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We present results from the first lattice simulations of three-dimensional noncompact quantum

electrodynamics (QED3) with Nf four-component fermion flavors coupled to a weak Z2 chirally invariant

four-fermi interaction. Results with Nf � 4 show that the scaling near the strong coupling chiral transition

or sharp crossover is determined by the 3d Gross-Neveu ultraviolet-stable renormalization group fixed

point. Small deviations of the Nf ¼ 4 critical exponents from the respective Gross-Neveu ones, hint at

evidence for nonzero fermion mass generated by the gauge fields dynamics that might have been enhanced

by the four-fermi coupling. It is also shown that the scaling region is suppressed at weak four-fermi

couplings and large Nf values. Measurements of (i) a monopole susceptibility which is the polarizability

of the monopole configurations, and (ii) the density of isolated monopoles, imply that for Nf � 1 and

weak gauge couplings the monopoles do not affect the theory’s confining properties, because they are

shielded.
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I. INTRODUCTION

Spontaneous chiral symmetry breaking plays a signifi-
cant role in both particle and condensed matter physics. Of
particular interest is the study of quantum field theories in
which the ground state shows a sensitivity to the number of
fermion flavors Nf. Three-dimensional parity-invariant

quantum electrodynamics with four-component spinors is
such an interesting and challenging field theory with rich
dynamics that resemble four-dimensional QCD and walk-
ing technicolor theories [1]. The gauge coupling e2 has
mass dimension one and thus provides the theory with a
natural scale that plays a role similar to �QCD in four

dimensions. This implies asymptotic freedom, since for
processes with momentum transfer k � e2 the theory is
effectively noninteracting.

Nontrivial behavior may arise in the infrared limit, as
suggested by an expansion in 1=Nf [2]. The theory is

believed to exhibit logarithmic confinement of electric
charges and chiral symmetry breaking when the number
of fermion flavors Nf is smaller than a critical value Nfc.

Super-renormalizability ensures that QED3 is free from
ultraviolet divergences, thus making analytical calcula-
tions more transparent. Most analytical approaches, mainly
based on self-consistent solutions of Schwinger-Dyson
equations (SDE), converge to values of Nfc between three

and five [3,4]. There are also SDE results which claim that
chiral symmetry is broken for all values of Nf [5]. Also, a

perturbative analysis of renormalization group flow in the
large-Nf limit predicts Nfc � 6 [6]. Recent progress on

gauge invariant solutions of SDE has been recently re-
ported in [7]. An argument based on the inequality fIR �

fUV (where f is the absolute value of the thermodynamic
free energy) that can be estimated by counting relevant
degrees of freedom in the infrared and ultraviolet limits
yields the prediction Nfc � 3

2 [8]; a result that was later

challenged in [9]. Analytical calculations also predict
that at Nfc the theory undergoes a conformal phase tran-

sition [10], which is a generalization of the infinite-
order Berezinskii-Kosterlitz-Thouless transition in two
dimensions.
Lattice simulations provided evidence that chiral sym-

metry is broken for Nf < 1:5 [11–13], whereas Nf ¼ 2

appeared chirally symmetric [13,14] on lattices with physi-
cal extent up to Le2 � 90. The principal obstruction to a
definitive answer has been the separation of scales in the
theory, i.e. the fermion dynamical mass is at least an order
of magnitude smaller than the natural scale e2 [15] which is
of the order of the momentum cutoff given by the inverse
lattice spacing. In addition, large finite volume effects
resulting from the presence of a massless photon in the
spectrum prevent a reliable extrapolation to the thermody-
namic limit. Analytical results claimed that to detect chiral
symmetry breaking for Nf � 1:5 lattice volumes much

bigger than the ones currently used in numerical simula-
tions are required [4,16]. Another possibility is that, based
on universality arguments, the infrared limit of QED3 may
be equivalent to the 3d Thirring model at its strong cou-
pling ultraviolet-stable renormalization group fixed point,
as both models are chirally invariant under the same
Uð2NfÞ group. This universality argument can be valid

provided in the Thirring model the interaction is mediated
by a massless vector boson [17], which still needs to be
checked rigorously in lattice simulations. So far, numerical
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simulations of the Thirring model predicted that Nfc ¼
6:6ð1Þ [18].

The existence of a critical number of flavors Nfc in

QED3 can be explained by the following semiclassical
arguments discussed in [19] and also reviewed in [12]. In
the large-Nf limit the photon propagator is modified by the

vacuum polarization diagram from 1=k2 to 1=½k2 þ g2

8 Nfk�
[20]. The super-renormalizable theory is rapidly damped in
the ultraviolet regime and all interesting dynamics are
expected in the infrared limit, where the dimensionless
interaction strength scales as 1=Nf. Naively, one could

deduce that the confining property of the Coulomb poten-
tial is screened by virtual fermion-antifermion pairs, be-
cause in the coordinate space the interaction is modified to
1=r for distances r � ðe2NfÞ�1. However, as discussed in

[19] the kinetic energy of fermion-antifermion pairs is
positive and scales as r�1 by the uncertainty principle. In
the infrared, therefore, both kinetic and potential terms
scale as r�1 and it becomes a delicate question which
dominates. Since when r ! 0 the positive kinetic term
must dominate the logarithmic Coulomb term, we deduce
in this case the existence of an energy minimum at some
nonzero r, implying the existence of stable fermion-
antifermion bound states in the ground state. This semi-
classical argument suggests a nonvanishing chiral conden-
sate for Nf < Nfc. For asymptotically large r the massive

fermions decouple, ceasing to screen the charge, and the
logarithmically confining Coulomb potential is restored.
For Nf > Nfc the theory is conformal, consisting of mass-

less fermions interacting via a 1=r potential.
Since the early 1990s, noncompact QED3 with or with-

out extra four-fermi terms has attracted attention [21,22]
because of potential applications to models of high Tc

superconductivity. More recently, interest in this model
has been revived by suggestions that QED3 with two
fermion flavors may be an effective theory for the under-
doped and nonsuperconducting region of the phase dia-
gram of high-Tc superconducting cuprate compounds [23].
In this sense, the abstract theoretical problem of the value
of Nfc assumes phenomenological importance. These re-

sults have also stimulated lattice simulations of QED3 with
Fermi and gap anisotropies [24].

In this paper we present the first exploratory lattice
simulation results of parity-invariant noncompact QED3

with massless fermions. This is achieved with the intro-
duction of a four-fermi interaction in theQED3 action. The
Lagrangian for the continuum Euclidean field theory is
given by

L ¼ �c ið6@� ie��A� þmÞc i � g2s
2Nf

ð �c ic iÞ2

þ 1

4
F��F��; (1)

with the index i implying a summation over Nf four-

component fermion flavors. The introduction of the four-
fermi interaction reduces the Uð2NfÞ chiral symmetry of

QED3 to a discrete Z2 symmetry: c i ! �5c ; �c i !
� �c�5. For computational purposes it is useful to introduce
the auxiliary field � � g2s �c ic i, and the semibosonized
Lagrangian becomes

L ¼ �c ið6@� ie��A� þ �þmÞc i þ
Nf

2g2s
�2

þ 1

4
F��F��: (2)

Both the noncompact [25] and compact [26] lattice ver-
sions of this model have been used successfully to show
that QED4 is a logarithmically trivial theory and the sys-
tematics of the logarithms of triviality follow those of the
NJL model rather than those of the scalar ��4 theory. In
the formulation of Eq. (2) the � field acts as a chiral order
parameter which receives a vacuum expectation value,
proportional to the chiral condensate, in the chirally broken
phase. The Dirac operator is now nonsingular even with
m ¼ 0 and its inversion is very fast.
The three- and four-dimensional versions of the theory

are very different from each other, as in 3d the four-fermi
interaction is a relevant operator. It is well known that the
3d Gross-Neveu model (GNM3), although nonrenormaliz-
able in weak coupling perturbation theory, becomes renor-
malizable in the 1=Nf expansion [27]. At sufficiently

strong couplings and large-Nf chiral symmetry is sponta-

neously broken in GNM3, leading to a dynamically gen-
erated fermion mass � ¼ h�i � m. The critical coupling
g2sc at which the gap �=�UV ! 0 defines an ultraviolet-
stable renormalization group fixed point at which an inter-
acting continuum limit may be taken. As the gauge cou-
pling is varied and the four-fermi coupling is fixed at some
value g2s < g2sc, then depending on the value of Nf the

model is expected to undergo either a chiral phase transi-
tion or a sharp crossover from a strong coupling phase
(where h �c c i � 0) to a weak coupling phase where h �c c i
is either zero or very small and possibly undetectable in
current lattice simulations. Hereafter, we will use the term
‘‘chiral transition’’ to denote either a chiral phase transition
or a sharp crossover from strong to weak gauge couplings.
Unlike what happens in 4d, here near the transition, the
weak four-fermi term is expected to play a dominant role
as compared to the ultraviolet-finite gauge interaction.
Understanding the role of the weak four-fermi coupling
in lattice simulations of noncompact QED3 is one of the
main themes of this paper. Preliminary results were pre-
sented in [28]. Emphasis is also placed on the dynamics of
monopoles (which in 3d are instantons) at both strong and
weak couplings and try to understand whether they affect
the confining properties of the model. The interplay of
fermions and magnetic monopoles was recently studied
in numerical simulations of the compact lattice version of
this model [29]. The authors of [29] provided evidence that
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for Nf ¼ 4 the monopole plasma persists even at weak

gauge couplings. In noncompact QED3, however, the role
of topological excitations may be different, because in this
case the Dirac strings carry a nonvanishing contribution to
the pure gauge part of the action [30].

The paper is organized as follows. In Sec. II, we intro-
duce the staggered fermion lattice action and the monopole
observables. In Sec. III we present results related to the
strong coupling chiral transition such as estimates of the
critical exponents �m and � for Nf ¼ 4 and show that they

are close to the respective GNM3 values, implying that the
transition is dominated by the ultraviolet-stable GNM3

fixed point. Small but systematic deviations of the values
of �m and � from the GNM3 exponents hint at preliminary
evidence of nonzero fermion mass generated by the gauge
field dynamics at weak gauge couplings. We also show that
the scaling region is suppressed at weak four-fermi cou-
plings and large Nf. Subsequently, we show that at strong

gauge couplings the monopole density has a weak depen-
dence on the values of the four-fermi coupling. We then
study the behavior of the monopole susceptibility 	m

(defined by Cardy in [31]) for Nf ¼ 1; . . . ; 12 and within

the accuracy of our data we observe no diverging behavior
in 	m with the lattice volume, implying that monopoles
and antimonopoles are shielded in the continuum limit.
Further evidence in favor of this scenario is provided by the
density of isolated monopoles (positive magnetic charges
that do not have any antimonopoles in the nearest neigh-
borhood) which decays faster with the inverse gauge cou-
pling than the total density of positive magnetic charges. In
Sec. IV, we summarize and discuss our main findings and
also point to possible future extensions of this work.

II. LATTICE MODEL AND OBSERVABLES

In this first exploratory study of noncompact QED3 with
a four-fermi term, we have chosen the simplest Z2 chirally
invariant four-fermi interaction which for practical pur-
poses is preferable over terms with a continuous chiral
symmetry, because the latter are not as efficiently simu-
lated due to massless modes in the strongly cut-off theory.
The lattice action using staggered lattice fermion fields 	,
�	 is given by the following equations:

S ¼ �

2

X
x;�<�

F��ðxÞF��ðxÞ þX
x;x0

�	ðxÞQðx; x0Þ	ðx0Þ

þ Nf�s

4

X
~x

�2ð~xÞ; (3)

where

F��ðxÞ � 
�ðxÞ þ 
�ðxþ �̂Þ � 
�ðxþ �̂Þ � 
�ðxÞ;
(4)

Qðx; x0Þ � 1

2

X
�

��ðxÞ½�x0;xþ�̂Ux� � �x0;x��̂U
y
x��̂;��

þ �xx0
1

8

X
h~x;xi

�ð~xÞ þm�xx0 : (5)

The indices x, x0 consist of three integers (x1, x2, x3)
labelling the lattice sites, where the third direction is
considered to be timelike. The symbol h~x; xi denotes the
set of the eight dual lattice sites ~x surrounding the direct
lattice site x. Since the pure gauge action is unbounded
from above, Eq. (3) defines the noncompact formulation of
lattice QED. The ��ðxÞ are the Kawamoto-Smit staggered

fermion phases ð�1Þx1þ���þx��1 , designed to ensure relativ-
istic covariance of the Dirac equation in the continuum
limit. The boundary conditions for the fermion fields are
antiperiodic in the timelike direction and periodic in the
spatial directions. The phase factors in the fermion bilinear
are defined by Ux� � expði
x�Þ, where 
x� is the gauge

potential. In terms of continuum quantities, 
x� ¼
aeA�ðxÞ, � � 1

e2a
, �s � a

g2s
where a is the physical lattice

spacing. Because of the noncompact nature of the gauge
fields, the nonfermionic part of the action is invariant under
gauge transformations defined by the group of real num-
bers R. The fermionic part remains invariant under the
smaller gauge group R=Z	Uð1Þ. The four-fermi term
explicitly breaks theUðNf=2Þ 
UðNf=2Þ chiral symmetry

of the lattice QED3 action to a discrete Z2 chiral symmetry.
Performing simulations with massless fermions even

with the reduced Z2 chiral symmetry has substantial ad-
vantages, both theoretical and practical. The theory has the
exact symmetry of the interaction terms, which forbid
chiral symmetry breaking counterterms from appearing
in its effective action. In addition, because of the large
nonzero vacuum expectation value of the � field at strong
gauge couplings1 or its fluctuations at weak couplings, the
model can be simulated very efficiently. Another advan-
tage of simulations directly in the chiral limit is that we do
not have to rely on often uncontrolled chiral extrapolations
to measure the chiral condensate.
The simulations were performed with the standard

Hybrid Molecular Dynamics (HMD) R algorithm. We
used conservatively small values for the HMD trajectory
time-step dt and ensured that any Oðdt2Þ systematic errors
are smaller than the statistical errors on different observ-
ables. Among the various parameters used the ones that are
the most susceptible to algorithmic systematic errors are
those near the Nf ¼ 4 chiral transition (� ¼ 0:145) on the

largest lattice volume 423, with the weakest four-fermi
coupling �s ¼ 16. By comparing the values of different
observables obtained from simulations with these parame-
ters and with dt ¼ 0:00125 and dt ¼ 0:0025 we found

1At large couplings, pure QED3 simulations are dramatically
slowed down by the strong gauge field flusctuations.
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agreement within statistical errors. Therefore, we decided
to use dt ¼ 0:0025 for all 423 and 323 simulations. For the
smaller lattices 163, 243 and Nf � 4 we found that dt ¼
0:01 and 0.005 are small enough to suppress algorithmic
systematic errors at strong coupling and weak gauge cou-
plings, respectively. For Nf � 2 we used dt ¼ 0:005 and

dt ¼ 0:0025 for simulations on 163 and 243 lattices,
respectively.

The magnetic monopoles in the lattice model are iden-
tified following the standard DeGrand and Toussaint ap-
proach [32]. The plaquette angles ��� are written as

��� ¼ ���� þ 2�s��ðxÞ; (6)

where ���� lie in the range ð��;�� and s��ðxÞ is an integer
that determines the flux due to a Dirac string passing
through a plaquette. The integer number of monopole
charges on the dual lattice sites ~x is then given by

Mð~xÞ ¼ 
�����s��ð~xÞ; (7)

where �� is the lattice derivative and M 2 f0;�1;�2g.
Since on a three-torus the number of monopoles is equal to
the number of antimonopoles we define the density of
monopole charges as

�M ¼ 1

V

X
~x

jMð~xÞj: (8)

We also measured the monopole susceptibility 	m intro-
duced by Cardy [31]:

	m ¼ � 1

V

X
r

hr2Mð0ÞMðrÞi: (9)

This observable is the polarizability of the monopole con-
figurations and if the magnetic charges are in a plasma
phase, then 	m diverges implying that external magnetic
fields are shielded. A finite 	m implies that monopoles and
antimonopoles form tightly bound molecules. The observ-
able 	m has been rarely used in simulations with dynami-
cal fermions, because it is very noisy due to near
cancellations of monopole-monopole and monopole-
antimonopole contributions. With the inclusion of the
four-fermi term in the QED3 action the algorithm became
very efficient and 	m has been measured with an accept-
able signal-to-noise ratio even at relatively strong gauge
couplings.

III. RESULTS

In the infinite gauge coupling limit � ! 0, it is known
rigorously that chiral symmetry is broken [33] for values of
Nf below a certain critical value. Simulations of QED3

with staggered fermions and � ¼ 0 have shown that the
theory undergoes a second-order phase transition at Nf �
8 with mean field theory exponents [19]. Therefore, as �
increases, for Nf > Nfc there must exist a chiral symmetry

restoring phase transition at some finite �c. For Nf < Nfc,

since the order parameter is very small in the continuum
limit, the relic of the transition may persist as a very sharp
crossover between weak and strong couplings with a tail of
an exponentially suppressed �c c extending to weak gauge
couplings.2 For example, for Nf ¼ 4, which is the flavor

number used in the bulk of our simulations the SDE
approaches predict that the value of the dimensionless
chiral condensate �2h �c c i is somewhere between zero
and Oð10�4Þ [3]. In this study we assume that a transition
takes place at some strong (pseudo-)critical gauge coupling
�c which depends on �s and we use standard scaling
relationships for a second-order phase transition to extract
critical exponents. We choseNf ¼ 4, instead of a largerNf

value, because as we show later in this section for large Nf

values the width of the scaling region is suppressed.
One of the main goals of this first set of lattice simula-

tions of noncompact QED3 with the additional four-fermi
term is to understand the impact of the Gross-Neveu cou-
pling on the chiral transition. As already mentioned in
Sec. I, in 3d the four-fermi term becomes a relevant
interaction (as opposed to the 4d theory where it is an
irrelevant interaction) and therefore this term may play a
significant role near the chiral transition even at very small
values of g2s . Given that the pure 3d Gross-Neveu model
with Nf ¼ 4 undergoes a second-order phase transition at

�sc ¼ 0:835ð1Þ [34], we chose �s ¼ 2, 4, 8, 16 for the
Nf ¼ 4 strong gauge coupling simulations. All these val-

ues of �s are in the symmetric phase of the Gross-Neveu
model, implying that they cannot generate nonzero fer-
mion dynamical mass on their own. The finite volume
effects are expected to increase with �s and in the limit
�s ! 1, on finite size lattices h �		i ! 0. In order to check
the extent of finite volume effects, we performed simula-
tions on 163 and 243 lattices for �s ¼ 2, on 323 lattices for
�s ¼ 4, 8 and on 323 and 423 lattices for �s ¼ 16. It is
clear from the data for h �		i versus � shown in Fig. 1 that
the 243 lattice size is sufficiently large to suppress finite
volume effects for�s ¼ 2. Also a comparison of the values
of h �		i from simulations with �s ¼ 16 on 323 and 423

lattices implies that 323 is large enough to suppress finite
size effects for �s ¼ 4, 8, 16. We fitted the data for the
different �s values to the standard scaling relation of a
second-order transition order parameter:

h �		i ¼ að�c � �Þ�m: (10)

The fitting range was varied to ensure that all the data near
the transition that give stable values for �m and �c were
included. For the weakest four-fermi coupling �s ¼ 16 the
three parameter fits to Eq. (10) did not give stable values
for �m and �c when the fitting range was varied. This is
attributed to the fact that for such a very weak four-fermi
coupling the scaling window is very narrow. Therefore, in

2This may not be directly detectable in lattice simulations.
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order to obtain an estimate for �c and the width of the
scaling region we fixed �m ¼ 0:93 (the value of the 3d
Gross-Neveu exponent [34]) and performed two-parameter
fits with Eq. (10). A reasonable fit (	2=dof ¼ 1:3) was
obtained from the data in the range � ¼ ½0:1275� 0:140�.
All the results from this analysis, namely, the values for�c,
�m, and the fitting ranges (where �cross is a crossover
coupling that signals the beginning of the scaling region)
are shown in Table I. It is deduced that the values of �m are
in good agreement (or slightly larger by 1–2 standard
deviations) with the �m ¼ 0:93ð3Þ of the Nf ¼ 4 GNM3

[34]. An analytical calculation based on SDE and large-Nf

approaches for QED3 with a Uð1Þ chirally invariant four-
fermi term [35] predicted that for Nf > Nfc ¼ 112=3�2

the magnetic critical exponent is �m ¼ ð3� 2aÞ=4a,
where a ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nfc=NfÞ

q
. This result reproduces the

GNM3 exponent �m ¼ 1 only when Nf � Nfc.

Our results for the critical coupling show that �c de-
creases as the four-fermi coupling gets weaker and it is
expected to saturate to an asymptotic value in the limit
�s ! 1. This asymptotic value is clearly smaller than
�c ¼ 0:212ð4Þ obtained from pure QED3 simulations
with Nf ¼ 4 [12]. The discrepancy in the estimates of �c

between the two models is attributed to the presence of
lattice discretization counter-terms in the pure QED3 ef-

fective action, which are forbidden by the introduction of
the four-fermi term in the current model. It should be noted
that for the same reason the inclusion of the four-fermi
term in the noncompact QED4 Lagrangian led to a larger
scaling window in the direction of the gauge coupling than
in pure noncompact QED4 [25]. Another interesting result
shown in the last column of Table I is that the Gross-Neveu
scaling region (�c � �cross) is suppressed as the four-fermi
coupling becomes weaker. This can be understood by a
combination of dimensional analysis and scaling argu-
ments as follows. The fixed four-fermi coupling g2s with
mass dimension �1 introduces a new scale in the system.
As the scaling region is approached by increasing �, the
magnitude of the dimensionless gauge coupling at the
crossover into the scaling region e2crossa (a is the lattice
spacing) becomes comparable to the magnitude of the
dimensionless four-fermi coupling g2sa

�1. Therefore,
e2crossm

2
e 	 g2s , where me is the electron mass which is an

inverse correlation length and obeys the scaling relation:

mcross
e ¼ dð�sÞð�c � �crossÞ�; (11)

with � ¼ 1:0 for the Nf ¼ 4 GNM3 [34]. In the large �s

limit, dð�sÞ and �cross saturate to certain values, implying

ð�c � �crossÞ 	
ffiffiffiffiffiffi
1

�s

s
: (12)

It can be seen from the last column of Table I that the data
for the scaling region width comply relatively well with
Eq. (12), especially for the two weakest four-fermi cou-
plings �s ¼ 8, 16.
We also performed simulations on 323 lattices with

nonzero fermion bare mass in the range m ¼ 0:005; . . . ;
0:020 at the respective critical gauge couplings for �s ¼ 2,
4, 8, 16. The results for the chiral condensate as a function
of m were fitted to the standard scaling relation:

h �		i ¼ cm1=�: (13)

The data and the fitting functions are shown in Fig. 2 and
the values of the critical exponent � are presented in
Table II. The extracted values of � are close (within 1–2
standard deviation) to the Nf ¼ 4 GNM3 � ¼ 2:24ð11Þ
[34]. The slightly larger values of � in Table II as compared
to the pure GNM3 value could be attributed to either the
accuracy with which the critical couplings were measured
and/or to a small fermion mass generated by the gauge field
dynamics. Notably the � ¼ 2:45ð3Þ extracted from simu-
lations with the strongest four-fermi coupling �s ¼ 2 hints
at preliminary evidence in favor of mass generation by the
QED3 dynamics that might have been enhanced by the
four-fermi coupling. Future better precision simulations
may further clarify this issue. Nevertheless, the two critical
exponents �m and � are sufficient to define the universal
properties of the model at (pseudo-)criticality, since all the
other exponents can be estimated using standard hyper-
scaling relations. These results clearly indicate that the

TABLE I. Results from fits of h �		i vs � to Eq. (10).

�s Fitting range �c �m ð�c � �crossÞ
2 0.22–0.28 0.313(2) 0.96(3) 0.09(1)

4 0.16–0.19 0.212(2) 0.96(4) 0.052(5)

8 0.1325–0.16 0.176(1) 0.99(3) 0.044(3)

16 0.1275–0.14 0.1579(4) 0.93 (fixed) 0.031(3)

FIG. 1 (color online). Fits of h �		i vs � to Eq. (10) for Nf ¼ 4
and �s ¼ 2, 4, 8, 16.
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four-fermi interaction plays a predominant role in the
scaling of the order parameter near the chiral transition.
Although the transition may be approached by varying the
gauge coupling alone, as mentioned in Sec. I pure QED3 is
super-renormalizable and ultraviolet-finite, and therefore
the ultraviolet-stable fixed point of GNM3 determines the
scaling properties of the transition. This situation is similar
to the Higgs-Yukawa model where the interaction ��4 is
also super-renormalizable in 3d, and the four-fermi inter-
action determines the model’s universality class [36]. An
analogous result was recently obtained in a perturbative
renormalization group theory approach of the graphene
phase diagram [37], where it was shown that in the pres-
ence of a four-fermi interaction the electron charge is
rendered more marginally irrelevant than at the Gaussian
fixed point.

In Fig. 3 we present the results for the monopole density
�m versus � for �s ¼ 2, 4, 8, 16. We see that �m decreases
monotonically and smoothly with � with no evidence for
any abrupt changes at the chiral transition couplings that
might signal the existence of a phase transition from strong
to weak couplings. At strong gauge couplings �m decreases
as �s increases and above the chiral transition �m tends to
become �s-independent. It should be noted, however, that
the impact of �s on �m is significantly smaller than on the

chiral condensate (see Fig. 1); a similar result was obtained
in simulations of the compact version of the model [29]. As
expected, a stronger four-fermi coupling produces a larger
enhancement of the fermion condensate near the transition,
whereas the monopole dynamics are mainly determined by
the short-distance fluctuations of the gauge fields.
In order to study the dependence of the scaling region

width on Nf we performed additional simulations with

Nf ¼ 8, 12 and m ¼ 0, �s ¼ 2 on 243 lattices. It is shown

in Fig. 4 that as Nf increases the values of h �		i decrease,
due to the enhanced screening of the electromagnetic
interaction by virtual fermion-antifermion pairs. The data
for h �		i were fitted to Eq. (10) in the regions where stable
values for �m and �c were obtained. The results for Nf ¼
8, 12 together with the Nf ¼ 4 results discussed earlier,

FIG. 2 (color online). Fits of h �		i vs m to Eq. (13) for Nf ¼ 4
and �s ¼ 2, 4, 8, 16. FIG. 3 (color online). �m vs � for Nf ¼ 4 and �s ¼ 2, 4, 8,

16.

TABLE II. Results for exponent � extracted from fits to
Eq. (13) for Nf ¼ 4.

�s �

2 2.45(3)

4 2.36(3)

8 2.34(3)

16 2.33(2)
FIG. 4 (color online). h �		i vs � for Nf ¼ 4, 8, 12.
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and the fitted curves are shown in Fig. 4 and summarized in
Table III. The values of�c decrease asNf increases and the

values of the magnetic critical exponent�m are close to the
large-Nf GNM3 value �m ¼ 1. As already mentioned in

Sec. I the dimensionless strength of theQED3 interaction is
given by 	1=Nf. Following the reasoning that led to the

derivation of Eq. (12), it can be easily shown that for fixed
�s and variable Nf the width of the Gross-Neveu scaling

region is given by

ð�c � �crossÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�crossðNfÞ

Nf

vuut ; (14)

where �crossðNfÞ is the crossover coupling into the GNM3

scaling region. The results presented in Table III show that
the scaling region is suppressed for large Nf values. It is

also inferred from the results in the last column of Table III
that the data comply with Eq. (14) relatively well. In a
similar way to the chiral condensate, the monopole exci-
tations density shown in Fig. 5 also gets smaller as the
interaction strength is decreased by increasingNf. It is also

interesting to observe that in Fig. 6 the data for h �		i versus
�m for Nf ¼ 4, 8, 12 and �s ¼ 2 collapse on a single

curve, the only exception being the Nf ¼ 4 data at small

values of �m, a regime that coincides with the broader
Nf ¼ 4 GNM3 scaling region. We infer from Fig. 6 that

large Nf values and strong gauge couplings produce chiral

condensation and topological excitations in a very similar
almostNf-independent manner, without this implying any-

thing about the impact of monopoles on the theory’s con-
fining properties. From the monopole density alone one
cannot reach conclusions regarding the confining proper-
ties of the theory.
Next, we take a closer look at the monopole dynamics by

discussing results for the monopole susceptibility 	m de-
fined in Eq. (9). This observable is far more informative
than �m, because it measures the polarizability of the
monopole configurations and it is expected to show a
diverging behavior if the monopoles and antimonopoles
are in a plasma phase. As mentioned in Sec. II, 	m is in
general very noisy due to near cancellations of monopole-
monopole and monopole-antimonopole contributions.
However, the four-fermi term introduced in the QED3

action substantially increased the efficiency of the simula-
tion algorithm and enabled us to measure 	m with accept-
able signal-to-noise ratio even at relatively strong
couplings. The data for 	m versus � obtained from simu-
lations with Nf ¼ 4, �s ¼ 2 on 163, 243 and 323 lattices

are presented in Fig. 7. Although 	m increases monotoni-
cally with the gauge coupling, there are no signs of a

TABLE III. Results from fits of h �		i vs � to Eq. (10) for Nf ¼ 4, 8, 12 and compliance of the
width of the scaling region to Eq. (14).

Nf Fitting range �c �m R � ð�c � �crossÞ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�crossðNfÞ

Nf

r

4 0.22–0.28 0.313(2) 0.96(3) 0.093(8) 0.40(9)

8 0.21–0.24 0.269(3) 0.95(6) 0.059(5) 0.36(7)

12 0.140–0.1575 0.184(3) 0.97(11) 0.044(5) 0.41(6)

FIG. 5 (color online). Monopole density �m vs � for Nf ¼ 4,
8, 12, �s ¼ 2.

FIG. 6 (color online). (Color online) h �		i vs �m for Nf ¼ 4, 8,
12 and �s ¼ 2.
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divergent behavior. These results imply that monopoles are
shielded by forming tightly bound molecules. We also
performed simulations with different numbers of fermion
flavors in the range Nf ¼ 1; 2 . . . ; 12 on 163 and 243 latti-

ces with �s ¼ 2. The values of � ¼ 0:4, 0.5 used are in the
weak coupling phase for all Nf values in the sense that

h �c c i is consistent with zero and the effective order pa-
rameter hj �c c ji decreases with the lattice volume. Again,
the data for 	m presented in Fig. 8 show no signs of a
diverging behavior as they are independent of the lattice
volume within statistical errors. These results imply that
for Nf � 1 the monopole dynamics do not affect the con-

fining properties of the theory’s continuum limit.
The conclusion of the previous paragraph is strength-

ened by the data in Fig. 9, where we show forNf ¼ 1 and 4

the density of positive magnetic charges (monopoles) �þ
and the density of monopoles without any antimonopoles
in their nearest neighborhood (xi � 1) �0þ versus beta. We
fitted these data to an empirical function fð�Þ ¼
a1 expð�a2�Þ, and the extracted values of a2 and a02 for
�þ and �0þ, respectively, are shown in Table IV. The fact
that �0þ decays faster than �þ confirms the scenario that at
weak couplings the monopoles are shielded. The increase
of 	m and �0þ at strong gauge couplings and/or small Nf

values can be easily understood in terms of the renormal-
ization group invariant Dirac quantization condition eg ¼
eRgR [38] (g and gR are the monopole bare and renormal-
ized charges). As Nf (or �) decreases the interaction

between fermions and antifermions gets stronger, implying
that the monopole-antimonopole attraction gets weaker.
The monopole dynamics in the compact and noncom-

pact formulations may be different at weak couplings and
small Nf values, because in the noncompact version the

Dirac strings carry a nonvanishing contribution to the pure
gauge part of the action [30]. The two formulations, how-
ever, become identical in the infinite gauge coupling (� !
0) and/or large-Nf (Nf ! 1) limits, as in these limits the

fermionic sector with compact gauge links in the action
dominates the dynamics. The results from simulations of
compact QED3 coupled to a four-fermi term with Nf ¼ 4

FIG. 7 (color online). 	m vs � for Nf ¼ 4,�s ¼ 2 on 163, 243,
and 323 lattices.

FIG. 8 (color online). 	m vs � for Nf ¼ 1; 2; . . . ; 12, �s ¼ 2
on 163 and 243 lattices.

FIG. 9 (color online). Positive monopole charges density �þ
and isolated positive monopole charges density �0þ vs � for
Nf ¼ 1, 4, �s ¼ 2 on 323 lattice.

TABLE IV. Results from fits of �þ and �0þ vs � to fð�Þ ¼
a1 expð�a2�Þ for Nf ¼ 1, 4.

Nf 1 4

a2 10.9(1) 11.16(4)

a02 17.90(9) 18.74(3)
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[29] provided evidence that the monopole plasma phase
persists even at weak gauge couplings. Although our simu-
lations with Nf ¼ 4 were performed at relatively strong

couplings deep in the chirally broken phase, it is unclear
whether we reached the limit where the monopole dynam-
ics in the two formulations should become similar.
Furthermore, it has been suggested [39,40] that the com-
pact and noncompact formulations may be equivalent. This
suggestion was largely based on comparisons of chirally
extrapolated data for h �		i versus �m from the two models.
The authors of [40] also suggested that even at weak
couplings the monopoles in noncompact QED3 may exist
in a plasma phase. Our results and their difference from
those reported in [29] imply that these suggestions may not
be valid. Marston [41] and later on Kleinert and collabo-
rators [42,43] suggested in a series of analytical papers on
compact QED3 that above a certain critical number of
fermion flavors (Nfc) a phase exists where the monopole-

antimonopole potential is modified from 1=r to lnðrÞ,
implying that monopoles are shielded and do not influence
the continuum limit. Recently, it was reported that Nfc ¼
36 [43]. Also Herbut and collaborators [44] claimed that in
compact QED3, the interaction among magnetic dipole
pairs restores the Coulomb potential at large distances,
and the monopoles are in a plasma phase at all �<1
and Nf <1. In the near future we plan to simulate com-

pact QED3 with different Nf values and compare the

results for monopole dynamics with those mentioned
above.

IV. SUMMARYAND OUTLOOK

Three-dimensional QED is an interesting field theory
due to its similarities to four-dimensional QCD-like theo-
ries and its applications in high temperature superconduc-
tivity. In this paper we presented the first results from
lattice simulations with massless fermions of noncompact
QED3 coupled to a weak Z2 chirally invariant four-fermi
interaction. Below we summarize and discuss our main
findings.

The values of the critical exponents �m and � extracted
from simulations withNf � 4 are close to the values of the

respective 3d Gross-Neveu exponents. This implies that
even for very weak four-fermi couplings (almost 20 times
smaller than the pure Gross-Neveu critical coupling) the
strong coupling chiral transition/crossover for Nf � 4 is

dominated by the Gross-Neveu ultraviolet-stable renormal-
ization group fixed point. The gauge interaction is an
irrelevant operator near the transition, but the system can
be driven towards (pseudo-)criticality by varying the gauge
coupling. It is noted that certain values of the critical
exponents (especially �) extracted from simulations with
the strongest four-fermi coupling, �s ¼ 2 are slightly
larger than those of the pure Gross-Neveu exponents,
which hints at preliminary evidence for nonzero fermion

mass generated by the gauge field dynamics. Future large-
scale simulations will further clarify this issue. In the weak
four-fermi coupling limit the Nf ¼ 4 critical gauge cou-

pling �c is significantly smaller than its respective pure
Nf ¼ 4 QED3 value, possibly because the four-fermi term

forbids lattice discretization counter-terms that may exist
in the pure QED3 effective action with m � 0. Fur-
thermore, for a given Nf value, in the weak four-fermi

coupling limit the scaling region is suppressed by a factor
	1=

ffiffiffiffiffiffi
�s

p
, whereas for fixed �s and variable Nf the scaling

region is suppressed by a factor 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�crossðNfÞ=Nf

q
. Also,

the effects of the four-fermi coupling on the monopole
density are smaller than on the chiral condensate, as �m

depends more strongly on the short-distance fluctuations of
the gauge field, whereas the fermion condensate is signifi-
cantly enhanced near the transition by the four-fermi cou-
pling. ForNf � 4we have also seen evidence that at strong

couplings the chiral condensate is correlated to the mono-
pole density in an Nf-independent manner.

We also reached the conclusion that the monopoles are
shielded at weak couplings for Nf � 1 because: (i) the

monopole polarizability measured by 	m showed no signs
of a divergent behavior, and (ii) the exponential decrease of
the isolated monopoles’ density with � is faster than the
decrease of the total density of positive magnetic charges.
A comparison of our results with those from simulations of
compact QED3 coupled to a four-fermi term [29] which
favor survival of the monopole plasma at weak couplings
for Nf ¼ 4 implies that the monopole dynamics in the two

models are different.
The various results from this first exploratory study are

promising. This is due to the presence of the four-fermi
coupling in the model’s action, which increased substan-
tially the efficiency of the simulation algorithm. In the near
future we plan to extend this work in the following direc-
tions: (i) Large scale simulations of the noncompact ver-
sion with Nf � 4 to compare the scaling properties at the

transition/crossover with those of pure Gross-Neveu
model. Possible deviations may provide evidence for the
existence of fermion mass generated by the gauge field
dynamics. (ii) Landau gauge-fixed simulations to measure
the fermion dynamical mass, which according to SDE
approaches it is expected to be an order of magnitude
smaller than the natural cutoff scale e2 in the continuum
limit [15], and hence significantly larger than the chiral
condensate. (iii) Simulations of compactQED3 with differ-
ent values of Nf and comparison with the existing analyti-

cal results.
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