;y

�c sðxÞDDW
ss0 ðx; yÞc s0 ðyÞ

�X
x

mf �qðxÞqðxÞ
�
; (5)

DDW
ss0 ðx; yÞ ¼ D4ðx; yÞ	s;s0 þD5ðs; s0Þ	x;y

þ a�1ðM5 � 5Þ	s;s0	x;y; (6)

D4ðx; yÞ ¼ X
�

1

2a
½ð1� ��ÞU�ðxÞ	xþ�̂;y

þ ð1þ ��ÞUy
�ðyÞ	x��̂;y�; (7)

D5ðs; s0Þ ¼
8><
>:
a�1PL	1;s0 ðs ¼ 0Þ
a�1ðPL	sþ1;s0 þ PR	s�1;s0 Þ ð0< s < Ls � 1Þ
a�1PR	Ls�2;s0 ðs ¼ Ls � 1Þ

(8)

where c sðxÞ is a 5-d Wilson-type fermion field. The fifth
dimension extends from 0 to Ls � 1 and is labeled by s.
The domain-wall height is set to M5 ¼ 1:8 in our simula-
tions. The projectors PL ¼ ð1� �5Þ=2 and PR ¼
ð1þ �5Þ=2 select left- and right-handed spinor compo-
nents, respectively. The physical four-dimensional quark
field qðxÞ is constructed from the five-dimensional field

c sðxÞ at s ¼ 0 and Ls � 1:

qðxÞ ¼ PLc 0ðxÞ þ PRc Ls�1ðxÞ; (9)

�qðxÞ ¼ �c 0ðxÞPR þ �c Ls�1ðxÞPL: (10)

In the limit Ls ! 1, the left-handed and right-handed
modes decouple and exact chiral symmetry is recovered. In

TABLE I. Available 2þ 1 flavor domain-wall ensembles [19].
The columns from left to right are the approximate lattice
spacing in fm, the bare light and strange quark masses in the
sea sector, the dimensions of the lattice in lattice units, the pion
mass in the sea sector, the dimensionless factor m�L, and the
residual quark mass in the chiral limit.

a (fm) aml=amh Volume m� (MeV) m�L amres

� 0:11 0:01=0:04 163 � 32 430 3.9 0.003 15

� 0:11 0:02=0:04 163 � 32 560 5.2 0.003 15

� 0:11 0:03=0:04 163 � 32 670 6.3 0.003 15
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practice, however, Ls is large but finite in numerical lattice
simulations. This leads to a small amount of chiral sym-
metry breaking which can be parameterized in terms of an
additive shift to the bare domain-wall quark mass. At the
value Ls ¼ 16 used in our simulations we obtain a residual
quark mass of amres ¼ 0:003 15ð2Þ [34]. Because mixing
between heavy-light four-fermion operators of different
chiralities is proportional to the value of amres, this indi-
cates that the size of errors from mixing with wrong-
chirality operators is negligible.

B. Gluon action

We use the Iwasaki gauge action for the gluons [39]:

Sgauge ¼ �


3

�
ð1� 8c1Þ

X
P

ReTr½UP� þ c1
X
R

ReTr½UR�
�
;

(11)

where 
 � 6=g20 and g0 is the bare lattice coupling. UP is

the path-ordered product of gauge links around the 1� 1
plaquette P and UR is the path-ordered product of gauge
links around the 1� 2 rectangle R. The constant c1 is set to
�0:331 in the Iwasaki action and we use 
 ¼ 2:13 in our
simulations. As was shown in Refs. [40,41] for the
quenched approximation, the use of the Iwasaki action in
combination with domain-wall valence quarks leads to
improved chiral symmetry and a smaller residual quark
mass than for the Wilson gauge action [42]. In the case of
Nf ¼ 2þ 1 dynamical domain-wall simulations, the use

of the Iwasaki action also allows frequent tunneling be-
tween topological sectors [43].

C. Heavy-quark action

We use an improved static action for the b-quarks in the
2-point and 3-point correlation functions needed to com-
pute the decay constants and matrix elements. We build
upon the original lattice formulation of the static effective
action that was constructed by Eichten and Hill [44]:

Sstatic ¼ a3
X
x;y

ð �hðxÞ½	x;y �Uy
0 ðyÞ	x�0̂;y�PþhðyÞ

� �hðxÞ½	x;y �U0ðxÞ	xþ0̂;y�P�hðyÞÞ; (12)

where hðxÞ is the static quark field at site x, U0ðxÞ is the
gauge link in the temporal direction and 0̂ denotes the unit
vector along the temporal direction. The projectors P� ¼
1
2 ð1� �0Þ select the parity even and odd components of

hðxÞ, which we denote by hðþÞðxÞ and hð�ÞðxÞ. respectively.
The components of the static-quark field hð�Þ in the

Eichten-Hill action satisfy the relation �0h
ð�Þ ¼ �hð�Þ.

Furthermore, the static quark propagator Hðx; yÞ ¼
hhðxÞ �hðyÞi can be expressed as the product of gauge links:

Hðx; yÞ ¼ Hþðx; yÞ þH�ðx; yÞ; (13)

HðþÞðx; yÞ ¼ 1

a3
�ðtx � tyÞ

� 	~x; ~y½Uy
0 ðx� 0̂Þ . . .Uy

0 ðyþ 0̂ÞUy
0 ðyÞ�Pþ;

(14)

Hð�Þðx; yÞ ¼ � 1

a3
�ðty � txÞ

� 	~x; ~y½U0ðxÞU0ðxþ 0̂Þ . . .U0ðy� 0̂Þ�P�:

(15)

These properties make the Eichten-Hill formulation
computationally simple. In practice, however, numerical
simulations with this action are quite noisy. Therefore we
use instead smeared (or ‘‘fat’’) link actions:

Sfat ¼ a3
X
x;y

ð �hðxÞ½	x;y � �Vy
0 ðyÞ	x�0̂;y�PþhðyÞ

� �hðxÞ½	x;y � �V0ðxÞ	xþ0̂;y�P�hðyÞÞ; (16)

where the new gauge link �V is obtained from the thin link
U by either APE blocking [27,28] or hypercubic (HYP)
blocking [29]. The heavy quark propagator for the im-
proved action is given by

HðþÞ
fat ðx; yÞ ¼

1

a3
�ðtx � tyÞ

� 	~x; ~y½ �Vy
0 ðx� 0̂Þ . . . �Vy

0 ðyþ 0̂Þ �Vy
0 ðyÞ�Pþ;

(17)

Hð�Þ
fat ðx; yÞ ¼ � 1

a3
�ðty � txÞ

� 	~x; ~y½ �V0ðxÞ �V0ðxþ 0̂Þ . . . �V0ðy� 0̂Þ�P�:

(18)

The replacement of the simple gauge link U0 by a smeared
link significantly improves the signal-to-noise ratio [26].
We construct the fattened APE link by adding a

weighted sum of the staples to the original thin link, and
restrict the smearing to links in the temporal direction
along which the heavy quark propagates. We use the
APE parameter � ¼ 1, for which the smeared link is given
by [28]

�V 0ðxÞ ¼ ProjSUð3Þ½V0ðxÞ�; (19)

V0ðxÞ ¼ 1

6

X3
�¼1

ðU�ðxÞU0ðxþ �̂ÞUy
� ðxþ 0̂Þ

þUy
� ðx� �̂ÞU0ðx� �̂ÞU�ðxþ 0̂� �̂ÞÞ: (20)

We build the HYP link from three iterative steps of APE
smearing which are restricted to the hypercube around the
original link. For links in the temporal direction the con-
struction is as follows:

C. ALBERTUS et al. PHYSICAL REVIEW D 82, 014505 (2010)

014505-4



�V 0ðxÞ ¼ ProjSUð3Þ
�
ð1� �1ÞU0ðxÞ þ �1

6

� X�3

�¼�1

~V�;0ðxÞ ~V0;�ðxþ �̂Þ ~Vy
�;0ðxþ 0̂Þ

�
; (21)

~V �;�ðxÞ ¼ ProjSUð3Þ
�
ð1� �2ÞU�ðxÞ þ �2

4

� X�3


¼�0

��;�

V
;��ðxÞV�;
�ðxþ 
̂ÞVy

;��ðxþ �̂Þ

�
;

(22)

V�;�
ðxÞ ¼ ProjSUð3Þ
�
ð1� �3ÞU�ðxÞ þ �3

2

� X�3

�¼�0
���;�;


U�ðxÞU�ðxþ �̂ÞUy
�ðxþ �̂Þ

�
: (23)

We use the HYP smearing parameters ð�1; �2; �3Þ ¼
ð1:0; 1:0; 0:5Þ, sometimes referred to as HYP2. These
were shown to approximately minimize the noise-to-signal
ratio in Ref. [25].

In Eqs. (19)–(23) ProjSUð3ÞðVÞ indicates the projection

of the link V onto an SU(3) matrix. This projection reduces
the statistical noise and thus enhances the smearing effect
without increasing the level of smearing. In some cases the
SU(3) projection also suppresses quantum corrections to
lattice operators in perturbation theory [45]. The projection
of the smeared link onto SU(3) is not unique, and we use
two different schemes: for the case of APE smearing,
Eq. (19), we project by the unit circle method based on
polar decomposition [46], while for the case of HYP
smearing, Eqs. (21)–(23), we obtain the projected matrix
by an iterative procedure seeking the SU(3) matrix Umax

that maximizes ReTrðUmaxV
yÞ, where V is the HYP

smeared link matrix [47]. We describe the details of the
two schemes and show their equivalence in the weak
coupling limit in Appendix A.

III. PERTURBATIVE MATCHING OF HEAVY-
LIGHT CURRENTAND FOUR-FERMION

OPERATORS

In order to renormalize the heavy-light axial current and
�B ¼ 2 four-fermion operator, we adopt a two-step
matching procedure. In the first step, we match the QCD

operators renormalized in the MS scheme using naive
dimensional regularization (NDR) at a scale �b to contin-
uum static effective theory operators renormalized at a
scale �. This step is described in Sec. III A. In this paper,
we choose �b to be the b-quark mass mb and � to be the
inverse lattice spacing a�1. In the second step, we match
the continuum static effective theory operators to the lattice
ones. This step is described in Sec. III B. We combine the

results of the two steps and present the results for the
complete matching coefficients in Table III.

A. Continuum matching

The QCD operators considered in this paper are the axial
vector current

AQCD
0 ¼ �b�0�5q; (24)

and the �B ¼ 2 four-quark operator

OQCD
L ð�bÞ ¼ ½ �b��ð1� �5Þq�½ �b��ð1� �5Þq�: (25)

These are related to the continuum HQET operators by

AQCD
0 ¼ CAð�ÞAHQET

0 ð�Þ þOð�QCD=mbÞ; (26)

OQCD
L ð�bÞ ¼ Z1ð�b;�ÞOHQET

L ð�Þ þ Z2ð�b;�ÞOHQET
S ð�Þ

þOð�QCD=mbÞ; (27)

where

AHQET
0 ¼ �h�0�5q; (28)

OHQET
L ¼ ½ �h��ð1� �5Þq�½ �h��ð1� �5Þq�; (29)

OHQET
S ¼ ½ �hð1� �5Þq�½ �hð1� �5Þq�: (30)

Note that, because AQCD
0 is a conserved current, it does not

depend upon the renormalization scale �b. The coeffi-

cients CA and ~Z ¼ ðZ1; Z2Þ in Eqs. (26) and (27) are
products of three factors:

CAð�Þ ¼ ~CAðmbÞ 	Uð4Þ
A ðmb;mcÞ 	Uð3Þ

A ðmc;�Þ; (31)

~Zð�b;�Þ ¼ ~~Zð�b;mbÞ 	Uð4Þ
L ðmb;mcÞ 	Uð3Þ

L ðmc;�Þ;
(32)

where ~CA and ~~Z � ð~Z1; ~Z2Þ are the matching coefficients

from HQET to QCD. The factors U
ðNfÞ
A ð�0; �Þ and the 2�

2 matrix U
ðNfÞ
L ð�0; �Þ account for the renormalization

group running between scales: We first match the contin-
uum QCD operators onto continuum HQET operators at

one-loop; this occurs at a scale �b ¼ mb in the MSðNDRÞ
scheme. We then run the matching coefficients in four-
flavor continuum HQET from mb to mc at two-loops.
Finally, we run the coefficients at two-loops in three-flavor
continuum HQET from mc to the scale � ¼ 1=a, where
the matching to three-flavor lattice HQET is done.
The matching factors and anomalous dimensions needed

to compute these coefficients are given in Refs. [30,48,49]
for the heavy-light current and in Refs. [50–53] for the
four-quark operator. For completeness, we present them in
Appendix B. Here we simply quote the results for the
matching coefficients, which already contain some terms
of Oð�2

sÞ:
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CAð�Þ ¼
�
�sðmbÞ
�sðmcÞ

��ð6=25Þ 	
�
�sðmcÞ
�ð3Þ
s ð�Þ

��ð2=9Þ 	
�
1� 8

3

�sðmbÞ
4�

�
	
�
1þ Jð4ÞA

�sðmbÞ � �sðmcÞ
4�

�

	
�
1þ Jð3ÞA

�sðmcÞ � �ð3Þ
s ð�Þ

4�

�
þOð�2

sÞ; (33)

Z1ðmb;�Þ ¼
�
�sðmbÞ
�sðmcÞ

��ð12=25Þ 	
�
�sðmcÞ
�ð3Þ
s ð�Þ

��ð4=9Þ 	
��
1� 14

�sðmbÞ
4�

�
	
�
1þ Jð4Þ11

�sðmbÞ � �sðmcÞ
4�

�

	
�
1þ Jð3Þ11

�sðmcÞ � �ð3Þ
s ð�Þ

4�

�
þ 2

�sðmbÞ
4�

��
1�

�
�sðmbÞ
�sðmcÞ

�
8=25

��
1þ Jð3Þ11

�sðmcÞ � �ð3Þ
s ð�Þ

4�

�

þ
�
�sðmbÞ
�sðmcÞ

�
8=25 	

�
1�

�
�sðmcÞ
�ð3Þ
s ð�Þ

�
8=27

���
þOð�2

sÞ; (34)

Z2ðmb;�Þ ¼ �8
�sðmbÞ
4�

�
�sðmbÞ
�sðmcÞ

��ð4=25Þ��sðmcÞ
�ð3Þ
s ð�Þ

��ð4=27Þ þOð�2
sÞ; (35)

with the parameters JA and J11 given by

Jð3ÞA ¼ �0:7545; Jð4ÞA ¼ �0:9098; (36)

Jð3Þ11 ¼ �1:6980; Jð4Þ11 ¼ �1:8637: (37)

Note that the leading-order mixing between OQCD
L and

OHQET
S is of Oð�sÞ. To determine the coupling constant

�s at different scales, which is required to obtain these
results, we fix the value of �s at the Z-boson mass to
the PDG value �sðmZ ¼ 91:1876 GeVÞ ¼ 0:1176 [6].
Using four-loop running [54,55], we obtain �sðmb ¼
4:20 GeV½6�Þ ¼ 0:2228, �sðmc ¼ 1:27 GeV½6�Þ ¼
0:3819, and �ð3Þ

s ða�1 ¼ 1:729 GeV½34�Þ ¼ 0:3141.
Hence we find

CAða�1Þ ¼ 1:0459; Z1ðmb; a
�1Þ ¼ 0:9100;

Z2ðmb; a
�1Þ ¼ �0:1502

(38)

for the matching coefficients in Eqs. (26) and (27) that
relate the operators in continuum QCD to those in the
continuum static effective theory.

B. Static effective theory matching

We next discuss the lattice-to-continuum operator
matching in the static effective theory. Although both the
domain-wall and static quark actions are on-shell OðaÞ
improved, the domain-wall-static vertices still receive
OðaÞ corrections. This was shown in Ref. [56] for the
case of clover light quarks and static heavy quarks even
when the parameter in the clover action r ! 0 and chiral
symmetry is restored in the light-quark sector. In this work,
we removeOðaÞ lattice discretization errors from the axial
vector current in the light-quark chiral limit at one-loop in
lattice perturbation theory by adding dimension-four op-
erators containing derivatives; we refer to these errors as
OðpaÞ to distinguish them from OðmqaÞ errors that vanish

in the light-quark chiral limit. The improved operators are
determined by requiring that the on-shell quark scattering
amplitudes in the B-meson rest frame agree in the lattice
and continuum theories through Oð�spaÞ, where p is the
momenta of the light quarks in the B-meson and is typi-
cally of Oð�QCDÞ. The details of this calculation are pre-

sented in Ref. [38]. We neglect OðmqaÞ errors because

these are estimated to be small [38], but account for them
when estimating the systematic errors in Sec. VI. In this
work we also neglect Oð�spaÞ corrections to the four-
quark operator since we estimate the size of the resulting
contribution to the SU(3) breaking ratio � would be much
smaller than our current statistical precision, but we again
account for them in the systematic error budget. The one-
loop Oð�spaÞ corrections for the four-quark operator are
available in Ref. [38], however, for use in future
simulations.
For domain-wall light quarks, the one-loop lattice

perturbation theory calculations are presented in
Refs. [32,38,57]. The lattice-to-continuum matching has
the form:

AHQET
0 ð�Þ ¼

ffiffiffiffiffi
u0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðwMF

0 Þ2ÞZMF
w

q ZMF
A ð�; a�1Þ

� ½Alat
0 ða�1Þ þ cMF

A ð�; a�1ÞaAlat
@;0ða�1Þ�

� ZMF
A ð�; a�1Þ

� ½Alat
0 ða�1Þ þ cMF

A ð�; a�1ÞaAlat
@;0ða�1Þ�: (39)

OHQET
L ð�Þ ¼ u0

ð1� ðwMF
0 Þ2ÞZMF

w

ZMF
L ð�; a�1ÞOlat

L ða�1Þ

� ZMF
L ð�; a�1ÞOlat

L ða�1Þ; (40)

OHQET
S ð�Þ ¼ u0

ð1� ðwMF
0 Þ2ÞO

lat
S ða�1Þ

� ZMF
S ð�; a�1ÞOlat

S ða�1Þ; (41)
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with the constant

wMF
0 ¼ 1�M5 þ 4ð1� u0Þ; (42)

where the mean-field link u0 ¼ P1=4 is obtained from the
expectation value of the plaquette P. In Eqs. (39)–(41) we

match AHQET and OHQET
L at one-loop, but match OHQET

S at

tree level. This is sufficient because the leading-order

mixing between the continuum QCD operator OQCD
L and

the continuum HQET operator OHQET
S is already of Oð�sÞ,

and has no tree-level component. The lattice operators
have the same form as in the continuum static effective
theory

Alat
0 ¼ �h�0�5q; (43)

Olat
L ¼ ½ �h��ð1� �5Þq�½ �h��ð1� �5Þq�; (44)

Olat
S ¼ ½ �hð1� �5Þq�½ �hð1� �5Þq�: (45)

The OðpaÞ derivative operator in the equation for the axial
current is given by

Alat
@;0 ¼ @0ð �h�5qÞ; (46)

where we have simplified the expression using the
equations-of-motion. The domain-wall specific renormal-
ization factor ZMF

w that enters the above equations was
calculated perturbatively in Ref. [58].

The superscript ‘‘MF’’ denotes mean-field improvement
[59], in which we modify the bare lattice coupling using
the value of the mean-field link. Use of this ‘‘boosted’’
coupling as the new expansion parameter improves the
convergence of lattice perturbation theory. The mean-field
improved coupling �MF has several definitions which dif-
fer only at higher-order in perturbation theory than we
consider. These differences enter our estimate of the sys-
tematic error in Sec. VI. Our choice for obtaining the
mean-field improved coupling from the bare lattice cou-
pling g20 is

1

ðgMFÞ2 ¼ P

g20
þ dg þ cp þ Nfdf; (47)

where Nf ¼ 3 is the number of dynamical flavors. We use

the plaquette value averaged over different light sea quark
mass, P ¼ 0:5881, because the difference in the value of P
for different light sea quark masses is less than 0.05% for
the ensembles used in this work. The constants dg ¼
0:1053 and cp ¼ 0:1401 were calculated for the Iwasaki

gauge action in Ref. [58] and df ¼ �0:001465 was ob-

tained for MMF
5 ¼ 1:303 from a linear interpolation of the

results in Table II of Ref. [60]. On our ensembles, the
mean-field improved coupling is �MF ¼ 0:1769.

Given the value of the plaquette in our simulations, u0 ¼
0:8757 and wMF

0 ¼ �0:3029. After setting � ¼ a�1, the

coefficients appearing in Eqs. (39)–(41) are

ZMF
w ¼ 1þ �MF

4�

4

3
� 5:250; (48)

ZMF
A ¼ 1þ �MF

4�

4

3
�
��1:584 APE
0:077 HYP

(49)

cMF
A ¼ �MF

4�

4

3
�
�
3:480 APE
6:412 HYP

(50)

ZMF
L ¼ 1þ �MF

4�
�
��4:462 APE
1:076 HYP

(51)

where the values are given for both the APE and HYP link-
smearings used in this work. These results can be com-
bined to determine the overall multiplicative renormaliza-
tion factors denoted by Z in Eqs. (39)–(41) which we
present for completeness in Table II.

C. Complete matching coefficients

In order to match the lattice HQET operators at scale
� ¼ a�1 directly onto the desired continuum QCD opera-
tors at �b ¼ mb, we must combine the coefficients ob-
tained in the two steps. We define the complete lattice
HQET-to-continuum QCD matching coefficients as

Z�ða�1Þ ¼ CAða�1Þ 	ZMF
A ða�1; a�1Þ; (52)

ZVAð�b; a
�1Þ ¼ Z1ð�b; a

�1Þ 	ZMF
L ða�1; a�1Þ; (53)

ZSPð�b; a
�1Þ ¼ Z2ð�b; a

�1Þ 	ZMF
S ða�1; a�1Þ; (54)

and present their values for our choice of simulation pa-
rameters in Table III. These will be used in the following
section to extract the physical decay constants and�B ¼ 2
four-fermion matrix elements via the relations

AQCD
0 ¼ Z�ða�1ÞðAlat

0 ða�1Þ þ cMF
A aAlat

@;0ða�1ÞÞ; (55)

OQCD
L ð�bÞ ¼ ZVAð�b; a

�1ÞOlat
L ða�1Þ

þ ZSPð�b; a
�1ÞOlat

S ða�1Þ: (56)

TABLE II. Lattice-to-continuum operator matching factors in
the static effective theory for the choice of coupling �MF

s .

Smearing ZMF
A cMF

A ZMF
L ZMF

S

APE 0.9090 0.0653 0.8225 0.9642

HYP 0.9382 0.1204 0.8909 0.9642

TABLE III. Perturbative matching factors for the decay con-
stants and mixing matrix elements evaluated for APE smeared
and HYP smeared static-quark gauge links for the choices of the
strong coupling constant �MF

s .

Smearing Z� ZVA ZSP

APE 0.9507 0.7485 �0:1448
HYP 0.9813 0.8108 �0:1448
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In practice, the renormalization factor Z� cancels in the
ratio fBs

=fBd
, and only the quantity ZSP=ZVA enters the

ratio �. Therefore, we do not need Z� (or ZVA and ZSP by
themselves) for our current analysis of the SU(3)-breaking
ratios. We present all three matching coefficients for com-
pleteness, however, because they will be necessary for
calculating the individual decay constants and four-
fermion operator-mixing matrix elements in future work.

IV. LATTICE CALCULATION OF SU(3) BREAKING
RATIOS

In this section we calculate the ratios of the B-meson
decay constants and mixing matrix elements at unphysical
values of the light and strange quark masses. On each sea-
quark ensemble, we compute the necessary 2-point and 3-
point correlation functions at two values of the valence
quark mass: the unitary pointmx ¼ ml and a point tuned to
the physical strange quark mass ams ¼ 0:0359 [19]. We
also use two different link smearings (APE and HYP) to
improve the static heavy quark action in order to help
estimate discretization effects. Table IV presents the pa-
rameters chosen for our matrix element computations. In
the first subsection we calculate the ratio of B-meson decay
constants and in the second we calculate the ratio of �B ¼
2 mixing matrix elements.

A. Calculation of the ratio of B-meson decay constants

In QCD the decay constant fBq
for the Bq-meson is

defined by the vacuum-to-meson matrix element

h0j �b���5qjBqðpÞi ¼ ifBq
p�: (57)

Because the decay constant fBq
behaves as 1=

ffiffiffiffiffiffiffiffiffi
mBq

p
in the

limit of large Bq-meson mass, we calculate the combined

decay amplitude

�Bq
¼ fBq

ffiffiffiffiffiffiffiffiffi
mBq

p
; (58)

where mBq
is the physical mass of the Bq-meson. We

determine the quantity�Bq
by computing two-point corre-

lation functions of the static-light axial current

Að�Þstat
� ¼ �hð�Þ���5q.

1

In practice, we use Coulomb gauge-fixed wall sources
for the b-quark to calculate the local-wall (LW) and wall-
wall (WW) correlation functions

C LWðt; t0Þ ¼ a3
X
~x2V

h0jAL
0 ð ~x; tÞAW

0 ðt0Þyj0i; (59)

CWWðt; t0Þ ¼ h0jAW
0 ðtÞAW

0 ðt0Þyj0i; (60)

with the local (L) and wall-source (W) axial currents given
by

AL
0 ð ~x; tÞ ¼ �hðþÞð ~x; tÞ�0�5qð ~x; tÞ þ �hð�Þð ~x; tÞ�0�5qð ~x; tÞ;

(61)

AW
0 ðtÞ ¼ a6

X
~y2V

X
~z2V

ð �hðþÞð ~y; tÞ�0�5qð~z; tÞ

þ �hð�Þð ~y; tÞ�0�5qð~z; tÞÞ: (62)

From the ratio of CLW to CWW we obtain the combined
decay amplitude

�lat
Bq

¼ lim
t
t0

ffiffiffiffiffiffi
2

L3

s
jCLWðt; t0Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CWWðt; t0Þe�m�
Bq
ðt�t0Þ

q ; (63)

where we determine the unphysical B-meson rest massm�
Bq

via

am�
Bq

¼ lim
t
t0

log

�
CLWðt; t0Þ

CLWðtþ a; t0Þ
�
: (64)

A derivation of Eq. (63) is presented in Appendix C.
Finally we compute the renormalized decay amplitude

�ren
Bq

¼ Z�½1þ cMF
A sinhðam�

Bq
Þ��lat

Bq
; (65)

using the perturbative matching factors given in Tables II
and III. The contribution proportional to cMF

A improves the
heavy-light axial current operator throughOð�spaÞ, where
the sinh arises from the symmetric derivative in the OðpaÞ
operator. The overall multiplicative factor Z� is needed to
obtain the combined decay amplitude in the continuum.
The computation of the statistical errors throughout this

paper follows the prescription for numerically computing
the autocorrelation function as proposed in Ref. [61]. The
autocorrelation function quantifies the degree of correla-
tion between two measurements made at different trajec-
tories, and depends upon the observable of interest. By
summing the autocorrelation function over the separation
between measurements, one obtains the integrated auto-
correlation time. We obtain a better estimate of the true
statistical error by inflating the variance of the measured
Monte Carlo data using the integrated autocorrelation time.

TABLE IV. Parameters used in our simulations. The columns
from left to right are the light and (approximately) strange sea
quark masses, the light and strange valence quark masses, and
the number of configurations analyzed for both of our setups
using APE or HYP link smearing in the static quark gauge links.

No. of configs.

aml=amh amx APE HYP

0:01=0:04 0.01, 0.0359 298 300

0:02=0:04 0.02, 0.0359 298 300

0:03=0:04 0.03, 0.0359 298 300

1For the case of static b-quarks, we can relate the B-meson
interpolating operator �hð�Þ�5q to the axial current operator in the
temporal direction using the relation hð�ÞðxÞ�0 ¼ �hð�ÞðxÞ, and
thereby express all correlation functions entirely in terms of the
axial current.
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In many instances we must compute the errors in a quantity
which itself depends on several lattice correlators; we refer
to this as a derived quantity and refer to the lattice corre-
lators as primary observables. When calculating the errors
in a derived quantity, we account for the correlations
between primary observables by using the functional de-
pendence of the derived quantity on the primary observ-
ables. As a cross check of the statistical error estimate, we
compared the results obtained with this approach with
those obtained using a single-elimination jackknife proce-
dure; we find that both the central values and statistical
errors are consistent between the two error estimation
methods.

For example, Fig. 1 shows the determinations ofm�
Bq

and

�ren
Bq

on the aml ¼ 0:02 ensemble for the APE (upper

plots) and HYP data sets (lower plots). The central value

and statistical error of each data point in Fig. 1 are com-
puted as functions of the primary observables CLW and
CWW. Then the value of the plateau and its error are
computed using a function which averages the values of
m�

Bq
(or �ren

Bq
) on time-slices 12, 13, 14, and 15 because we

do not observe excited-state contamination in this region.
In order to reduce the size of the statistical errors, we
average the correlators beginning at two time sources.
We achieve the averaging of our two sources by replacing
e.g. CLWðt; 0Þ with ½CLWðt; 0Þ þ CLWð20a� t; 20aÞ�=2 in
Eqs. (63)–(65). For the case of the HYP-smeared data,
these are located at t=a ¼ 0 and t=a ¼ 20, whereas for
the APE-smeared data the second source is located either at
t=a ¼ 20, 21, or 24.
Finally, we compute the ratio �ren

Bs
=�ren

Bl
on each en-

semble as a function of �ren
Bs

and �ren
Bl
, which themselves

FIG. 1 (color online). Determination of m�
Bq

(left) and �ren
Bq

(right) using the average of two time sources on the aml ¼ 0:02
ensemble. The upper plots show the APE data, while the lower plots show the HYP-smeared data. For each panel, the shaded band
corresponds to the plateau extracted from averaging the data over four consecutive time slices. Errors shown are statistical only.
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depend on the corresponding primary observables CLW and
CWW; this is shown in Fig. 2. We obtain the plateau for the
ratio from time slices 12–15, where we do not observe
excited-state contamination in the numerator �ren

Bs
or the

denominator �ren
Bl
. Table V presents the values of

�ren
Bs
=�ren

Bl
on the three sea-quark ensembles. Despite the

use of two time sources, the statistical errors in the ratio are
as large as 7.5% in case of the data using APE smearing.

B. Calculation of the ratio of B-meson mixing matrix
elements

The Bq � �Bq mixing parameter in continuum QCD is

defined in terms of the matrix element of the �B ¼ 2 four-

fermion operator via Eqs. (2) and (3). Because the matrix
elementMq behaves asmBq

in the limit of large Bq-meson

mass, we calculate the desired matrix element divided by

FIG. 2 (color online). Determination of�ren
Bs
=�ren

Bl
using the average of two time sources on the three sea quark ensembles. The blue

(triangle) points denote the APE data, while the red (square) points denote the HYP-smeared data. The shaded (hatched) band
corresponds to the plateau extracted from averaging the APE (HYP) data over four consecutive time slices. Errors shown are statistical
only.

TABLE V. The renormalized decay amplitude ratio �ren
Bs
=�ren

Bl

for both the APE- and HYP-smeared data sets. Errors shown are
statistical only.

�ren
Bs
=�ren

Bl

aml=amh APE HYP

0:01=0:04 1.07(8) 1.10(4)

0:02=0:04 1.06(5) 1.02(3)

0:03=0:04 0.97(4) 0.99(2)
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the Bq-meson mass:

MBq
¼ Mq=mBq

: (66)

For the determination of MBq
, we use different spatial

sources for the two choices of link smearing: in the case of
APE-smeared links we use box sources of size 83, while for
HYP smearing we use wall sources. The local-wall two-
point functions are already defined in Eq. (59), while the
box-box two-point functions are given by

C BBðt; t0Þ ¼ h0jAB
0 ðtÞAB

0 ðt0Þyj0i; (67)

with

AB
0 ðtÞ ¼ a6

X
~x; ~y2�V

ð �hðþÞð ~x; tÞ�0�5qð ~y; tÞ

þ �hð�Þð ~x; tÞ�0�5qð ~y; tÞÞ; (68)

where the superscript B denotes a box source in the region
�V. We also compute the three-point correlation functions

C I
Oi
ðtf; t; t0Þ ¼ a3

X
~x2V

h0jAðþÞI
0 ðtfÞyOlat

i ð ~x; tÞAð�ÞI
0 ðt0Þyj0i;

(69)

where Að�ÞI
0 ðtÞ is either the box-source axial current

Að�ÞB
0 ðtÞ or the wall-source axial current Að�ÞW

0 ðtÞ. The

operator Oi can be either the sum of the squared vector
plus squared axial vector current or the squared scalar plus
squared pseudoscalar current, respectively,2

Olat
VVþAA ¼ 2ð �hðþÞ��qÞð �hð�Þ��qÞ þ 2ð �hðþÞ���5qÞ

� ð �hð�Þ���5qÞ; (70)

Olat
SSþPP ¼ 2ð �hðþÞqÞð �hð�ÞqÞ þ 2ð �hðþÞ�5qÞð �hð�Þ�5qÞ: (71)

Although the SSþ PP operator does not contribute to
Bq � �Bq mixing in continuum QCD, its counterpart in

HQET is introduced through the QCD ! HQET matching
as shown in Eq. (27).
Because of the different spatial wave functions used for

the APE- and HYP-smeared data, we extract the Bq � �Bq

matrix element in different ways for the two data sets. With
the APE-smeared box source data, we can compute the
matrix element directly from the ratio of correlators [57]

MOi
¼ lim

tf
t
t0
2
CB
Oi
ðtf; t; t0Þem

�
Bq
ðtf�t0Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBBðt; tfÞCBBðt; t0Þ
q : (72)

For the HYP-smeared wall-source data, however, we must
first extract the bag parameter BBq

BOi
¼ lim

tf
t
t0

3

8
L3

CW
Oi
ðtf; t; t0Þ

CLWðt; tfÞCLWðt; t0Þ ; (73)

then we obtain the matrix element via

MOi
¼ 8

3
BOi

ð�ren
Bq
Þ2: (74)

The derivation Eq. (72) is more complex than that of either
Eq. (63) or Eq. (73) because the box sources in the ampli-
tudes appearing in both the numerator and denominator are
not translationally invariant and will create B-meson states
carrying a variety of spatial momenta. As explained in

FIG. 3 (color online). Determination of Mren
Bs

and Mren
Bl

on the aml ¼ 0:02 ensemble. The left-hand plot shows the APE data, while
the right-hand plot shows the HYP-smeared data. For each panel, the shaded band corresponds to the plateau extracted from averaging
the data over four consecutive time slices. Errors shown are statistical only.

2We neglect the odd-parity parts of Olat
L and Olat

S , Eqs. (44) and
(45), when computing the lattice three-point correlation func-
tions because only the parity-conserving components contribute
to the desired matrix element.
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greater detail in Appendix C, these states are degenerate
with the lowest energy B-meson state and so cannot be
suppressed by simply going to large Euclidean time sepa-
rations. Instead, Eq. (72) is derived in Appendix C using
the local conservation of heavy-quark number, a property
special to the static approximation. Finally, for both the
APE and HYP-smeared data, we compute the renormalized
matrix element through Oð�sÞ,

Mren
Bq

¼ ZVAM
lat
VVþAA þ ZSPM

lat
SSþPP; (75)

using the perturbative matching factors given in Table III.
We compute the ratio of mixing matrix elements in the

same manner as we compute the ratio of decay constants in
the previous subsection. For example, Fig. 3 shows the

determination of the numerator Mren
Bs

and the denominator

Mren
Bl

on the aml ¼ 0:02 ensemble for the APE (left-hand

plot) and HYP data sets (right-hand plot). The source

TABLE VI. The renormalized SU(3)-breaking ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mren

Bs
=Mren

Bl

q
for both the APE and HYP-smeared data sets.

Errors shown are statistical only. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mren

Bs
=Mren

Bl

q
aml=amh APE HYP

0:01=0:04 1.050(78) 1.110(49)

0:02=0:04 1.038(40) 1.006(38)

0:03=0:04 0.992(27) 0.987(17)

FIG. 4 (color online). Determination of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mren

Bs
=Mren

Bl

q
using the average of two time sources on the three sea quark ensembles. The

blue (triangle) points denote the APE data, while the red (square) points denote the HYP-smeared data. The shaded (hatched) band
corresponds to the plateau extracted from averaging the APE (HYP) data over four consecutive time slices. Errors shown are statistical
only.
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location for the three-point correlators is at time slice 0 and
the sink is at time slice 20. We compute the values of the
plateaux using time-slices 8–12 because it is at the mid-
point between the B0

q and �B0
q mesons and our result is

constant within errors over this region. Although we would
prefer to use a region farther separated from the two
sources as we have done when determining �Bl

and �Bs
,

this is not possible given the 20 time unit separation
between our two sources. Given, however, that there is
no observable excited-state contamination in the three-
point correlators, we expect that any resulting systematic
uncertainty is negligible as compared to our large statisti-
cal and other errors. We will, of course, need to use a larger
source-sink separation in our future work when the statis-
tical errors are reduced. Table VI shows the results for the

SU(3)-breaking ratios
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mren

Bs
=Mren

Bl

q
on the three sea quark

ensembles; the corresponding plateau plots are shown in
Fig. 4.

V. CHIRAL EXTRAPOLATION

We extrapolate our results for the ratio of the decay
constants and for the ratio of mixing matrix elements to
the physical point using a phenomenologically-motivated
function based on next-to-leading order partially quenched
SU(2) heavy-light meson chiral perturbation theory. In
SU(2) �PT, the pesudoscalar mesons containing strange
quarks (i.e. kaons and �’s) are integrated out of the theory.
Thus SU(2) �PT does not require an expansion in the
strange quark mass about the chiral limit, and the SU(2)
�PT expansion parameter in isospin-symmetric simula-
tions is ml=��, where ml is the light up-down sea quark

mass and �� is a typical hadronic scale. This improves the

convergence of the chiral expansion relative to SU(3) �PT,
as long as ml is sufficiently light that corrections of
Oðml=msÞ are small. Studies by the RBC and UKQCD
Collaborations, the PACS-CS Collaboration, and the MILC
Collaboration confirm this picture and show that, for light
pseudoscalar meson masses and decay constants, SU(2)
�PT within its applicable region converges more quickly
than SU(3) �PT [34–37]. For the case of SU(3)-breaking
ratios such as fBs

=fBd
and �, however, SU(3) HM�PT has

the advantage that the chiral extrapolation formulas man-
ifestly preserve the fact that the ratios must be equal to one
in the limit ml ! ms. Within the framework of SU(2)
HM�PT, this fact must be introduced in a more ad hoc
manner such as by matching the SU(2)HM�PT expression
at small quark masses onto an analytic form at large quark
masses that becomes one when ml ! ms. We therefore
plan to perform a study comparing the use of SU(2) versus
SU(3) HM�PT for the extrapolation of B-meson decay
constants and mixing matrix elements to the physical quark
masses in a future analysis when we have lighter data with
smaller statistical errors in order to see which procedure
leads to a more accurate determination of these quantities.

Although we know that HM�PT is the correct low-
energy effective description of the lattice theory when
the simulated quark masses are sufficiently light, we do
not know a priori at what mass the range of validity of
HM�PT ends. Studies of the light pseudoscalar meson
sector on the RBC/UKQCD domain-wall ensembles
show that NLO �PT does not describe the numerical
data for the masses and decay constants when the pion
masses are above about 420 MeV [34]. Since the lightest
pion mass in our analysis is approximately 430 MeV, this
suggests that most of our data may be too heavy for NLO
HM�PT to apply and that the inclusion of NNLO terms
may be necessary. Unfortunately, because we only have
three data points for each of the SU(3)-breaking ratios, we
do not have enough data points to reliably constrain the
values of the higher-order terms (there are two free pa-
rameters at NNLO in the SU(3) HM�PT expressions, and
even more at NNLO in SU(2) HM�PT). When the masses
of the light pseudoscalar mesons in the chiral logarithms
are sufficiently heavy, however, the logarithms can be well
approximated by polynomials. We, therefore, choose to fit
the data to a linear fit function that is constrained to be
equal to one in the SU(3) limit (ml ! ms) and then match
this result onto the NLO SU(2) HM�PT expression at the
location of our lightest data point (aml ¼ 0:01), which we
believe is sufficiently light that NLO SU(2) HM�PT
should apply. This phenomenologically-motivated match-
ing procedure has been used to extrapolate heavy lattice
data by several groups [62–64], but it should not, of
course, be used once the pion masses are within the chiral
regime.
Although the behavior of the data is unlikely to be

strictly linear even in the heavy-mass region, the statistical
errors in our data points are sufficiently large (as great as
�8%) that we can successfully perform a linear fit and
obtain a good �2=dof without the addition of higher-order
polynomial terms.3 Furthermore, we cannot reliably deter-
mine the size of a quadratic term if we include one in the
fit. Given our poor statistical errors, however, we cannot
exclude the possibility of other fit functions, and we use
alternate fit forms as one way to estimate the chiral ex-
trapolation error. We also vary the location of the SU(2)
HM�PT matching point and the parameters that enter the
SU(2) HM�PT expressions, and consider matching onto
SU(3) HM�PT. All of these variations are discussed in
greater detail when we estimate the systematic uncertainty
due to the chiral extrapolation in Sec. VIA.
In the case of the decay constants, we extrapolate the

ratio

3Because the data points for the SU(3)-breaking ratios in
Tables V and VI were generated on three different sea-quark
ensembles, they are statistically independent; thus the uncorre-
lated �2=dof correctly reflects the goodness-of-fit.
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�ren
Bs

�ren
Bl

¼
ffiffiffiffiffiffiffiffi
mBs

mBl

s
fBs

fBl

; (76)

while for the mixing matrix elements we considerffiffiffiffiffiffiffiffiffiffi
Mren

Bs

Mren
Bl

vuut ¼
ffiffiffiffiffiffiffiffi
mBs

mBl

s �
fBs

ffiffiffiffiffiffiffiffi
BBs

p
fBl

ffiffiffiffiffiffiffi
BBl

p �
: (77)

From here on, we drop the superscript ‘‘ren’’ for simplicity
because we only refer to the renormalized quantities. The
expressions for the heavy-light meson decay constant and
mixing matrix element to NLO in the light-quark expan-
sion, but zeroth order in 1=mb, are given in Appendix D.
For completeness, we present formulas for both SU(3) and
SU(2) HM�PT. The SU(3) fit functions depend on the
valence and sea light-quark masses ðms;ml;mhÞ and the
lattice spacing a. The SU(2) functions are obtained from
the SU(3) expressions by taking the limit ðml

ms
; ml

mh
Þ � 1.

Thus they only apply in the region in which the value of
the average up-down quark mass is much smaller than the
valence and sea strange quark masses. Furthermore, be-
cause the strange quark has been integrated out of the
SU(2) theory, the SU(2) fit functions only depend upon
the light-quark mass ml and the lattice spacing a.
Therefore, the expressions for the SU(3)-breaking ratios
at NLO in SU(2) HM�PT are particularly simple:

�Bs

�Bl

¼ R�

�
1þ 1þ 3g2B�B�

ð4�fÞ2
�
3

4

�
m2

L ln

�
m2

L

�2
�

�

þ Cl

2Bml

ð4�fÞ2
�
; (78)

ffiffiffiffiffiffiffiffiffi
MBs

MBl

s
¼ RM

�
1þ 2þ 3g2B�B�

ð4�fÞ2
�
1

2

�
m2

L ln

�
m2

L

�2
�

�

þDl

Bml

ð4�fÞ2
�
; (79)

where m2
L ¼ 2Bðml þmresÞ is the tree-level mass-squared

of a pseudoscalar meson composed of two quarks with
mass ml, B, and f are the leading-order low-energy con-
stants of �PT, and the quark masses in the analytic terms
are expressed in terms of dimensionless ratios to make the
coefficients Cl and Dl of Oð1Þ. These functional forms are
derived from Eqs. (D16)–(D20) by taking the ratio of the
expressions for the valence quark y ¼ s over the expres-
sions for x ¼ l. Because we are working at a single lattice
spacing, the analytic terms proportional to a2 are absorbed
into the values of the leading-order coefficients R� and
RM. Note that in the limit ml ! ms the SU(3)-breaking
ratios are not constrained to unity, as would be the case in
SU(3) HM�PT. (In fact, the point ml ¼ ms does not even
lie within the range of validity of SU(2)HM�PT and hence
of Eqs. (78) and (79).) This is because, once the strange
quark has been integrated out of the SU(2) theory, the

expressions no longer contain explicit strange-quark mass
dependence. All of the effects of the strange quark are
encoded in the values of the low-energy constants, which
differ in the SU(2) and SU(3) theories.
Although the coefficients of the chiral logarithms de-

pend on the low-energy constants gB�B�, f, and B, once
these are fixed as we now describe, there are only two free
parameters each in Eqs. (78) and (79): the overall normal-
ization and the coefficient of the analytic term proportional
to ml. This allows us to smoothly match the SU(2) ex-
pressions onto the linear fit of the heavy data without
ambiguity. In the chiral extrapolation we obtain our central
value using gB�B� ¼ 0:516 for the B�-B-� coupling, which
comes from a two-flavor lattice determination in the static
heavy quark limit by Ohki, Matsufuru, and Onogi [65]. We
then vary the value of gB�B� over a reasonable spread of
values based on both lattice calculations and phenomeno-
logical fits to experimental data in order to estimate the
systematic uncertainty, as described in further detail in
Sec. VI B. Moreover, we set the leading-order pseudoscalar
meson decay constant f to the experimental value of f� ¼
130:4� 0:04� 0:2 MeV [6]. This is consistent to the
order in �PT at which we are working since it only
modifies higher-order NNLO terms. Studies by both the
MILC and JLQCD Collaborations suggest that the use of a
physical parameter in the chiral coupling (f ! f�) leads to
improved convergence of �PT [66,67]. The scale in the
chiral logarithms is fixed by setting �� ¼ 1 GeV. For the

low-energy constant B we use the value aB ¼ 2:414ð61Þ
obtained from a NLO fit of the pseudoscalar meson masses
[34]. Finally, whenever the residual quark mass appears,
we use its value in the chiral limit amres ¼ 0:003 15.
The results of the chiral extrapolation are shown in

Figs. 5 and 6. The blue triangles (red squares) show the
data obtained using APE (HYP) link smearing and are
plotted versus the light sea quark mass. We indicate the
location of the physical strange quark massms by the black
dot. The dashed vertical line marks the physical average
u-d quark mass, which is the point at which we extract the

physical values for �Bs
=�Bd

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBd

q
�. The agree-

ment between the two smearings is good. For the case of
the APE data, the �2=dof for the fit of both SU(3)-breaking
ratios is below one, indicating that the data are well-
described by the linear fit function. For the HYP data, the

�2=dof’s are 1.8 for �Bs
=�Bd

and 2.0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBd

q
�,

respectively. These still correspond to confidence levels of
greater than 10%, however, and are therefore consistent
with the data. The error bands in Figs. 5 and 6 are fairly
broad and hence the statistical uncertainty at the physical
point is large, �4:1%–7:6% for �Bs

=�Bd
and

�4:7%–6:3% for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBd

q
�. This is due to the large

statistical errors in our data points, as well as the fact
that our lightest mass is still quite heavy, which forces us
to extrapolate over a large mass range.
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We should emphasize that the chiral extrapolation pro-
cedure used here (the combination of a linear fit matched
onto the predictions of NLO SU(2)HM�PT) is appropriate
only for the present case when the available light quark
masses are quite heavy. In future calculations with more
physical light quark masses we will perform a fit directly to
the NLO SU(2) HM�PT formulas in Eqs. (78) and (79).
We will also examine a possible NLO SU(3) HM�PT fit in
order to exploit the known, unit values of these ratios at the
SU(3) symmetric point. Of course, high priority will be
given to calculations performed with physical light quark
masses so that such difficulties can be avoided. We sum-
marize the results of our current preferred chiral extrapo-
lation in Table VII and discuss the estimation of our
systematic errors in the following section.

VI. ESTIMATION OF SYSTEMATIC ERRORS

In this section we estimate the systematic uncertainties
in the SU(3)-breaking ratios fBs

=fBd
and �. For clarity, we

present each source of error in a separate subsection. The
total error budgets for both quantities are given at the end
of the section in Table VIII.

A. Chiral extrapolation fit ansatz

As described in the previous section, we extrapolate our
data to the physical quark masses using a linear fit matched
onto NLO SU(2) HM�PT at the value of our lightest data
point. The SU(2) expressions are derived using the sym-
metries of the lattice theory; therefore, they contain the

TABLE VII. Results for �Bs
=�Bd

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBd

q
	 � at the

physical point. Only statistical errors are shown.

Link smearing

APE HYP

�Bs
=�Bd

1.165(88) 1.153(47)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBd

q
	 � 1.142(72) 1.144(54)

FIG. 6 (color online). Chiral extrapolation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MBl

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBs
=mBl

q
ðfBs

ffiffiffiffiffiffiffiffi
BBs

p
=fBl

ffiffiffiffiffiffiffi
BBl

p Þ. The blue (triangle) points denote
the APE data, while the red (square) points denote the HYP-
smeared data. The color of the shaded (hatched) error band
corresponds to those of the APE (HYP) data points. The dashed
vertical line denotes the physical average u-d quark mass and the
black dot denotes the physical strange quark mass, at which the
SU(3)-breaking ratio must be one. The SU(2) HM�PT coeffi-
cients obtained from the fit are RM ¼ 1:18ð8Þ and Dl ¼ 2:6ð1:1Þ
in the case of APE smearing and RM ¼ 1:18ð6Þ and Dl ¼ 2:6ð8Þ
in the case of HYP smearing. Errors shown are statistical only.

FIG. 5 (color online). Chiral extrapolation of �Bs
=�Bl

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBl

q
	 fBs

=fBl
. The blue (triangle) points denote the APE

data, while the red (square) points denote the HYP-smeared data.
The color of the shaded (hatched) error band corresponds to
those of the APE (HYP) data points. The dashed vertical line
denotes the physical average u-d quark mass and the black dot
denotes the physical strange quark mass, at which the SU(3)-
breaking ratio must be one. The SU(2) HM�PT coefficients
obtained from the fit are R� ¼ 1:21ð9Þ and Cl ¼ 1:1ð6Þ in the
case of APE smearing and R� ¼ 1:19ð5Þ and Cl ¼ 1:2ð3Þ in the
case of HYP smearing. Errors shown are statistical only.

TABLE VIII. Total error budget for the SU(3)-breaking ratios
fBs

=fBd
and �. Each source of uncertainty is discussed in

Sec. VI, and is rounded to the nearest percentage.

fBs
=fBd

�
Uncertainty APE HYP APE HYP

Statistics 8% 4% 6% 5%

Chiral extrapolation 7% 7% 7% 7%

Uncertainty in gB�B� 3% 3% 2% 2%

Discretization error 3% 3% 4% 4%

Renormalization factors 0% 0% 2% 2%

Scale and quark mass uncertainties 1% 1% 1% 1%

Finite volume error 1% 1% 1% 1%

1=mb corrections 2% 2% 2% 2%

Total systematics 9% 9% 9% 9%
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correct dependence of the B-meson decay constants and
mixing matrix elements on the quark mass and lattice
spacing through NLO when the quark masses are suffi-
ciently light. Given the large light-quark masses used in
our simulations; however, it may be that the SU(2) chiral
logarithms do not become important until the pion mass is
even lighter than the range of our data. Thus we vary the
location of the matching point as one way to estimate the
systematic uncertainty due to the chiral extrapolation. In
addition, because we use NLO SU(2) HM�PT to obtain
our central value, we must estimate the systematic uncer-
tainty due to the truncation of higher-orders in HM�PT.
We do this in several ways: (i) by explicitly adding higher-
order terms to the linear plus SU(2) HM�PT fit function,
(ii) by matching the linear fit onto the NLO SU(3) HM�PT
expressions, and (iii) by varying the value of the low-
energy constant f in the coefficient of the NLO chiral
logarithms.

Because we do not know a priori at what mass the SU(2)
chiral logarithms become important, we vary the point at
which we match the linear fit onto NLO SU(2) HM�PT in
order to estimate the systematic uncertainty due to the
choice of matching point. At the matching point used in
the preferred fit, the ratio of the light up-down quark mass
to the strange valence-quark mass is aml=ams � 0:28 and
to the strange sea quark mass is aml=amh ¼ 0:25. Since
both of these quantities are small, we expect the strange
quark can be integrated out of the chiral effective theory
and that SU(2) HM�PT is applicable in this region. As the
light-quark mass decreases, SU(2) becomes an even better
approximation. At light-quark masses above this point,
however, the ratios aml=ams and aml=amh are no longer
small expansion parameters, and SU(2) will eventually

cease to apply. Therefore, when we estimate the systematic
error due to the choice of matching point, we only consider
extrapolations in which the matching point is closer to the
chiral limit than in the preferred fit. The limiting case is
where the matching point is at the chiral limit, which
corresponds to a purely linear extrapolation. Although
the choice of a linear fit is not based on effective field
theory, it cannot be ruled out by the data. We therefore take
the difference between the extrapolated values for fBs

=fBd

and � obtained with the preferred fit and with a purely
linear fit to estimate the systematic error due to the choice
of matching point; this leads to an error in fBs

=fBd
of 6.6%

for both the APE and HYP data and in � of 6.8% (6.9%) for
the APE (HYP) data. We compare the results of the pre-
ferred fit with those of the purely linear extrapolation in

Fig. 7 for �Bs
=�Bl

and in Fig. 8 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBl

q
�. Com-

parison with the linear extrapolation leads to a conservative
systematic error estimate since we know that, when the
pion mass is sufficiently light, the chiral logarithms will
become important and the extrapolation function will be-
gin to curve upward. However, the linear fit provides a
clear lower-bound on the possible extrapolated value.
In order to estimate the error due to the omission of

higher-order terms in the chiral expansion, we compare the
result of the linear plus NLO SU(2) HM�PT fit to a fit
supplemented by NNLO analytic terms. Once the valence
and sea strange quarks have been integrated out of the
chiral effective theory, the SU(2) HM�PT expressions
can only depend upon the light up-down quark mass ml

and the lattice spacing a. Thus the only possible NNLO
analytic terms are those proportional to m2

l , mla
2, and a4.

Because we are working at a single lattice spacing, the

FIG. 7 (color online). Chiral extrapolation of �Bs
=�Bl

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBl

q
	 fBs

=fBl
using a linear fit matched onto NLO SU(2) HM�PT

at the lightest data point (solid band) and a linear extrapolation all the way to the chiral limit (hatched band). Errors shown are
statistical only. The left plot shows the comparison for the APE data, while the right plot shows the same comparison for they HYP-
smeared data.
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contribution proportional to a4 is indistinguishable from
the LO normalization factors R� and RM in Eqs. (78) and
(79) and the contribution proportional to mla

2 is indistin-
guishable from the NLO terms Clml and Dlml. Thus there
is only one additional free parameter at NNLO. In practice,
we implement the ‘‘NNLO fit’’ by performing a quadratic
fit in ml to our data and then matching to the NLO SU(2)
HM�PT expressions supplemented by the NNLO analytic
term proportional to m2

l at the value of our lightest data

point. When we include the term quadratic in ml, however,
the extrapolated values for fBs

=fBd
and � have signifi-

cantly larger statistical errors (about 20%–40%) than those
obtained with the preferred fit (about 4–8%). Therefore we
cannot draw any meaningful conclusion about the change
in the central values of fBs

=fBd
and �, since the outcome of

the NNLO extrapolation is consistent with the NLO ex-
trapolation within the large statistical errors. This increase
in statistical errors is to be expected since we have intro-
duced an extra free parameter, and it is difficult to constrain
two parameters with only three data points. Thus we do not
use the ‘‘NNLO fit’’ as a way to estimate the chiral ex-
trapolation error in this work, but leave it as a way to
estimate the uncertainty due to the omission of higher-
order terms in future analyses when we have more data
points and smaller statistical errors.

We can also estimate the systematic uncertainty in the
chiral extrapolation by comparing the values of fBs

=fBd

and � obtained by matching onto SU(2) HM�PT with
those obtained by matching onto SU(3) HM�PT.
Although the SU(2) chiral logarithms are a subset of the
SU(3) chiral logarithms, the SU(2) and SU(3) theories have
different series expansions and different degrees-of-
convergence within their ranges of applicability.

Therefore, the comparison with NLO SU(3) HM�PT pro-
vides another means of estimating the error due to the use
of NLO SU(2) HM�PT. The expressions for SU(3)-
breaking ratios at NLO in SU(3) HM�PT are, schemati-
cally,

�Bs

�Bl

¼ 1þ “chiral logs”þ 2B

ð4�fÞ2 ~cvalðms �mlÞ; (80)

ffiffiffiffiffiffiffiffiffi
MBs

MBl

s
¼ 1þ “chiral logs”þ B

ð4�fÞ2
~dvalðms �mlÞ;

(81)

where ‘‘chiral logs’’ indicate nonanalytic functions of the
pseudo-Goldstone meson masses, e.g. m2

L logðm2
L=�

2
�Þ.

These are derived from Eqs. (D2) and (D3) by taking the
ratio of the expressions for the valence quark x ¼ s over
the expressions for x ¼ l. Because the strange quark is
treated in the same manner as the up and down quarks in
the SU(3) chiral effective theory, the low-energy constants
are the same in the numerator and denominator. Thus
the overall normalizations cancel in the expressions in
Eqs. (80) and (81) and the ratios are constrained to unity
in the limit ml ! ms. Therefore, the expressions for the
SU(3)-breaking ratios have one free parameter each, in-
stead of two as in the SU(2) HM�PT case. This means that
the SU(3) HM�PT expressions cannot be matched
smoothly onto the linear fit of the heavy data. We choose
to make the value of the extrapolation function continuous,
while leaving a discontinuity in the slope at the matching
point. The difference between the linear plus NLO SU(2)
HM�PT fit and the linear plus NLO SU(3) HM�PT fit

FIG. 8 (color online). Chiral extrapolation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBs

=MBl

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBs

=mBl

q
ðfBs

ffiffiffiffiffiffiffiffi
BBs

p
=fBl

ffiffiffiffiffiffiffi
BBl

p Þ using a linear fit matched onto NLO
SU(2) HM�PT at the lightest data point (solid band) and a linear extrapolation all the way to the chiral limit (hatched band). Errors
shown are statistical only. The left plot shows the comparison for the APE data, while the right plot shows the same comparison for
they HYP-smeared data.
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leads to a difference in fBs
=fBd

of 2.3% (2.4%) for the APE

(HYP) data and in � of 2.6% (2.5%) for APE (HYP).
In the preferred linear plus NLO SU(2) HM�PT fit, we

set the leading-order pseudoscalar meson decay constant f
equal to the experimentally-measured value of f�. This
fixes the coefficient of the chiral logarithms and improves
the convergence of the chiral expansion [66,67]. At NLO in
�PT, however, it is equally consistent to use the pseudo-
scalar decay constant in the SU(2) chiral limit f0 or the
kaon decay constant fK because the different choices only
affect NNLO terms that are of higher order than we con-
sider. We therefore vary f between f0 ¼ 115 MeV [34]
and fK ¼ 155:5 MeV [6] in order to estimate the system-
atic uncertainty due to the omission of higher-order terms
in the chiral expansion. The use of f0 in the SU(2) chiral
limit, which the RBC and UKQCD Collaborations find to
be about 10% lower than f�, leads to a difference from the
central value for fBs

=fBd
of 2.1% (2.2%) for APE (HYP)

and from the central value for � of 2.3% for both APE and
HYP. The use of fK leads to similar changes in fBs

=fBd
of

2.1% and in � of 2.2%.
We take the largest of the uncertainties enumerated

above, which is obtained from the difference between the
preferred linear plus NLO SU(2)HM�PT fit and the purely
linear fit, for the final estimate of the chiral extrapolation
error; this leads to the values in the row labeled ‘‘chiral
extrapolation’’ in Table VIII.

B. Uncertainty due to gB�B�

Although we fix the value of the B�-B-� coupling (and
hence the coefficient of the one-loop chiral logarithms) in
the chiral extrapolation of our lattice data, gB�B� is in fact
poorly known from phenomenology. Hence we must vary
the value of gB�B� over a sensible range based on lattice
QCD calculations and phenomenology in order to estimate
the systematic errors in fBs

=fBd
and � due to the uncer-

tainty in the coefficient of the one-loop chiral logarithms.
There has only been one unquenched lattice QCD cal-

culation of the B�-B-� coupling with a complete associ-
ated error budget, which gives gB�B� ¼ 0:516ð5Þð50Þ,
where the first uncertainty is statistical and the second is
systematic [65]. Although this value was computed in the
static heavy-quark limit and neglects the effects of the
dynamical strange quark, we take this as our central value
because of its small statistical errors and full systematic
error budget, as well as because it lies in the middle of the
range of values presented in the literature. Another recent
determination of gB�B� ¼ 0:44� 0:03þ0:07

�0:00 in the static

limit in two-flavor lattice QCD, where the errors are due
to statistics and the chiral extrapolation uncertainty, is
consistent with this result [68]. QCD sum rules and the
relativistic quark model give a slightly lower value of
gB�B� � 0:38� 0:08 [69]. The value of the B�-B-� cou-
pling is expected to be close to the D�-D-� coupling
because of heavy-quark symmetry. We can therefore also

use lattice QCD calculations and phenomenological ex-
tractions of gD�D� as estimates. Bećirević and Haas re-
cently computed gD�D� ¼ 0:71ð7Þ in 2-flavor lattice QCD,
but this result is from only a single lattice spacing and
presents no estimate of the systematic error [70]. Stewart
computed the value of gD�D� in 1998 by fitting to experi-
mental data [71], and recently updated his result to include
the experimental measurement of theD� decay width [72].
His latest determination is gD�D� ¼ 0:51, but with no error
quoted [73]. The most sophisticated extraction of the
D�-D-� coupling was performed by Kamenik and Fajfer,
and gives gD�D� ¼ 0:66þ0:08

�0:06, where the uncertainty only

reflects the error due to counterterms [74]. Finally, we note
that the chiral-continuum extrapolations of B-meson quan-
tities by the Fermilab/MILC Collaboration [75] and the
HPQCD Collaboration [14] tend to prefer even smaller
values of the B�-B-� coupling than those in the literature.
Most of the results presented above do not have com-

plete error budgets, and are inconsistent within the quoted
errors, so for this work we take gB�B� ¼ 0:516� 0:2 to
account for the spread of values. We then vary gB�B� within
this range to determine how much it changes the central
values for fBs

=fBd
and �. This leads to an uncertainty in

fBs
=fBd

of 3.2% for both APE and HYP and in � of 2.1%.

C. Discretization errors

In this work we only analyze data at a single, relatively
coarse lattice spacing of a � 0:11 fm, so we estimate the
size of discretization errors with power counting. As a
consistency check of our estimation procedure, however,
we can compare the estimated errors in the individual
decay constants and matrix elements with the observed
differences in those quantities for the APE and HYP-
smeared data. This is because, aside from statistical errors,
the differences in the values obtained from the two smear-
ings are due to discretization effects and higher order
corrections to the renormalization factors. We find about
15%–20% differences in the decay constants and matrix
elements obtained from the APE and HYP-smeared data,
whereas we estimate by power counting that discretization
errors in fBq

should be about 15% and in Mq should be

about 20%. Thus our observations are consistent with the
scaling behavior expected from power counting. We can
also compare our power-counting estimates with the find-
ings of the ALPHA Collaboration, who performed a study
of fBs

at several lattice spacings using static b-quarks with

similar link smearings in the quenched approximation [76].
Although ALPHA observes a violation of Oða2Þ scaling
behavior at inverse lattice spacings below a�1 � 2:5 GeV,
the difference between the predicted value for fBs

at a �
0:11 fm given Oða2Þ scaling and the value of fBs

that they

obtain in the continuum limit using data within the scaling
region is only about 25%, which is again close to our
power-counting estimate. Thus we expect that naive
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power-counting should lead to a reasonable estimate of the
discretization error in the SU(3)-breaking ratios.

For the error estimates in this subsection, we evaluate
the strong coupling constant at the lattice scale,

�MS
s ð1=aÞ � 1=3. We choose �QCD ¼ 500 MeV because

the typical QCD scale that enters heavy-light quantities
tends to be larger than for light-light quantities, as indi-
cated by fits to moments of inclusive B-decays using the
heavy-quark expansion [77]. Fortunately, some of the finite
lattice-spacing effects cancel in the ratios fBs

=fBd
and �.

This can be seen by the fact that, although the APE and
HYP data differ by about 15%–20% for the individual
decay constants and matrix elements, they agree within
statistical errors for the ratios. In SU(3)-breaking quanti-
ties, errors must be proportional to the difference in quark
masses (ms �md). Dimensional analysis therefore sug-
gests that contributions to the total discretization error
are suppressed by the factor ð ~ms � ~mdÞ=�QCD � 1=5,
where we use ~ms and ~md to denote the renormalized quark

masses in theMS scheme [6] (as opposed to the bare lattice
quark masses) in this subsection and the next. The ob-
served size of SU(3)-breaking effects in the B-meson
decay constants (fBs

=fBd
� 1) and in the B-mixing matrix

elements (�� 1) are consistent with this expectation.
Discretization errors in fBs

=fBd
and � can arise from

both the actions and the operators. We estimate each source
of error separately, and add them in quadrature to obtain
the total discretization error.

None of the actions that we are using are
Oða2Þ-improved. Therefore, the leading discretization er-
rors from the domain-wall fermion action and Iwasaki
gauge action are of Oða2�2

QCDÞ. When combined with

the SU(3)-breaking suppression factor, this leads to discre-
tization errors in the ratios fBs

=fBd
and � of Oða2�2

QCD �
ð ~ms � ~mdÞ=�QCDÞ � 1:7%. The leading heavy-quark dis-

cretization errors from the static action are also of
Oða2�2

QCDÞ. Hence heavy-quark discretization errors also

contribute �1:7% to the total error in the ratios. Because
we improve the heavy-light axial current used to compute
the decay constant through Oð�sapÞ, the leading discreti-
zation errors from the heavy-light current are ofOð�samÞ,
Oð�2

sa�QCDÞ, and Oða2�2
QCDÞ.4 When combined with the

SU(3)-breaking suppression factor, this leads to discretiza-
tion errors in the ratio fBs

=fBd
ofOð�s � ðams � amdÞÞ �

1:2% plus Oð�2
sa�QCD � ð ~ms � ~mdÞ=�QCDÞ � 0:6% plus

Oða2�2
QCD � ð ~ms � ~mdÞ=�QCDÞ � 1:7%. Although we do

not improve the heavy-light four-fermion operator used to
compute the B-mixing matrix element, the operator

does not have any tree-level OðaÞ errors [38]. Thus the
leading discretization errors in the ratio � from the four-
fermion operator are of Oð�s � ðams � amdÞÞ � 1:2%
plus Oð�sa�QCD � ð ~ms � ~mdÞ=�QCDÞ � 1:9% plus

Oða2�2
QCD � ð ~ms � ~mdÞ=�QCDÞ � 1:7%.

Adding the contributions from light-quark and gluon
discretization errors, heavy-quark discretization errors,
and discretization errors in the heavy-light current or
four-fermion operator in quadrature, we estimate the error
in fBs

=fBd
to be �3:2% and the error in � to be �3:7%.

D. Heavy-light current and four-fermion operator
renormalization

We compute the renormalization factors needed to
match the lattice axial current and four-fermion operator
to the continuum using one-loop lattice perturbation the-
ory. This leaves a residual error due to the omission of
higher-order terms. Based on power counting, we estimate
the truncation error in the coefficients to be of Oð�2

sÞ,
which is the size of the first neglected term in the series.
As we noted earlier in Sec. III C, however, the matching
coefficient Z� cancels in the ratio of decay constants
fBs

=fBd
; thus its contribution to the error in fBs

=fBd
is

zero. Although such an exact cancellation does not occur
for the ratio of mixing matrix elements �, the error in � due
to the uncertainty in the ratio of matching coefficients
ZSP=ZVA is suppressed by the SU(3)-breaking factor ð ~ms �
~mdÞ=�QCD. This is because, in the SU(3) limit, the four-

fermion operator matrix elements would be equal in the
numerator and denominator, so the error in � from the
renormalization factor uncertainty would be zero. We
therefore expect the error in fBs

=fBd
to be 0% and the

error in � to be of Oð�2
s � ð ~ms � ~mdÞ=�QCDÞ � 2:2%.

This error will decrease with the inclusion of data at a finer
lattice spacing because the smaller coupling constant will
improve the convergence of the series.

E. Scale uncertainty

Because in this paper we only compute dimensionless
ratios, the uncertainty in the determination of the lattice
spacing only enters implicitly through the uncertainty in
the light-quark masses and in the renormalization factors.
We estimate the systematic error due to the truncation of
lattice perturbation theory in the previous subsection and
due to the light-quark mass determinations in the following
subsection.

F. Light- and strange-quark mass uncertainties

We obtain the physical decay constants and mixing
matrix elements by setting the light-quark masses to their
physical values in the linear plus SU(2) HM�PT chiral
extrapolation formulas, once the low-energy constants
have been determined from fits to numerical lattice data.
We use the bare-quark mass value determined from fits to

4There are also discretization errors from mixing with opera-
tors of other chiralities that are proportional to amres. These
effects, however, are expected to be sub-percent level in the
matrix elements [78], and, therefore, negligible in the SU(3)-
breaking ratios.
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the light pseudoscalar meson masses [34]:

amud þ amres ¼ 0:001 300ð85Þ; (82)

wheremud is the average of the up and down quark masses.
The quoted error includes both statistics and the systematic
uncertainties from the chiral extrapolation, finite-volume
effects, discretization effects, and the unphysical strange
sea quark mass. In order to estimate the systematic uncer-
tainty in the ratios fBs

=fBd
and �, we vary the bare light-

quark masses within their stated uncertainties. We then
take the maximal difference from the central value to be
the systematic error. From this method, we find that the
systematic error in fBs

=fBd
due to the uncertainty in the

light-quark mass determination is 0.2% for both smearings
and the systematic error in � is 0.2% regardless of the
smearing used for the heavy quark.

Because the strange-quark mass does not explicitly ap-
pear in the SU(2) HM�PT extrapolation formulas, we
cannot estimate the errors in fBs

=fBd
and � due to the

simulated valence and sea strange-quark masses with the
simple method used above for the light quarks. We must
instead address the errors due to the uncertainty in the
strange valence-quark mass (which is set to the physical
value of ms) separately from those due to the choice of
strange sea-quark mass (which is not tuned to the physical
ms).

We calculate the decay constants and mixing matrix
elements with the strange valence-quark mass tuned to
the physical value obtained from fits of the light pseudo-
scalar meson masses [19]:

ams þ amres ¼ 0:0390ð21Þ; (83)

where the error includes those due to statistics and to
uncertainties in the pseudoscalar meson masses, residual
mass, and lattice scale. Since the time at which our nu-
merical computation was performed, however, we have
improved the strange-quark mass determination using
data on the larger-volume 243 ensemble. This analysis
yields ams þ amres ¼ 0:0375ð17Þ [34], where the error
includes statistics and the systematic uncertainties from
the chiral extrapolation, finite-volume effects, discretiza-
tion effects, and the unphysical strange sea quark mass.
Fortunately, the two determinations are consistent within
their stated uncertainties and the small change in valence
strange-quark mass leads to a negligible difference in the
decay constants and mixing matrix elements. A linear
interpolation of �Bs

and MBs
from ams ¼ 0:0359 !

0:0343 leads to at most a percent-level change in these
quantities, which is too small to resolve within our large
statistical errors. We therefore conclude that it is sufficient
to forgo the interpolation to ams ¼ 0:0343 in our current
analysis.

Although the strange-quark mass is integrated out in
SU(2) HM�PT, the value of the strange valence-quark
mass enters the chiral extrapolation described in Sec. V

via the linear fit in the heavy mass region that is con-
strained to unity in the limit ml ! ms. Once the slope in
the linear region has been determined from fits to numeri-
cal lattice data, we estimate the errors in fBs

=fBd
and � due

to the uncertainty inms by fixing the slope to this value and
varying ms within its stated uncertainty �ms

given in

Eq. (83). This shifts the location of the SU(3) limit and
hence the linear portion of the extrapolation in the hori-
zontal direction by an amount��ms

; consequently it shifts

the location of the point at which we match onto SU(2)
HM�PT in the vertical direction by the slope times ��ms

.

From this method, we find that the systematic error in
fBs

=fBd
due to the uncertainty in the valence strange-quark

mass determination is 0.4% regardless of the smearing
used for the heavy quark and the systematic error in � is
0.4% (0.3%) for the APE (HYP) data.
The value of the strange sea-quark mass does not ex-

plicitly enter the chiral extrapolation formulas. Never-
theless, it implicitly affects the determinations of fBs

=fBd

and � through the values of the SU(2) HM�PT low-energy
constants. The latest results of the RBC and UKQCD
Collaborations for f�, fK, and BK [79] rely on reweighting
[80] to self-consistently tune the strange sea-quark mass to
its physical value during the chiral extrapolation of the
pseudoscalar meson masses and decay constants. We can
therefore estimate the effect of the incorrect strange sea-
quark mass on fBs

=fBd
and � based on observations in the

light pseudoscalar meson sector. Preliminary studies by
RBC and UKQCD find that reweighting to the physical
strange sea-quark mass leads to no statistically significant
change in m� and a 2% change in f� [81]. If we assume
that the unphysical strange sea-quark mass leads to a 2%
error in the decay constants and matrix elements, then it
will lead to a 2%� ð ~ms � ~mdÞ=�QCD � 0:4% error in the

SU(3)-breaking ratios fBs
=fBd

and �.

In order to obtain the total systematic error in fBs
=fBd

and � due to the light- and strange-quark masses, we add
the three estimates for the light-quark error, the strange
valence-quark error, and the strange sea-quark error in
quadrature. This leads to an error in fBs

=fBd
of 0.6% for

both the APE and HYP data and an error in � of 0.6%
(0.5%) for the APE (HYP) data.

G. Finite-volume errors

We estimate the uncertainties in the ratios fBs
=fBd

and �

due to finite volume effects using one-loop finite-volume
HM�PT. The effect of the finite spatial lattice volume is
simply to turn the one-loop integrals that appear in the
HM�PT expressions into sums, which we show in
Eqs. (D13) and (D14). It is therefore straightforward to
compute the corrections to our data given the parameters of
our simulations. We find that the one-loop finite-volume
corrections are about 1% at our lightest quark mass and
even less at heavier masses. We therefore take 1% to be the
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systematic uncertainty in fBs
=fBd

and � due to the finite

spatial lattice volume.

H. 1=mb corrections

Because we work in the static heavy-quark limit, our
results for fBs

=fBd
and � neglect relativistic effects due to

the finite b-quark mass. We therefore estimate the size of
the omitted relativistic corrections using power-counting.
The leading 1=mb corrections to the decay constants and
matrix elements are of Oð�QCD=mbÞ. Because we are only
computing the SU(3)-breaking ratios fBs

=fBd
and �, how-

ever, relativistic effects in these quantities are further sup-
pressed by a factor of ðms �mdÞ=�QCD. Therefore, we

expect the relativistic corrections to these quantities to be
approximately

�QCD

mb

�ms �md

�QCD

� 2%; (84)

where the scale �QCD cancels in the ratio, and we use the

average MS quark masses listed in the PDG [6].

VII. RESULTS AND CONCLUSIONS

Using the experimentally measured ratio of masses
mB0

s
=mB0

d
¼ 5366:6=5279:5 ¼ 1:0165 [6], we obtain the

following values for the SU(3)-breaking ratios of
B-meson decay constants and mixing matrix elements:

fBs

fBd

¼
�
1:16ð09Þð10Þ APE

1:14ð05Þð10Þ HYP
and

� ¼
�
1:13ð07Þð10Þ APE

1:13ð05Þð10Þ HYP
;

(85)

where the first errors are statistical and the second are the
sum of the individual systematic errors added in quadra-
ture. We find good agreement between the different link
smearings, indicating that, despite the use of a single lattice
spacing, discretization errors are small in the ratios. We
therefore average the APE and HYP determinations to
obtain our final results. After adding the statistical and

systematic errors for each link smearing in quadrature,
we compute the average assuming that the two determina-
tions are 100% correlated using the method of Ref. [82]:

fBs

fBd

¼ 1:15ð12Þ (86)

� ¼ 1:13ð12Þ; (87)

where the errors reflect the combined statistical and sys-
tematic uncertainties. Although we computed these quan-
tities in the static b-quark limit, the inclusion of the
neglected 1=mb corrections (which we estimate to be about
2%) produces a negligible change in the total errors in
Eqs. (86) and (87) given the size of our other uncertainties;
thus our results can be directly compared to phenomeno-
logical determinations and other lattice QCD results using
relativistic b-quarks. As shown in Fig. 9, our results agree
with the published results of the HPQCD Collaboration
(� ¼ 1:258� 0:025stat � 0:021sys) [14] and the prelimi-

nary results of the Fermilab Lattice and MILC Col-
laborations (� ¼ 1:205� 0:037stat � 0:034sys) [15].

Although our results have significantly larger errors than
the other Nf ¼ 2þ 1 flavor determinations, in this work

we have demonstrated the viability of our lattice compu-
tation method. In particular, we have introduced the new
approach of using SU(2) heavy-light meson chiral pertur-
bation theory to extrapolate Nf ¼ 2þ 1 lattice QCD re-

sults for B-meson quantities to the physical quark masses.
The largest sources of error in our calculation are from
statistics and the chiral extrapolation, and we expect to
reduce the sizes of both in a future work that analyzes the
243 domain-wall ensembles with the same lattice spacing
[34]. Some of the 243 ensembles contain almost 3 times as
many configurations as we have analyzed in this work.
Furthermore, the use of a larger spatial volume will allow
us to simulate at lighter valence and sea quark masses.
Once we have made these improvements, our results will
provide a valuable cross check of these important inputs to
the CKM unitarity triangle analysis and determination of
the ratio of CKM matrix elements jVtdj=jVtsj.

FIG. 9 (color online). Comparison of lattice QCD results for fBs
=fBd

and �. The magenta (triangle) denotes our new values obtained
by averaging the APE and HYP results, the gray (circle) the values published by the HPQCD Collaboration [14] and the beige
(diamond) the preliminary value presented by the FNAL-MILC Collaboration at Lattice 2009 [15].
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APPENDIX A: SU(3) PROJECTION

In this appendix we describe the two SU(3) projection
schemes used in this paper and show their equivalence in
the weak coupling limit. Necessary properties of the pro-
jector mapping an arbitrary, complex 3� 3 matrix on the
SU(3) subgroup are idempotence and gauge-covariance.
These properties are not sufficient to specify a unique
projector and hence several choices exist. For APE smear-
ing we use the unit circle projection [46] which is based on
polar decomposition, while for HYP smearing we seek
iteratively the matrix Umax 2 SUð3Þ which maximizes
ReTrðUmaxV

yÞ [47].
First we describe the unit circle projection [46]. For a

complex 3� 3 matrix V with detðVÞ � 0, we calculate the
matrix

W ¼ V½VyV��1=2; (A1)

which is unitary by construction and has a spectrum lying
on the unit circle. The square root is obtained by Jacobi
matrix diagonalization. From W we obtain a special uni-
tary matrix by computing

�V ¼ ½ðdetðWÞ��1=3W: (A2)

This projection is idempotent since an element of SU(3) is
projected by Eqs. (A1) and (A2) back onto itself. The
projection is also gauge covariant, as we now show. The

matrices V and Vy transform as

V ! GLVG
y
R and Vy ! GRV

yGy
L; (A3)

and hence

VyV ! GRV
yVGy

R: (A4)

Since ½VyV��1=2 has the same transformation properties as
VyV one finds for the transformation of W

W ! GLWGy
R; (A5)

from which the gauge covariance of �V follows.
Next we describe the projection method used for HYP

smearing. This method is based on seeking a matrix Umax

for which [47]

Umax 2 SUð3ÞjReTrðUmaxV
yÞis maximal: (A6)

The maximizing matrix Umax is found iteratively by de-
composing it into its SU(2) subgroups as outlined in
Refs. [47,83]. Although, by the compactness of SU(3), a
global maximum exists, it is not guaranteed that this iter-
ative procedure converges to the true maximum. Fur-
thermore, the matrix obtained by the iterative procedure
depends on the details of the iteration algorithm. In prac-
tice, however, one finds thatUmax is numerically very close
to �V, the SU(3) projection of the matrix V obtained from
the unit circle projection [46] and hence the iteratively
found maximum is close to the true maximum. Thus we
choose

~V ¼ Umax (A7)

as the SU(3) projection of the complex matrix V. This
projection is idempotent because for V 2 SUð3Þ, unitarity
and the triangle inequality imply the bound ReTrð ~VVyÞ �
3 which is uniquely saturated by ~V ¼ V. By construction
this projection is also gauge covariant.
Finally, we show that although the two projection meth-

ods are generally not equivalent they differ only at second
order. For this discussion we assume that the iterative
method converges to the global maximum and that the
unprojected matrix V is approximately unitary and uni-
modular (which is true in the weak coupling limit).
In order to compare the two projection schemes, we first

write the polar decomposition of V as

V ¼ ei� �VH; (A8)

where � 2 ð��=3; �=3�, H is a Hermitian matrix with
eigenvalues �1, �2, �3 > 0, and �V is the SU(3)-projected
matrix given by Eq. (A2). We then diagonalize H ¼
M�My [� ¼ diagð�1; �2; �3Þ and M 2 SUð3Þ] and sub-
stitute Eq. (A8) into Eq. (A6). The resulting function to be
maximized is

Re Trðe�i�U0�Þ ¼ Reðe�i�ð�1u
0
11 þ �2u

0
22 þ �3u

0
33ÞÞ;
(A9)
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where u0ij is an element ofU0 � My �VyUmaxM 2 SUð3Þ. If
the maximization is carried out over U(3) rather than
SU(3), we could choose u011 ¼ u022 ¼ u033 ¼ ei�. This sat-
isfies the bound ReTrðe�i�U0�Þ derived from the triangle
inequality. If we maximize over SU(3) and �V is already an
element of SU(3) then it follows U0 ¼ 1 and there exists a
unique maximum for � ¼ 0 such that ~V ¼ �V.

For the generic case maximizing over SU(3), the con-
straint detðU0Þ ¼ 1 forces a maximum at U0 � 1, and
hence ~V � �V. Nevertheless, when V is approximately
unitary and unimodular we can write � ¼ 	� with j	�j �
1. Then �k ¼ 1þ 	�k and j	�kj � 1. From that follows
u0kk ¼ 1þ i	k with j	kj � 1 (k ¼ 1, 2, 3), and we can

work to first order in all ‘‘small’’ quantities. Although U0
can in principle develop small, off-diagonal elements, the
constraint U0 2 SUð3Þ always implies that 	k 2 R and
	1 þ 	2 þ 	3 ¼ 0. Therefore, we must maximize

X3
k¼1

Reð1þ 	�k þ i	k � i	�Þ; (A10)

subject to the constraint 	1 þ 	2 þ 	3 ¼ 0. Because this is
independent of 	�, this is equivalent to the case � ¼ 0
discussed above. Consequently, to first order ~V ¼ �V. This
explains why the two projection schemes lead to numeri-
cally close results as reported in [46].

APPENDIX B: CONTINUUM QCD TO HQET
MATCHING AND HQET RUNNING

In Eqs. (31) and (32) we separated the matching coef-
ficients of the operators into three contributions: the QCD
to HQET matching factor at scale mb, the HQET running
from mb to mc, and the HQET running from mc to �. Here
we collect the results for these factors and present them for
general numbers of flavors Nf and colors Nc. The Casimir

factors that appear in the expressions are

CF ¼ N2
c � 1

2Nc

; CA ¼ Nc; and TF ¼ 1

2
: (B1)

The one-loop QCD to HQET matching factor for the

axial current operator renormalized in theMS scheme with
naive dimensional regularization is calculated in
Refs. [30,38]

~CAðmbÞ ¼ 1� 2CF

�sðmbÞ
4�

þOð�2
sÞ; (B2)

while the renormalization group (RG) evolution factors
entering Eq. (31) are given by [48,49]

U
ðNfÞ
A ð�0; �Þ ¼

�
�
ðNfÞ
s ð�0Þ

�
ðNfÞ
s ð�Þ

�
d
ðNf Þ
A

�
�
1þ J

ðNfÞ
A

�
ðNfÞ
s ð�0Þ � �

ðNfÞ
s ð�Þ

4�

�

þOð�2
sÞ: (B3)

The coefficients in the evolution factor are

d
ðNfÞ
A ¼ �ð0Þ

A =2
0; (B4)

J
ðNfÞ
A ¼ �ð1Þ

A =2
0 � �ð0Þ
A 
1=2


2
0; (B5)

with


0 ¼ 11
3CA � 4

3TFNf; (B6)


1 ¼ 34
3C

2
A � 4CFTFNf � 20

3CATFNf; (B7)

and the one- and two-loop anomalous dimensions

�ð0Þ
A ¼ �3CF; (B8)

�ð1Þ
A ¼ �16CF

�
49

96
CA � 5

32
CF � 5

24
TFNf

�
�
1

4
CA � CF

�
�2

6

�
: (B9)

The one-loop QCD to HQET matching factors for the
�B ¼ 2 four quark operator are calculated in
Refs. [50,53]:

~Z 1ðmb;mbÞ ¼ 1� 8N2
c þ 9Nc � 15

2Nc

�sðmbÞ
4�

þOð�2
sÞ;

(B10)

~Z 2ðmb;mbÞ ¼ �2ðNc þ 1Þ�sðmbÞ
4�

þOð�2
sÞ: (B11)

The operators OL and OS mix under RG evolution [see
Eq. (32)], such that the evolution factors for the matching
coefficients can be written as a 2� 2 matrix:

U
ðNfÞ
L ¼ U

ðNfÞ
11 0

U
ðNfÞ
21 U

ðNfÞ
22

 !
: (B12)

Note that the matrix element U
ðNfÞ
12 is zero to all-orders in

perturbation theory due to the fact that heavy-quark spin
symmetry prohibits mixing from OS into OL. Because ~Z2

in Eq. (B11) has no tree-level contribution, the two-loop

expression for U
ðNfÞ
11 and one-loop expressions for U

ðNfÞ
21

and U
ðNfÞ
22 are sufficient to determine the Oð�sÞ matching

coefficients. The matrix elements in Eq. (B12) are given in
Refs. [51–53]:
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U
ðNfÞ
11 ð�0; �Þ ¼

�
�
ðNfÞ
s ð�0Þ

�
ðNfÞ
s ð�Þ

�
d
ðNf Þ
1

�
�
1þ J

ðNfÞ
11

�
ðNfÞ
s ð�0Þ � �

ðNfÞ
s ð�Þ

4�

�

þOð�2
sÞ; (B13)

U
ðNfÞ
21 ð�0; �Þ ¼ � 1

4

��
�
ðNfÞ
s ð�0Þ

�
ðNfÞ
s ð�Þ

�
d
ðNf Þ
1 �

�
�
ðNfÞ
s ð�0Þ

�
ðNfÞ
s ð�Þ

�
d
ðNf Þ
2

�

þOð�sÞ; (B14)

U
ðNfÞ
22 ð�0; �Þ ¼

�
�
ðNfÞ
s ð�0Þ

�
ðNfÞ
s ð�Þ

�
d
ðNf Þ
2 þOð�sÞ; (B15)

with the coefficients

d
ðNfÞ
i ¼ �ð0Þ

ii =2
0; (B16)

J
ðNfÞ
11 ¼ �ð1Þ

11 =2
0 � �ð0Þ
11
1=2


2
0; (B17)

and the anomalous dimensions

�ð0Þ ¼ �6CF 0
1þ 1=Nc �6CF þ 4ð1þ 1=NcÞ

� �
; (B18)

�ð1Þ
11 ¼ �Nc � 1

12Nc

ð127N2
c þ 143Nc þ 63� 57=Nc

þ 8�2ðN2
c � 2Nc þ 4=NcÞ � Nfð28Nc þ 44ÞÞ:

(B19)

APPENDIX C: FINDING MATRIX ELEMENTS
FROM GREEN’S FUNCTIONS

In this appendix we provide a derivation of Eqs. (63) and
(72) which give the relationship between the Euclidean
space correlation functions which are the direct results of
our simulations and the matrix elements between normal-
ized Hilbert space states which we wish to determine. In
this appendix, all quantities are written in lattice units. The
derivation of Eq. (63) follows the standard steps of insert-
ing a complete set of energy eigenstates into the Green’s
functions CLWðt; t0Þ and CWWðt; t0Þ which are defined in
Eqs. (59) and (60) and appear in the numerator and de-
nominator of Eq. (63):

C LWðt; t0Þ ¼
X
n

X
~x2V

h0jAL
0 ð ~x; 0ÞjnihnjAW

0 ð0Þyj0ie�Enðt�t0Þ

(C1)

CWWðt; t0Þ ¼
X
n

jhnjAW
0 ð0Þyj0ij2e�Enðt�t0Þ; (C2)

where En is the energy of the state jni, a state with unit
normalization. Because of the translational invariance of

either the wall source operator AW
0 or the sum of the local

operator AL
0 over a temporal hyperplane, the intermediate

state jnimust have zero momentum. There is then a single,
finite-volume state, jBqð ~p ¼ 0ÞVi, separated from the other

excited states by a nonzero energy gap, which will domi-
nate as the time separation t� t0 becomes large. Thus, in
the limit of large t� t0, Eqs. (C1) and (C2) become

CLWðt; t0Þ ¼ L3h0jAL
0 ð0ÞjBqð ~p ¼ 0ÞVi

� hBqð ~p ¼ 0ÞVjAW
0 ð0Þyj0ie�m�

Bq
ðt�t0Þ (C3)

CWWðt; t0Þ ¼ jhBqð ~p ¼ 0ÞVjAW
0 ð0Þyj0ij2e�m�

Bq
ðt�t0Þ;

(C4)

where we have used translational symmetry to replace the
sum over ~x in Eq. (C1) with the factor L3.
Finally, Eq. (63) follows by taking the ratio of Eq. (C3)

and the square root of Eq. (C4) to remove the unwanted
factor h0jAL

0 ð0ÞjBqð ~p ¼ 0Þi and recognizing that in the

limit of large volume the unit-normalized state jBqð ~p ¼
0ÞVi in Eq. (C3) and the covariant, delta-function normal-
ized state jBqð ~p ¼ 0Þi in Eq. (57) are related byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mBq
L3

q
jBqð ~p ¼ 0ÞVi ! jBqð ~p ¼ 0Þi: (C5)

This discussion is standard and has been repeated here to
provide a familiar background for the derivation of
Eq. (72) where a new approach, special to the static ap-
proximation, is required. The complication in Eq. (72)
arises because of the use of a box source which is not
translationally invariant and which produces a superposi-
tion of B-meson states with various momenta. In the static
limit, all of these states are degenerate since their energy no
longer depends on their momenta. Thus, we cannot assume
that the large time limit, tf 
 t 
 t0 will project onto a

unique ground state. However, as is worked out below, we
can use an additional symmetry of the static approximation
to show that the normalization of the box source cancels
between the numerator and denominator of Eq. (72) [57].
Fortunately, this large set of degenerate states resulting

from the momentum independence of the energy of the
heavy-light meson, can be distinguished by a new conser-
vation law which becomes exact in the static limit: the
local conservation of heavy-quark number. The absence
of spatial derivatives in heavy-quark actions shown in
Eqs. (12) and (16) implies that the total number of heavy
quarks at each spatial site is separately conserved. This
conservation law results from the invariance of the heavy-
quark action under the phase rotation of the heavy-quark
Grassmann variables:

hð ~xÞ ! ei�ð ~xÞhð ~xÞ (C6)

�hð ~xÞ ! e�i�ð ~xÞ �hð ~xÞ (C7)

in which a different phase �ð ~xÞ can be used for each spatial
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site ~x. In the quantum mechanical Hilbert space this sym-
metry corresponds to a family of operators Nhð ~xÞ ¼
�hðxÞ�0hð ~xÞ which commute with the Hamiltonian (contin-
uum theory) or the transfer matrix (lattice theory). Thus,
when interpreting our Green’s functions we can introduce a
complete set of B-meson states j ~Bqð ~xÞi which are eigen-

states of both the Hamiltonian and the number operators
Nhð ~x0Þ with a standard normalization:

Nhð ~x0Þj ~Bqð ~xÞi ¼ �	~x; ~x0 j ~Bqð ~xÞi (C8)

h ~Bqð ~xÞj ~Bqð ~x0Þi ¼ 	~x; ~x0 : (C9)

Here the Kronecker delta, 	~x; ~x0 , used above is appropriate

for the discrete positions that appear in the lattice theory.
The energy eigenstate j ~Bqð ~xÞi can be thought of as com-

posed of a static quark fixed to the position ~x together with
a light-quark bound state centered at ~x. The tilde notation is
chosen to suggest the relation of these new states to our
earlier energy and momentum eigenstates, jBð ~pÞVi, which
are standard superpositions of these Nhð ~xÞ eigenstates:

jBqð ~pÞVi ¼
X
x2V

e�i ~p	 ~x

L3=2
j ~Bqð ~xÞi: (C10)

Using these Nhð ~xÞ eigenstates and the conservation of
Nhð ~x0Þ for all ~x0 2 V it is now straightforward to derive
Eq. (72). Substituting a sum over the complete set of
degenerate ground states j ~Bqð ~xÞi into the correlation

function CBBðt; t0Þ which appears in the denominator of
Eq. (72) and is defined in Eq. (67) we find:

CBBðt; t0Þ ¼
X
~x2�V

�
h0j �hð ~xÞ�0�5

� X
~y2�V

qð ~yÞ
�
j ~Bqð ~xÞi

	 h ~Bqð ~xÞj
� X
~y02�V

�qð ~y0Þ
�
�0�5hð ~xÞj0i

�
e�mB� ðt�t0Þ;

(C11)

where we have used the conservation of local heavy-quark
number to keep only terms where all of the heavy quarks
are located at the same spatial position ~x.

Similarly, we can evaluate CB
Oi
ðtf; t; t0Þwhich appears in

the numerator of Eq. (72) and is defined in Eq. (69):

CB
Oi
ðtf; t; t0Þ ¼

X
~x2�V

�
h0j
� X
~y2�V

�qð ~y; tÞ
�
�0�5hð ~x; tÞj~�Bqð ~xÞi	

� h~�Bqð ~xÞjOið ~xÞj ~Bqð ~xÞi 	 h ~Bqð ~xÞj
�
� X
~y02�V

�qð ~y0; tÞ
�
�0�5hð ~x; tÞj0i

�
e�mB� ðtf�t0Þ

(C12)

¼ CBBðtf; t0Þh~�Bqð~0ÞjOið~0Þj ~Bqð~0Þi; (C13)

where translational invariance of the matrix element

h~�Bqð ~xÞjOið ~xÞj ~Bqð ~xÞi has been used to remove it from the

sum over ~x causing that sum to assume the same form
which appears in the box-box correlator CBBðt; t0Þ given in
Eq. (C11), after an application of charge conjugation sym-
metry. Equation (72) is then easily recognized from ratio of
Eqs. (C12) and (C11):

MOi
¼ 1

mBq

h �Bqð ~p ¼ 0ÞjOið~0ÞjBqð ~p ¼ 0Þi (C14)

¼ 2L3h �Bqð ~p ¼ 0ÞVjOið~0ÞjBqð ~p ¼ 0ÞVi (C15)

¼ 2h~�Bqð~0ÞjOið~0Þj ~Bqð~0Þi (C16)

¼ 2
CB
Oi
ðtf; t; t0Þ

CBBðtf; t0Þ (C17)

¼ 2
CB
Oi
ðtf; t; t0Þem

�
Bq
ðtf�t0Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBBðtf; tÞCBBðt; t0Þ
q (C18)

where Eq. (C5), relating our two normalization conven-
tions for momentum eigenstates, has been used to obtain
the second equation.
This use of localized sources while making the static

approximation may become more important as larger spa-
tial volumes are used and the overlap between the transla-
tionally invariant wall sources and the physical states of
interest becomes smaller. Of course, this same method can
be used for localized sources with different spatial distri-
butions such as Gaussian or atomic wave functions.

APPENDIX D: CHIRAL PERTURBATION THEORY
FOR DECAY CONSTANTS AND MIXING

PARAMETERS

In this section we present the NLO HM�PT expressions
needed to extrapolate Nf ¼ 2þ 1 domain-wall lattice data

for heavy-light meson decay constants and mixing parame-
ters to the physical quark masses and the continuum.
Although we label the formulas with the subscript ‘‘B,’’
we note that these functions can also be used to extrapolate
D-meson decay constants and mixing matrix elements with
the caveat that the low-energy constants (except for the
light-light meson tree-level parameters f and B) are differ-
ent for the case of B-mesons and D-mesons. We first show
the SU(3) HM�PT formulas in Sec. D 1; we then take the
appropriate limits of the SU(3) expressions to obtain those
in SU(2) HM�PT in Sec. D 2.

1. SU(3) HM�PT expressions

The tree-level mass-squared of a meson composed of
two domain-wall valence quarks with flavors x and y is

m2
xy ¼ Bðmx þmy þ 2mresÞ; (D1)
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where B is a continuum low-energy constant and mres is the residual quark mass.
The NLO result for �Bx

¼ fBx

ffiffiffiffiffiffiffiffi
mBx

p
in the partially-quenched domain-wall theory with 2þ 1 flavors of sea quarks is

[84,85]

�Bx
¼ �0

�
1� 1

16�2f2
1þ 3g2B�B�

2

X
f¼l;l;h

‘ðm2
xfÞ þ

1

16�2f2
1þ 3g2B�B�

6

�
�
R½2;2�
X ðfMXg; f�gÞ~‘ðm2

XÞ �
X

j2fMXg

@

@m2
X

ðR½2;2�
j ðfMXg; f�gÞÞ‘ðm2

j Þ
�
þ cseað2ml þmhÞ þ cvalmx þ caa

2

�
; (D2)

where f � 130:4 MeV is the tree-level pion decay constant. The NLO expression for MBx
¼ 8=3mBx

f2Bx
BBx

is similar
[84,86]

MBx
¼ 
0

�
1� 1þ 3g2B�B�

16�2f2
X

f¼l;l;h

‘ðm2
xfÞ �

1� 3g2B�B�
16�2f2

‘ðm2
XÞ þ

1

24�2f2

�
�
R½2;2�
X ðfMXg; f�gÞ~‘ðm2

XÞ �
X

j2fMXg

@

@m2
X

ðR½2;2�
j ðfMXg; f�gÞÞ‘ðm2

j Þ
�
þ dseað2ml þmhÞ þ dvalmx þ daa

2

�
: (D3)

In both the decay constant and the mixing matrix element,
the only effect of the nonzero lattice spacing is a new
analytic term proportional to a2. These results agree with
the continuum calculation of Sharpe and Zhang in the limit
of three degenerate sea quarks [23]. We note that one is free
to multiply the above expressions by arbitrary powers of
the heavy-light meson mass mBx

without modifying the
chiral logarithms. This is because the chiral logarithm
contributions to heavy-light meson masses are suppressed
by 1=mb and therefore of higher-order than we consider
[87].

In the above expressions for�Bx
andMBx

, the functions

‘ and ~‘ are one-loop chiral logarithms:

‘ðm2Þ � m2 ln

�
m2

�2
�

�
; (D4)

~‘ðm2Þ � � ln

�
m2

�2
�

�
� 1: (D5)

The function R½n;k�
j is due to single poles in the partially-

quenched propagator:

R½n;k�
j ðfmg; f�gÞ �

Q
k
a¼1ð�2

a �m2
j ÞQ

n
i¼1;i�jðm2

i �m2
j Þ

(D6)

and the sets of flavor-singlet masses that appear in the
residue functions are

f�g ¼ fm2
L;m

2
Hg; (D7)

fMXg ¼ fm2
X;m

2
�g; (D8)

wherem2
X is the mass-squared of a meson composed of two

x valence quarks, m2
LðHÞ is the mass-squared of a meson

composed of two lðhÞ sea quarks, and m2
� ¼ ðm2

L þ
2m2

HÞ=3 for 2þ 1 flavors of sea quarks.

For completeness, we also include the expressions for
the decay constant and mixing matrix element at the uni-
tary points. In the full QCD and isospin limits, the above
expression for �x becomes

�Bl
¼ �0

�
1� 1

16�2f2

�
1þ 3g2B�B�

2

��
3

2
‘ðm2

�Þ þ ‘ðm2
KÞ

þ 1

6
‘ðm2

�Þ
�
þ cseað2ml þmhÞ þ cvalml þ caa

2

�
;

(D9)

�Bh
¼ �0

�
1� 1

16�2f2

�
1þ 3g2B�B�

2

��
2‘ðm2

KÞ þ
2

3
‘ðm2

�Þ
�

þ cseað2ml þmhÞ þ cvalmh þ caa
2

�
; (D10)

where m2
� ¼ m2

L and m2
K ¼ ðm2

L þm2
HÞ=2. Similarly, the

expression for Mx becomes

MBl
¼ 
0

�
1� 1þ 3g2B�B�

16�2f2
½2‘ðm2

�Þ þ ‘ðm2
KÞ�

� 1� 3g2B�B�
16�2f2

‘ðm2
�Þ þ 1

48�2f2
½3‘ðm2

�Þ � ‘ðm2
�Þ�

þ dseað2ml þmhÞ þ dvalml þ daa
2

�
; (D11)

MBh
¼ 
0

�
1� 1þ 3g2B�B�

16�2f2
½2‘ðm2

KÞ þ ‘ðm2
SÞ�

� 1� 3g2B�B�
16�2f2

‘ðm2
SÞ þ

1

24�2f2
½3‘ðm2

SÞ � 2‘ðm2
�Þ�

þ dseað2ml þmhÞ þ dvalmh þ daa
2

�
: (D12)

C. ALBERTUS et al. PHYSICAL REVIEW D 82, 014505 (2010)

014505-26



The expressions for�l and�h agree with those derived by
Goity in Ref. [88].

One can account for lattice finite volume effects at NLO
in �PT by turning the one-loop integrals to sums. This
yields an additive correction to the chiral logarithms [89]:

‘ðm2Þ ¼ m2

�
ln
m2

�2
�

þ 	FV
1 ðmLÞ

�
;

	FV
1 ðmLÞ ¼ 4

mL

X
~r�0

K1ðj~rjmLÞ
j~rj ;

(D13)

~‘ðm2Þ ¼ �
�
ln
m2

�2
�

þ 1

�
þ 	FV

3 ðmLÞ;

	FV
3 ðmLÞ ¼ 2

X
~r�0

K0ðj ~rjmLÞ;
(D14)

where 	FV
i ðmLÞ is the finite volume correction to the

infinite volume result and K0 and K1 are modified Bessel
functions of imaginary argument.

2. SU(2) HM�PT expressions

The NLO SU(2) HM�PT expressions can easily be
obtained from the SU(3) results in the previous subsection
by integrating out the strange valence and sea quarks. After
this procedure, however, the expressions for the decay
constant and mixing matrix element differ for Bd-type
mesons and Bs-type mesons.

First we consider Bd-type mesons composed of a
b-quark and a light valence quark with mass mx. In this
case, we take the limits of Eqs. (D2) and (D3) assuming

mx

mh

;
ml

mh

� 1: (D15)

The resulting expression for �Bx
at NLO in the partially

quenched domain-wall theory with two degenerate light
sea quarks is

�Bx
¼ �ð2Þ

0

�
1� 1þ 3ðgð2ÞB�B�Þ2

ð4�fð2ÞÞ2 ‘ðm2
xlÞ

þ 1þ 3ðgð2ÞB�B�Þ2
ð4�fð2ÞÞ2

�
1

4

�
½ðm2

L �m2
XÞ~‘ðm2

XÞ þ ‘ðm2
XÞ�

þ cð2Þseaml þ cð2Þvalmx þ cð2Þa a2
�
; (D16)

where we use the superscript ‘‘(2)’’ to distinguish the

SU(2) low-energy constants from their SU(3) analogs in
the previous section. The NLO expression for MBx

is

similar:

MBx
¼ 
ð2Þ

0

�
1� 1þ 3ðgð2ÞB�B�Þ2

ð4�fð2ÞÞ2 2‘ðm2
xlÞ

� 1� 3ðgð2ÞB�B�Þ2
ð4�fð2ÞÞ2 ‘ðm2

XÞ

þ 1

ð4�fð2ÞÞ2 ½ðm
2
L �m2

XÞ~‘ðm2
XÞ þ ‘ðm2

XÞ�

þ dð2Þseaml þ dð2Þvalmx þ dð2Þa a2
�
: (D17)

These results agree with the continuum partially-quenched
calculation of Sharpe and Zhang in the limit a ! 0 [23].
The unitary QCD expressions can easily be obtained by the
replacement mx ! ml. In the SU(2) theory, the effects of
the dynamical strange quark are fully contained in the

values of the low-energy constants, e.g. �ð2Þ
0 ðmhÞ. For

simplicity of notation, however, we suppress the functional
dependence of the coefficients on mh.
Next we consider Bs-type mesons composed of a

b-quark and a heavy valence quark with mass my.

Because the SU(2) chiral effective Lagrangian includes
only two light quark flavors, this requires an extension of
SU(2) �PT to the kaon sector, and the resulting theory is
sometimes called kaon SU(2) chiral perturbation theory
(K�PT) [34,90]. In this case, we take the limits of
Eqs. (D2) and (D3) assuming

ml

my
;
ml

mh

� 1: (D18)

The resulting NLO expressions for �By
and MBy

are

�By
¼ �ðsÞ

0 f1þ cðsÞseaml þ cðsÞa a2g; (D19)

MBy
¼ 
ðsÞ

0 f1þ dðsÞseaml þ dðsÞa a2g; (D20)

where we use the superscript ‘‘(s)’’ to distinguish the
coefficients from those in Eqs. (D16) and (D17). Because
the valence quark has been integrated out, there are no
longer any chiral logarithms. The effects of both the va-
lence and sea strange quarks are encapsulated in the values

of the low-energy constants, e.g. �ðsÞ
0 ðmy;mhÞ.
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